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Abstract
Twinning is a known accommodation mechanism of graphene that results in low-energy
microstructures or twins. In view of their mechanical stability, twins suggest themselves as a
possible means of introducing extended defects in graphene leading to the opening of
transmission band gaps. We investigate charge-carrier transmission across the twin structures
in graphene using the Landauer–Büttiker (LB) formalism in combination with a tight-binding
model. We verify the approach by means of selected comparisons with density functional
theory (DFT) and non-equilibrium Green’s function (NEGF) calculations using the code
SIESTA and TRANSIESTA. The calculations reveal that graphene twins open transport gaps
depending on the twin geometry up to maximum of 1.15 eV. As previously reported for grain
boundaries, we find that localized states arise at dislocation cores in the twin boundaries that
introduce peaks near the Fermi level.

Keywords: graphene, twining, charge-carrier transport, Landauer–Büttiker formalism,
tight-binding model

(Some figures may appear in colour only in the online journal)

1. Introduction

Owing to its electronic [1] and mechanical properties [2, 3],
graphene is under consideration as a next generation material
for the nanotransistors industry [4, 5]. However, the absence
of a band gap in pristine graphene [6] prevents its use as a
semiconductor. Numerous avenues have been pursued with
a view to opening transport gaps in graphene. For instance,
small band gaps of up to ∼0.4 eV can be induced by applying
strain [7, 8]. Gaps in the same range have also been achieved
in twisted bilayer graphene devices [9] and in van der Waals
heterostructures consisting of a single graphene layer coupled
to a hexagonal boron nitride substrate [10]. The introduction
of doping elements can result in slightly higher transport gaps
of up to 0.67 eV [11]. These band gaps are small compared
to that of silicon, 1.12 eV [12], and are not enough for most
applications [13]. Isolated defects such as Stone–Wales [14]
or vacancies [15] generally fail to open a band gap for the lat-
tice since they only perturb the electronic structure locally. By

contrast, extended defects such as certain grain boundaries can
induce band gaps as large as 1.54 eV [5, 16, 17].

Twinning is a known deformation mode of graphene
[18–20]. Twinning is a piecewise constant deformation of a
lattice in which the interface, or ‘twin boundary’, is unde-
formed, coherent and such that: (i) the lattices on both sides of
the interface are in a stress-free ground state; (ii) the lattice on
one side of the interface can be obtained by a lattice-invariant
simple shear of the lattice on the other side; and (iii) the lattice
on one side of the interface can also be obtained by a rotation of
the lattice on the other side. Since, away from the interface, the
lattice is in a ground state and the interface is undeformed and
coherent, twins are low-energy configurations of the crystal.
In addition, since the average deformation following twinning
may differ from the identity, twinning provides an accom-
modation mechanism. Graphene twins have been investigated
computationally [21, 22] by introducing twin boundaries in
the graphene lattice ab initio. Arca et al [23] have presented
numerical evidence that twinning in fact operates as an accom-
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Figure 1. Relaxed atomic configurations of representative dislocations structures and corresponding misorientation angles θ. (a)
Stone–Wales array (3, 8); (b) dislocation structures (7, 8), θ = 14.4◦; (c) dislocation structures (19, 8), θ = 16.1◦; (d) dislocation structures
(11, 6), θ = 20.3◦; (e) dislocation structures (11, 8), θ = 16.1◦; and (f) dislocation structures (11, 12), θ = 10.9◦.

Figure 2. Geometry of the model used to compute the charge-carrier transmission across twins.

modation and relaxation mechanism in graphene, i.e., twins
may arise spontaneously in graphene layers containing arrays
of dislocations and results in a significant reduction in energy.

In view of their mechanical stability, twins suggest them-
selves as a possible means of introducing extended defects
in graphene leading to the opening of transmission band
gaps. Indeed, previous work on charge-carrier transmission in
graphene suggest that transport gaps are induced by asym-
metric deformations [7, 8]. In the present work, we inves-
tigate charge-carrier transmission across the twin structures
in graphene using the Landauer–Büttiker (LB) formalism
[24–26] in combination with a tight-binding model [27]. These
methods have been combined in multiple works before [5,
16, 22, 28, 29]. We verify the approach through selected
comparisons with density functional theory (DFT) and non-
equilibrium Green’s function (NEGF) calculations using the

codes SIESTA and TRANSIESTA [30, 31]. The calculations
reveal that graphene twins open transport gaps depending on
the twin geometry up to maximum of 1.15 eV. This value
is consistent with band gaps of up to 1.2 eV reported by
Rojas et al [22]. As previously reported for grain boundaries
[32], we find that localized states arise at dislocation cores
in the twin boundaries that introduce peaks near the Fermi
level.

2. Periodic dislocation structures in graphene

In this work, we specifically focus on twinned microstruc-
tures resulting from the introduction of periodic arrays of
parallel dipoles in a single graphene layer, figure 1. The ener-
getics of these structures has been studied in [23] using the
computational method presented in [33]. The method consists
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Figure 3. (a) Charge-carrier transmission coefficient per period across the dislocation structures (11, 6) calculated with the tight-binding
model and by first principles; (b) detail of the transmission coefficient around zero energy. The Fermi level is set as zero.

Figure 4. (a) Comparison of charge-carrier transmission coefficient per period across the dislocation structures (15, 12) when investigating
flat (model I) or fully relaxed (model II) supercells, by using the tight-binding model and by first principles; (b) detail of the transmission
coefficient around zero energy. The Fermi level is chosen as zero.

of a first harmonic step designed to set the desired defect struc-
ture into the lattice followed by a fully nonlinear relaxation. In
the harmonic step, we employ a force-constant model based
on the LCBOPII interatomic potential [34] in order to intro-
duce discrete dislocation dipoles [35, 36] in an otherwise per-
fect graphene lattice. The defective harmonic configurations
are then used as initial conditions for LAMMPS [37] calcu-
lations using the full LCBOP potential [38], thus obtaining
fully-relaxed configurations. At the end of the relaxation, the
lattice between the dislocation arrays is rotated with respect to
the parent lattice and the overall microstructure obeys closely

the classical twinning relations that identify it as a true twin
[23].

Following the notation of [23], the dislocation structures
under consideration are parameterized by means of the pair
(n, m), where n is the number of zig-zag bonds in the twin,
which also measures the width of the twinned region, and m
is the number of arm-chair bonds between dipoles, a measure
of dipole-plane separation. Figure 1 shows several represen-
tative dislocation structures. Except for the shortest dipole,
figure 1(a), all equilibrium configurations consist a lamellar
twinned region spanning two twin boundaries consisting of
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Figure 5. (a) Charge-carrier transmission coefficient per m = 8 period across the dislocation structures (3, 8) and (11, 8); (b) detail of the
transmission coefficient around zero energy. The Fermi level is set as zero.

arrays of 5–7 dislocations. The misorientation angles between
the twinned region and the outside regions, as well as the for-
mation energy of each configuration, depend sensitively on the
pair (n, m). These relations can be found in [23], where addi-
tional computational details and twinning configurations are
reported.

3. Model and methodology

3.1. Model

The computational cell employed for charge-carrier transmis-
sion calculations is shown in figure 2. The model is periodic in
the y-direction, and it is composed of a central, left and right
regions. The central region contains a twin set in through the
energy relaxation calculations described in the foregoing. The
left and right regions contain defect-free graphene lattices of
semi-infinite extent in the x-direction. The distance between
the twin boundaries and the interfaces of the regions, LB, is
larger than 75 Å in order for the transition through the regions
to be smooth. Since the charge-carrier transmission coefficient
is proportional to the number of periods, the y-dimension of the
computational may be conveniently restricted to one period of
size m.

3.2. Computational methods

In order to compute transport properties, we resort to the
Landauer–Büttiker (LB) formalism [25, 26] based on a tight-
binding (TB) model [27] as implemented in [17]. The LB for-
malism provides a theoretical framework for the description of
coherent electronic transport with elastic scattering by relating
the conductance of a device to its transmission probability. The
conductance can be written in terms of the Green’s function,
which describes the relationship between electronic states for
each energy level E of each atom i.

Following [25, 26], the transmission function through the
central region at energy level E is

T(E) = Tr
[
ΓL(E)G†

C(E)ΓR(E)GC(E)
]

, (1)

where GC is the Green’s function of the central region and ΓL

and ΓR account for the coupling between the central region
and the left and right regions, respectively. Both functions G
and Γ are calculated directly from the Hamiltonian of the sys-
tem for the TB model [27], which accounts for lattice strains
[39] by scaling the TB hopping integrals as in [40]. The period-
icity in the y-direction is enforced by solving equation (1) in
reciprocal k-space [41]. In addition, the charge-carrier trans-
mission can be investigated by recourse to the local density of
states (LDOS), which represents the number of available states
at an atom at an energy level. By the definition of the Green’s
function, the LDOS of an atom i is

LDOS(E) = − 1
π

Im
[
(G†

C)ii

]
. (2)

All calculations are carried out under conditions of static
equilibrium. In the TB–LB calculations we assume that only
the electrons located in the pz orbitals account for the elec-
tronic transport properties [17]. Indeed, these orbitals are
normal to the lattice plane and form weak π-bonds with neigh-
boring C atoms. These interactions keep the electrons weakly
bounded to the nuclei, unlike the remaining three valence
electrons that form strong σ-bonds in the lattice plane. We
evaluate equation (1) in the Brillouin zone of the lattice. We
verify that convergence is ostensibly attained using 144 k-
points.

In addition, we simplify the calculations by using flat 2D
simulation supercells with constrained out-of-plane displace-
ments. Indeed, previous work on charge-carrier transmission
in graphene suggests that the transmission coefficient is nearly
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Figure 6. (a) Comparison of charge-carrier transmission coefficient per m = 8 period of the dislocation structures (19, 8), (19, 16) and (19,
24); (b) detail of the transmission coefficient around zero energy. The Fermi level is set as zero.

Figure 7. Dependence of the transport gap on the width n of the
dipoles for three different dipole separations, m = 8, 12, 16.

identical in fully-relaxed 3D configurations and flat 2D con-
figurations [17].

3.3. Method verification

In order to verify the transmission analysis, we have addi-
tionally performed matching first-principles calculations using
the DFT-NEGF SIESTA and TRANSIESTA codes [30, 31].
In the calculations, we employ the PBE exchange–correlation
functional [42] within the generalized gradient approxima-
tion (GGA) and a pseudo-atomic orbitals basis set, the
single-ζ basis [43]. Core electrons are approximated by
means of smooth norm-conserving pseudopotentials [44].
The DFT calculations are carried out with a mesh cut-
off of 400 Ry and a 40 × 30 k-point mesh. A comparison
of TB–LB and DFT-NEGF results is shown in figure 3.
Both sets of results are in good agreement, particularly near

Table 1. Transmission gap and misorientation angle (θ) of
configurations with dipole separations m = 8, 12 and 16.

m = 8 m = 12 m = 16

Gap (eV) θ (◦) Gap (eV) θ (◦) Gap (eV) θ (◦)

n = 3 0.00 0.0 0.00 0.0 0.00 0.0
n = 5 0.35 13.3 0.00 8.5 0.00 8.8
n = 7 0.70 14.4 0.10 9.4 0.00 9.0
n = 9 1.05 16.2 0.45 11.0 0.25 8.5
n = 11 1.10 16.1 0.65 10.9 0.30 8.3
n = 15 1.15 16.1 0.85 11.1 0.55 8.2
n = 19 1.10 16.1 0.80 11.1 0.65 8.2
n = 25 1.00 16.1 0.80 11.1 0.60 8.2
n = 31 1.00 16.1 0.75 11.1 0.60 8.2
n = 37 1.00 16.1 0.75 11.1 0.60 8.2

Table 2. Characteristic values of mismatch and transport gap of
dislocation structures with large n.

(d t − ds)/ds

M (us, vs) (ut, vt) ds (Å) d t (Å) (%) Gap (eV)

8 (2, 2) (3, 1) 8.52 8.87 4.11 1.00
12 (3, 3) (4, 2) 12.78 13.01 1.80 0.75
16 (4, 4) (5, 3) 17.04 17.22 1.06 0.60
20 (5, 5) (6, 4) 21.30 21.44 0.66 0.45
24 (6, 6) (7, 5) 25.56 25.68 0.47 0.35

the Fermi level, where equilibrium calculations are most
accurate.

We verify the accuracy of the flat-cell 2D approximation,
with constrained out-of-plane displacements, for the case of
twinned graphene in the (15, 12) configuration, figure 4. As
may be seen from the figure, the moderate out-of-plane warp-
ing of the lattice in the fully-relaxed configuration (model II)
does not significantly modify the charge carrier transmission
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Figure 8. Local density of states of the Stone–Wales array (3, 8) at (a) E = −1.55 eV; (b) E = −0.25 eV; (c) E = 0.05 eV; (d) E = 0.25
eV; and (e) E = 1.55 eV. The Fermi level is set as zero.

curves. The results from both models show ostensibly similar
structure and display a nearly identical transport gap of 0.85
eV, with bears out the 2D approximation.

4. Transmission across dislocation structures

We have investigated charge-carrier transmission across the
graphene twin structures using the computational methods
just described. Figure 5 shows the charge-carrier transmis-
sion across two representative dislocation structures, (3, 8)
and (11, 8). As may be seen from the figure, both configura-
tions reduce the conductivity of pristine graphene and break
the electron–hole symmetry. This effect is expected given
that the transmission of holes is higher than that of electrons,
as observed in graphene containing topological defects, e.g.,
Stone–Wales [14] or grain boundaries [17, 32]. Remarkably,
only the twinning configuration (11, 8) displays a transport gap
(figure 1).

The width of the transport gaps opened by twinning
depends on the dislocation density, as observed in figure 6.
Specifically, the higher the dislocation separation, m, the
smaller the transport gap. Furthermore, the transport gap also
depends on the width n of the twinned region for configura-
tions with small and medium values of n. This effect is shown
in figure 7 for the cases m = 8, 12 and 16. It is observed that
the transport gap increases up to a maximum at approximately

n = 15 and subsequently decreases slightly to a constant value
solely dependent on m beyond n ∼ 25. This asymptotic value
for large n may be regarded as a characteristic transport gap
for a given m. Coincidentally, analyses of isolated dislocation
dipoles in graphene reveal that the dislocation cores cease to
interact at approximately that twin width [33, 45]. The open-
ing of band gaps may be traced to localized wave functions that
arise at—and bind to—dislocation cores. This localized wave
functions decay quickly away from the dislocation cores with
the result that, beyond a certain dipole separation, they cease
to overlap significantly. In that range, the magnitude of the
bandgap saturates and become independent of the separation
between the interfaces.

In table 1 we collect the gap sizes exhibited by a range of
dislocation structures. Most twinning structures, n � 5, open
a transport gap, with a maximum of 1.15 eV for the (15, 8)
configuration. This transport gap therefore suggests itself as an
upper limit for twinned graphene, comparable to similar values
for asymmetric grain boundaries [16, 17]. As already noted,
the misorientation angle also differs between microstructures.
However, misorientation and gap size do not appear to be
directly correlated. Indeed, configurations with small n entail
significant misorientation but no transport gap, especially for
large m. Previous articles on charge-carrier transmission in
graphene suggest that transport gaps are induced by asymmet-
ric deformations [7, 8]. In view of these considerations, we

6
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Figure 9. Local density of states of the dislocation structures (19, 8) at (a) E = −1.55 eV; (b) E = −0.60 eV; (c) E = −0.55 eV; (d)
E = 0.00 eV; (e) E = 0.55 eV; (f) E = 0.60 eV; and (g) E = 1.55 eV. The Fermi level is set as zero.

seek to peg the transmission properties to the lattice mismatch
measure [16],

Δd
d

=
dt − ds

ds
, (3)

where ds and d t are the periodic y-sizes of the side regions
and the twinned region, respectively, in their undeformed
configurations. We specifically calculate d as [16]

dt =
√

3a
√

u2
t + utvt + v2

t (4)

where a = 1.42 Å is the graphene lattice constant for the
LCBOP potential and (ut, vt) is the translation vector of the
twinned region along the y-direction in terms of Bravais lat-
tice coordinates. The value of ds follows analogously for the
side regions.

Table 2 collects the values of the transport gaps for large
twin width and the corresponding lattice mismatch. As may be
seen from the table, configurations with a small dipole separa-
tion present a high mismatch, i.e., a large strain along the twin
boundaries, and simultaneously a wide transport gap. This cor-
relation is in agreement with previous work [7, 8]. In table 2 we
also observe that configurations with high m have high values
of (ut, vt). This correlation suggests that twin configurations
with larger dipole separation require larger dipole widths to
open a transport gap.

Finally, we analyze the local density of state (LDOS) with
a view to deriving additional insight into the fine electronic
structure. Figures 8 and 9, show the LDOS computed for the (3,
8) and (19, 8) configurations, respectively, at different energy
levels in the vicinity of the Fermi level. We recall that the

7
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Figure 10. DOS inside and outside the twinned region for the (19,
8) configuration.

(3, 8) configuration consists of Stone–Wales arrays with no
discernible twinned region, figure 1. For this configuration,
the LDOS is perturbed by localized states at the Stone–Wales
defect cores corresponding to peaks near the Fermi energy.
These localized states decrease the electronic transmission
across these defects and cause a reduction in overall conductiv-
ity. This reduction is in accordance with previous tight-binding
studies of the electronic properties of Stones–Wales defects
in graphene [46], which show that 7–5 Stone–Wales defects
alter the local electronic structure and reduce the overall con-
ductivity but do not suffice to open a band gap in general.
By contrast, the (19, 8) configuration consists of 5–7 dislo-
cations separated by a twinned region. Under such conditions,
the LDOS of the twin vanishes in the energy range of−0.55 eV
to 0.55 eV. By contrast, the zero band gap property of pristine
graphene is preserved elsewhere in the lattice, figure 10. As
previously reported for grain boundaries [32], localized states
arise at dislocation cores and introduce peaks near the Fermi
level, figures 8 and 9.

5. Conclusion

Owing its mechanical stability and role as low-energy defor-
mation mechanism, twinning suggests itself as an effective
means of introducing extended defects in graphene leading
to the opening of transmission band gaps. We have investi-
gated the charge-carrier transmission across twin structures
in graphene using the Landauer–Büttiker (LB) formalism in
combination with a tight-binding model. We have verified
our approach by means of selected comparisons with density
functional theory (DFT) and non-equilibrium Green’s function
(NEGF) calculations using the SIESTA and TRANSIESTA
codes. Our calculations reveal that graphene twins open trans-
port gaps depending on the twin geometry up to maximum of
1.15 eV. As previously reported for grain boundaries, we have

found that localized states arise at dislocation cores in the twin
boundaries that introduce peaks near the Fermi level.
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