
Theoretical and Applied Fracture Mechanics 127 (2023) 103956

Available online 22 June 2023
0167-8442/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Inter-fibre failure under biaxial loads in glass–epoxy composite materials: 
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A B S T R A C T   

Fibre-reinforced composite materials are especially prone to transverse failure. It appears at the lamina level 
following the mechanism known as matrix/inter-fibre failure. This mechanism of damage is associated with the 
appearance of fibre–matrix debonds (interface cracks), as shown in previous numerical micromechanical studies. 
After the nucleation, growth and kinking into the matrix, these interface cracks give rise to the final macro- 
failure. 

When compared to uniaxial loading, the growth stages of this mechanism of damage (analysed in light of 
Interfacial Fracture Mechanics) show some alterations under different combinations of biaxial loads. This work 
gives a step forward and focuses on the micromechanical BEM study of the evolution of an interface crack in the 
presence of a neighbouring fibre. 

Thus, after considering a transverse tensile load (nominally responsible for the failure) a secondary transverse 
load is also applied (tensile or compressive, perpendicular to the primary load). When considering the two-fibre 
BEM model, the results obtained lead to identifying the neighbouring fibre locations that act as accelerative 
agents on failure progression and establishing the effect of the biaxial load on them. Specifically, when a sec
ondary tensile load is applied, the presence of the nearby fibre (for most of its positions) confirms the slight 
inhibition of the mechanism of failure for biaxial tensile loads already referred to in previous single-fibre studies 
by the authors. As the secondary tensile load increases, it tends to mitigate the effect of the presence of the 
neighbouring fibre that was previously observed for uniaxial tensile load. The opposite effects are found when a 
secondary compressive load is considered, which intensifies the alterations of the presence of the neighbouring 
fibre on the interface crack growth. Experimental evidence on some aspects is provided confirming the associated 
conclusions derived from the numerical models.   

1. Introduction 

The study of the damage mechanism taking place in long fibre- 
reinforced composites at the micromechanical level is fundamental for 
the improvement of industrial applications involving these materials. In 
this regard, transverse failure, which starts with small interfacial 
debonds that lead to a transverse crack that produces the failure at the 
ply level, plays a key role. This failure is generated by the damage 
mechanism known as inter-fibre or matrix failure, which is due to loads 
perpendicular to the direction of the fibres in unidirectional laminates or 
impact loads in multidirectional laminates. The importance of this 
mechanism lies in the fact that it usually defines the damage initiation in 
any laminate. 

At the micromechanical level, the inter-fibre failure has been 

numerically analysed under uniaxial tension [1,2] and under uniaxial 
compression [3–5], by means of BEM single-fibre models. In these 
studies, based on the hypothesis that transverse failure starts with the 
appearance of debonds at the interface between the fibres and the sur
rounding matrix, the different stages of the damage mechanism that lead 
to the macro-failure were identified. In the case of the initiation of the 
failure due to a transverse tensile load, three stages were considered, as 
shown in Fig. 1: 

Stage 1. Crack nucleation: the initiation of the damage mechanism is 
assumed to be controlled by the radial stress at the interface. For a 
single-fibre case, the maximum value of the radial stress responsible for 
the failure is detected at 0◦ from the direction of the uniaxial tensile 
load, resulting in the appearance of the first debond. 

Stage 2. Interface crack growth: starting from the initial debond, the 
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crack grows unstably and symmetrically along the interface until it 
reaches a certain length (60◦-70◦) from the direction of the external 
load. The end of this stage coincides with the appearance of a finite 
contact zone at the crack tips. 

Stage 3. Kinking: the crack growth becomes stable, which favours a 
change in the direction of propagation, the crack kinking into the matrix 
in the direction perpendicular to the tensile load applied. This crack 
continues growing through the matrix, where the coalescence of cracks 
leads to failure at the lamina level. 

After the identification of the differentiated stages of the damage 
mechanism and the use of single-fibre models, some authors have 
included a greater number of fibres in their numerical tools (BEM or 
FEM). Such is the case of the studies presented in [6,7] for uniaxial 
tensile and compressive loads respectively. These works are focused on 
the BEM analysis of the interface crack growth in the presence of a 
nearby undamaged fibre. Thus, a two-fibre model is employed for ana
lysing the influence of the presence of the nearby fibre and its position 
on the propagation of the crack. Multifibre FEM models are presented in 
[8], using cohesive elements, and in [9], applying Linear Elastic Inter
face Models (LEBIM). 

The study of this damage mechanism has also been analysed from the 
point of view of Finite Fracture Mechanics. Such is the case of [10] for 
the tensile uniaxial case. In [11], the authors proposed a model based on 
Finite Fracture Mechanics for the study of the interface debonding under 
a combination of plane tension and out-of-plane shear. 

Some other numerical studies have focused on the initial stage of the 
damage, such is the case of [12,13], whereas other authors have ana
lysed the state previous to the appearance of the macro-crack [14,15]. In 
[16,17], different models of Representative Volume Elements have been 
implemented, in order to study the influence of the fibre volume frac
tion, the distance between interface cracks, the distance to the free 
surface or the distance to the 0◦/90◦ interface in cross-ply laminates, on 
the evolution of the Energy Release Rate. All these approaches are 
especially appropriate for the study of fibre-reinforced composite lam
inates containing ultra-thin plies, in order to have a better understand
ing of the phenomenon known as the scale effect ([18–20]). 

Regarding the experimental approaches of this problem, some au
thors have studied the damage mechanism at the micromechanical level. 
These studies included the outstanding works in the observation of 
interface cracks presented in [21] for static loads, and in [22] for dy
namic loads. The presence of thermal residual stresses, which represent 
an important aspect to be considered in the curing process of fibrous 
composites, is evaluated in [23]. Other studies include the effects of the 
fibre type [24], high and low curing temperatures [25], the thickness of 
90◦ plies in cross-ply laminates [26], or the use of X-ray micro
tomography in single-fibre specimens to analyse the initial debond and 
the propagation of the interface crack [27]. Recent approaches include 
the works presented in [28], which presents optical microscopy 

measurements of the different stages of the damage mechanism under 
tension in cross-ply laminates, and in [29], which follows the same 
approach for the compressive damage mechanism. 

With respect to the aforementioned stages of the damage mecha
nism, some authors have considered the possible alterations that biaxial 
transverse loading could cause. It has been historically assumed that, 
when considering biaxial transverse loads, inter-fibre failure occurs in a 
plane governed by the components of the stress vector associated with 
the referred plane [30]. This fact implies that, for instance, a secondary 
load transverse to a main tensile load would not be relevant in the 
generation of the interface crack. In order to confirm this hypothesis in 
the case of a single-fibre model under biaxial loads, the studies carried 
out in [31,32] analysed the possible effects of a secondary transverse 
load on the initiation and propagation of an interface crack governed by 
tensile or compressive loads. 

In order to approach the problem from an experimental point of 
view, the design of cruciform composite specimens for biaxial testing 
was carried out in [33]. More specifically, four different designs of 
cruciform specimens consisting of 90◦ unidirectional composite lami
nates were proposed and studied for different load levels, using FEM 
models. This analysis was validated by the results of the study presented 
in [34], in which, the design of a biaxial device adapted for use in a 
universal uniaxial testing machine was carried out to perform experi
mental biaxial tests. Subsequently, based on the study presented in [33], 
the design and manufacture of cruciform specimens and the develop
ment of an experimental testing campaign were carried out in [35]. 

In the present study, the authors follow the approach of the two-fibre 
models presented in [6,7] for uniaxial tension and compression and the 
analysis of biaxial loading for a single-fibre case presented in [31,32]. To 
this aim, a two-fibre BEM model is used to observe the influence of a 
transverse (tensile or compressive) secondary load on the interface crack 
growth when a tensile main load is considered. Thus, the alterations 
produced by the presence of a neighbouring undamaged fibre are ana
lysed by modifying the value of the secondary load and comparing the 
results with the uniaxial tensile case [6]. The analysis of all the cases 
under consideration is focused on the evolution of the Energy Release 
Rate during the interface crack growth and its use to predict some as
pects such as the length and morphology of the crack. This work is 
structured as follows: Section 2 is devoted to the description of the BEM 
numerical model; in Section 3 the tension–tension biaxial cases (T-nT) 
are studied; and Section 4 corresponds to the tension–compression 
biaxial cases (T-nC); in Section 5, the most important results are sum
marised and discussed, and they are compared with experimental evi
dence. Finally, Section 6 is devoted to the main conclusions of this study. 

2. Numerical model 

In this work, the numerical study was carried out using a tool based 
on BEM [36] and developed in [37]. This BEM code allows the numer
ical analysis of plane elastic problems for contact and interface cracks to 
be performed. A scheme representing the model employed in this work is 
shown in Fig. 2. It represents the case of a crack that grows (under the 
plane strain hypothesis) along the interface between the matrix and the 
so-called primary fibre, in the presence of a secondary undamaged fibre. 
The appearance of the first debond is assumed to be associated with the 
direction of the primary tensile load for all cases under consideration, 
even though the secondary load and the position of the secondary fibre 
could alter its position. This assumption is reinforced by the results 
obtained in [35] where in all T-nT and T-nC cases the macro-failure 
always occurred perpendicular to the main external tension. In order 
to compare the results of this study with the biaxial single-fibre case [31] 
and the uniaxial two-fibre case [6], a symmetrical model is established. 
Thus, the presence of the secondary fibre produces the same effects at 
both crack tips. Notice that now the entire model consists of three fibres. 

Solids ‘M’, ‘PF’ and ‘SF’ represent the matrix and the primary/sec
ondary fibres respectively. The fibres’ size is defined by the radius r1 

Fig. 1. Micromechanical phases of the inter-fibre failure identified with a 
single-fibre model under uniaxial tension. 
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(r1=7.5⋅10-6m) and the matrix is large enough in order to avoid the 
border effect (b=100⋅r1 and a=b). The position of the secondary fibre is 
defined by parameters r2 and θ2 and is modified to analyse different 
relative positions between the fibres. For this study, the initial distance 
employed between the fibres is r2=r2

0=2.416⋅r1, which corresponds to 
the distance calculated for a fibre volume fraction Vf=62% and hexag
onal packing. 

With regard to the loads applied, the different cases follow the no
tation T-nT/T-nC, where the first T represents the transverse tension 
nominally responsible for the failure (σ0, aligned with the x-axis) and the 
term nT/nC corresponds to the secondary tensile or compressive load 
(aligned with the y-axis). This secondary load is a fraction of that applied 
on the x-axis, this fraction being defined by coefficient n. The n values 
considered in this study are n = 0, 0.25, 0.5, 0.75, 1. 

The materials chosen for the analysis correspond to a glass fibre- 
epoxy matrix system. The elastic properties are included in Table 1. 

To describe the problem from the Fracture Mechanics point of view, 
the Energy Release Rate, G, is used. It is calculated following Eq. (1) 
(based on [38]), for a circular crack that propagates from a certain 
debonding angle, θd, Fig. 2, to θd + Δθd (Δθd≪θd): 

G(θd,Δθd) =
1

2Δθd

∫ θd+Δθd

θd

[σrr(θd + θ)Δur(θd − Δθd + θ)

+ σrθ(θd + θ)Δuθ(θd − Δθd + θ) ]dθ (1)  

where θ is the circumferential coordinate with reference to the x-axis. σrr 
and σrθ represent the radial and shear stresses along the interface, and 
Δur and Δuθ represent the relative displacements of the crack faces. 
Modes of fracture I and II are obviously considered in Eq. (1), associated 
with σrr and σrθ respectively. For this study, the value of Δθd employed is 
0.5◦. 

Dimensionless results for G will be presented. These values are ob
tained, following [39,40], by dividing the values of G by G0: 

G0 =
1 + κm

8μm σ2
0r1π (2)  

where κm = 3-4νm and μm is the shear modulus of the matrix. 

3. T-nT Cases 

3.1. Energy Release Rate 

In this Section, the Energy Release Rate, G, is calculated from Eq. (1) 
for a growing interface crack. This allows the problem to be charac
terised from the Interface Fracture Mechanics point of view. Considering 
the model presented in Fig. 2, the damage was assumed to appear as an 
initial debond of θd=10◦ [6,31]. Then, G was obtained for a debonding 
interval 10◦≤θd≤150◦, using the single-fibre model (reference case) and 
the two-fibre model (with different relative positions between the fi
bres), and applying the biaxial tensile cases T-nT. Regarding the two- 
fibre case, for any biaxial loading configuration and any relative angle 
between the fibres θ2, the appearance of the initial debond follows the 
same tendency of the single-fibre case, even though the alterations of the 
radial stress along the undamaged fibre–matrix interface could modify 
the position of the initial debond. However, the experimental evidence 
presented in [35] (for biaxial T-nT and T-nC cases) reveals that, 
regardless of the position of the initial debond and the propagation of 
the interface crack, the latter stages of the mechanism of damage and the 
final macro-crack are contained in the failure plane perpendicular to the 
main tensile load. This evidence implies that the main external tension is 
responsible for the failure and suggests that the location of the initial 
debond would in any case lead to the interfacial growth assumed here. 
Therefore, for all the cases considered in this study, the position of the 
initial debond is the same, in order to obtain a better understanding of 
the effects of a growing secondary transverse load. 

The evolution of G calculated with the single-fibre model is repre
sented in Fig. 3. These results obviously coincide with those obtained in 
[31] and were employed as a reference for the two-fibre cases. As can be 
observed, for T-0.25 T and T-0.5 T (Fig. 3a), the global G level slightly 
decreases with respect to the uniaxial case (T-0), whereas for T-0.75 T 
and T-T (Fig. 3b), it tends to recover the G level of T-0. 

Regarding the qualitative point of view, propagation under Mode I 
becomes more relevant as the secondary load increases: the GI level rises 
above the uniaxial case and the mixed mode propagation ends at larger 
debonds, which translates the G maxima for T-0.75 T and T-T to higher 
values of θd. Thus, Mode I is still active for larger debonds because the 
secondary transverse load is approximately aligned with the zones 
where the contact zone was supposed to grow for the uniaxial case [1,6], 
which produces an inhibition of the contact and pure Mode II propa
gation as the secondary load increases. 

However, the G value associated with the first debond considered 
(Gθd=10◦ ), which is mostly associated with Mode I propagation, slightly 
decreases as the secondary load increases, as shown in Fig. 4. This fact 
could be related to the level of load needed to initiate the propagation, as 
explained in previous studies [6,31]. Thus, when compared to the uni
axial case, the growth of the incipient crack would require a higher level 
of external load to be applied. Therefore, increasing values of the 

Fig. 2. Model including a primary fibre with an interface crack and an undamaged secondary fibre, under two different biaxial configurations.  

Table 1 
Elastic properties of the bi-material system.  

Material Young modulus, E (Pa) Poisson coefficient, ν 

Matrix (epoxy) Em = 2.79⋅109 νm = 0.33 
Fibre (glass) Ef = 7.08⋅1010 νf = 0.22  
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secondary tensile load involve a slight inhibition of the mechanism of 
damage, representing a protective effect versus failure with respect to 
the uniaxial case. 

Another interesting analysis regarding the effect of the biaxial tensile 
load versus failure can be carried out if the maximum value of the En
ergy Release Rate (Gmax) is now selected as a representative parameter 
with respect to the inhibition or promotion of failure, as commented in 
[41]. In view of the results represented in Fig. 3, and taking the uniaxial 
case as a reference, the biaxial loading cases tend to inhibit the propa
gation of the interface crack, as the value of Gmax for these cases is 
smaller than the reference case. Thus, the cases T-0 and T-T would be the 
most prone to failure, whereas the cases T-0.5 T and T-0.75 T would be 
the less likely to cause crack propagation. 

Once the single-fibre case was analysed, the same approach was 
implemented for the two-fibre model. The evolution of G during the 
propagation (10◦≤θd≤150◦) is calculated for the biaxial tensile cases T- 
nT. The propagation occurs in the presence of the undamaged secondary 
fibre for a fixed value of the distance between the centres of the fibres 
(r2=r2

0) and a range of relative angles (25◦≤θ2≤155◦). In Fig. 5, these 
results are plotted for a selection of θ2 values (θ2 = 25◦, 40◦, 60◦, 90◦, 
120◦, 155◦). 

The G evolution of the interface crack for the angles θ2=25◦ and 
θ2=155◦ (fibres approximately aligned with the primary load) are rep
resented in Fig. 5a and 5f. For these values of θ2, the same tendency is 
observed for increasing values of the secondary tensile load, in partic
ular, the global G level decreases until θd≈80◦-100◦ and increases for 
larger debonding angles. Nevertheless, for θ2=40◦ (Fig. 5b), the biaxial 
load does not considerably alter the evolution of G, except for the in
crease produced for large debonding angles as the secondary tension 
increases. 

Regarding the intermediate positions, they follow a different ten
dency. As shown in Fig. 5c, 5d and 5e for θ2=60◦, θ2=90◦ and θ2=120◦, 
the global G level remains almost unaltered for n = 0.25, 0.5 with 
respect to the uniaxial case and increases considerably for n = 0.75, 1. It 

is important to remark the displacement of the position of the maximum 
value of G for θ2=90◦ (θd=100◦), which is related to the fact that the 
relative position of the fibres is aligned with the secondary load. This 
tends to amplify the radial displacement of the crack and, consequently, 
the disappearance of Mode I is reached at greater debonding angles than 
those of the single-fibre case, as observed in [6,7] (this fact will be 
further discussed). 

Another interesting analysis is the comparison between the results of 
the two-fibre model for each biaxial case T-nT and the corresponding 
results of the single-fibre model. Considering the angles θ2 = 25◦, 40◦, 
60◦, 90◦, 120◦, 155◦, this analysis is shown for the cases n = 0, 0.25, 0.5, 
and n = 0.5, 0.75, 1 in Figs. 6 and 7, respectively. 

In general, in view of the results for a given value of θ2, as the sec
ondary load increases, G evolutions for all positions of the secondary 
fibre tend to approach the G level of its corresponding single-fibre case, 
which becomes more relevant when n≥0.5 (Fig. 7). This effect means 
that the biaxial tensile load inhibits the alterations brought about by the 
secondary fibre, as the differences between all θ2 cases among them
selves and with respect to the single-fibre case become less pronounced 
for increasing values of the secondary load. In other words, as n in
creases, the evolution of G for all the θ2 cases under consideration tends 
to converge toward the corresponding single-fibre case. 

When Figs. 6 and 7 are analysed in more detail, it is worth high
lighting that for the range 40◦≤θ2≤90◦, (e.g. θ2=60◦, Fig. 6c and 7c) and 
increasing values of the secondary load, the evolution of G tends to 
match the single-fibre case for large debonding angles (θd>90◦). On the 
contrary, for the range 90◦≤θ2≤140◦, the evolution of G matches the 
single-fibre case for small debonding angles (e.g. θ2=120◦, Fig. 6e and 
7e). 

It is also interesting to evaluate the effect of the secondary fibre for 
the same biaxial configuration. Considering the coefficient n=0.5, Fig. 8 
shows the evolution of G, GI and GII, calculated with the two-fibre model 
for a selection of θ2 values, also including the single-fibre curves asso
ciated with the cases T-0 and T-0.5 T. 

When the two fibres are approximately aligned with the primary load 
(25◦≤θ2≤40◦ and 140◦≤θ2≤155◦), the evolution of G is totally or 
partially above the single-fibre case. For the rest of the positions, G 
reaches lower values than those of the single-fibre case. This issue was 
also observed and explained in [6] for uniaxial tension, but the differ
ences between the G evolutions with reference to the single-fibre case 
are less remarkable for the T-0.5 T case. 

Regarding Mode I propagation, for 25◦≤θ2≤50◦ GI evolutions pre
sent significant differences with respect to the single-fibre case, both in 
the level of the curves and the position of their maxima, which tends to 
occur for θd≈θ2. This fact is produced by an increase in the radial 
displacement as the fibres tend to be aligned [6,7]. For 50◦≤θ2≤120◦, GI 
remains below the single-fibre case evolution, whereas for 
130◦≤θ2≤155◦ GI stays above. The presence of the secondary fibre also 
affects the disappearance of GI. For 40◦≤θ2≤60◦, it occurs at larger 
debonding angles than in the biaxial single-fibre case, with all GI 

Fig. 3. G/G0, GI/G0 and GII/G0 versus θd (single-fibre case), for T-nT: a) n = 0, 0.25, 0.5; b) n = 0.5, 0.75, 1.  

Fig. 4. Detail of G/G0 versus θd (single-fibre case) for T-nT (n = 0, 0.25, 0.5, 
0.75, 1). 
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evolutions vanishing for higher θd values than in the uniaxial single-fibre 
case. 

With reference to the GII distributions, the maximum is reached at 
θd=70◦ for the single-fibre case. Nevertheless, for 40◦≤θ2≤70◦, the 
maximum takes place at a larger θd value than the single-fibre case and 
for 80◦≤θ2≤140◦ the maximum occurs at a smaller θd value. 

The results represented in Fig. 9 for the evolution of G for the case T- 
T and a selection of θ2 values confirm the previously commented ten
dencies. As the value of the secondary load increases (in view of Figs. 8 
and 9), and with respect to the uniaxial case [6], the differences between 
the evolution of G for the two-fibre cases and their corresponding single- 
fibre case become smaller. For T-T, these differences are more relevant 
for 60◦≤θ2≤90◦, due to the fact that the disappearance of Mode I is 
produced for larger debonding angles (radial displacements increase as 
the fibres tend to be aligned with the secondary load), as well as the GII 
maximum. 

The analysis of the G value associated with the first debond consid
ered (Gθd=10◦ ) was also carried out for the two-fibre and biaxial loading 
cases. Fig. 10 represents the variation of Gθd=10◦ for the two-fibre cases 
with respect to the single-fibre case. It is observed that, as could be 
expected from Fig. 4, when the secondary load was taken into consid
eration, Gθd=10◦ is lower than the single-fibre uniaxial case value for 
most of the positions of the secondary fibre in the T-0.5 T case. For T-T, 

this fact occurs for any position of the secondary fibre, confirming the 
inhibition of the mechanism of failure provoked by the biaxial loading, 
previously commented in this section. The location of the most protec
tive effect produced by the secondary fibre is also modified as n in
creases: it was found at θ2=60◦ for T-T, whereas for n = 0, 0.5, it was 
located at θ2=40◦. 

If the results of the two-fibre and single-fibre cases for each T-nT case 
are compared, taking the corresponding single-fibre case as a reference, 
Gθd=10◦ is above the single-fibre case for a wider range of θ2 values as the 
secondary load increases. However, the variations of Gθd=10◦ with 
respect to the corresponding single-fibre case become smaller, con
firming the hypothesis that the secondary tensile load reduces the in
fluence of the secondary fibre on the interface crack growth. 

In order to quantify these effects on failure, in [31] the authors 
explained the relation between the parameters from Interfacial Fracture 
Mechanics stress and energetic approaches for a small debond that 
grows in pure Mode I. More specifically, it was confirmed that the ratio 
between the uniaxial case and the biaxial cases for the maximum value 

of the radial stress along the interface 
(

σmax
rr (T− 0)

σmax
rr (T− nT)

)
and for the square root 

of the G value associated with the first debond considered 
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Gθd=10◦ (T− 0)
Gθd=10◦ (T− nT)

√ )

were equivalent. Thus, 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Gθd=10◦ (T− 0)

Gθd=10◦ (T− nT)

√

can be used as an 

Fig. 5. G/G0 versus θd for T-nT (n = 0, 0.25, 0.5, 0.75, 1): a) θ2 = 25◦, b) θ2 = 40◦, c) θ2 = 60◦, d) θ2 = 90◦, e) θ2 = 120◦, f) θ2 = 155◦.  
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indicator of the increase in the load that has to be applied to initiate the 
propagation of the interface crack. In the case of the single-fibre model, 
the results found (see Table 2) confirm a very close agreement with those 
obtained in [31] for θd=5◦, for all the T-nT cases considered. 

This ratio can be modified for the two-fibre cases, which results in an 
interesting way to quantify the inhibition or promotion of the failure 

produced by the secondary fibre. Thus, the ratio 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Gθd=10◦ (T− 0, SF)

Gθd=10◦ (T− nT)

√

is 

proposed as an indicator of the effects produced by the presence of the 
secondary fibre. It is necessary to point out that, the reference value 
Gθd=10◦ corresponds to the uniaxial single-fibre case. Table 2 represents 
the values of this ratio for all θ2 values and the T-nT cases. The results 
highlight that, as the secondary load increases, the differences in the 
increase of needed load to initiate the propagation become smaller and 
the accelerative effect (initially found for some θ2 values) of the presence 

of the secondary fibre against failure 
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Gθd=10◦ (T− 0, SF)
Gθd=10◦ (T− nT)

√

< 1
)

tends to 

disappear. 

3.2. Propagation of the interface crack 

The end of the unstable crack growth can be predicted as explained 

in [31], using the estimation of the critical value of the Energy Release 
Rate, Gc, based on [42], and comparing it with the corresponding G 
evolution: 

Gc(ψk) = G1c
[
1 + tan2[(1 − λ)ψk ]

]
(3)  

where G1c is the critical value of Gc for Mode I and λ is the fracture mode 
sensitivity parameter (in this study, λ=0.25, a typical value for the bi- 
material system under consideration). ψk is the local phase angle and 
represents the evolution of the fracture mode mixity. When the finite 
contact zone at the crack tip is developed and Mode I disappears, ψk =

90◦ is reached. ψk can be calculated following [43]: 

ψk(G) = 0.5arccos
[

F(ε)− 1GI − GII

GI + GII

]

(4)  

where F(ε) = 1+
(

π2

3 − 2
)

ε2 +O(ε4) and ε is the oscillatory index defined 

as: 

ε =
1

2π ln
1 − β
1 + β

(5) 

β being Dundurs parameter [44]. For the bi-material system under 
consideration ε = − 0.074 and F(ε)− 1

= 1.0071. 

Fig. 6. Comparison of G/G0 versus θd for T-nT (n = 0, 0.25, 0.5), with reference to the single-fibre model: a) θ2 = 25◦, b) θ2 = 40◦, c) θ2 = 60◦, d) θ2 = 90◦, e) θ2 =

120◦, f) θ2 = 155◦. 
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In the absence of direct experimental data, G1c has been adjusted as 
detailed in [31], making the Gc value associated with the first debond 
considered coincide with the initial G value and establishing the uniaxial 
single-fibre G1c value as the reference for all the cases under consider
ation. Thus, all G evolutions start at the same value, and therefore, a 
different level of load is needed to initiate the propagation for each case. 

The comparison between G and Gc is shown in Fig. 11 for the single- 
fibre case and the biaxial tensile loads T-nT, with n = 0, 0.25, 0.5. The n 
≥ 0.5 cases are not included in Fig. 11 for the sake of clarity and 
simplicity, these cases following the same tendency shown in the figure. 
The crack length obtained for the end of the unstable growth is deter
mined from the comparison between G and Gc at θd≈55◦ for T-0, θd≈60◦

for T-0.25 T and θd≈70◦ for T-0.5 T, coinciding with the appearance of a 
finite size contact zone at the crack tip. Therefore, the results obviously 
confirm the tendency observed in [31]: for increasing values of the 
secondary tensile load the interface crack reaches greater lengths of 
unstable growth. 

The same approach was applied to the two-fibre cases. As a summary 
of the results of the prediction of the interface crack growth, a scheme 
representing the crack length at the end of the unstable growth is plotted 
in Fig. 12. This figure includes the single-fibre case and a selection of 
two-fibre cases, for all the biaxial T-nT loads (n = 0, 0.25, 0.5, 0.75, 1). 

For n = 0, 0.25 and the range 25◦≤θ2≤50◦, the crack reaches larger 
lengths of unstable growth than the single-fibre case. For n=0.5, this 
range of larger lengths is 25◦≤θ2≤60◦. As the level of the secondary load 
increases, this θ2 range becomes wider, it being 40◦≤θ2≤100◦ for 
n=0.75 and 50◦≤θ2≤120◦ for n=1. On the contrary, the positions where 
the lengths of unstable growth are smaller than in the single-fibre case 
are 60◦≤θ2≤90◦ for n=0, 60◦≤θ2≤80◦ for n=0.25, 80◦≤θ2≤90◦ for 
n=0.5, θ2=130◦ and 150◦≤θ2≤155◦ for n=0.75 and 25◦≤θ2≤30◦ and 
140◦≤θ2≤155◦ (positions aligned with the primary load) for n=1. 
Moreover, the end of the unstable growth is associated with the 
appearance of a finite size contact zone at the crack tip (or even before 
the appearance of the contact zone), except for the cases 30◦≤θ2≤50◦ (n 
= 0, 0.25), since the crack stops growing after a considerable length of 
contact zone has been achieved. 

It can also be observed in Fig. 12 that, for increasing values of the 
secondary load, the lengths of the debonding angles for the end of the 
unstable growth are larger, but there are fewer differences between all 
θ2 cases and the single-fibre results. This fact suggests that, as mentioned 
in Section 3.1 in relation to the G evolutions of the two-fibre and single- 
fibre cases, when the secondary load increases, the effects produced by 
the biaxial load tend to mitigate the effects of the presence of the sec
ondary fibre. 

Fig. 7. Comparison of G/G0 versus θd for T-nT (n = 0.5, 0.75, 1), with reference to the single-fibre model: a) θ2 = 25◦, b) θ2 = 40◦, c) θ2 = 60◦, d) θ2 = 90◦, e) θ2 =

120◦, f) θ2 = 155◦. 
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Fig. 8. G/G0, GI/G0 and GII/G0 versus θd for T-0.5 T and θ2 = 25◦, 40◦, 60◦, 90◦, 130◦, 155◦.  

Fig. 9. G/G0, GI/G0 and GII/G0 versus θd for T-T and θ2 = 25◦, 40◦, 60◦, 90◦, 130◦, 155◦.  
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4. T-nC Cases 

4.1. Energy Release Rate 

The same approach explained in the previous section was employed 
for the cases T-nC, i.e. tensile load T responsible for the failure and a 
secondary transverse compressive load, whose value is determined by 
factor n (n = 0, 0.25, 0.5, 0.75, 1). Thus, the Energy Release Rate, G, is 
calculated from Eq. (1) for a growing interface crack, considering an 
initial debond θd=10◦ (which appears aligned with the direction of the 
tensile load) and a debonding interval 10◦≤θd≤150◦. 

The evolution of G for the single-fibre case is represented in Fig. 13. 
The results obviously agree with those presented in [31]. Contrary to the 
results represented in Fig. 3 for the T-nT cases, the effects of the 
compressive secondary load follow the same tendency for all the values 
of factor n: the values of G increase as the secondary load increases, 
especially within the range 40◦≤θd≤100◦, with no remarkable alter
ations from a qualitative point of view. This increase in the Energy 
Release Rate affects the values of Gθd=10◦ and Gmax, selected as repre
sentative parameters of the effect of the secondary load on the inhibition 
or promotion of failure (as mentioned in Section 3.1). Thus, the presence 
of the secondary compressive load always represents an accelerative 
effect on the propagation of the interface crack, as expected in view of 
the results presented in [31]. 

This increase in the evolution of G is mainly due to the increase in GII, 
as the compressive secondary load does not alter considerably the level 
of GI. Moreover, the range of the propagation under mixed mode is 
slightly shortened by the secondary load: the disappearance of Mode I 
propagation occurs at θd=60◦ for T-0 and at θd=50◦ for T-C. 

When including a secondary fibre in the model, the tendency on the 
G evolution is the same. The level of G increases as the secondary load 
increases, as can be observed in Fig. 14 for all the relative positions 
between the fibres represented (θ2 = 25◦, 40◦, 60◦, 90◦, 120◦, 155◦). This 
is especially relevant for θ2 = 25◦, 155◦ (fibres aligned with the tensile 
load), θ2=90◦ (fibres aligned with the compressive load) and θ2=60◦

(intermediate position of the secondary fibre, in front of the crack 
growth range). The secondary load affects to a lesser extent other po
sitions like θ2=40◦ or θ2=120◦ (intermediate position, further from the 

Fig. 10. Variation of Gθd=10◦ for the two-fibre cases with respect to the single- 
fibre case (T-nT, n = 0, 0.5, 1). 

Table 2 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Gθd=10◦ (T − 0, SF)

Gθd=10◦ (T − nT)

√

for the T-nT cases and the single-fibre (SF) and two-fibre 

(TF) models.  

Case SF TF θ2 = 25◦ TF θ2 = 30◦ TF θ2 = 40◦

T-0 1.000 0.975 1.307 1.770 
T-0.25 T 1.024 1.009 1.254 1.609 
T-0.5 T 1.050 1.042 1.201 1.472 
T-0.75 T 1.077 1.079 1.155 1.356 
T-T 1.105 1.121 1.113 1.254 

Case TF θ2 = 50◦ TF θ2 = 60◦ TF θ2 = 70◦ TF θ2 = 80◦

T-0 1.483 1.226 1.125 1.106 
T-0.25 T 1.456 1.259 1.168 1.138 
T-0.5 T 1.426 1.295 1.211 1.173 
T-0.75 T 1.394 1.327 1.254 1.206 
T-T 1.358 1.358 1.301 1.237 

Case TF θ2 = 90◦ TF θ2 = 100◦ TF θ2 = 110◦ TF θ2 = 120◦

T-0 1.121 1.127 1.109 1.062 
T-0.25 T 1.133 1.129 1.106 1.065 
T-0.5 T 1.150 1.131 1.102 1.067 
T-0.75 T 1.164 1.131 1.098 1.068 
T-T 1.177 1.132 1.094 1.070 

Case TF θ2 = 130◦ TF θ2 = 140◦ TF θ2 = 150◦ TF θ2 = 155◦

T-0 1.003 0.943 0.892 0.875 
T-0.25 T 1.015 0.968 0.927 0.911 
T-0.5 T 1.027 0.992 0.962 0.952 
T-0.75 T 1.039 1.015 1.000 0.997 
T-T 1.052 1.042 1.039 1.046  

Fig. 11. G/G0 and Gc/G0 versus θd for the single-fibre case and T-nT (n = 0, 
0.25, 0.5). 

Fig. 12. Scheme of the crack length at the end of the unstable growth (T-nT).  
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crack growth range). For 90◦≤θ2≤140◦, there is also an important in
crease in G evolution for θd ≥ 120◦. 

The comparison of these G evolutions and their corresponding single- 
fibre case, for each T-nC case, is plotted in Fig. 15 and Fig. 16 for n = 0, 
0.25, 0.5, and n = 0.5, 0.75, 1, respectively. It is observed that, as the 
secondary load increases, the differences between the G evolution cor
responding to every value of θ2 and the single-fibre case also tend to 

increase (as expected in view of the results of the T-nT cases), especially 
within the debonding range 0◦≤θd≤120◦. For T-C, these differences 
become very relevant for θ2=120◦, the evolution of G not being very 
altered by the secondary load and staying considerably below the single- 
fibre case; on the contrary, for θ2=155◦, the evolution of G is more 
affected by the secondary load that the single-fibre case and stays above 
its values of G. 

Fig. 13. G/G0, GI/G0 and GII/G0 versus θd (single-fibre case), for T-nC: a) n = 0, 0.25, 0.5; b) n = 0.5, 0.75, 1.  

Fig. 14. G/G0 versus θd for T-nC (n = 0, 0.25, 0.5, 0.75, 1): a) θ2 = 25◦, b) θ2 = 40◦, c) θ2 = 60◦, d) θ2 = 90◦, e) θ2 = 120◦, f) θ2 = 155◦.  
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These differences between the two-fibre and the single-fibre cases 
can be analysed in more detail by plotting the G evolutions for a specific 
T-nC case. Thus, Figs. 17 and 18 represent, for n=0.5 and n=1 respec
tively, the comparison between G for a selection of θ2 values and with 
respect to the corresponding single-fibre case. 

If Figs. 17 and 18 are compared, and with reference to the uniaxial 
tensile results [6], it is observed that the differences between the evo
lutions of G for all the two-fibre cases tend to increase as the compressive 
load increases, contrary to the T-nT cases. 

Regarding Mode I, it is observed that GI evolution is considerably 
above that corresponding to the single-fibre case for the θ2 values for 
which the fibres tend to be aligned with the tensile load (θ2 = 25◦, 155◦). 
This effect, which was already observed in [6], is related to the ampli
fication of the radial relative displacements between the crack lips, due 
to the presence of a secondary fibre (stiffer than the surrounding matrix) 
approximately aligned with the zone of the crack where the maximum 
radial displacement is expected to appear (in view of the results of the 
single-fibre case [1,2]). When considering a transverse compressive 
load, this effect is intensified as n increases, as can be deduced from the 
GI evolutions represented in Figs. 17 and 18. 

On the contrary, when 40◦≤θ2≤90◦, the results presented in [6] 
showed that there was an important decrease in GI when compared to 
the single-fibre case. This effect, especially remarkable for 40◦≤θ2≤60◦, 

is also intensified by the transverse compressive load. For instance, the 
decrease in GI for θ2=60◦ and T-C becomes very important and, as a 
consequence, the main role in the propagation of the interface crack 
belongs to Mode II. Moreover, for all θ2 values, the disappearance of the 
mixed mode propagation is more advanced as the compressive load 
increases, Mode I vanishes within the debonding ranges 40◦≤θd≤70◦ for 
T-0.5C and 30◦≤θd≤60◦ for T-C (the extreme cases are θ2 = 50◦, 60◦ and 
θ2=25◦). 

The variation of the value of the Energy Release Rate for the first 
debond considered (Gθd=10◦ ) is represented in Fig. 19 for the T-nC cases, 
with respect to the single-fibre case under uniaxial tension. It can be 
deduced that the compressive load promotes the effects found in [6], 
with some differences between the θ2 ranges. The θ2 range for which 
Gθd=10◦ stays below the reference case, which represents a protecting 
effect against failure, is reduced from 30◦≤θ2≤130◦ (T-0) to 
30◦≤θ2≤60◦ and 90◦≤θ2≤120◦ (T-C). For T-C, this effect is intensified 
for 30◦≤θ2≤40◦ and reduced for θ2 = 60◦, 90◦, 130◦. For θ2=50◦ and 
100◦≤θ2≤120◦, Gθd=10◦ is not affected. With regard to the cases for 
which Gθd=10◦ stays above the reference case (accelerative effect against 
failure), they correspond to 130◦≤θ2≤155◦ and θ2=25◦ for T-0, whereas 
for T-C, the range 70◦≤θ2≤80◦ is also included. This accelerative effect 
is intensified as the compressive load increases. 

Fig. 15. Comparison of G/G0 versus θd for T-nC (n = 0, 0.25, 0.5), with reference to the single-fibre model: a) θ2 = 25◦, b) θ2 = 40◦, c) θ2 = 60◦, d) θ2 = 90◦, e) θ2 =

120◦, f) θ2 = 155◦. 
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In general, if the two-fibre cases are compared with their corre
sponding single-fibre case for each value of n, it can be deduced once 
again that, the secondary compressive load promotes the differences 
between all the cases, which means that the influence of the secondary 
fibre on the initiation of the propagation is enhanced by the compressive 
load. 

Regarding the G value associated with the first debond considered 
(Gθd=10◦ ), used as a representative parameter for the evaluation of the 
effect of the biaxial load on the initiation of the propagation, the ratio 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Gθd (T− 0)

Gθd (T− nC)

√

was calculated for all T-nC cases and the single-fibre model. 

The results, represented in Table 3 matches the values obtained in [31]. 
As could be expected in view of the values presented in Table 2 for the T- 
nT cases, the compressive character of the secondary load implies an 

accelerative effect against failure, as 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Gθd (T− 0)

Gθd (T− nC)

√

< 1, which means that 

the level of load necessary for the initiation of the propagation of the 
crack is lower than the one associated with the uniaxial tensile case. 

With respect to the two-fibre model cases, in order to quantify the 
load level necessary to initiate crack propagation with respect to the 

single-fibre uniaxial case, the ratio 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Gθd=10◦ (T− 0, SF)

Gθd=10◦ (T− nC)

√

was also calculated 

and represented in Table 3 for all θ2 and T-nC cases. As commented 
before, as n increases, the differences between all θ2 tend to increase. 

4.2. Propagation of the interface crack 

As previously commented in Section 3.2, the comparison between 
the evolution of the Energy Release Rate G, and its critical value Gc, 
obtained following Eq. (3), allows the end of the unstable growth to be 
determined. This comparison is plotted in Fig. 20 for the single-fibre 
case and T-nC (with n = 0, 0.25, 0.5) using the same approach pre
sented in Section 3.2. The results agree with those presented in [31], 
revealing that the presence of a secondary transverse load produces 
shorter ranges of unstable growth than the uniaxial tension case. For the 
case T-0, the end of the unstable growth is predicted for a debonding 
angle θd≈55◦, whereas for T-0.5C the end of the unstable growth is 
obtained for θd≈45◦. 

This comparison between G and Gc for determining the end of the 
unstable growth was also applied to the two-fibre cases for T-nC. To sum 
up, Fig. 21 represents a selection of schemes representing the lengths of 
unstable growth for the single-fibre and the two-fibre cases. The increase 
in the compressive load affects differently the two-fibre cases shown in 
Fig. 21. The cases θ2 = 25◦, 80◦, 120◦ follow the same tendency that the 

Fig. 16. Comparison of G/G0 versus θd for T-nC (n = 0.5, 0.75, 1), with reference to the single-fibre model: a) θ2 = 25◦, b) θ2 = 40◦, c) θ2 = 60◦, d) θ2 = 90◦, e) θ2 =

120◦, f) θ2 = 155◦. 
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single-fibre case: the length of the crack being slightly shorter than the 
uniaxial tensile case, as the secondary load increases. However, within 
the range 40◦≤θ2≤60◦, this reduction of the length of unstable growth 
becomes very significant with respect to the rest of the two-fibre cases 
and the single-fibre case. This effect is especially remarkable for θ2=40◦, 
as the crack length decreases from θd=110◦ for T-0.5C, to θd=10◦ for T- 
0.75C and T-C. This situation is due to the decrease in Mode I found 
within the range 40◦≤θ2≤60◦ since the very beginning of the propaga
tion. Therefore, the value of the local phase angle ψk, which is related to 
the mode mixity, is much higher than those obtained for other θ2 cases, 
hindering crack growth as Gc>G for the first debond considered. 

To sum up, it is important to remark that the effects of the secondary 
fibre on the interface crack growth present two different configurations 
that depend on the level of the secondary load. For the cases n≤0.5, the 
influence of the secondary fibre on the crack growth is similar to the 
uniaxial case: for 25◦≤θ2≤40◦ the interface crack reaches greater 
lengths of unstable growth when compared to the single-fibre case; for 
θ2>40◦, the crack reaches slightly shorter or similar lengths of unstable 
growth than the single-fibre case. However, when n>0.5, for 
25◦≤θ2≤30◦ the end of the unstable growth is found for greater lengths 
of unstable growth than in the single-fibre case whereas for 
40◦≤θ2≤70◦, no unstable growth is detected. For θ2>70◦, the end of 
unstable growth is achieved at values close to those found in the single- 
fibre case. 

5. Discussion 

After the description of the model implemented for the study of the 
interface crack growth and the results obtained for different biaxial 
loading configurations, in this section, the most important results are 
summarised and discussed. To this aim, these results are plotted, 
providing a 3D visualisation which shows an overview of the 

combination of different biaxial loadings and relative positions between 
the fibres, reinforcing the comprehension of the different effects found 
in this study. 

The first result analysed is Gθd=10◦ /G0, the dimensionless value of the 
energy release rate for the first debond considered. As mentioned in 
previous sections, this value can be considered as an indicator of the 
inhibition or promotion that the presence of the secondary fibre involves 
for each biaxial configuration. In Fig. 22, this value is plotted, as a 
function of θ2 and T-nC or T-nT (n = 0, 0.25, 0.5, 0.75, 1). The values are 
represented as a surface, allowing a better interpretation of the results. 
The grey plane represents the reference value, Gθd=10◦ /G0 for the uni
axial single-fibre case (i.e., SF / T-0). Thus, when the surface remains 
above the grey plane, the combination of the presence of the secondary 
fibre and a given biaxial configuration involves an accelerative effect on 
the initiation of crack growth. The protective effect appears when the 
surface is below the grey plane. 

Moreover, as can be observed, increasing values of the secondary 
compressive load (T-nC cases) tends to intensify the effects found for the 
uniaxial case [6], both the inhibition and the promotion of the failure. 
The extension of the ranges where the accelerative effect was found for 
the uniaxial case by the presence of the second fibre (θ2=25◦ and 
130◦≤θ2≤155◦), is barely affected as the secondary compressive load 
increases. There is only a new range of accelerative effect that emerges 
at 70◦≤θ2≤80◦ for the biaxial configuration T-C. The configuration that 
most promotes the initiation of the propagation is found for θ2=155◦

and T-C. Regarding the most protective effect of the secondary fibre 
against failure, it is obtained for θ2=40◦ and T-C. 

When the secondary tensile load is considered (T-nT), all the effects 
observed for T-nC are reversed. As the value of the secondary tensile 
load increases, the ranges for which the accelerative effect on the crack 
propagation was found tend to disappear. For T-T, any position of the 
secondary fibre has a protective effect against the initiation of the 

Fig. 17. G/G0, GI/G0 and GII/G0 versus θd for T-0.5C and θ2 = 25◦, 40◦, 60◦, 90◦, 130◦, 155◦.  
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propagation. Moreover, the differences between all the θ2 cases for a 
given T-nT configuration are less pronounced as the value of the sec
ondary load increases. 

Another interesting analysis can be carried out if Gmax is now plotted 
versus θ2 and all the biaxial configurations. These results are plotted in 
Fig. 23. As can be observed for the T-nC cases, as the secondary load 
increases, the value Gmax also increases. This effect is more pronounced 
for the ranges 25◦≤θ2≤30◦, 70◦≤θ2≤90◦ and 150◦≤θ2≤155◦, i.e., when 
the relative position of the fibre tends to be aligned with the direction of 
the main and the secondary loads. Thus, using Gmax as an alternative 
indicator of failure, and taking the T-0 case as a reference, the most 
accelerative effect is found for θ2=155◦ and T-C, the same configuration 
that using Gθd=10◦ /G0. 

Fig. 18. G/G0, GI/G0 and GII/G0 versus θd for T-C and θ2 = 25◦, 40◦, 60◦, 90◦, 130◦, 155◦.  

Fig. 19. Variation of Gθd=10◦ for the two-fibre cases with respect to the single- 
fibre case (T-nC, n = 0, 0.5, 1). 

Table 3 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Gθd=10◦ (T − 0, SF)

Gθd=10◦ (T − nC)

√

for the T-nC cases and the single-fibre (SF) and two-fibre 

(TF) models.  

Case SF TF θ2 = 25◦ TF θ2 = 30◦ TF θ2 = 40◦

T-0 1.000 0.975 1.307 1.770 
T-0.25C 0.975 0.945 1.365 1.958 
T-0.5C 0.950 0.915 1.431 2.187 
T-0.75C 0.929 0.888 1.505 2.455 
T-C 0.905 0.864 1.583 2.772 

Case TF θ2 = 50◦ TF θ2 = 60◦ TF θ2 = 70◦ TF θ2 = 80◦

T-0 1.483 1.226 1.125 1.106 
T-0.25C 1.502 1.187 1.083 1.076 
T-0.5C 1.519 1.155 1.042 1.046 
T-0.75C 1.533 1.117 1.009 1.017 
T-C 1.535 1.083 0.973 0.992 

Case TF θ2 = 90◦ TF θ2 = 100◦ TF θ2 = 110◦ TF θ2 = 120◦

T-0 1.121 1.127 1.108 1.062 
T-0.25C 1.106 1.123 1.107 1.057 
T-0.5C 1.087 1.120 1.109 1.054 
T-0.75C 1.076 1.118 1.111 1.050 
T-C 1.059 1.113 1.110 1.046 

Case TF θ2 = 130◦ TF θ2 = 140◦ TF θ2 = 150◦ TF θ2 = 155◦

T-0 1.003 0.943 0.892 0.875 
T-0.25C 0.989 0.920 0.860 0.837 
T-0.5C 0.975 0.896 0.831 0.804 
T-0.75C 0.965 0.877 0.804 0.774 
T-C 0.950 0.856 0.778 0.746  
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When observing the T-nT cases, as the value of the secondary load 
increases, the accelerative effect (which was only found within the 
ranges 70◦≤θ2≤90◦ and 140◦≤θ2≤155◦ for T-0), tends to disappear. For 
n≤0.5, the values of Gmax decrease, the most protective effect against 

failure being found for θ2=70◦ and T-0.5 T. For n>0.5, Gmax tends to 
increase, the protective effect being maintained for all the θ2 values, 
except for the range 60◦≤θ2≤90◦ and T-T. For these cases, there is a 
slight accelerative effect. 

Referring to all biaxial cases and as mentioned before for the analysis 
of Gθd=10◦ /G0, increasing values of the secondary compressive load 
intensify the differences between all θ2 cases and as the secondary ten
sile load increases, these differences are attenuated. This once again 
reinforces the idea that T-nC cases amplify the effects caused by sur
rounding fibres, whereas T-nT cases reduce these effects. 

The same approach presented for Gθd=10◦ /G0 and Gmax can be also 
implemented for the final length of unstable growth obtained, θend

d , for 
all the relative positions between the fibres and all the biaxial configu
rations (Fig. 24). As commented in previous Sections and, as expected 
from the results presented in [31] for a single-fibre model, the crack 
length corresponding to the end of the unstable growth increases with 
the value of n for T-nT cases. However, the differences between all the θ2 
cases tend to decrease as n increases. This fact supports the idea previ
ously commented on the attenuation of the effects of the secondary fibre 
caused by a secondary tensile load. The greatest lengths of unstable 
growth are found for 90◦≤θ2≤100◦ and T-T (θend

d ≈140◦). The greatest 
increase in the crack length produced by the increase of the secondary 
tensile load is produced for the range 60◦≤θ2≤100◦, whereas the 
weakest increase is found for 25◦≤θ2≤50◦. When a secondary 
compressive load is considered (T-nC), as its value increases, θend

d de
creases. This fact is especially relevant for the range 40◦≤θ2≤70◦, θend

d 
decreasing considerably. For this range and n≥0.75, crack growth does 
not occur. 

These predictions about the end of the unstable growth cannot be 
easily confirmed by experimental approaches. The fibre distribution of a 
lamina does not usually correspond to the present two-fibre model, the 
number of neighbouring fibres being greater. Nevertheless, based on 
[2,29], microscopical observations of several ruptured carbon-epoxy 
cruciform specimens subjected to different biaxial loading have been 
carried out. Some quasi-isolated three-fibre clusters with the presence of 
an interface crack have been found, which approximately correspond to 
the symmetrical two-fibre model configuration. Several examples are 
shown in Fig. 25 where the length of the debonds has been measured. 
Fig. 25a corresponds to the T-0.7C loading case and Fig. 25b corresponds 
to the T-0 case. 

In Fig. 25a and 25b, an interface crack is observed in the presence of 
two nearby fibres, in a quasi-symmetrical configuration. The presence of 
the other surrounding fibres is not negligible, as the distance from the 
interface crack to the fibres has to be considerably increased to avoid 
their effects [6,7]. Nevertheless, their influence is considerably less 
important than the presence of the two nearest fibres. If the relative 
position of these two nearby fibres with respect to the damaged fibre is 
analysed, it corresponds to high values of θ2 (θ2 = 143◦, 158◦ for Fig. 25a 

Fig. 20. G/G0 and Gc/G0 versus θd for the single-fibre case and T-nC (n = 0, 
0.25, 0.5). 

Fig. 21. Scheme of the crack length at the end of the unstable growth (T-nC).  

Fig. 22. Gθd=10◦ /G0 versus θ2 and all the biaxial configurations.  
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and θ2 = 115◦, 157◦ for Fig. 25b). The configuration presented in 
Fig. 25a could be compared with the prediction of the two-fibre model 
for the end of the unstable growth for the case T-0.75C. This prediction 
gives the values θend

d (θ2 = 155◦

)≈50◦ and θend
d (θ2 = 140◦

)≈45◦, which 
corresponds to a total crack length of 95◦. This prediction is relatively 
close to the microscopical observation (total crack length of 80◦). The 
difference in the crack length and its lack of symmetry could be asso
ciated with the influence of the rest of the fibres and the slight difference 
between both loading cases. For the uniaxial case represented in 
Fig. 25b, the prediction of the two-fibre model gives 
θend

d (θ2 = 155◦

)≈50◦ and θend
d (θ2 = 110◦

,120◦

)≈40◦, and a total length 
of 90◦, in full agreement with the total length of the microscopical 

observation (89◦). 
Considering all the information provided by Figs. 22-24, the influ

ence of the secondary fibre is more important for the T-nC cases and 
increasing values of n. This fact would imply that, experimentally, if 
each biaxial configuration is applied progressively, and observing for a 
similar applied load, interface cracks should appear before and they 
could be more frequently observed for T-nC and the range 
150◦≤θ2≤155◦, even though the crack lengths would be considerably 
shorter than in the uniaxial case. Interface cracks should be rarely 
observed also for θ2=40◦ and T-C. In general, and for the same applied 
load, for T-nT and increasing values of n, interface cracks observation 
should be less frequent than for T-nC, even though the extent of cracks 

Fig. 23. Gmax versus θ2 and all the biaxial configurations.  

Fig. 24. θend
d versus θ2 and all the biaxial configurations.  

Fig. 25. Microscopical observations of interface cracks at cruciform specimens subjected to biaxial loading a) T-0.7C and b) T-0.  
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should be greater. These predictions cannot be easily checked in terms of 
the comparison between the T-nT and the T-nC cases, as the experi
mental results reveal that the external load at the moment of rupture is 
lower for the T-nC cases, and the failure is very explosive [35]. However, 
this fact agrees with the increase in the accelerative effects found for the 
T-nC cases and the generalised protective effect of the T-nT cases. 

6. Conclusions 

In this work, the propagation of an interface crack subjected to 
biaxial loading has been studied by means of a two-fibre BEM model. 
The objective was to analyse the effect of the presence of a nearby fibre 
on the interface crack growth under different loading configurations. 
The biaxial configuration consists in a main tensile load, nominally 
responsible for the failure and a secondary tensile or compressive load, 
perpendicular to the main load. 

The results have been analysed under the light of Interfacial Fracture 
Mechanics. Thus, this work has been focused on the study of the Energy 
Release Rate for different configurations of the two-fibre model, in order 
to compare the results with previous uniaxial and biaxial single-fibre 
studies. This comparison is based on the influence of three main pa
rameters: the type of secondary load (tensile or compressive), the level 
of load and the relative position between the fibres. Some of the most 
important conclusions are summarised next. 

With regard to the effects of the biaxial loading and the secondary 
fibre on the propagation of the interface crack, some effects were 
observed as the secondary load increased:  

• With reference to the uniaxial case, when considering a secondary 
tensile load and its value increased, the end of the unstable growth 
was produced at greater debonding angles for a fixed value of θ2. 
Nevertheless, a secondary compressive load implied, for most of the 
cases, shorter crack lengths at the end of the unstable growth. These 
effects were already detected for a single-fibre model in [31], but the 
intensity of the effects depends on the position of the secondary fibre.  

• For the T-nT biaxial configuration, as the secondary load increased 
the differences between the θ2 cases and their corresponding single- 
fibre case became smaller. On the contrary, for the T-nC cases, these 
differences were more accentuated as the secondary load increased.  

• For increasing values of the transverse tensile load, the θ2 ranges for 
which the length of unstable growth was greater than its corre
sponding single-fibre case were wider. However, as the secondary 
compressive load increased, this fact only occurred for a few relative 
positions between the fibres. 

Additionally, micromechanical experimental evidence has been 
presented supporting the aforementioned conclusions. 

According to the study of the Energy Release Rate for a given biaxial 
configuration and a relative position between the fibres, the maximum 
and initial values (Gmax and Gθd=10◦ ) were used as representative pa
rameters of the inhibitions or promotion of failure, with respect to the 
uniaxial single-fibre case. In this regard, when a secondary tensile load 
was included (T-nT), for most of the relative positions between the fibres 
the presence of the nearby fibre intensified the inhibition and reduced 
the promotion of the mechanism of failure observed in the uniaxial 
tensile case [6]. For T-nC, the biaxial loads implied the opposite effect, 
intensifying the most protective or accelerative effects found in [6]. 

On a final note, considering the combination of both effects, biaxial 
loading and the surrounding fibre, on the aspects analysed in this study 
(with reference to the uniaxial single-fibre case), as the level of the 
secondary tensile load increases, the biaxial loading tends to inhibit the 
presence of the undamaged secondary fibre. On the contrary, when a 
secondary compressive load is considered, as its value increases, all the 
alterations induced by the secondary fibre are intensified. 
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