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A B S T R A C T

Background: Spheroids are in vitro quasi-spherical structures of cell aggregates, eventually cultured within
a hydrogel matrix, that are used, among other applications, as a technological platform to investigate tumor
formation and evolution. Several interesting features can be replicated using this methodology, such as cell
communication mechanisms, the effect of gradients of nutrients, or the creation of realistic 3D biological
structures. The main objective of this work is to link the spheroid evolution with the mechanical activity of
cells, coupled with nutrient consumption and the subsequent cell dynamics.
Method: We propose a continuum mechanobiological model which accounts for the most relevant phenomena
that take place in tumor spheroid evolution under in vitro suspension, namely, nutrient diffusion in the
spheroid, kinetics of cellular growth and death, and mechanical interactions among the cells. The model is
qualitatively validated, after calibration of the model parameters, versus in vitro experiments of spheroids of
different glioblastoma cell lines.
Results: Our model is able to explain in a novel way quite different setups, such as spheroid growth (up to
six times the initial configuration for U-87 MG cell line) or shrinking (almost half of the initial configuration
for U-251 MG cell line); as the result of the mechanical interplay of cells driven by cellular evolution.
Conclusions: Glioblastoma tumor spheroid evolution is driven by mechanical interactions of the cell aggregate
and the dynamical evolution of the cell population. All this information can be used to further investigate
mechanistic effects in the evolution of tumors and their role in cancer disease.
1. Introduction

Spheroids are increasingly used in the recent years as an enabling
biological platform to study tumor formation, evolution, as well as to
study cancer treatments [1]. Spheroids are clusters of cells, eventually
cultured within a hydrogel matrix that mimics the extracellular matrix,
which show a quasi-spherical morphology in vitro [2]. Even though
spheroids lack the enormous complexity of tumor tissues, they are
useful in vitro models as they are able to replicate several important
features of solid tumors. In particular, communication mechanisms
and cell differentiation have been observed in spheroids [3]. Also, the
high cell density and compaction in larger spheroids induce areas that
suffer hypoxia and gradients of nutrients, as the diffusion within the
structure is limited, becoming a good surrogate for these effects that
happen in reality [4]. Moreover, the 3D environment of the spheroid,
versus 2D, allows a better understanding of the mechanisms of cellular
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communication and signaling, both autocrine and paracrine, and the
different types of cell migration stimuli, such as chemotaxis, durotaxis,
electrotaxis and haptotaxis [5]. Tumor heterogeneity (intertumoral or
intratumoral) is another important characteristic, related to resistance,
which can be also reproduced by spheroids [6].

From an in vitro point of view, spheroids have been used to study
the mechanisms of cell differentiation, cell contact and the different cell
phenotypes that give rise to different regions within the spheroid [7].
Furthermore, Friedrich et al. [8] developed platforms to study anti-
cancer treatments in spheroids. Nath and Devi [9] presented several
spheroid generation techniques and assays for their characterization.
On the other hand, Mark et al. [10] studied the relationship between
the cellular mechanics of the spheroid and the deformation of the
extracellular matrix; and Ayuso et al. [11] established that spheroids
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represent a good tool in the study of migration by chemotaxis, the main
mechanism of cell migration. In another study, Guillaume et al. [12]
suggested that the stresses that originate in a spheroid during its growth
affect its physical properties and therefore the response to treatment.
Wu et al. [13] developed microfluidic devices for the study of chemo-
taxis, through the generation of chemical gradients in both simple and
complex environments, and studied chemotaxis as a function of the
cell type. The devices designed by Cheng et al. [14] allow a quick
reconfiguration for use in different applications, including the analysis
of tumor first development and evolution. Ayuso et al. [15] performed
a protocol for the confinement of the gel in microfluidic chips and,
subsequently [16], they were able to reproduce the complex tumor
environment in these platforms. Fatehullah et al. [17] presented a
generation of organoids from biopsies performed on tumor tissues and
their subsequent cultivation in hydrogels, which constitute a novel test
in the study of pathologies and treatments.

From an in silico perspective, Xue et al. [18] developed a continuum
model to investigate the relationship between biology, chemistry and
mechanics in the evolution of tumor spheroids by treating the tumor as
a porous system. They highlighted the importance of nutrient transport
and mechanical stresses in growth. The model was validated with
data taken from the literature. Also, Mascheroni et al. [19] presented
a continuum tumor spheroid growth model whose equations were
developed according to the porous media theory. This study also per-
formed experiments with the U-87 MG tumor line, including both free
and pressurized growth. However, the diffusion of nutrients into the
different cell types of the spheroid was not considered. Greenspan [20]
developed a continuum model to analyze growth of a colony of cells,
which compares to the movement of an incompressible fluid in a
membrane of variable size. Growth was considered to be influenced by
a surface tension force and by the diffusion of nutrients in this work.
Nonetheless, the analysis was not conducted for spheroids, and the
results were not compared with experiments. Byrne and Chaplain [21]
showed that nutrient concentration at the spheroid boundary is not
constant, but follows the Gibbs–Thomson relationship, which states
that the local curvature at the edge of the spheroid influences this
concentration, carrying out a mathematical description of this phe-
nomenon. The results were not validated in this study. Furthermore,
Chen et al. [22] proposed a model that analyzes how the mechanics of
the elastic and isotropic extracellular medium affects tumor evolution,
but it does not model the mechanical interactions of the cells in the
spheroid. The authors stated that when a spheroid grows, it exerts a
pressure on the medium, which in turn exerts a stress on the spheroid
contour. In addition, they performed an experimental validation of
their model, based on results found in the literature. Ambrosi and
Mollica [23] described the growth of a tumor spheroid, influenced
by nutrient diffusion and biochemical factors, considering the same
number of particles at each instant of time and justifying growth as
an increase of mass of the particles but not on their number. Hence,
the dynamics of cellular proliferation and death was not considered,
and an experimental validation of the model was not conducted. In
addition, Ambrosi and Mollica [24] studied the growth of a spheroidal
tumor as a soft tissue and highlighted the need to know the history of
inhomogeneous mass increase. The authors developed a mathematical
model for the experiments performed by other authors. In a different
study, Ambrosi et al. [25] assumed that the spheroid behaves as a
poroelastic material whose growth is influenced by the stress applied
on its boundary. The authors also studied the presence of residual
stresses in the spheroid. In order to experimentally validate their model,
they based their work on previous existing studies in the literature.
Fraldi and Carotenuto [26] carried out a poroelastic model in which
an inelastic growth derived from a Volterra/Lotka type interaction
between different cell types occurs. However, nutrient diffusion was
not considered in this work. Additionally, Bull et al. [27] recently
proposed a discrete (agent-based) approach to model the dynamics of
2

cells in spheroids, accounting for the diffusion of nutrients and oxygen
from the medium to the interior of the spheroid, which determines the
cellular actions of proliferation, differentiation and cell death. In the
same context, Amereh et al. [28] presented a mathematical model of
tumor formation in spheroids based on reaction–diffusion equations.

With regard to mathematical mechanobiological models, there is
a vast literature on different methodologies and mathematical ap-
proaches to study in silico the effect of mechanics in biological pro-
cesses. To cite a few, Perfahl et al. [29] developed a vasculogenesis
model which considers the application of forces through the interaction
of cells with their neighbors and with the extracellular environment,
obtaining a vascular network as results of the simulations. Ayensa-
Jiménez et al. [30], described a mathematical model of cell dynam-
ics, growth and death, in a microfluidic device with application to
glioblastoma evolution. Laird [31] performed a mathematical model of
tumor proliferation with different growth stages. Furthermore, Pettet
et al. [32] implemented a mathematical model of cell migration in
spheroids, where chemotaxis plays an important role. Lu and Kang [33]
analyzed how hypoxia-inducing factors are related to increased treat-
ment failure and mortality, while Curtis and Seehar [34] studied the
relationship between cell mechanics and proliferation, concluding that
compression increases proliferation. Moreo et al. [35] carried out a
predictive mechanosensing model that explains the interaction between
the cell cytoskeleton and the extracellular matrix through focal ad-
hesions. In addition, they also studied cell migration by modeling
the evolution of cell concentration from a continuum point of view.
Furthermore, Sanz-Herrera et al. [36] studied how, through contractile
forces, the contact between a cell and the substrate occurs when it
shows a curvature, analyzing the influence of microfilament bending
and the initial shape of the substrate. Huang and Ingber [37] described
how through integrins, focal adhesions and Rho/ROCK signaling that
enables cellular contractility, a mechanistic process of autocrine cell
communication important in cancer development, occurs. Additionally,
Nagelkerke et al. [38] highlighted the role of mechanics in cancer
development, describing several processes, including activation of the
Rho family of proteins, involved in intracellular contractility of the
cytoskeleton.

Our application is devoted to analyze glioblastoma spheroids.
Glioblastoma is the most malignant brain tumor, with a life expectancy
after the standard treatment (surgery plus radio and/or chemotherapy)
of about 14 months from diagnosis [39]. It originates in the glial
cells and its initial evolution is controlled by thrombosis, hypoxia, cell
migration events that occur successively [40] and is characterized by
microvascular hyperplasia and necrosis. The area where the latter takes
place (necrotic core), is usually surrounded by a high cell density,
known as ‘pseudopalisade’. The hypoxic tissue (more resistant than
a healthy one [41]) increases tumor glycolysis to provide energy to
the cell, promotes angiogenesis, that is the creation of blood vessels
and nourishes the tumor invasion and metastasis by the action of
hypoxia-inducible factors [33].

In this article, we develop a phenomenological mechanobiological
model to investigate the in vitro evolution of suspended glioblastoma
spheroids. Compared to previous existing models in the literature, our
multiphysics approach describes the evolution of spheroids from the
internal mechanical activity of cells in response to nutrient stimuli in
the microenvironment in a continuous way. Therefore, the model takes
into consideration the main physics observed during the process, such
as nutrient diffusion within the spheroid, dynamics of cellular growth
and death, and mechanical interactions of cells including computation
of biomechanical forces. These latter forces present at the cellular level
may have an external origin or may be generated by the cells them-
selves. They play a fundamental role in maintaining homeostasis in the
organism. They can also contribute to the development of pathologies,
such as tumor progression, by increasing the rigidity of the extracellular
matrix or modifying the flow of interstitial fluid in the matrix [42]. In
this work, we test how biomechanical stresses and deformations, gen-

erated at the cellular level, influence the organization and morphology
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Fig. 1. Multiphysics model: Schematics of the different physics considered in the modeling of suspended spheroid evolution.
Source: Figure created with BioRender.com.
Table 1
Multiphysics mechanobiological model quantities.
Symbol Description Units

𝑐(x, 𝑡) Nutrient concentration in the spheroid domain 𝑚𝑜𝑙
𝑚𝑚3

𝑛(x, 𝑡) Cell concentration in the spheroid domain (superscript
g-growth, d-death)

𝑐𝑒𝑙𝑙
𝑚𝑚3

𝜀𝑇 (x, 𝑡) Total strain at a material point of the spheroid –
𝜀𝑒𝑙(x, 𝑡) Elastic strain at a material point of the spheroid (passive

component)
–

𝜀𝑐𝑒𝑙𝑙(x, 𝑡) Cell strain at a material point of the spheroid as a
consequence of internal cell contractility (active component)

–

𝜎(x, 𝑡) Stress at a material point of the spheroid as a consequence
of cell contractility

𝑃𝑎
Table 2
Model parameters.
Symbol Description Units

𝑐0 Nutrient concentration in the spheroid domain at time 0 mol
mm3

𝑐𝛤 Nutrient concentration on the spheroid boundary mol
mm3

𝑘𝑐 Coefficient of nutrient diffusion from the medium to the
spheroid

mm2

min

𝑟 Nutrient consumption rate mol
cell⋅min

𝑛0 Cell concentration in the spheroid domain at time 0 cell
mm3

𝑐𝑛 Nutrient concentration threshold for cells to survive and
grow

mol
mm3

𝑐𝑠𝑎𝑡 Nutrient concentration saturation value which defines the
maximum rate level achieves by cells to divide and grow

mol
mm3

𝑘𝑑 Cell death rate mm3

mol⋅min
𝑘𝑔 Cell growth rate mm3

mol⋅min
𝑛∗ Cell concentration from which cell contractility changes from

compression to expansion

cell
mm3

𝑘𝜖 Cell expansion coefficient as consequence of cell forces
exerted by the cytoskeleton machinery

mm3

cell

𝛼 Shape factor coefficient of nutrients in the suspension
experiment

mol
cell⋅min
of the tumor spheroids. The overall continuum model was discretized
in time and is formulated in the updated Lagrangian configuration
for each time step, being spatially discretized by means of the finite
3

element method. The model permits to predict the nonlinear evolution
of the spheroid along time, in terms of a number of model parameters.
This dependence is investigated in a parametric analysis of the model.
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Fig. 2. Cellular growth/death kinetics represented as a function of the nutrient
concentration.

Fig. 3. Active cell’s contractility/expansion deformation model as a function of the
cell concentration, for death (D) and growth (G) fates. 𝑛∗ is a model parameter
that represents the concentration level for which a new daughter cell cannot be
accommodated within the reference volume. 𝑛0 represents the initial concentration of
cells.

Finally, two experimental tests were designed ad-hoc in this study to
qualitatively validate the proposed model. Specifically, the evolution of
1000-cell spheroids of glioblastoma cell lines U-251 MG and U-87 MG
were performed and recorded. The model fits the observed trends in
the experiments for a set of calibrated parameters, suggesting that the
implemented physics can explain the observed behavior. In particular,
it is concluded that spheroid growth or shrinking is the result of the
mechanical interplay of cells driven by cellular evolution.

The paper is organized as follows: first the experimental setup and
the mathematical model are introduced in Sections 2–4. The numer-
ical implementation of the model is elaborated in Section 5, and the
parametric analysis is presented in Section 6.1. The validation of the
proposed model versus the obtained experimental results is described
in Section 6.2. Finally, the discussion of the results and main derived
conclusions are drawn at the end of the paper.

2. Experimental setup

Glioblastoma cell lines, U-251 MG and U-87 MG, were purchased
from Sigma Aldrich and cultured in high glucose Dulbecco’s modified
Eagle’s medium (DMEM; Lonza BE12-614F), supplemented with 10%
fetal bovine serum (FBS; Sigma Aldrich F7524), 2 mM L-glutamine
(Lonza 17-605C) and penicillin/streptomycin (Lonza 17-602E). Cell
4

cultures were maintained at 37 ◦C within a humidified TEB-1000
incubator (EBERS Medical Technology) with 5% CO2. Spheroids were
generated by hanging drop method. Cells were trypsinized and resus-
pended in growth medium supplemented with 20% methylcellulose
solution to reach the concentration of 40 000 cells/mL. In order to form
1000-cell spheroids, 25 uL drops were placed on the lid of a Petri dish.
The bottom part of the dish was filled with distilled water to prevent
evaporation. Plates were placed within the incubator and left for 48 h
to assure spheroid formation. Afterwards, spheroids were transferred
to growth medium in suspension 96 well plates (Sarstedt 83.3925.500)
treated with anti-adherence solution (Stemcell 07010). Their behavior
was followed by phase contrast microscopy (Nikon TiE) during two
weeks. Images were analyzed with a Fiji plugin SpheroidJ, which allows
automated quantification of the spheroid area [43]. Growth curves
were obtained by normalizing those values to the area that spheroids
occupied at the beginning of the experiment (day 0).

3. Mathematical model

The proposed mathematical model considers the main phenomena
that take place in suspended spheroid evolution, according to experi-
mental observations. In particular, spheroid size evolution is considered
to be mainly determined by the proliferation of cells as well as the
contractile activity exerted by cells [11,44]. Moreover, nutrient diffu-
sion within the spheroid enhances the dynamics of cells [44], whereas
lack of nutrients promotes the formation of a necrotic core in the
spheroid [11].

According to the referred evidences the physics assumed by the
model are fundamentally three. First, diffusion of soluble substances in
the medium, such as nutrients and oxygen, to the spheroid interior. Sec-
ond, cellular activity and dynamics in terms of proliferation and death,
which in turn determine spheroid growth or shrinking evolution from
the initial state. Finally, we model cellular contractility and mechanical
interactions of cell organization in the spheroid. A spherical geometry
of the spheroid is assumed, similar to other works [18,25,26]. Further-
more, as main assumptions, we consider that (i) cell dynamics depends
on nutrient concentration and (ii) volume variation of the spheroid is
related to cell contractility and concentration. The overall model turns
into a mechanobiological and multiphysics coupled approach which is
presented in a dimensionless fashion in Section 4. The schematics of the
different physics of the model can be seen in Fig. 1. Model quantities
and parameters are shown in Tables 1 and 2, respectively. The model
is also elaborated in a numerical framework in Section 5.

3.1. Nutrient diffusion

We consider that soluble substances in the medium diffuse towards
the spheroid core, leading to nutrient supply to interior cells (see
Fig. 1A). Therefore, nutrients (considering nutrients as oxygen and
glucose concentration) are assumed, as a first approach, to follow
a Fickean diffusion model, analogously to other works in a similar
context [34,45–47]:
𝜕𝑐
𝜕𝑡

= 𝑘𝑐▽
2𝑐 − 𝑟 ⋅ 𝑛 in 𝛺(𝐱, 𝑡)

𝑐(𝐱, 0) = 𝑐0 in 𝛺(𝐱, 0)
𝑐(𝐱, 𝑡) = 𝑓 (𝐱, 𝑡) in 𝛤𝑏(𝐱, 𝑡)

(1)

The right-hand side of Eq. (1)a also includes a second (source)
term which accounts for the consumption rate of nutrients by cells. 𝑘𝑐
is the diffusion coefficient of the spheroid aggregation, 𝑟 is the rate
of nutrient consumption by cells, and 𝑐0 the initial concentration of
nutrients within the spheroid. 𝛺 represents the domain and 𝛤𝑏 the
contour of the spheroid. On the other hand, the function 𝑓 represents
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Table 3
Dimensionless values of the model parameters for the parametric analysis.

Parameter Reference value Lowest value Highest value

𝑘̃𝑐 0.01 0.01 0.01
𝑟 1 ⋅ 10−2 5 ⋅ 10−3 2 ⋅ 10−2

𝑘̃𝑑 1.5 ⋅ 10−4 0.75 ⋅ 10−4 3 ⋅ 10−4

𝑘̃𝑔 1.5 ⋅ 10−4 0.75 ⋅ 10−4 3 ⋅ 10−4

𝑘̃𝑒𝑑 4 ⋅ 10−2 2 ⋅ 10−2 8 ⋅ 10−2

𝑘̃𝑒𝑔 4 ⋅ 10−2 2 ⋅ 10−2 8 ⋅ 10−2

𝑛̃∗ 2 1 4
𝑐𝑛 0.5 0.5 0.5
𝑐𝑠𝑎𝑡 0.9 0.9 0.9

the consumption of nutrients available in the suspension experiment,
defined as:
𝜕𝑓
𝜕𝑡

= −𝛼 ⋅ 𝑛 in 𝛤𝑏(𝐱, 𝑡)

(𝐱, 0) = 𝑐𝛤 in 𝛤𝑏(𝐱, 0)
(2)

ith 𝛼 a factor (shape) coefficient which accounts for the amount and
vailability of nutrients and configuration of the suspension experiment
or diffusion of nutrients. This coefficient is introduced as a correction
actor to the full and plenty availability of nutrients hypothesis in the
xperiment. 𝑐𝛤 represents the nutrient concentration in the suspension
t the initial time of the analysis. Note that, according to Eq. (2), in our
odel, nutrient concentration may become very low (even negative)

n the medium for large time 𝑡. Indeed, this behavior is aligned with
xperimental observations where a recharging/refreshing protocol is
eeded before complete depletion of nutrients within the medium.
his experimental issue can be properly introduced in our model by
ssuming an update of the function 𝑓 at certain time points. Of course,
egative concentrations do not have any biophysical meaning so our
olution would not be valid under this situation, as the complete
epletion of nutrients would have been achieved before.

In a different way, Mascheroni et al. [19], alternatively to a Fickean
iffusion as considered in Eq. (1), established a mass exchange for
utrient consumption by tumor cells; and Ambrosi et al. [25] compared
pheroid diameter with nutrient penetration length to differentiate
etween volumetric or surface growth.

.2. Cell dynamics

Spheroid growth or decrease is ultimately depends on the dynamics
f the cellular activity (see Fig. 1B). Therefore, the dynamics of cellular
rowth/death is represented, similar to other works [31,54,55], by
eans of the following first order differential equation:

𝜕𝑛
𝜕𝑡

= 𝑘𝑛(𝑐) ⋅ 𝑛 in 𝛺(𝐱, 𝑡)

𝑛(𝐱, 0) = 𝑛0 in 𝛺(𝐱, 0)
(3)

In Eq. (3), and as a simplification of other models [30,33,56], the
inetics of cellular growth/death is characterized by the function 𝑘𝑛(𝑐),
hich is assumed to be dependent of the nutrient concentration [30].
5

𝑛(𝑐) is the function shown in Fig. 2, where two regions can be iden-
ified: (i) a cell death (or dormancy) region which appears for low
utrient concentration, and (ii) a cell growth zone for high levels of
utrients. Both regions are regulated by a threshold parameter 𝑐𝑛,
hich represents the homeostatic level of nutrients in cell’s activity.
e consider a linear model for 𝑘𝑛 for both death and growth regions,

inishing this latter with a constant region after a certain saturation
evel of nutrients 𝑐𝑠𝑎𝑡.

Therefore, Eq. (3) can be split into two different conditions for death
nd growth dynamics as follows:

𝜕𝑛𝑑

𝜕𝑡
= −𝑘𝑑 ⋅ (𝑐𝑛 − 𝑐) ⋅ 𝑛 if 𝑐 ≤ 𝑐𝑛 in 𝛺(𝐱, 𝑡)

𝑑 (𝐱, 0) = 0 in 𝛺(𝐱, 0)
(4)

𝜕𝑛𝑔

𝜕𝑡
= 𝑘𝑔 ⋅ (𝑐 − 𝑐𝑛) ⋅ 𝑛 if 𝑐 > 𝑐𝑛 in 𝛺(𝐱, 𝑡)

𝜕𝑛𝑔

𝜕𝑡
= 𝑘𝑔 ⋅ (𝑐𝑠𝑎𝑡 − 𝑐𝑛) ⋅ 𝑛 if 𝑐 > 𝑐𝑠𝑎𝑡 in 𝛺(𝐱, 𝑡)

𝑛𝑔(𝐱, 0) = 0 in 𝛺(𝐱, 0)

(5)

where 𝑘𝑑 and 𝑘𝑔 represent death and growth constants, and the super-
scripts mean 𝑑 (death) and 𝑔 (growth), respectively. Finally, the total
cell concentration can then be computed as,

𝑛(𝐱, 𝑡) = 𝑛0 + 𝑛𝑔(𝐱, 𝑡) + 𝑛𝑑 (𝐱, 𝑡) (6)

Otherwise, Ambrosi and Mollica [23], in place of cell proliferation
and death, stated that the increase in the size of the spheroid is due
to an increase in the size of the particles that initially make it up. Bull
et al. [27], assumed that cell proliferation and death depend on cell
cycle times in their agent-based modeling.

3.3. Cell mechanics

The spheroid is assumed to be subjected to the contractile activity
of cells (see Fig. 1C). This phenomenon is modeled by distinguish-
ing between passive and active components of the cytoskeleton. In
particular, contractile forces are implemented as an internal active
deformation, i.e. contractility, similar to other existing models of (con-
tinuum) cytoskeletal behavior [35,36,57]. For the sake of simplicity
of our numerical framework, we will use an updated Lagrangian con-
figuration to solve the equations above. Therefore, a small strains
formulation (linearized for time 𝑡 around the current configuration
𝛺(𝐱, 𝑡)) is applied to describe the cell mechanical interactions in the
spheroid for each small time step. Moreover, we assume a linearly
elastic and isotropic constitutive relation between stress and strain
around the current configuration. Then, for a material point 𝐱 which
represents a certain cell concentration, the overall deformation 𝜺𝑇 is the
contribution of the elastic deformation (𝜀𝑒𝑙) of the passive component
of the cell’s cytoskeleton, plus the deformation due to the internal
cell contractility 𝜺𝑐𝑒𝑙𝑙. The interpretation of this strain measure is the
logarithmic or Hencky strain, so the considered constitutive model is
assumed to be dependent on this metric. This is a natural way of
describing constitutive stress–strain relations that has been used in a
Table 4
Values of the calibrated model parameters and bibliographic range.
Parameter Value (U-251 cells) Value (U-87 cells) Bibliographic data Bibliographic data Units

𝑘𝑐 0.0011 0.0016 [3.96 ⋅ 10−8; 0.3] [39,48] mm2

min
𝑟 2.9777 ⋅ 10−10 4.9182 ⋅ 10−8 [2.4 ⋅ 10−15; 0.045] [49,50] mol

min⋅cell
𝑘𝑑 5 ⋅ 10−6 5 ⋅ 10−4 [2.73 ⋅ 10−5; 3.53 ⋅ 10−4] [39,51] mm3

mol⋅min
𝑘𝑔 5 ⋅ 10−6 5 ⋅ 10−4 [8.33 ⋅ 10−6; 1.034 ⋅ 10−3] [52,53] mm3

mol⋅min
𝑘𝑒𝑔 9.9256 ⋅ 10−7 1.1476 ⋅ 10−6 – – mm3

cell
𝑘𝑒𝑑 9.9256 ⋅ 10−7 8.1969 ⋅ 10−10 – – mm3

cell
𝑛∗ 3.0225 ⋅ 105 6.7098 ⋅ 104 – – cell

mm3

𝑐𝑛 0.5 0.5 – – mol
mm3

𝑐𝑠𝑎𝑡 0.9 0.9 – – mol
mm3

𝛼 4 ⋅ 10−8 4 ⋅ 10−8 – – mm3

cell⋅min
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Fig. 4. Parametric analysis of the distribution of the concentration of living cells along the dimensionless radius of the spheroid, at time steps 0, 1, 3, 5, 7, 9, 11, 13 and 15, for
cases 2r, 0.5r, 2k, 0.5k, 2ke, 0.5ke, 2𝑛∗ and 0.5𝑛∗.
number of hyperelastic models for elastomers and living tissues [58–
60]. Hence,

𝜺𝑇 = 𝜺𝑒𝑙 + 𝜺𝑐𝑒𝑙𝑙 in 𝛺(𝐱, 𝑡) (7)

The cell contractility 𝜺𝑐𝑒𝑙𝑙 is assumed to be isotropically dependent
on the activity of cells, and hence on cell concentration 𝑛, as follows:

𝜺𝑐𝑒𝑙𝑙 = 𝑘𝜀(𝑛) ⋅ 𝑛 ⋅ 𝐈 in 𝛺(𝐱, 𝑡) (8)

where 𝑘𝜀 is the contractility constant, which depends on the available
room for cells to exert contractile forces. Fig. 3 shows a sketch which
explains this hypothesis: given an initial state of contraction 𝑛0 [30,37,
38] (red circumference with green cells), two different fates can occur,
depending on whether the net balance is growth (G) or death (D). In
the case of growth, if there is enough room to accommodate more
cells, compression (G.I) occurs because the proliferating cells (green
plus purple cells) exert contractile forces. When the reference value is
overpassed (value of 𝑛∗ is exceeded), there is no more room for cells
and the reference volume expands (G.II and G.III). On the other hand, if
the fate is death, cells die by necrosis, and then release their contractile
forces producing the expansion of the spheroid (D.I).
6

The function which models the cell’s contractility/expansion, ac-
cording to the hypothesis above, is shown in Fig. 3. Therefore, the
contractility constant 𝑘𝜀 is defined as,

𝑘𝜀 =
{

𝑘𝜀,𝑔 if 𝑛 ≥ 𝑛∗

−𝑘𝜀,𝑑 if 𝑛 < 𝑛∗
(9)

Several works also consider the shift from compression to expan-
sion. On the one hand, Kopanska et al. [61] studied, from an in vitro
point of view, the contractile forces that occur in a spheroid as a
consequence of its interaction with the extracellular matrix, conclud-
ing that during growth, it undergoes both contraction and expansion
as a consequence of its interplay with collagen. On the other hand,
Giverso and Preziosi [62] studied the spheroid as a porous material
composed of cells and water and established that when it is subjected
to radial compression on its surface, it initially undergoes a compressive
state with subsequent expansion due to proliferation predominates. In
another study, Chen et al. [22], modeled the mechanical interaction
between the extracellular matrix and the tumor spheroid, rather than
the mechanics among the cells of the spheroid and the tumor spheroid.
Mascheroni et al. [19] did not consider a cellular concentration that
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Fig. 5. Parametric analysis of the distribution of the concentration of dead cells along the dimensionless radius of the spheroid, at time steps 0, 1, 3, 5, 7, 9, 11, 13 and 15, for
cases 2r, 0.5r, 2k, 0.5k, 2ke, 0.5ke, 2𝑛∗ and 0.5𝑛∗.
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marks the transition between zones of spheroidal contraction and ex-
pansion. In our model the shift from compression to expansion during
growth is aligned with the experimental observed behavior, and is
regulated by the model parameter 𝑛∗.

The remaining equilibrium, compatibility and constitutive equa-
ions (linearized for time 𝑡 around the current configuration 𝛺(𝐱, 𝑡))
ead as,

⋅ 𝝈 = 𝟎
𝑇 = 1

2 (∇𝐮 + ∇𝑇 𝐮) in 𝛺(𝐱, 𝑡)

𝝈 = 𝐂𝜺𝑒𝑙

𝝈(𝐱, 0) = 𝝈0 in 𝛺(𝐱, 0)
𝑛(𝐱, 𝑡) = 𝐭̄𝑛 in 𝛤𝑡(𝐱, 𝑡)
(𝐱, 𝑡) = 𝐮̄ in 𝛤𝑢(𝐱, 𝑡)

(10)

ith 𝛤𝑏 = 𝛤𝑢 ∪ 𝛤𝑡, 𝛤𝑢 ∩ 𝛤𝑡 = ∅, and 𝐂 being the fourth order elasticity
ensor which characterizes the mechanical behavior of the spheroid. 𝝈0
s a certain initial pre-stress in the spheroid, and 𝐭̄𝑛 and 𝐮̄ the prescribed
ractions and displacements on the spheroid boundary. These boundary
7

onditions are included in the formulation for completeness purposes,
lthough the analyzed spheroids were considered as free of initial
re-stress, forces and of prescribed displacements along the boundary.

. Dimensionless formulation

Space and time are now non-dimensionalized as follows:

̃ = 𝐱
𝐷0

(11)

𝑡 = 𝑡
𝑇0

(12)

with 𝐷0 the diameter of the spheroid, and 𝑇0 a characteristic time of
analysis. On the other hand, dimensionless nutrient concentration is
defined with reference to the initial concentration of nutrients in the
suspension experiment:

𝑐(𝒙̃, 𝑡) = 𝑐(𝒙̃, 𝑡)
𝑐𝛤

(13)

while the cell concentration is non-dimensionalized versus the initial
cell concentration of the spheroid,

𝑛̃(𝒙̃, 𝑡) = 𝑛(𝒙̃, 𝑡) (14)

𝑛0
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Fig. 6. Parametric analysis of the distribution of the concentration of nutrients along the dimensionless radius of the spheroid, at time steps 0, 1, 3, 5, 7, 9, 11, 13 and 15, for
ases 2r, 0.5r, 2k, 0.5k, 2ke, 0.5ke, 2𝑛∗ and 0.5𝑛∗.
w
We assume a linearly elastic isotropic homogeneous constitutive
model for the spheroid, defined by two parameters: the elastic modulus
(𝐸) and the Poisson’s ratio (𝜈). The stresses are then referred to the
elastic modulus of the spheroid:

𝝈̃(𝒙̃, 𝑡) = 𝝈(𝒙̃, 𝑡)
𝐸

(15)

𝜈 was set to 0.3 in this study.

4.1. Nutrient diffusion

Introducing the dimensionless quantities in Eqs. (11)–(14) in the
nutrient diffusion Eq. (1) yields,
𝜕𝑐
𝜕𝑡

= 𝑘̃𝑐∇2𝑐 − 𝑟 ⋅ 𝑛̃ in 𝛺̃(𝒙̃, 𝑡)

𝑐(𝒙̃, 0) = 𝑐0 in 𝛺̃(𝒙̃, 0)

𝑐(𝒙̃, 𝑡) = 𝑓 (𝒙̃, 𝑡) in 𝛤𝑏(𝒙̃, 𝑡)

(16)

ith:
𝜕𝑓
𝜕𝑡

= −𝛼̃ ⋅ 𝑛̃ in 𝛤𝑏(𝒙̃, 𝑡) (17)
8

̃(𝒙̃, 0) = 1 in 𝛤𝑏(𝒙̃, 0)
here the following dimensionless parameters in Eq. (16) are defined:

𝑐0 =
𝑐0
𝑐𝛤

𝑘̃𝑐 =
𝑘𝑐𝑇0
𝐷2

0

𝑟 =
𝑟𝑛0𝑇0
𝑐𝛤

𝛼̃ =
𝛼𝑛0𝑇0
𝑐𝛤

(18)

4.2. Cell dynamics

The dimensionless quantities defined in Eqs. (11)–(14) are used in
Eqs. (4) and (5), getting,

𝜕𝑛̃𝑑

𝜕𝑡
= −𝑘̃𝑑 ⋅ (𝑐𝑛 − 𝑐) ⋅ 𝑛̃ if 𝑐 ≤ 𝑐𝑛 in 𝛺̃(𝒙̃, 𝑡)

𝑑
(19)
𝑛̃ (𝒙̃, 0) = 0 in 𝛺̃(𝒙̃, 0)
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Fig. 7. Parametric analysis of the distribution of pressure along the dimensionless radius of the spheroid, at time steps 0, 1, 3, 5, 7, 9, 11, 13 and 15, for cases 2r, 0.5r, 2k, 0.5k,
2ke, 0.5ke, 2𝑛∗ and 0.5𝑛∗.
𝜕𝑛̃𝑔

𝜕𝑡
= 𝑘̃𝑔 ⋅ (𝑐 − 𝑐𝑛) ⋅ 𝑛̃ if 𝑐 > 𝑐𝑛 in 𝛺̃(𝒙̃, 𝑡)

𝜕𝑛̃𝑔

𝜕𝑡
= 𝑘̃𝑔 ⋅ (𝑐𝑠𝑎𝑡 − 𝑐𝑛) ⋅ 𝑛̃ if 𝑐 > 𝑐𝑠𝑎𝑡 in 𝛺̃(𝒙̃, 𝑡)

𝑛̃𝑔(𝒙̃, 0) = 0 in 𝛺̃(𝒙̃, 0)

(20)

𝑛̃(𝒙̃, 𝑡) = 1 + 𝑛̃𝑔(𝒙̃, 𝑡) + 𝑛̃𝑑 (𝒙̃, 𝑡) (21)

ppearing the following dimensionless parameters in Eqs. (19) and
20):

̃ 𝑑 =
𝑘𝑑𝑇0
𝑛0𝑐𝛤

̃ 𝑔 =
𝑘𝑔𝑇0
𝑛0𝑐𝛤

𝑐𝑛 =
𝑐𝑛
𝑐𝛤

𝑐𝑠𝑎𝑡 =
𝑐𝑠𝑎𝑡

(22)
9

𝑐𝛤
Now, taking the time derivative of Eq. (21) yields,

𝜕𝑛̃
𝜕𝑡

= 𝜕𝑛̃𝑔

𝜕𝑡
+ 𝜕𝑛̃𝑑

𝜕𝑡
(23)

Considering Eqs. (19) and (20), Eq. (23) may be rewritten as:

𝜕𝑛̃
𝜕𝑡

= −𝑘̃𝑑 ⋅ (𝑐𝑛 − 𝑐) ⋅ 𝑛̃ ⋅ 𝛿1 + 𝑘̃𝑔 ⋅ (𝑐 − 𝑐𝑛) ⋅ 𝑛̃ ⋅ 𝛿2
+𝑘̃𝑔 ⋅ (𝑐𝑠𝑎𝑡 − 𝑐𝑛) ⋅ 𝑛̃ ⋅ 𝛿3 in 𝛺̃(𝒙̃, 𝑡)

𝑛̃(𝒙̃, 0) = 1 in 𝛺̃(𝒙̃, 0)
(24)

with,

⎧

⎪

⎨

⎪

⎩

𝛿1 = 1 if 𝑐 ≤ 𝑐𝑛 and 𝛿1 = 0 elsewhere
𝛿2 = 1 if 𝑐𝑛 < 𝑐 ≤ 𝑐𝑠𝑎𝑡 and 𝛿2 = 0 elsewhere
𝛿3 = 1 if 𝑐 > 𝑐𝑠𝑎𝑡 and 𝛿3 = 0 elsewhere

(25)

Eq. (24) will be used to compute the cell evolution in the spheroid.
Dead and alive cells can be computed afterwards from Eqs. (19) and
(20).
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Fig. 8. Parametric analysis of the evolution of the spheroid section from the initial step to the 15th, for the cases 2r, 0.5r, 2k, 0.5k, 2ke, 0.5ke, 2𝑛∗ and 0.5𝑛∗.
.3. Cell mechanics

For the cell mechanics equations, we introduce the dimensionless
uantities in Eqs. (11), (12) and (14) in Eq. (8), getting:

𝑐𝑒𝑙𝑙 = 𝑘̃𝜀 ⋅ 𝑛̃ ⋅ 𝐈 in 𝛺̃(𝒙̃, 𝑡) (26)

ith,

̃ 𝜀 =

⎧

⎪

⎨

⎪

⎩

𝑘̃𝜀,𝑔 if 𝑛̃ ≥ 𝑛̃∗

−𝑘̃𝜀,𝑑 if 𝑛̃ < 𝑛̃∗
(27)

Using again the dimensionless quantities in Eqs. (11), (12) and (15)
n Eq. (10), we obtain:

⋅ 𝝈̃ = 𝟎
𝑇 = 1

2 (∇𝐮̃ + ∇𝑇 𝐮̃) in 𝛺̃(𝒙̃, 𝑡)
̃ 𝑒𝑙

(28)
10

𝝈̃ = 𝐂𝜺
The following dimensionless parameters in Eqs. (26)–(28) are then
defined:

𝒖̃(𝒙̃, 𝑡) = 𝐮(𝒙̃, 𝑡)
𝐷0

𝒌̃𝜺 = 𝒌𝜺𝑛0

𝑛̃∗ = 𝑛∗

𝑛0

𝑪̃ = 𝑪
𝐸

(29)

5. Numerical implementation

The multiphysics coupled model described above is composed of
the nutrient diffusion Eq. (16), cell dynamics evolution Eq. (24) and
cell mechanics Eqs. (7), (26) and (28). These equations are numerically
implemented following an updated Lagrangian scheme. Therefore, the
governing equations of the model are solved at each 𝑗-step at time 𝑡𝑗
for the updated configuration 𝒙 as described in Box 1.
𝑗
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Box 1: Multiphysics model implementation scheme.

1. Set 𝑗-step 𝑗 = 0.
Initialize initial configuration 𝒙̃𝑗 = 𝒙̃0, initial time of
analysis 𝑡𝑗 = 𝑡0 and time increment 𝛥𝑡.
Initialize field variables:

𝑐𝑗 = 𝑐0
𝑛̃𝑗 = 1
ũ𝑗 = 0

(30)

For 𝑗 = 1..𝑁𝑠𝑡𝑒𝑝𝑠
2. Solve:

𝑐𝑗+1 = 𝑐𝑗 + (𝑘̃𝑐∇2𝑐𝑗+1 − 𝑟𝑛̃𝑗+1) ⋅ 𝛥𝑡 in 𝛺̃(𝒙̃𝑗 )
𝑐𝑗+1 = 𝑓𝑗 − 𝛼̃ ⋅ 𝑛̃𝑗 ⋅ 𝛥𝑡 in 𝛤 (𝒙̃𝑗 )

𝑛̃𝑗+1 = 𝑛̃𝑗 + [−𝑘̃𝑑 ⋅ (𝑐𝑛 − 𝑐𝑗+1) ⋅ 𝑛̃𝑗+1 ⋅ 𝛿1+
+𝑘̃𝑔 ⋅ (𝑐𝑗+1 − 𝑐𝑛) ⋅ 𝑛̃𝑗+1 ⋅ 𝛿2 + 𝑘̃𝑔 ⋅ (𝑐𝑠𝑎𝑡 − 𝑐𝑛) ⋅ 𝑛̃𝑗+1 ⋅ 𝛿3] ⋅ 𝛥𝑡

+initial and boundary conditions

(31)

3. Given 𝑛̃𝑗+1, solve:

∇ ⋅ 𝝈̃𝑗+1 = 0
𝝈̃𝑗+1 = C̃𝜺𝑒𝑙𝑗+1

𝜺𝑐𝑒𝑙𝑙𝑗+1 = 𝑘̃𝜀 ⋅ 𝑛̃𝑗+1 ⋅ I in 𝛺̃(𝒙̃𝑗 )
𝜺𝑇𝑗+1 = 𝜺𝑒𝑙𝑗+1 + 𝜺𝑐𝑒𝑙𝑙𝑗+1

𝜺𝑇𝑗+1 =
1
2 (∇ũ𝑗+1 + ∇𝑇 ũ)𝑗+1

+initial and boundary conditions

(32)

4. Set:
𝒙̃𝑗+1 = 𝒙̃𝑗 + ũ𝑗+1
𝑡𝑗+1 = 𝑡𝑗 + 𝛥𝑡

5. Update concentrations to new configurations:
𝑐𝑗+1 ← 𝑐𝑗+1 ⋅ |F−1𝑗+1|
𝑛̃𝑗+1 ← 𝑛̃𝑗+1 ⋅ |F−1𝑗+1|

6. Set 𝑗 ← 𝑗 + 1:
7. GOTO 2.

End For

First, after initialization of the field variables and initial domain, a
ackward-Euler scheme is followed to discretize in time the nutrient
iffusion and the cell dynamics equations. These equations are solved
ogether (strongly coupled) according to Eq. (31) in Box 1. Then,
11
the cell mechanics equations (Eq. (32)) are solved. Notice that these
equations are weakly coupled with the nutrient diffusion and cell
dynamics, for a given cell concentration 𝑛̃𝑗+1. Then, the new deformed
configuration is updated, and both nutrient and cell concentrations are
updated through the deformation gradient 𝐅𝑗+1 of the solution (see item

in box 1). This process is iteratively repeated until the end of the
nalysis is reached (see Box 1).

Eqs. (31) and (32) are spatially discretized following a finite element
FE) numerical framework. Thus, these Eqs. are firstly written in their
eak form (the reader is referred to Zienkiewicz and Taylor [63] for

he basics of FE analysis). Then, the field variables in Eqs. (31) and (32)
re approximated as follows:

𝑐𝑗+1(𝒙̃𝑗 ) = 𝐍𝑐 (𝒙̃𝑗 ) ⋅ 𝐂̃𝑗+1
𝑛̃𝑗+1(𝒙̃𝑗 ) = 𝐍𝑛̃(𝒙̃𝑗 ) ⋅ 𝐍̃𝑗+1
̃ 𝑗+1(𝒙̃𝑗 ) = 𝐍𝐮̃(𝒙̃𝑗 ) ⋅ 𝐔̃𝑗+1

(33)

here 𝐍𝑐 , 𝐍𝑛̃ and 𝐍𝐮̃ are shape function (interpolating) matrices for
he continuum variables 𝑐, 𝑛̃ and 𝐮̃, respectively. On the other hand,
̃
𝑗+1, 𝐍̃𝑗+1 and 𝐔̃𝑗+1 are noded-value vectors at the nodal positions of

he FE mesh for nutrient concentration, cell concentration and spheroid
isplacements, respectively, at the current configuration 𝒙̃𝑗 .

Eqs. (31) and (32) are implemented using the commercial FE soft-
are Abaqus Simulia. First, Eq. (31) are solved as a Heat Transfer
nalysis, where the source term is implemented in Abaqus by means
f the HETVAL subroutine. Moreover, the cell dynamics evolution is
lso implemented in this subroutine. On the other hand, Eq. (32) is
olved using a static solid mechanics analysis in Abaqus. In this context,
he term 𝜺𝑐𝑒𝑙𝑙 is imposed analogously to a temperature in a thermal–
echanical problem. The whole scheme in Box 1 is orchestrated by
atlab R2017a in an in-house main code. The input and output data

eeded for the different computations in Box 1, are exchanged via
riting and reading files along the Matlab and Abaqus subroutines
URDFIL).

. Results

.1. Parametric analysis

In order to investigate the influence of the different model parame-
ers on the evolution of the field variables and results, the dimensionless
odel shown in the previous sections was repeatedly run for a set of
arameters. Therefore, we vary up to 4 parameters from their reference
alue as shown in Table 3. The reference values for first four parameters
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Fig. 10. Spheroid growth at the final step of the parametric analysis, for the different
variations of parameters 2r, 0.5r, 2k, 0.5k, 2ke, 0.5ke, 2𝑛∗ and 0.5𝑛∗.

shown in Table 3 were taken from the literature [39,48–53] from
models of glioblastoma multiforme cell lines and related brain tumors,
as shown in Table 4, but in dimensionless units. The rest of parameters
were specifically introduced in our model, so the corresponding refer-
ence values were chosen from the order of magnitude of the calibrated
parameters during validation (see Section 3.2), but in dimensionless
units. From the parameters shown in Table 3, we decided to vary
a subset of them. 𝑘𝑐 was excluded from the parametric analysis as
it showed a minor impact on the results in preliminary simulations.
On the other hand, 𝑐𝑛 and 𝑐𝑠𝑎𝑡 were excluded from the parametric
analysis and fixed to 0.5 and 0.9 since they represent intermediate and
high levels (in the range 0–1), of nutrient concentration, respectively,
according to their definition in Section 3.2. The selected parameters
have a clear physiological relevance such as nutrient consumption of
cells (𝑟), kinetics of cell death and growth (𝑘̃𝑑 and 𝑘̃𝑔 , respectively); and
cell compression and expansion constants (𝑘̃𝑒𝑑 and 𝑘̃𝑒𝑔 , respectively).
From the reference value of the parameters, the variation was set for
all cases from half to double the reference value (see Table 3). Since
𝑘̃𝑑 − 𝑘̃𝑔 and 𝑘̃𝑒𝑑 − 𝑘̃𝑒𝑔 are varied at the same ratio, they are referred as
𝑘̃ and 𝑘̃𝑒, respectively.

We considered a uniform dimensionless nutrient concentration
equal to 1 on the spheroid boundary for all the analysis time interval,
and within the spheroid at the initial time of analysis. Moreover, we
considered an initial cell concentration equal to 1, and null concen-
tration of dead cells. Finally, the spheroid was free of body forces at
the initial time of analysis and free of boundary forces/movements
along the whole time period of analysis to simulate the suspension
conditions of the spheroids in the experiments. The domain of the
spheroid was modeled using 3D finite elements. In particular, the
unit (dimensionless) sphere was discretized with 49000 hexahedra and
49491 nodes. Even though the model has circumferential symmetry,
we modeled the full sphere for an easier visualization of the results.
The time increment (step) used in the simulations was set to 1/12.
It was checked that the selected mesh and time step showed results
independency and convergence.

The evolutions of living cell concentration, dead cell concentration,
nutrient concentration and pressure (i.e. one third of the first invari-
ant of the stress tensor) are shown in Figs. 4–7 along the radius of
the spheroid for different time steps. Furthermore, the growth of the
spheroid is computed as the (percentage) of the projected area of the
spheroid referred to the initial configuration, whose evolution is plot
in Fig. 8. Finally, Figs. 9 and 10 shows the evolution of the variables
at step 15, for the different parameter combinations.

6.2. Validation results

In this section, we validate the proposed mechanobiological model
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with the experimental results obtained in the tests described in Section
2. The calibration of model parameters was established as follows. The
model parameters of our model that are present or similar to other
models were estimated from the literature as indicated in Table 4. Other
parameters of our model that appears from the proposed laws of our
model (Figs. 2 and 3) were fitted using a trial and error procedure
given the complexity of our coupled modeling. However, the fitting
was accelerated from the understanding of model parameters on results,
conducted in Section 3.1. We checked that validation was possible for
a unique set of values of model parameters within the bibliographic
range.

The evolution of a spheroid composed of U-87 glioblastoma cell line
is shown in Fig. 11, for different times of the analysis. These results
are plot in terms of the percentage of projected area in Fig. 12 for
the different spheroids in the experiment. Moreover, the corresponding
result of the model is also included in Fig. 12 for comparison purposes.
The model was run for a time step of 120 min during a simulation
time interval of 14 days (168 steps). The results presented in Figs. 12
and 15 correspond to time points analogous to the experimental ones.
According to the experimental data, there is an initial growth of the
spheroid volume that stabilizes over time. In this period, the spheroid
increases in size almost six times. A good agreement can be found
between the model results and the evolution of the different spheroids.
The evolution of the model variables is shown in Fig. 13. Living
and dead cell concentrations (and associated model parameters) are
shown as dimensional quantities. However, the nutrient concentration
and stress (and associated model parameters) were referred to their
dimensionless values.

On the other hand, the evolution of a different glioblastoma cell
line, U-251, is shown for a spheroid in Fig. 14. These results are
compared for differed spheroids versus the model outcome in Fig. 15. In
this case, the model was calibrated for a different set of parameters, as
seen in Table 4, since they are referred to different cells and behavior.
Using this calibration, we can see in Fig. 15 that the curve of the model
lies within the experimental range and according to the experimental
data of the different spheroids in the test. In these assays, the spheroid
(on average) reduces its size by almost half in the days of study. Finally,
the evolution of model variables is shown in Fig. 16.

7. Discussion

In this paper, we propose a multiphysics mechanobiological model
to simulate the evolution of tumor spheroids. Our mechanobiolog-
ical model includes, in a coupled way, nutrient diffusion, nutrient
concentration-dependent cell proliferation/death and cell mechanics
as a function of cell concentration. Indeed, the model outcomes were
qualitatively validated with our own experiments for glioblastoma
spheroids. Previous existing papers in the literature do not consider
all these features in the same study. For example, some models do
not consider nutrient diffusion [19,26], whereas others do not model
cell proliferation [23]. On the other hand, some studies are just vali-
dated against experimental data taken from the literature [18,25], or
the application is not shown for spheroids [20]. This mixed in sil-
ico/experimental approach uniquely combines all the above-mentioned
features in the same study. The biological assumptions of the spheroidal
model here developed are mainly two: (i) cell dynamics depend on
nutrient concentration and (ii) volume variation of the spheroid is
related to cell contractility and concentration. With respect to the first
one, it was verified to some extent in our experiments (data not shown)
in which nutrient recharging/refreshing affected the growth rate of
the U-87 cell line (more proliferative line). With respect to the second
hypothesis, only the net volume variation can be indirectly evaluated
by monitoring the area of the spheroid. We consider this statement as
an assumption, based on previous studies in the literature [30,37,38,
61,62]. As a result, our model predicts a higher proliferation rate for
abundant levels of nutrients, and cell death/dormancy for low levels

of nutrients. This behavior is aligned with other models and observed
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Fig. 11. Experimental images of the evolution of the spheroid on days 0, 2, 5, 7 and 14, for the U-87 cell line. The scale bar is 100 μm.
Fig. 12. Evolution of the spheroid projected area over time for the U-87 cell line.

experimental behaviors [30]. Moreover, a material point exerts a high
contractility and contractile force, according to our model, for high
concentration of cells if there is room enough to accommodate the new
cell population. On the other hand, our model predicts an expansion of
the volume if cells grow and fill the volume of reference and therefore
accommodate to a new expanded volume (see Fig. 3). This hypothesis
is similar to the behavior observed in agent-based models [27,29]:
in these models cells are considered as (discrete) contractile elements
which evolves until a (contracted or expanded) equilibrium state that
accommodates the new daughter cells. This behavior is also aligned
with experimental evidences [37,38].

The developed mechanobiological model contains a number of phe-
nomenological parameters with physiological meaning. In fact, these
parameters may be measured (or calibrated) using standard experi-
ments of proliferation, diffusion [16], or traction force microscopy [64,
65] to account for the contractile behavior of glioblastoma cells. The
effect of model parameters on the results was investigated in a para-
metric analysis, using the same rate of variation (from half to double)
for all the parameters. It can be seen that contractility constants 𝑘̃𝑒 and
𝑛̃∗ have a minor effect on the living cells concentration according to
Fig. 4. However, kinetics of cell growth/death constants have a great
influence on the cell concentration evolution, with values ranging from
150 to 4 times the initial concentration in the periphery of the spheroid
at the end of the analysis. On the other hand, the nutrient consumption
constant has an influence on the distribution of living cells within
the spheroid, with lower cells at the interior for high consumption
rates due to limited availability of nutrients in this place. What is
more, the parametric study shows that dead cells only appear in the
cases of high nutrient consumption rates and a high rate of dead cells,
as expected. In these situations, dead cells rise predominantly in the
interior of the spheroid at the last steps of the analysis (see Fig. 5). As
seen in Fig. 6, the most influential parameters on nutrient diffusion are
the nutrient consumption and kinetics of cell death/growth constants.
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Specifically, there is more availability of nutrients for low values of nu-
trient consumption and a low kinetics of cells (low cells concentration).
Finally, it can be observed in Fig. 7 that the outer part of the spheroid
is under tension and the interior part under compression. Also, the
highest pressures appear (either tension or compression) for the most
proliferative (higher kinetic constant) cells. Note that the lower kinetic
constant case shows the lowest pressure distribution (of the order of
10−3). This case exhibits a monotonically decreasing (negative) growth,
Fig. 8, due to the low concentration of cells (see Fig. 4) along time.

The trend of the evolution of the spheroid area is similar for all the
analyzed cases (see Fig. 8): there is an initial decay in the first steps
(sooner or later depending on the parameters), followed by an increas-
ing growth trend until the end of the analysis. The highest spheroid
growth at the end of the analysis appears for the higher kinetic constant
(up to 150%), followed by the cases of higher contractile/expansion
constant 𝑘̃𝑒 and lower 𝑛̃∗ (volume availability or spheroid compaction
at the initial step). The highest spheroid contraction in the first steps
of the analysis is produced for higher contractile/expansion constant 𝑘̃𝑒
and high 𝑛̃∗. It is also interesting to remark that the minimum of growth
decay (spheroid compression) is reached faster for higher growth ki-
netics and lower 𝑛̃∗. Note that all the influence of model parameters
and observed trends in Figs. 4–8 are aligned with the meaning and
definition of these parameters, making sense of the obtained results
although it cannot be interpreted as an experimental validation of the
model.

However, the proposed mechanobiological model is qualitatively
validated for different glioblastoma tumor cells, namely U-87 and U-
251 cell lines. In the experiments, spheroid formation starts with the
cell suspension and the accumulation of cells at the tip of the hanging
drop due to gravity. As the cells cannot attach to any surface, they
can only aggregate in a process driven by intercellular connections.
This promotes the formation of quasi-spherical structures by the con-
traction of the starting aggregates. This initial formation process was
not experimentally quantified in this study since it is challenging to
visualize the cells within the hanging drop because of the large focal
distance. However, it has been explained in the literature that spheroid
formation consists of three main phases: initial aggregation of iso-
lated cells, followed by spheroid compaction (shrinking), and spheroid
growth [66–68]. The duration of the compaction and shrinking phases
is cell-type dependent [68,69] and is promoted by intercellular ad-
hesion forces [70,71]. Later, once the quasi-spherical structures are
formed, the cells start to proliferate. As mentioned above, the pressure
is higher in highly proliferative cells, so it can exceed the adhesion
forces between cells and lead to the spheroid size increase. The model
outcomes presented in Figs. 12 and 15, were obtained after calibration
of the model parameters as shown in Table 4. We maintained the ref-
erence values of 𝑘𝑐 , 𝑐𝑛 and 𝑐𝑠𝑎𝑡, while we calibrated the consumption of
nutrients, proliferative capacity or contractile behavior for the different
analyzed cell lines since they are related to specific characteristic and
physiology of the cell.

A tumor spheroid is a structure consisting of different layers. The
outermost layer receives more nutrients and oxygen from the medium,
therefore, it is composed of proliferating living cells [27,72,73]. As one
moves inward, the cells find it more difficult to receive nutrients and
oxygen [27,72]. For this reason, the center of the spheroid is composed
mainly of dead cells. In the case of the U-87 MG cell line, the cells
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Fig. 13. Distribution of the concentration of living and dead cells, nutrients and pressure along the dimensionless radius of the spheroid, on days 2, 4, 6, 8, 10, 12 and 14, for
the U-87 cell line.
Fig. 14. Experimental images of the evolution of the spheroid on days 0, 2, 5, 7 and 14, for the U-251 cell line. The scale bar is 100 μm.
Fig. 15. Evolution of the spheroid projected area over time for the U-251 cell line.

are more proliferative with a higher rate of nutrient consumption [74].
Therefore, the daughter cells, located in the proliferative layer, the out-
ermost layer, originate traction in this area, which in turn causes more
accumulation of dead cells in the innermost layer, leaving the necrotic
layer in a state of compression [27]. This observed behavior is quali-
tatively reproduced by our model, as shown in Fig. 13. Interestingly,
the fitted parameters for U-251 cell line resulted into flat gradients
of nutrients, and consequently a more homogeneous cell distribution
and absence of pressure along the spheroid (see Fig. 16). Differences
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between these cell lines were already studied and it was shown that
U-251 cells can survive better in conditions of low nutrient and oxygen
concentrations [74]. In our experiments, U-251 spheroids were small
and continued reducing their size over time, reaching around 200 μm
diameter in 14 days. These cells barely proliferated in 3D culture, so
we suspect that strong intercellular interactions were responsible for
that size reduction. Meanwhile, U-87 cells were highly proliferative,
so the spheroids grew and the diameter of U-87 spheroids reached
800 μm in 14 days. It was observed in tissues that oxygen can reach cells
that are 100-200 μm away from blood vessel [47]. This was confirmed
in spheroids, as gradients of oxygen and nutrients, and consequent
formation of necrotic core depend on the spheroid size. Spheroids
whose diameter was bigger than 500 μm developed physicochemical
gradients sufficient to induce necrotic core formation [9]. Different
cellular behavior, diffusion distances reported in literature [9,47] and
spheroid sizes obtained in our experiments can explain our fitted
parameters. As U-251 spheroids were small, the model predicted that
all cells could get enough oxygen and nutrients, and, as these cells
did not proliferate much in the spheroid culture, gradients did not
change during the experiment (see Fig. 16). On the other hand, U-87
proliferative cells increased spheroid size, so gradients of oxygen and
nutrients were formed as seen in Fig. 13. Cells in the interior of the
spheroid did not get components necessary for survival, so cell death
was activated and necrotic core was formed (Fig. 13). The distribution
of nutrients in the spheroid and formation of gradients for this case
can be seen in Fig. 17. In any case, fitted parameters rely within the
order of magnitude of different models and simulations available in the
literature, according to Table 4.

8. Conclusions

We have proposed a continuum mechanobiological model to study
the evolution of spheroids. The model includes the main fundamental



Computers in Biology and Medicine 159 (2023) 106897A. Carrasco-Mantis et al.
Fig. 16. Distribution of the concentration of living and dead cells, nutrients and pressure along the dimensionless radius of the spheroid, on days 3, 6, 9, 12, and 14, for the
U-251 cell line.
Fig. 17. Distribution of nutrient concentration [-] within the spheroid (half cut).
processes in these applications, namely, diffusion of nutrients, dynam-
ics of cell growth/death, and mechanical interactions among cells.
Spheroid cross section evolution predicted by the model was qualita-
tively validated versus some experiments composed with glioblastoma
tumor spheroids that were designed and performed in this work. Dif-
ferent tumoral, U-87 and U-251 cell lines were studied, and the trends
(in terms of volume change evolution) were properly captured by the
model after calibration of the physiological parameters. In particular,
our model is able to capture, in an approximate way, quite different
spheroid evolutions, such as growth (up to six times the initial con-
figuration for U-87 cell line) or shrinking (almost half of the initial
configuration for U-251 cell line). The main original contribution of this
work is deriving the spheroid evolution from the mechanical activity
of cells, coupled with nutrient consumption and the subsequent cell
dynamics. This model can be used to further investigate mechanistic
effects at different observation scales in the evolution of tumors and
their role in cancer disease by means of the design of in vitro and/or in
silico tests. However, a limitation of our work is that some variables and
quantities of our model cannot be explicitly compared and validated
with the available experimental outcomes. Quantifying some of these
magnitudes, such as the cellular concentration of live and dead cells
in different regions of the interior of the spheroid, will be explored as
part of our future work. On the other hand, measuring internal pressure
within the spheroid would require complex experimental setups to get
15
reliable data. In this context, our proposed model may be used, after
additional validation, as a complementary tool to obtain quantities and
information in silico, that may be hardly experimentally measured due
to technical limitations.
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