
Theoretical and Applied Fracture Mechanics 127 (2023) 104029

A
0
n

Contents lists available at ScienceDirect

Theoretical and Applied Fracture Mechanics

journal homepage: www.elsevier.com/locate/tafmec

A phase-field fracture model for fatigue using locking-free solid shell finite
elements: Analysis for homogeneous materials and layered composites
Pavan Kumar Asur Vijaya Kumar a,b,∗, Aamir Dean c,d, José Reinoso e, Heinz E. Pettermann a,
Marco Paggi b

a Institut für Leichtbau und Struktur-Biomechanik, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
b IMT School for Advanced Studies Lucca, Piazza San Francesco 19, 55100, Lucca, Italy
c School of Civil Engineering, College of Engineering, Sudan University of Science and Technology, P.O. Box 72, Khartoum, Sudan
d Institute of Structural Analysis, Leibniz Universität Hannover, Appelstr. 9A, 30167 Hannover, Germany
e Departamento de Mecánica de Medios Continuos y Teoría de Estructuras, School of Engineering, Universidad de Sevilla, Camino de los Descubrimientos
s/n, 41092, Seville, Spain

A R T I C L E I N F O

Dataset link: https://github.com/Pavan-asur/F
atigue-Solidshell

Keywords:
A. Phase-field method
B. Solid-shell
C. Finite element method
D: Fatigue
E. Fracture

A B S T R A C T

A computational framework to model fatigue fracture in structures based on the phase-field method and the
solid-shell concept is herein presented. With the aim of achieving a locking free solid-shell finite element
formulation with fracture-prediction capabilities, both the combination of the Enhanced Assumed Strain (EAS)
and Assumed Natural Strain (ANS) methods with phase field of fracture is exploited. In order to achieve realistic
prediction, the crack driving force is computed using positive/negative split of the stress field. Moreover, the
difference between the driving forces are pinpointed. Furthermore, based on thermodynamic considerations,
the free energy function is modified to introduce the fatigue effect via a degradation of the material fracture
toughness. This approach retrieves the SN curves and the crack growth curve as expected. The predictive
capability of the model is evaluated through benchmark examples that include a plate with a notch, a curved
shell, mode II shear, and three-point bending for homogeneous materials, as well as a dogbone specimen for
homogenized fiber-reinforced composites. Additionally, comparative analysis is performed with previous results
for the plate with notch and mode II shear tests, while the dogbone specimen is compared with experimental
data to further validate the accuracy of the present model.
1. Introduction

Fracture induced by fatigue loading is considered one of the most
frequent damages accounting for up to 90% of all material failures [1].
Its complex nature and inability to predict beforehand make it an ex-
tremely dangerous failure modes. In classical material science, fatigue
is attributed to material weakening due to small repeated loading.
Micro-cracks develop energetically as a consequence of sub- or micro-
structural changes in the material. These micro-cracks further depend
on the material’s microstructure, ruled by a stochastic process, and
eventually coalesce and leads to a macro-crack, where its size is suf-
ficiently large enough to overcome the microstructure’s energy barrier
to nucleate, eventually leading to failure.

The early studies regarding fatigue failure are dominated by empir-
ical relations such as Wöhler curves [2], Paris law [3,4], Coffin [5],
and Manson [6] ideas, based on extensive experimental data fitting
methods, see also [7] for a systematic review. Wöhler noticed the
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number of cycles (N) at failure for an applied stress amplitude 𝜎𝑎
follows a power-law equation:

𝜎𝑎 = 𝐴𝑁𝛽 ,

for some constants 𝐴 and 𝛽 that depend on the material and many
other environmental factors. This approach beholds some important
observations, such as the presence of a threshold amplitude below
which the material is unlikely to fail. Based in the number of cycles to
failure 𝑁 , fatigue can be broadly classified as (i) Ultra-low/oligo-cycle
fatigue (ULC), (ii) Low cycle fatigue (LC), and (iii) High cycle fatigue
(HC) [8].

Following Wöhler, Palmgren [9] and Miner [10] introduced the idea
of cumulative damage. For 𝑘 different stress amplitudes occurring in a
loading history, the damage contribution, independent of the order of
applied loads, gives 𝜂𝑖 = 1

𝑁𝝈𝑖
𝑎

, for 𝑖 = 1, 𝑘. Later, Paris [3] showed

from experiments that in a single cycle with crack length ′𝑎′, the rate
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of change of crack length d𝑎
d𝑁 is a power-law function to the stress

ntensity factor range 𝛥𝐾, as
d𝑎
d𝑁 = 𝐶𝛥𝐾𝑚,

or some constants 𝐶 and 𝑚 that depend on the material.
The aforementioned fatigue life models, one based on overall dam-

ge accumulation and another based on the propagation of a crack,
ave been found experimentally and the related scaling laws have been
argely confirmed by dimensional analysis considerations in [7].

Besides the above fatigue life models, phenomenological and pro-
ressive damage models were also proposed in literature. On the ba-
is of experimentally determined damage evolution equations, phe-
omenological models [11–14] predict macroscopic material deteri-
ration (stiffness and strength) taking into consideration stress re-
istributions during the structural fatigue analysis. Progressive damage
odels [15–21], on the other hand, take into account the physical

volution of damage and relate it to the stiffness and the strength
roperties. Such models category possesses the capacity of accounting
or the effects of loading sequence and stress redistribution.

In recent years, the variational approach to fracture, known as the
hase-field approach, has been extended to include fatigue behavior.
n this approach, fatigue is considered as a degradation of the fracture
nergy, achieved by introducing scalar parameters dependent on factors
uch as stress, bulk energy, 𝐶 , and the internal length scale of nonlocal
amage 𝑙𝑐 , among others. Boldrini et al. [22] presented a thermo-
echanical phase-field fatigue model by introducing an additional

calar parameter. Schreiber et al. [23] proposed an additional energy
ontribution to the total energy. A more intuitive approach to fatigue
as proposed by Carrara et al. [24–28], where the stiffness and fracture
nergy were degraded as a function of cumulative stored potential. As a
atural consequence, these models accurately recover Paris-law and S-
curves, making them self-consistent. Seiler et al. [27] applied a local

train approach empirically to incorporate plasticity using Neuber’s
ule. Schreiber et al. [23] employed Miner’s rule to govern fatigue
volution. Following [29] work, many others have proposed the accu-
ulation of strain energy either via strain energy [23,24,26,28,30–33],

r elastoplastic energy density [28,33]. Regarding the high cycle fa-
igue, Seles et al. [26] proposed a cycle jumping technique to efficiently
apture high-cycle fatigue. Additionally, a robust quasi-Newton method
or fatigue is proposed in [34], and high-cycle fatigue is suggested
n [35,36].

In this work, a phase-field fracture model is proposed for the analy-
is of structures subjected to fatigue/cyclic loading with full integration
olid-shells capable of handling both thin and thick shells. The shell
ody is first parameterized with a top and a bottom surface of the body
s in [37–41]. Due to the intrinsic nature of finite elements with lower
rder kinematic interpolation, shells undergo numerical locking. To
btain a locking free shell with full integration, the proposed model is
quipped with the Enhanced Assumed Strain (EAS) [42–46] to alleviate
he volumetric and Poisson’s thickness locking effects, whereas the
ssumed Natural Strain (ANS) [47,48] is used to treat trapezoidal
nd transverse shear locking. Shell structures damage, have been used
n numerous literature whose description is provided via XFEM [49–
2], isoparametric analysis [53–55], gradient enhanced damage meth-
ds [56–59]. Recently thermo-mechanical analysis of thin walled struc-
ure with full integration that includes EAS and ANS method has
een discussed in [60–63]. In the phase field literature, three different
ind of split of strain energy is proposed: (i) volumetric-deviatoric
plit [64,65], where the crack is driven by volumetric expansion and
eviatoric strains, (ii) spectral split [66–68] where strain/stress de-
omposed into its principal components, (iii) directional split based on
tress decomposition [69].

Solid-shell elements are naturally solved in curvilinear co-ordinates
ince they allow more natural representation of the curved geometry
2

f the shell. In curvilinear coordinates, the forces acting on a material
oint are not necessarily co-linear with the coordinate axis and there-
ore cannot be described by a single scalar value at that point. The
auchy stress tensor allows to describe the forces at a material point

n all directions, making it a more general and useful concept. This is
articularly important in the analysis of shells with complex geome-
ries, where the use of curvilinear coordinates is common. Furthermore,

crack driving force is herein computed via spectral decomposition
f the Cauchy stresses. As a consequence of this driving force, the
racture involving mixed modes can be captured in the solid shell
see 5.3) otherwise leading to the ad hoc criteria. In Section 5.3, we
lucidate the difference between the conventional driving force and
he driving force based on the split, where the dominance of mode II is
ighlighted. Our findings suggest that the regular driving force leads to
he formation of Mode I crack, consistent with the outcomes reported
n [69]. Furthermore, our investigation in Section 5.4 demonstrates that
he combination of the driving force based on the split with thick shells
an effectively capture structures that require an ad hoc criteria for
hin shells. In addition, our results indicate that the proposed solid shell
odel can replicate the behavior of thick shells, similar to that of the

onventional solids (see Section 5.4). Consequently, the proposed solid
hell model can serve as a link between solid and shell structures. A
ink for the codes used in this article is provided.

The model can be readily extended to analyze homogenized fiber-
einforced composites (FRCs). Several authors have proposed fracture
heories for FRCs, which can be found in [70,71] and others cited
herein. Additionally, the analysis of composites within the context
f solid shells has been addressed in [40]. The extended model is
ompared with experimental results in [72] for low cycle fatigue to
erify its accuracy.

For a comprehensive outlook, the article is organized as follows:
ection 2.1 outlines the theoretical aspects of the solid-shell finite
lement formulation. Section 3 presents the variational basis and the
hermodynamic consistency of the proposed fatigue model with partic-
lar emphasis on the computation of the crack driving force. Section 4
resents the finite element treatment and implementation of the pro-
osed formulation. Section 5 examines the application of proposed
odel in relation to several benchmark examples. The choice of ex-

mples to demonstrate the capabilities of the model are pinpointed. In
articular, Section 5.1 is presented for comparison with the previous
esults presented in 2D plane strain condition in [24]. The extension
f the model to analyze homogenized fiber-reinforced composites is
resented in 18. The accuracy of the extended model is verified by com-
aring its results with experimental data [72] for low cycle fatigue, and
he model demonstrates satisfactory agreement with the experimental
esults. Section 5.2 is presented to show the model capability to handle
ockings. Pure Mode II shear benchmark test is proposed in Section 5.3
o examine the Cauchy-based stress split in both monotonic and cyclic
oading, where the difference between Cauchy based split and regular
riving force is pinpointed. Section 5.4 exemplifies three-point bending
s a means of extending the model’s capabilities to thick structures
hile avoiding locking in thin shells. Finally, the main conclusions are
rawn in Section 6.

. Modeling framework

.1. Kinematics

Let 0 ⊂ R3 be a body in the reference configuration of an three-
imensional Euclidean space with its delimiting boundary 𝜕0 ⊂ R2.
he external boundary can be split into 𝜕0,𝑢, and 𝜕0,𝑡 to accommo-
ate Dirichlet and Neumann boundary conditions respectively such that
0,𝑢 ∩ 𝜕0,𝑡 = ∅ and 𝜕0 = 𝜕0,𝑢 ∪ 𝜕0,𝑡.

For every 𝐗 ∈ 0, define a vector-valued displacement 𝐮 = 𝐮(𝐗, 𝑡) ∶
0 × [0, 𝑡] → R3, a smooth scalar-valued damage function d(𝐗, 𝑡) ∶
0 × [0, 𝑡] → [0, 1], for some time interval 𝑡 ∈ [0, 𝑇 ]. The body 0

under external forces undergoes motion 𝝋(𝐗, 𝑡) ∈  such that 𝝋 maps
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Fig. 1. (a) Finite deformation of a body: reference and current configurations. Deformation mapping 𝝋(𝐗, 𝑡), that transforms at time 𝑡 the reference configuration 0 onto the
current configuration 𝑡, and (b) collocation points for the ANS interpolation to remedy the transverse shear and trapezoidal locking pathologies.
every 𝐗 ∈ 0 onto a current configuration 𝐱 ∈ 𝑡 for each 𝑡. i.e
𝐱 = 𝝋(𝐗, 𝑡) = 𝐗 + 𝐮(𝐗, 𝑡), see Fig. 1a.

Here  is a space of admissible functions (map) defined as

 ∶=
{

𝜑 ∶ 0 × [0, 𝑡] → R𝑛𝑑𝑖𝑚
|𝜑 ∈ 𝑊 1,𝑝(0) and 𝜑 = �̄�

on 𝜕R𝑢 for 𝑝 ≥ 2
}

,

where 𝑊 1,𝑝 is the Lipschitz regular Sobolev space.
The displacement derived non-linear deformation gradient 𝐅𝑢 maps

the unit line elements d𝐗 in the reference configuration onto current
line element d𝐱 = 𝐅𝑢d𝐗, whose particular expression in the curvilinear
setting can be written as

𝐅𝑢 ∶= 𝜕𝐗𝝋(𝐗, 𝑡) =
𝜕𝐱
𝜕𝐗

∈ R3×3,

where

𝐆𝐢(𝜉) ∶=
𝜕𝐗(𝜉)
𝜕𝜉𝑖

, 𝐠𝐢(𝜉) ∶=
𝜕𝐱(𝜉)
𝜕𝜉𝑖

, 𝑖 = {1, 2, 3},

are the covariant basis in reference and current configuration, respec-
tively. The jacobian of the transformation 𝐅𝑢 satisfies 𝐽 𝑢 ∶= det[𝐅𝑢] > 0.
Moreover, with the usual notation, a metric tensor 𝝌 ∈ R3×3 can
be written in their covariant 𝜒𝑖𝑗 and contravariant 𝜒 𝑖𝑗 components
as 𝝌 = 𝜒𝑖𝑗𝝌 𝑖 ⊗ 𝝌 𝑗 = 𝜒 𝑖𝑗𝝌 𝑖 ⊗ 𝝌 𝑗 . Here, (𝝌 𝑖,𝝌 𝑖) are covariant and
contravariant basis vector such that 𝝌 and 𝝌 𝑖 are perpendicular to
3

𝑖

each other. i.e 𝝌 𝑖𝝌 𝑗 = 𝛿𝑗𝑖 . Furthermore, as a consequence of the
curvilinear co-ordinates, the Green–Lagrangian strain tensor 𝐄𝑢 and
second Piola–Kirchhoff stress tensor 𝐒 (PK2) is derived via Cauchy–
Green deformation and elasticity tensor respectively, whose particular
expressions in the reference configuration takes the form

𝐄𝑢 ∶= 1
2
[

𝑔𝑖𝑗 − 𝐺𝑖𝑗
]

𝐆𝑖 ⊗𝐆𝑗 ; 𝐒 = C ∶ 𝐄𝑢 = 𝑆𝑖𝑗𝐆𝑖 ⊗𝐆𝑗 , (1)

where 𝑔𝑖𝑗 and 𝐺𝑖𝑗 are the covariant metric tensor components in the
current and reference configuration, respectively. Complying with the
standard solid-shell approach, the position vector in the reference 𝐗
and current configuration 𝐱 are expressed in the parametric space  ∶=
{𝝃 = (𝜉1, 𝜉2, 𝜉3) ∈ R3

| − 1 ≤ 𝜉𝑖 ≤ +1; 𝑖 = 1, 2, 3} of natural co-ordinates
as a linear combination of in-plane (𝜉1, 𝜉2) points on the top/bottom
surface 𝐗𝑡/𝐗𝑏 ∈ R2. i.e

𝐗(𝝃) = 1
2
(

1 + 𝜉3
)

𝐗𝑡(𝜉1, 𝜉2) +
1
2
(

1 − 𝜉3
)

𝐗𝑏(𝜉1, 𝜉2),

and

𝐱(𝝃) = 1 (

1 + 𝜉3
)

𝐱𝑡(𝜉1, 𝜉2) +
1 (

1 − 𝜉3
)

𝐱𝑏(𝜉1, 𝜉2).
2 2
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Consequently, the phase-field variable d in  is also estimated as a
inear combination of top (d𝑡) and bottom (d𝑏) value as

(𝝃) = 1
2
(

1 + 𝜉3
)

d𝑡(𝜉1, 𝜉2) +
1
2
(

1 − 𝜉3
)

d𝑏(𝜉1, 𝜉2),

with d𝑡 ∶ 0 ⊃ 𝐗𝑡 × [0, 𝑇 ] → [0, 1] and d𝑏 ∶ 0 ⊃ 𝐗𝑏 × [0, 𝑇 ] → [0, 1].
Regarding the enrichment based on Enhanced Assumed Strain

(EAS), the total Green–Lagrangian strain (𝐄) is additively decomposed
into displacement derived Green–Lagrangian strain 𝐄𝑢 and incompati-
ble strain �̃� stemming from EAS. i.e

𝐄 ∶= 𝐄𝑢 + �̃�. (2)

As a consequence of the decomposition in Eq. (2), displacement
derived deformation gradient 𝐅𝑢 is modified to accommodate incom-
patible deformation gradient �̃� as 𝐅 = 𝐅𝑢 + �̃�. The modified Jacobian
then takes the form 𝐽 ∶= det[𝐅] > 0.

2.2. Extension to layered composite materials

Concerning the constitutive formulation for unidirectional lami-
nated composites, the use of the so-called equivalent single layer (ESL)
approach is exploited. ESL models are generally applied to thin and
moderately-thin composite specimens with similar stiffness proper-
ties between the compositing layers. This simplified method for the
macroscopic analysis of UD composite laminates consists of replacing
the heterogeneous laminate by a weighted average of the physical
properties of each ply across the thickness. In line with the procedure
described in [40], the constitutive relationship between the second
Piola–Kirchhoff stress tensor 𝐒 = 𝑆𝑖𝑗𝐆𝑖 ⊗ 𝐆𝑗 and the Green–Lagrange
strain tensor 𝐄 = 𝐸𝑖𝑗𝐆𝑖 ⊗𝐆𝑗 is given by

𝐒 = C ∶ 𝐄, (3)

The previous relationship is defined in the global setting
{

𝐆1,𝐆2,
𝐆3

}

in the reference configuration and can be transformed into the
current configuration by standard push-forward operations. Moreover,
𝐒 = C ∶ 𝐄 requires the transformation from local material setting
at lamina level (usually complying with orthotropic material law),
denoted by C𝐿 to the global setting is required. This can be carried
out by the following operations using the rotation matrices 𝐐 from the
local material setting

{

𝐆∗
1 ,𝐆

∗
2 ,𝐆

∗
3
}

to the global setting
{

𝐆1,𝐆2,𝐆3
}

for the lamina 𝐿:

C𝑖𝑗𝑘𝑙
𝐿 = 𝑄𝑚𝑖𝑄𝑛𝑗C

𝑚𝑛𝑜𝑝∗
𝐿 𝑄𝑜𝑘𝑄𝑝𝑙 𝑖,… , 𝑝 = 1, 2, 3 with

𝐐 = 𝑄𝑖𝑗 = 𝐆∗
𝑖 𝐆𝑗 , 𝐆∗

𝑖 = 𝐐𝐆𝑗 (4)

The total constitutive tensor for laminates is constructed by taking
into account the weighted-averaged location and lamina thickness
using:

C(𝜉3)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

C𝑁𝐿
𝜉3𝑁𝐿

≤ 𝜉3 ≤ 𝜉3𝑁𝐿+1
= +1

C𝑁𝐿−1 𝜉3𝑁𝐿−1
≤ 𝜉3 ≤ 𝜉3𝑁𝐿

.... .....

C2 𝜉32 ≤ 𝜉3 ≤ 𝜉33
C1 − 1 = 𝜉31 ≤ 𝜉3 ≤ 𝜉32

, (5)

where the coordinate 𝜉3 ∈ [−1,+1], once it is scaled by the total
laminate thickness 𝐻 ; 𝐻 =

∑𝑁𝐿
𝐿=1 𝐻𝐿 with 𝑁𝐿 standing for the number

of layers and 𝐻𝐿 rendering the lamina thickness; and where shell
coordinate midsurface of each layer 𝑖, 𝜉3𝑖 , can be computed as:

𝜉3𝑖 = −1 +
𝐻𝑖
𝐻

+ 2
𝐻

𝑖−1
∑

𝑗=1
𝐻𝑗 𝑖=1, . . . , 𝑁𝐿 (6)

Finally, with respect to the consideration of a fracture toughness for
the multi-directional (MD) laminate, we recall the procedure recently
proposed by [73] in which a modification of the anisotropic PF for-
mulations was developed in order to obtain 𝐺 using singular lamina
4

𝐶

properties and lay-up disposals, in conjunction with accounting for the
variation of the fracture toughness in different laminate directions. We
omit specific details for this approximation for the sake of brevity.

3. Variational basis and finite element formulation

Based on the energy approach, a crack occurs as a macroscopic
manifestation of debonding at a microscopic level. This failure process
can be accurately presented as the competition between bulk energy
(due to applied load) and crack surface energy (due to creation of new
surfaces) at each point. Within this context, the total energy 𝛱(𝐮, 𝛤𝑡)
with the crack set 𝛤𝑡 at any given time 𝑡 ∈ [0, 𝑇 ] can be written as
minimization problem in set  = {ḋ ≥ 0 for all 𝐗 ∈ 0|𝛤𝑡, 𝛤𝑡+1 ⊃ 𝛤𝑡}
as

(𝐮∗, 𝛤𝑡) ∶= argmin


𝛱(𝐮, 𝛤𝑡)

= argmin


{

∫0∕𝛤𝑡
𝛹 (𝐮, 𝛤 )d𝛺 + ∫𝛤𝑡

𝐺𝐶d𝛤 +𝛱𝑒𝑥𝑡

}

. (7)

Here, 𝛹 (𝐮, 𝛤 ) is the energy density, 𝛱𝑒𝑥𝑡 is the external potential,
nd 𝐺𝑐 is the fracture toughness. Based on the elliptical regularization
f the free-discontinuity functions [74], the above functional can be
pproximated using diffusive crack approach by introducing a smeared
calar field d ∈ [0, 1] as

(𝐮, d) = ∫0

𝑔(d)𝛹0(𝐮)d𝛺 + ∫0

𝐺𝑐
4𝑐𝑤

[

𝛼(d)
𝑙

+ 𝑙 |∇d|2
]

d𝛺 +𝛱ext. (8)

for some external force 𝛱ext. Here

1. function 𝑔(d) is degradation function characterized as 𝑔(d) ∶
[0, 1] → [1, 0], and it is a monotonically decreasing function that
satisfies 𝑔(0) = 1, 𝑔(1) = 0, and d𝑔

dd < 0.
2. function 𝛼(d) is characterized as a geometric crack function such

that 𝛼(0) = 0, 𝛼(1) = 1, and 𝑐𝑤 ∶= ∫ 𝑠
0

√

𝛼(𝑠)d𝑠 is the normalization
parameter.

3. 𝛹0(𝐮) represents the elastic energy density of the unbroken solid.

Taking into consideration the solid-shell formulation using multi-
ield Hu–Washizu variational principle and fatigue effects, Eq. (8) is
odified as follows

(𝐮, �̃�, d) = ∫0

𝑔(d)𝛹0(𝐮, �̃�)d𝛺 − ∫0

𝐒 ∶ �̃� d𝛺

+ ∫0

𝑓 (�̄�(𝑡))
𝐺𝑐
4𝑐𝑤

[

𝛼(d)
𝑙

+ 𝑙 |∇d|2
]

d𝛺 +𝛱ext. (9)

here 𝛹0(𝐮, �̃�) is the intact elastic energy density function which in-
olves incompatible strains, function 𝑓 (�̄�) represents the fatigue degra-
ation, and �̄�(𝑡) is a function that defines a suitable cumulative history
ariable (to be defined).

The thermodynamic consistency of the total energy functional Eq.
9) can be ensured by considering rate dissipation density potential

̇ =
[

𝐒 − 𝜕𝐄𝛱
]

∶ �̇� − 𝜕d𝛱 ∶ ḋ ≥ 0. (10)

Expanding the second term 𝜕d𝛱 ∶ ḋ leads to

𝜕d𝛱 ∶ ḋ =
d𝑔
dd𝛹0(𝐮, �̃�) ∶ ḋ + 𝑓 (�̄�(𝑡))

𝐺𝑐
4𝑐𝑤

[

d𝛼(d)
dd

ḋ

𝑙
+ 2𝑙∇d ⋅ ∇ḋ

]

.

Integrating by parts the expression gives

𝜕d𝛱 ∶ ḋ =
d𝑔

𝛹0(𝐮, �̃�) ∶ ḋ−
𝐺𝑐 𝑙

[(

𝛥d − d𝛼 1
2

)

𝑓 (�̄�) + ∇𝑓 (�̄�) ⋅ ∇d
]

ḋ.
dd 4𝑐𝑤 dd 2𝑙
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In order for Eq. (10) to hold, d𝑔
dd𝛹0(𝐮, �̃�) ≥ 0, ḋ ≥ 0, 𝑓𝑑 (d, 𝛥d, 𝑓 (�̄�)) ≥

0 leading to

𝑓𝑑 (d, 𝛥d, 𝑓 (�̄�)) =
𝐺𝑐
4𝑐𝑤

𝑙
[(

𝛥d − d𝛼
dd

1
2𝑙2

)

𝑓 (�̄�) + ∇𝑓 (�̄�) ⋅ ∇d
]

≥ 0,

d𝑔
dd𝛹0(𝐮, �̃�) ≥ 0; ḋ ≥ 0; 𝑓𝑑 (d, 𝛥d, 𝑓 (�̄�))ḋ = 0; 𝑓 (�̄�) ⋅∇d ⋅ 𝒏 ≥ 0.

(11)

Notice that, due to choice of 𝑔(d), the function d𝑔
dd𝛹0(𝐮) natu-

ally holds true, leading to the first order stability conditions or KKT
onditions

̇ ≥ 0; 𝑓𝑑 (d, 𝛥d, 𝑓 (�̄�)) ≥ 0; 𝑓𝑑 (d, 𝛥d, 𝑓 (�̄�))ḋ = 0. (12)

Notice from Eq. (9) that fatigue degradation function 𝑓 (�̄�) should
e locally integrable, and from Eq. (12) to be true, 0 ≤ 𝑓 (�̄�) ≤ 1. Since
(�̄�) degrades the crack energy (to be specific fracture toughness 𝐺𝑐),
(�̄�) should be also monotonically decreasing function. i.e 𝑓 ′(�̄�) ≤ 0 for

𝑓 (�̄�) ∈ [0, 1].

3.1. Choice of functions

3.1.1. Geometric crack function
The geometric crack function 𝛼(d) = d2 is herein considered as

in [66]. With 𝛼(d) = d2, the phase-field problem renders linear (within
a staggered scheme) and this is making the computation easier and
cheaper. Moreover, d ∈ [0, 1] can be ensured easily without any ad-hoc
treatments.

3.1.2. Stored energy function
The stored energy function describes the equilibrium state that

defines the behavior of a solid in the unbroken state (i.e d = 0). A
modification or rather choice of 𝛹0(𝐮) in Eq. (9) presents different
models such as brittle, ductile, plastic, thermo-elastic, thermo-plastic,
viscous, etc. In this work, we only use

1. Isotropic elastic body whose stored energy density is defined as

𝛹0(𝐄) =
1
2
𝐄 ∶ C ∶ 𝐄 = 1

2
𝜆𝐭𝐫2(𝐄) + 𝜇𝐄 ∶ 𝐄. (13)

Here, C defines the linear elasticity tensor whose particular
expression in the curvilinear co-ordinates takes

C = 𝜕𝐄𝐄𝛹0 =
[

𝜆𝐺𝑖𝑗𝐺𝑘𝑙 + 𝜇
(

𝐺𝑖𝑘𝐺𝑗𝑙 + 𝐺𝑖𝑙𝐺𝑗𝑘)]𝐆𝑖 ⊗𝐆𝑗 ⊗𝐆𝑘 ⊗𝐆𝑙 ,

(14)

where 𝜆 and 𝜇 denotes the Lame’s constant.
2. Tension/Compression split, where the stored energy density is

split into tension/compression to prevent cracking under com-
pressive loads as

𝛹 (𝐄) = 𝑔(d)𝛹0(𝐄) = 𝑔(d)𝛹+
0 (𝐄) + 𝛹−

0 (𝐄). (15)

Notice that, as a natural consequence of the formulation, the
stresses are the second Piola–Kirchhoff tensor 𝐒 (PK2) whose
particular expression in the curvilinear setting takes the form

𝐒 = 𝑆𝑖𝑗𝐆𝑖 ⊗𝐆𝑗 , (16)

where 𝑆𝑖𝑗 identifies its contravariant components. In order to
compute the stress split, first, the components of 𝐒 should to
be transformed to Cartesian coordinate using the covariant basis
vector in the reference configuration.
The components of Cauchy stress 𝜎 in the Cartesian system under
small strain assumptions can then be computed from

𝝈 = 𝐽−1𝐅 ⋅ 𝐒 ⋅ 𝐅𝑇 . (17)
5

Based on this, the total energy density takes the form

𝛹0(𝜺)+ = 1
2𝐸

[

(1 + 𝜇)(𝜎21 + 𝜎22 + 𝜎23 ) − 𝜇(tr(𝝈+))2
]

, (18)

where 𝜎1, 𝜎2, 𝜎3 are principal stresses and 𝝈+ = 1
2
(|𝝈| + 𝝈).

3.1.3. Energetic degradation function
Energetic degradation function 𝑔(d) plays a major role of linking

elastic energy and crack phase-field d by degrading the elastic energy
𝛹0. We adopt 𝑔(d) = (1 − d)2 as originally proposed by [75]. Since
d is bounded, naturally 𝑔(d) is bounded with 𝑔(1) = 0, and 𝑔(0) = 1
epresenting fully damaged and intact material respectively.

.1.4. Cumulative history variable
The term �̄�(𝑡) in Eq. (9) describes the cumulative history effects due

o fatigue. We adopt the function proposed by Carrara et al. [24] where

1. �̄�(𝑡) is independent of the mean load defined as

�̄�(𝐱, 𝑡) = ∫

𝑡

0
𝐻(𝛼�̇�)|�̇�|𝑑𝜏. (19)

2. For a normalization parameter 𝛼𝑁 , mean load dependent cumu-
lative history variable can be defined as

�̄�(𝐱, 𝑡) = 1
𝛼𝑁 ∫

𝑡

0
𝐻(𝛼�̇�)𝛼�̇�𝑑𝜏, (20)

for 𝛼 = 𝛹 (𝐄, d) is the total degraded strain energy which ensures
that the model is not affected by crack tip singularity. See [24,
76] for more details. In the case where tension/compression
spilled is used for the elastic energy, then, 𝛼 = 𝛹+(𝐄, d) is used to
distinguish between active tensile/compressive part. Here 𝐻(𝛼�̇�)
is Heavyside function defined as

𝐻(𝛼�̇�) =

{

1 𝛼�̇� ≥ 0 (Loading)
0 otherwise (Unloading).

(21)

.1.5. Fatigue degradation function
The function 𝑓 (�̄�) describes the degradation of the material property

ue to repeated loading. The functions can be mainly categorized into
symptotic degradation (i.e as �̄�(𝑡) → ∞, 𝑓 (�̄�) → 0) and symptotic
egradation (i.e for �̄�(𝑡) > 𝛼∞, 𝑓 (�̄�) = 0) for some cut-off function 𝛼∞.

The generalized asymptotic degradation function is defined as

𝑓 (�̄�) =

⎧

⎪

⎨

⎪

⎩

1 if �̄�(𝑡) ≤ 𝛼𝑇
(

2𝛼𝑇
�̄�(𝑡) + 𝛼𝑇

)𝑎
if �̄�(𝑡) ≥ 𝛼𝑇

(22)

for some threshold 𝛼𝑇 before which the fatigue degradation is not
triggered. Whereas the symptotic degradation function is defined as

𝑓 (�̄�) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if �̄�(𝑡) ≤ 𝛼𝑇
[

1 − 𝑘 𝑙𝑜𝑔
�̄�(𝑡)
𝛼𝑇

]2
if 𝛼𝑇 ≤ �̄�(𝑡) ≤ 𝛼𝑇 10

1
𝑘

0 if �̄�(𝑡) ≥ 𝛼𝑇 10
1
𝑘

(23)

Here, 𝑎 and 𝑘 are the material constant that can be used to control
the fatigue degradation.

4. Finite element implementation

For any admissible test functions 𝛿𝐮 ∈ B𝑢, 𝛿�̃� ∈ B�̃� , 𝛿d ∈ Bd, with
functional space defined as

B𝑢 = {𝛿𝐮 ∈ 𝐇1(0), 𝛿𝐮 = 0 on 𝜕0,𝐮}, (24a)

B�̃� = {𝛿�̃� ∈ 𝐋2(0)}, (24b)
Bd = {𝛿d ∈ 𝐻1(𝛺)|𝛿d ≥ 0 ∀ 𝐗 ∈  }, (24c)
|

|

0
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the set (𝐮, �̃�, d) is obtained by taking first variation of Eq. (9) leading
o the following multi-field problem

𝑢(𝐮, �̃�, d, 𝛿𝐮) =∫0

𝑔(d)
[

𝐒 ∶ 𝛿𝐄𝑢] d𝛺 −𝑢
ext = 0 (25a)

�̃� (𝐮, �̃�, d, 𝛿�̃�) = ∫0

[

𝐒 ∶ 𝛿�̃�
]

d𝛺 = �̃�
int = 0, (25b)

d(𝐮, �̃�, d, 𝛿d) = ∫0

𝑓 (�̄�(𝑡))𝐺𝐶

[

d

𝑙
𝛿d + 𝑙∇d ⋅ ∇𝛿d

]

d𝛺

− ∫0

2(1 − d)𝛹 (𝐮, �̃�)𝛿d d𝛺 = 0, (25c)

The functional space 0 is discretized into 𝑛𝑒 non-overlapping el-
ments such that partition of unity holds. i.e., 0 ≈

⋃𝑛𝑒
𝑒=1 

(𝑒)
0 for

𝑛𝑒.
The position vectors in reference and current configuration are

interpolated using standard tri-linear shape function 𝐍(𝝃) in natural
co-ordinates 𝝃 = {𝜉1, 𝜉2, 𝜉3} as

𝐗 ≈
8
∑

𝐼=1
𝑁𝐼 (𝝃)𝐗𝐼 = 𝐍(𝝃)�̃� and 𝐱 ≈

8
∑

𝐼=1
𝑁𝐼 (𝝃)𝐱𝐼 = 𝐍(𝝃)�̃�,

for global vectors �̃� and �̃� in reference and current configuration
respectively. Similarly, the unknown fields (𝐮, �̃�, d) and their variations
(𝛿𝐮, 𝛿�̃�, 𝛿d) are interpolated as

𝐮 ≈ 𝐍(𝝃)𝐝; �̃� ≈ 𝐌(𝝃)𝝇; d ≈ 𝐍(𝝃)d̃; 𝛿𝐮 ≈ 𝐍(𝝃)𝛿𝐝;
𝛿�̃� ≈ 𝐌(𝝃)𝛿𝝇; 𝛿d ≈ 𝐍(𝝃)𝛿d̃.

Here, 𝐌(𝝃) is so called enhancing interpolation matrix in the natural
co-ordinates whose particular expression takes the form

�̃� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜉1 0 0 0 0 0 0

0 𝜉1 0 0 0 0 0

0 0 𝜉3 𝜉1𝜉3 𝜉2𝜉3 0 0

0 0 0 0 0 𝜉1 𝜉2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (26)

The symbol 𝝇 denotes the collection of EAS parameters. The trans-
verse shear strains (𝐸13, 𝐸23 and transverse normal strain (𝐸33) are
modified in line with ANS interpolation method to avoid transverse and
trapezoidal locking. The interpolation of transverse shear are performed
as in Fig. 1b using points (A, B,C,D) as
{

𝐸𝐴𝑁𝑆
13

𝐸𝐴𝑁𝑆
23

}

=

{

(1 − 𝜉2)𝐸13(𝝃𝐴) + (1 + 𝜉2)𝐸13(𝝃𝐶 )

(1 + 𝜉1)𝐸23(𝝃𝐵) + (1 − 𝜉1)𝐸23(𝝃𝐷)

}

. (27)

and transverse normal strains using (E,F,G,H) as

𝐸𝐴𝑁𝑆
33 =

∑

𝑚=𝐸,𝐹 ,𝐺,𝐻

1
4
(

1 + 𝜉1𝑚𝜉
1) (1 + 𝜉2𝑚𝜉

2)𝐸33; with 𝜉1𝑚, 𝜉
2
𝑚 = ±1.

(28)

The gradient quantities such as displacement derived Green–Lagran-
gian strain 𝐄𝑢, ∇𝐱d and their variations are interpolated as

𝐄𝑢 ≈ 𝐁(𝐝)𝐝; 𝛿𝐄𝑢 ≈ 𝐁(𝐝)𝛿𝐝; ∇𝐱d ≈ 𝐁d(𝐝)d̃, ∇𝐱𝛿d ≈ 𝐁d(𝐝)𝛿d̃ ,

using the standard gradient operator 𝐁(𝐝) and 𝐁d(𝐝).
For each pseudo increment 𝛥𝑡 ∶= 𝑡(𝑘)𝑛+1 − 𝑡𝑛 > 0, and assuming that

(𝐮, �̃�, d)𝑡𝑛 is known, the cumulative fatigue history reads

̄ 𝑡+1 = �̄�𝑡 + ∫

𝑡𝑛+1

𝑡𝑛

̇̄𝛼d𝜏 = �̄�𝑡 + 𝛥�̄�, (29)

where 𝛥�̄� is approximated as

𝛥�̄� = |𝛼 − 𝛼 |𝐻
(𝛼𝑛+1 − 𝛼𝑛 ) . (30)
6

𝑛+1 𝑛 𝛥𝑡
Moreover, following the standard finite element procedure, the
residual equations in Eq. (25) in its discrete form are written as sys-
tem of linear equations. See Appendix A for detailed computation of
stiffness matrix.

The resulting system of linear algebraic equations in Eq. (A.7)
is solved using the Newton solver. The detailed algorithm for the
computational procedure is outlined in Algorithm 1. The Code for the
computing starred components in the Algorithm 1 are presented in
Appendix B.
Algorithm 1: Numerical Implementation Procedure

Data: 𝐝𝑛, 𝛥𝐝
(𝑘)
𝑛+1, d𝑛, 𝛥d

(𝑘)
𝑛+1;

Result: 𝐝𝑛+1, d𝑛+1;
Initialize: 𝝇𝑛,𝐊𝜍𝐝,𝑛 ;
while ||𝐝

||, ||d
|| > 𝑇𝑜𝑙 do

Compute 𝛥𝝇(𝑘)𝑛+1 = −
[

𝐊𝜍𝜍,𝑛
]−1

[

𝐊𝜍𝐝,𝑛𝛥𝐝
(𝑘)
𝑛+1

]

;

Update the enhancing vector 𝝇𝑛+1 = 𝝇𝑛 + 𝛥𝝇(𝑘)𝑛+1 ;
for each integration points do

Compute curvilinear basis vector 𝐆(𝑘)
𝑛+1,𝑖, 𝐠

(𝑘)
𝑛+1,𝑖 ;

Compute the shape functions 𝐍(𝝃)(𝑘)𝑛+1 ;
Compute gradient operators 𝐁(𝐝)(𝑘)𝑛+1 and 𝐁d(𝐝)(𝑘)𝑛+1 ;
Modify the gradient operator according to ANS ;
Compute the Green–Lagrangian strain tensor 𝐄(𝑘)

𝑛+1
according to Eq. (1) ;

Compute elasticity tensor C(𝑘)
𝑛+1 according to Eq. (14);

Compute PK2 Stress tensor 𝐒(𝑘)𝑛+1 according to Eq. (1) ;
if stress split is used then

* Convert the PK2 Stress 𝐒(𝑘)𝑛+1 into Cartesian
coordinates �̂�(𝑘)𝑛+1. ;

* Compute Deformation gradient �̂�(𝑘)
𝑛+1 in Cartesian

Coordinates ;
Compute Cauchy Stress 𝝈(𝑘)

𝑛+1 using Eq. (17) ;
Compute principal stresses 𝝈(𝑘)

𝑛+1,1,𝝈
(𝑘)
𝑛+1,2,𝝈

(𝑘)
𝑛+1,3 of the

Cauchy stresses ;
end
Compute crack driving force using Eq. (18) or Eq. (13) ;
Compute EAS Operator �̃�(𝑘)

𝑛+1 according to Eq. (26) ;
Compute the fatigue degradation function 𝑓 (�̄�)(𝑘)𝑛+1
according to Eq. (22) or Eq. (23) ;

end
Compute elemental stiffness matrices from Eqs. (A.2)–(A.4) ;
Compute the residual vectors from Eq. (25) ;
Perform the static condensation procedure according to Eq.
(A.7)

Final Assembly
nd

5. Virtual testing

The proposed fatigue fracture model based on the phase field
method is evaluated in this section using several representative exam-
ples. The finite element formulation has been implemented into the
general-purpose finite element software ABAQUS. These examples are
categorized based on geometry, as described below.

First, a plate with a notch subjected to cycling loading is considered
as an example of a linear model and for the comparison with the
previous results. For this example, a driving force without split, as
described in Eq. (A.5), is used. The fatigue effects on the plate with
a notch under cyclic loading are analyzed for both low cycle and
moderately high cycle fatigue. The crack growth against normalized

cycles to failure is compared with [24].



Theoretical and Applied Fracture Mechanics 127 (2023) 104029P.K. Asur Vijaya Kumar et al.

e
u
d
i

t
f
t
d
i
e
s

p
d
t
s
I
e
f
e
w
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Second, an example with a half-cylinder is investigated in order to
xplore the capabilities of shell structures, as the FE-model is prone to
ndergo several locking pathologies. As the fracture is predominantly
ominated by Mode I failure, a driving force as described in Eq. (A.5)
s employed.

Third, a pure mode-II shear example is considered to investigate
he crack driving force arising from stress split, as in Eq. (A.6). As the
racture is dominated by mode-II fracture, it is also demonstrated that
he driving force in Eq. (A.5) leads to mode-I fracture, resulting in a
irectional stress decomposition type model, which is also observed
n [69]. Furthermore, the cyclic behavior of shear with stress split is
xamined in this example. The crack propagation with split and without
plit is compared to the results using [66].

A three-point bending example is considered to analyze the pro-
osed model’s ability to handle lockings in thin shells and cracks
ominated by mixed-mode fractures. The results demonstrate that with
he stress split, the solid shell can address this issue. Furthermore, it is
hown that the same formulation can be employed for thick structures.
n other words, the proposed model can be utilized as a regular solid
lement to analyze thick structures, as well as thin structures, even
or examples such as bending without any locking phenomena. For the
xamples of Pure mode II shear and the three point bending example
here tension–compression split is used, the load ratio of 𝑅 = 0 is

applied. Notice that, when the 𝑅 = −1, due to the split, the compressive
part of the strain energy does not add to the total accumulated strain
energy. Refer [35] for more details.

Finally, the proposed model is utilized to analyze carbon fiber-
reinforced composites (CFRC) through a dogbone specimen, utilizing
the crack driving described in Eq. (A.6). Subsequently, the obtained
numerical results are compared against the experimental data.

Note that throughout the article, the fatigue degradation function
in Eq. (22) with 𝑎 = 2 is used unless specified.

5.1. Notched plate

This example concerns with the application of the proposed model
to notched plate specimen with a crack driving force as in Eq. (A.5).
Fig. 2a) shows the sketch of the model with an initial notch length
of 0.5 mm, length of 𝐿 = 1 mm, width of w= 1 mm and thickness
ℎ = 0.05 mm. This example has been studied by considering alumina
with Young’s modulus 𝐸 = 210 GPa, Poisson ratio 𝜈 = 0.3, fracture
energy of 𝐶 = 2.7 (N/mm), and the length scale 𝑙 = 0.024 mm.

A cyclic displacement load with 𝑁 number of cycles consisting of
maximum 𝑃 mm and minimum 𝑃 mm is applied on the top surface,
7

𝑚𝑎𝑥 𝑚𝑖𝑛
while the bottom surface is restrained. EAS and ANS are included in the
whole domain but are turned off locally when the phase-field d > 0.5.
Here, fatigue degradation function in Eq. (22) with 𝑎 = 2 and the cu-

ulative history variable independent of the mean load, is considered.
n line with the example in [24], Fig. 4(a) shows the predicted crack
xtension vs. number of cycles for the variation of maximum amplitude.
otice that, as the maximum amplitude decreases, the number of cycles

aken to failure increases. Also, as the maximum amplitude decreases,
he number of cycles taken to start the nucleation also increases which
s well reflected in Fig. 4(a). Being 𝑃𝑚𝑜𝑛 the amplitude required for
he failure of the specimen under monotonic loading Fig. 2(b) shows
he modified SN curve where the ratio of maximum load 𝑃 and 𝑃𝑚𝑜𝑛
s plotted vs. the number of cycles in the log–log scale. It can be
learly seen that as the 𝑃

𝑃𝑚𝑜𝑛
ratio decreases, the number of cycles to

failure increases. Generally, after 𝑁 = 107, the specimen is considered
to have an infinite life. In other words, in the sense of numerical
approximations, there exists a threshold of 𝑃

𝑃𝑚𝑜𝑛
such that the specimen

will have an infinite life. In other words, there exists a load amplitude
such that the specimen under consideration will have infinite life. Based
on Fig. 2(b), it is clear that for each load variation, a small difference
in the load amplitude can have large change in the number of cycle (as
an exponential functions) making the SN curve dense as the number of
cycle increases.

The two dimensional model presented in [24] assumes a plane strain
condition, while the proposed model is three dimensional and accounts
for the specimen’s thickness (very small). Hence, the dimensionless
cycle number ( 𝑁

𝑁𝑢
, for 𝑁𝑢 being number of cycle at failure) versus crack

extension between [24] and our model for different load amplitudes is
compared and the results are presented in Fig. 3. It can be seen that
the presented model predictions are in good agreement with the crack
nucleation, propagation and failure.

Upon considering the variation of internal length scale 𝑙 and keeping
the maximum load amplitude 𝑃𝑚𝑎𝑥 = 0.0024 constant, the crack exten-
sion vs. number of cycles are shown in Fig. 4(b). Complying with the
idea of 𝛤−convergence, as the length scale decreases, the number of
cycles required for failure increases. Moreover, it can be observed from
Fig. 4(b) that variation of 𝑁 for a linear variation of 𝑙 is of exponential
nature.

Fig. 5 shows the degraded energy and the phase-field values vs.
number of cycles for 𝑙 = 0.0024 mm and 𝑃𝑚𝑎𝑥 = 0.002 mm at four
different instances (A, B, C, D) which are equidistant from each other,
with a distance approximately (0.125, 0.25, 0.375, 0.5) mm from the notch
tip. It can be seen from the energy degradation in Fig. 5(a) as the crack
propagates, the bulk energy keeps decreasing until fracture. Moreover,
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Fig. 3. Comparison of various load amplitude with the previous results [24] in 2D Plain strain.

Fig. 4. Crack extension vs. number of cycles (𝑁) (a) for different maximum load amplitude 𝑃 and, (b) for different internal length scale 𝑙.

Fig. 5. (a) Degraded Energy vs. 𝑁 and, (b) phase-field vs. 𝑁 at points (A,B,C,D).
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Fig. 6. Phase-field crack propagation up to points (A, B, C, D).

Fig. 5(b) shows the increase of phase-field at points (A, B, C, D)
whose crack initiation, propagation and failure happens at different
time instances. The crack propagation at the points (A, B, C, D) is
depicted in Fig. 6 showing a stable crack propagation.

For the fatigue degradation function as in Eq. (23) (herein referred
to as model-2), and a cumulative history variable mean-load inde-
pendent, Fig. 7 shows the crack extension vs. number of cycles by
varying the 𝑘 parameter. It is observed that, for the 𝑘 < 0.26, the crack
propagation is stable resembling Model-1 (using Eq. (22)), whereas for
𝑘 > 0.26, the crack nucleation is stable whereas the crack propagation
becomes unstable, as shown in Fig. 7. This can be attributed to the fact
that, the threshold of the fatigue function degradation is dependent on
𝑘 in Eq. (23) making 𝑓 (�̄�) = 0 (symptotic). Moreover, as 𝑘 → 0, the
number of cycles required for failure increases (𝑁 → ∞).

5.2. Curved shells

In this example, a curved half cylindrical shell with a hole is
considered. Geometrical description of the model considers a cylinder
with a radius of 𝑅 = 2 mm, length 𝐿 = 10 mm, thickness ℎ = 0.01 mm
with an hole in the center with radius 𝑟 = 0.15 mm. One axial end
of the cylinder is fixed whereas the other axial end is loaded with 𝑁
number of cycles of amplitude (𝑃 , 0) is applied. The material properties
are: Young’s modulus 𝐸 = 210 (GPa), Poisson ratio 𝜈 = 0.3, fracture
energy 𝐶 = 2.7 (MPa

√

mm) and the length scale 𝑙 = 0.2 mm.
For the fatigue degradation function in Eq. (22) with 𝑎 = 2, the

crack extension vs. number of cycles for different load maximum load
amplitude 𝑃 is shown in Fig. 8(b), whereas the predicted SN curve
is shown in Fig. 8(a). With the notation described in the previous
example, as the load amplitude (𝛥𝑃 = 𝑃 ) decreases, the number of
cycles 𝑁 required for fracture increases. Also, it can be seen that the
modified SN curve is dense, meaning that as the ratio of 𝑃

𝑃𝑚𝑜𝑛
ratio

decreases, the number of cycles required for full fracture increases.
Similar trends as plate with notch example in are observed for the
curved shells. For 𝑃𝑚𝑎𝑥 = 2.4 × 10−3 mm and 𝑙 = 0.2 mm, Fig. 9 (top
to bottom) shows the phase-field at cycles 𝑁 = 5000, 5500, 6000, 7500
respectively showing a stable crack propagation.
9

5.3. Shear test

In this example, an application of spectral stress split on mode II
shear is investigated. In particular, the Cauchy stress is computed from
the (second Piola-Kirchhoff) PK2 stress tensor via transformation of
curvilinear co-ordinate to Cartesian. Later, a spectral decomposition
of the Cauchy stresses is computed in order to distinguish between
positive and negative part of the stress. The crack driving force is then
computed using the positive part of the Cauchy stress.

The body under consideration contains a plate with a notch whose
length (L) and width (w) are L=w= 1mm, and the thickness of 0.05 mm.
Displacement boundary condition at the top surface in 𝑦-direction
is applied with an unrestricted movement in the x- and 𝑧-direction,
whereas the bottom plate is fully restrained to simulate the mode II
shear test as in Fig. 10(a).

Apart from the Cauchy-based stress split that was discussed, splits
based on the second Piola–Kirchhoff tensor and alternatively strain
splits based on either the Euler–Almansi or the Green–Lagrange strains
can be adopted. However, as noted in [69], stain-based splits can
lead to unphysical results. This can be attributed to the fact that a
significant amount of shear stress is transmitted over the crack at the
corner, resulting in either an under-estimation or over-estimation of
the reaction forces. In addition to the rational Cauchy-based split, the
model was also tested with a strain-based split. It was observed that,
in the strain-based split and without any split, instead of predicting the
kinking of the crack towards the corner, the crack propagated straight,
resulting in a crack similar to that in mode I. This is consistent with the
literature referred to as a ‘‘directional split’’ [69], which is considered
unphysical. For the purpose of comparison, the crack propagation
results are presented in Fig. 12 for three cases: (i) without stress split,
(ii) with Cauchy-based stress split, and (iii) using a two-dimensional
plane strain problem with spectral split, as defined in [66].

This example is analyzed by considering alumina with Young’s
modulus 𝐸 = 210 GPa, Poisson ratio 𝜈 = 0.3, fracture energy of 𝐶 =
2.7 MPa

√

mm, and the length scale 𝑙 = 0.07 mm. For the monotonic
loading, Fig. 11 presents the force vs. displacement curve along with
the crack propagation for Cauchy based split. Crack propagation at each
of the instances (A, B, C, D) of the reaction curve is also presented.

Equipped with the result based on the monotonic loading, the
specimen is tested for a cyclic loading with load ranging from zero to
amplitude of 𝑃 over 𝑁 cycles. Fig. 13(a) presents the crack extension
vs. number of cycle for different load amplitudes 𝑃 . It can be seen
that as the load amplitude decreases, the number of cycles to fracture
increases. Moreover, Fig. 10(b) presents the predicted SN curve in semi-
log plot. It is clearly observed that SN curve is dense and as the ratio
of 𝑃

𝑃𝑚𝑜𝑛
ratio decreases, the number of cycles required for full fracture

increases. Furthermore, Fig. 13(b) represents the phase-field at different
points (A,B,C,D) corresponding to the position of crack tip in Fig. 11 for
cyclic loading with load amplitude 𝑃 = 20 × 10−4.

5.4. Three-point bending test with initial notch

The rational behind this example is twofold, (a) the presented solid-
shell can be used as a solid element alternative with energy split,
(b) to demonstrate the fatigue effects in the three point symmet-
ric in-plane bending with asymptotic crack degradation. Within the
context of configurational force driven crack propagation, a simply
supported notched beam with dimension as shown in Fig. 14(a) is
considered. A symmetric loading is applied with two edges restrained
as shown in Fig. 14(a). The model is discritised with five elements in
the thickness direction representing a thick plate.

As in Section 5.3, crack driving force is computed using the Cauchy
based stress split. Fig. 15 represents the force vs. displacement and the
crack extension vs. displacement for a monotonic loading condition. It
can be seen that due to load application, crack extension in the starting
is faster, and as the crack extends towards the load application point, an



Theoretical and Applied Fracture Mechanics 127 (2023) 104029P.K. Asur Vijaya Kumar et al.

a
i
a
t
a
f
c
b

t
a

Fig. 7. Crack Extension using the fatigue degradation function defined in Eq. (23) (defined as model-2) for the variation of k in Eq. (23).
Fig. 8. (a) SN Curve and, (b) Crack extension vs. number of cycles for cylindrical shells.
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symptotic crack propagation behavior can be observed. Numerically,
t can also be noticed that there exists a crack extension value (denoted
s 𝐶𝑇 ) such that the reaction forces shows meta-stable behavior. i.e for
he crack extension 𝐴𝑐 and reaction force 𝑅𝜏 at time step 𝜏, there exists
value 𝐴𝑐 = 𝐶𝑇 , such that if 𝐴𝑐 > 𝐶𝑇 , 𝑅𝜏 −𝑅𝜏+1 → 0. Note that, in the

atigue case, 𝐶𝑇 is chosen as 25 based on Fig. 15. Meaning that, if the
rack extension reached a value of 𝐶𝑇 = 25, the model is considered to
e failed.

In order to understand the effect of characteristic length scale 𝑙𝑐 on
he asymptotic crack propagation behavior, three different length scales
re considered with 𝑙𝑐 = 0.07, 0.05, 0.03 mm. In the related literature,

characteristic length scale is characterized by strength of material [70].
In that case, the variation of the length scale can be treated as a change
of strength of material due to different types of material hardening
process. For each length scale, different numerical experiments with
different amplitude are conducted in order to obtain a comprehensive
understand of the fatigue behavior. Fig. 14(b) presents the modified SN
curve for the different length scale. For a comprehensive understand-
ing, Fig. 14(b) left represents the modified SN curve, whereas Fig. 14(b)
right) represents the maximum reaction force vs number of cycle. It is
observed that in the modified SN curve, the variation of length scale
is almost constant, whereas the difference can be observed distinctly
when absolute values of the maximum reaction are plotted. As in the
10

c

previous examples, as the ratio of 𝑃
𝑃𝑚𝑜𝑛

ratio decreases, the number of
cycles required for fracture increases.

Crack extension vs. number of cycles for different load amplitude for
a constant length scale 𝑙𝑐 = 0.07 mm is presented in Fig. 16(a), whereas
Fig. 16(b) represents the variation of length scale over a constant load
amplitude of Amp = 0.09 mm. It can be observed that as the load
amplitude decreases, the number of cycles taken for fracture increases.
On the contrary, as the strength increases (length scale decreases), the
number of cycles required to fracture also increases. Numerically, this
can also be taken as the 𝛤−convergence for the proposed model.

In order to present the fatigue degradation effects, Fig. 17 is con-
sidered. The fatigue degradation of the models with length scale 𝑙𝑐 =
.07 mm and with load amplitude of 𝐴𝑚𝑝 = 0.6 mm, and 𝐴𝑚𝑝 =
.8 mm is considered. Notice that, as the load amplitude increases,
he maximum reaction force also increases. Fig. 17 also presents the
rack extension curve for the load amplitude of 𝐴𝑚𝑝 = 0.06 mm. With
his, three red lines with crack extension with 10 mm (A), 15 mm(B),
nd 25 mm (C) is presented, whose corresponding crack propagation
re shown in Fig. 17. Notice that as the crack extension threshold 𝐶𝑇
here 𝐶𝑇 = 25 mm) is reached, the reaction forces are small and almost

onstant.
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Fig. 9. (a) Phase-field crack propagation for cylindrical shell.
Fig. 10. (a) Geometry and, (b) Modified SN curve for Cauchy based model.
5.5. Layered composites

This example showcases the application of the proposed model
to analyze the fatigue behavior of carbon fiber-reinforced composites
(CFRCs) using a dogbone specimen with a driving force, as described
in Eq. (A.6). The geometrical description of the model is depicted
in Fig. 18(a), with a thickness of ℎ = 2.28. In article, Benedikt
et al. [72] conducted experiments on the fatigue behavior of thin and
thick ply composites using computer tomography. The experiments
involved a unidirectional system of CFRC composed of epoxy resin
TP402 and T700S carbon fibers to produce plies with a target fiber
volume content of 55% and a fiber area weight of 30 gsm, 60 gsm,
120 gsm, 240 gsm and 360 gsm. Standard dogbone specimens with
a gauge length of 130 mm and a gauge width of 21 mm (except for
30 gsm) were milled from these plies, and each model was subjected
to uniaxial loads to determine its compressive/tensile strength and
corresponding stress–strain curves. Fatigue tests were conducted for
11
tension–tension, tension–compression, and compression–compression
tests. For the tension–tension test, a minimum to maximum load ratio
of 𝑅 = 0.1 was applied, and the stress amplitude was plotted for
various numbers of cycles. To analyze the damage and possible crack
growth, the samples were stopped at 0, 5 × 104, 3 × 105, and 8 × 105

cycles, and the results were examined using computer tomography. For
more information on the experimental setup, sample preparation, and
analysis techniques, readers are referred to [72].

In the sequel, we focus the attention on one particular case cor-
responding to the sample with 60 gsm and subjected to a fatigue
load corresponding to tension–tension with a load ratio of 𝑅 = 0.1.
The tensile strength of this sample is estimated to be between 950–
1050 Mpa based on the results of the uni-axial tension tests reported
in Fig 3 of [72]. The static loading experiment is employed for the
validation of the current formulation and for the calibrating of the
fracture toughness of the sample which due to the lack of reliable
data can be estimated as 𝐺𝑐 = 5–10 N/mm based on the target fiber
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Fig. 11. Force vs. displacement curve with Cauchy-based split under monotonic loading.
Fig. 12. Comparison of the shear test without stress split in thin shells, with Cauchy-based stress split, and AT2 Model with spectral split (in-plane strain) as in [66].
Fig. 13. (a) Crack extension vs. number of cycles for shear test in both Cauchy (Solid line), (b) Phase-field vs. N at points (A,B,C,D).
volume and fiber areal weight as presented in [73]. The characteristic
length scale required for the phase field model can be estimated as
𝑙𝑐 = 0.30–0.38 mm based on the apparent tensile strength. For the
numerical experiments, the average values of all parameters are used.

The model presented in Fig. 18(a) is subjected to a displacement-
controlled fatigue load with a ratio of minimum to maximum dis-
placement of 𝑅 = 0.1, as shown in Fig. 18(b). The resulting stress
amplitude and the number of cycles to failure are recorded for 𝐺𝑐 =
10 N/mm, with power 𝑎 = 2, and 𝐺𝑐 = 5 N/mm with power 𝑎 =
12
1.25 in Eq. (22). These results are plotted against the experimental
data in Fig. 18(c). The upper pink line represents the suggested SN
curve with 50% suggested in the experiments. The numerical results
in the low cycle regime show good agreement with the experimental
results, especially considering the uncertainties of the experimental
data. It is also observed that as the power of the fatigue degradation
function decreases (below 2), the numerical SN curve tends to be
steeper. Additionally, an increase in 𝐺𝑐 shifts the SN curve rightwards
in Fig. 18(c).
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Fig. 14. (a) Geometrical description of model. (b) Modified SN curve and max reaction force vs. number of cycle.
Fig. 15. (a) Force vs. displacement vs. crack extension in monotonic loading for Cauchy–based stress split.
6. Conclusions

A phase-field fracture model has been proposed for the analysis of
structures subjected to fatigue loading using locking-free solid shell
finite elements with full integration. For the sake of realistic fracture
prediction, the computation of the crack driving force has been based
on the positive/negative Cauchy stress split and the fatigue effect has
been included via a degradation of the fracture toughness, and the
differences highlighted.

The finite element treatment has been described in details and
modularly implemented in the general-purpose finite element software
ABAQUS. Several numerical examples were analyzed in order to assess
the predictive capability of the proposed fatigue fracture model consid-
ering different splits, namely; plate with a notch, curved shell, mode II
shear, and three-point bending. The proposed model has been demo-
13

nstrated to be suitable for homogenized fiber-reinforced composites,
and the numerical results have been compared with experimental
observations.

In conclusion, the presented model has been shown to be a reliable
tool for predicting fracture and fatigue events in thin-walled struc-
tures including laminates. There are several opportunities for further
research that can be built on the model, such as developing more
advanced phase field models for fatigue that take into account the
effects of microstructure and the evolution of damage at the microscale,
incorporating other types of loading, such as thermal and thermo-
mechanical loading, and examining the effects of different material
properties on the fatigue behavior of solid shells. Overall, the use of
phase field methods entails the potential of providing valuable insights
into the underlying mechanisms of fatigue and to support the develop-
ment of more accurate and efficient numerical models for predicting

the durability of structures.
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Fig. 16. (a) Crack extension vs. number of cycle for 𝑙𝑐 = 0.07 (b) Crack extension vs. Number of cycle for constant load amplitude Amp = 0.09.
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ppendix A. Stiffness matrix derivation

Following the standard finite element procedure, the residual equa-
ions in Eq. (25) in its discrete form are written as system of linear
quations as

⎡

⎢

⎢

⎢

⎣

𝐊𝐝𝐝 𝐊𝐝𝜍 𝐊𝐝d̃
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̂𝜍
int
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⎥

⎥

⎥

⎦

. (A.1)

The components of stiffness matrix reads

𝐝𝐝 = ∫0

𝑔(d)

(

𝐁(𝐝)TC𝐁(𝐝) +
[

𝜕𝐁(𝐝)
𝜕𝐝

]T
𝐒
)

d𝛺 = 𝐊𝐝𝐝,mat +𝐊𝐝𝐝,geom

𝐊𝐝𝜍 = 𝑔(d)𝐌(𝝃)TC𝐁(𝐝) d𝛺; 𝐊𝐝d̃ = −2(1 − d)𝐁(𝐝)T𝐒𝐍(𝝃) d𝛺,
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∫0
∫0
(A.2)

𝜍𝑢 = ∫0

𝑔(d)𝐌(𝝃)TC𝐁(𝐝) d𝛺; 𝐊𝜍𝜍 = ∫0

𝑔(d)𝐌(𝝃)TC𝐌(𝝃) d𝛺,

𝜍d̃ = ∫0

−2(1 − d)𝐌(𝝃)T𝐒𝐍(𝝃) d𝛺;
(A.3)

d̃𝐝 = ∫0

−2(1 − d)𝐍(𝝃)T𝐒𝐁(𝐝) d𝛺; 𝐊d̃𝜍 = ∫0

−2(1 − d)𝐍(𝝃)T𝐒𝐌(𝝃) d𝛺,

d̃d̃ = ∫0

[

2𝑓 (�̄�(𝑡))
𝐺𝐶

𝑙

]

𝐍(𝝃)T𝐍(𝝃) d𝛺 + ∫0

2𝑓 (�̄�(𝑡))𝐺𝐶 𝑙𝐁d(𝝃)T𝐁d(𝝃) d𝛺,

(A.4)

with crack driving force  takes the form

 = max
𝜏∈[0,𝑡]

[

𝛹 (𝐮, �̃�)
]

. (A.5)

In the case while using the stress split, the crack driving force
is modified to be only positive part of the maximum strain energy
computed via Eq. (18) i.e

 = max
𝜏∈[0,𝑡]

[

𝛹+(𝐮, �̃�)
]

. (A.6)

Due to inter-element continuity of the enhanced strains, the above
system of linear equation can be condensed via standard static conden-
sation process as
[

𝐊∗
𝐝𝐝 𝐊∗

𝐝d̃

𝐊∗
d̃𝐝 𝐊∗

d̃d̃

][

𝛥𝐝
𝛥d

]

=

[ ̃̂𝐝

̃̂d

]

(A.7)

where 𝐊∗
𝑖𝑗 = 𝐊𝑖𝑗 − 𝐊𝑖𝜍𝐊−1

𝜍𝜍 𝐊𝜍𝑗 and ̃̂𝑗 = 𝑗
𝑒𝑥𝑡 − 𝑗

𝑖𝑛𝑡 + 𝐊𝑖𝜍𝐊−1
𝜍𝜍 

𝜀
𝑖𝑛𝑡 for

each 𝑖, 𝑗 = {𝐝, d}. The resulting final equations can be solved using an
staggered scheme.

Appendix B. FORTRAN codes for computing driving force

B.1. Convert the PK2 stress 𝐒(𝑘)𝑛+1 into Cartesian coordinates �̂�
(𝑘)
𝑛+1

The following subroutine uses Covariant basis in the curvilinear
coordinates to transform the stress from curvilinear to cartesian coor-
dinates
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Fig. 17. (a) Force vs. number of cycle for fatigue loading along with crack propagation at points (A,B,C) for 𝑙 = 0.07 and load amplitude of Amp = 0.06.

Fig. 18. (a) Geometry and boundary conditions, (b) applied load in tension–tension, (c) comparison between experimental data and numerical predictions.
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subroutine s8_kon_cuca(PK2curv,PK2_cart,gkovr)
implicit none

INTEGER i,j
REAL*8 PK2curv(3,3), Tcur(3,3),PK2_cart(3,3),
gkovr(3,3)

Tcur(:,:)=0.d0 !Define Tcur Variable to be zerp
PK2_cart(:,:)=0.0d0 !PK2 Stress in cartisian
Coordinates
Tcur(:,:)=PK2curv(:,:) !Now Tcur is the Stress in
Curvilinear coordinates

! gkovr is the Covariant basis in reference
configuration
do i=1,3
do j=1,3
PK2_cart(1,1)=PK2_cart(1,1)+gkovr(1,i)*
gkovr(1,j)*Tcur(i,j)
PK2_cart(1,2)=PK2_cart(1,2)+gkovr(1,i)*
gkovr(2,j)*Tcur(i,j)
PK2_cart(1,3)=PK2_cart(1,3)+gkovr(1,i)*
gkovr(3,j)*Tcur(i,j)
PK2_cart(2,2)=PK2_cart(2,2)+gkovr(2,i)*
gkovr(2,j)*Tcur(i,j)
PK2_cart(2,3)=PK2_cart(2,3)+gkovr(2,i)*
gkovr(3,j)*Tcur(i,j)
PK2_cart(3,3)=PK2_cart(3,3)+gkovr(3,i)*
gkovr(3,j)*Tcur(i,j)

end do
end do

!PK2_cart is the stress in cartesian coordinates
return
end

B.2. Compute deformation gradient �̂�(𝑘)
𝑛+1 in Cartesian coordinates

The following subroutine computes the deformation gradient in
Cartesian coordinates using covariant basis vector in current configu-
ration and contravariant basis in reference configuration

subroutine kDefGradient(F,JacobF,Finv,gkovc,
gkonr)
implicit none

!Subroutine to compute the shape functions and ther
derivatives

INTEGER i,j,k,l
REAL*8 F(3,3),JacobF,Finv(3,3),gkovc(3,3),
gkonr(3,3)
!initialization

F(:,:)=0.0d0 !deformation gradient
Finv(:,:)=0.0d0 !inverse of deformation gradient
JacobF = 0.d0 !Jacobian of the deformation gradient

! gkovc is the covariant basis in current configuration
! gkonr is the contravariant basis in reference
configuration

do i=1,3
do j=1,3
do k=1,3
F(j,i) = F(j,i) + gkovc(i,k)*gkonr(j,k);
enddo

enddo
enddo

JacobF = F(1,1)*F(2,2)*F(3,3)+
* F(1,3)*F(2,1)*F(3,2)+ F(3,1)*F(1,2)*F(2,3) -
* F(3,1)*F(2,2)*F(1,3)-F(3,3)*F(1,2)*F(2,1)-
* F(1,1)*F(2,3)*F(3,2)
16
if(JacobF.gt.0.0d0) then
Finv(1,1)= (F(2,2) *F(3,3) - F(3,2) *F(2,3))/
JacobF
Finv(1,2)= -(F(1,2) *F(3,3) - F(1,3) *F(3,2))/
JacobF
Finv(1,3)= (F(1,2) *F(2,3) - F(2,2) *F(1,3))/
JacobF

Finv(2,1)= -(F(2,1) *F(3,3) - F(3,1) *F(2,3))/
JacobF
Finv(2,2)= (F(1,1) *F(3,3) - F(1,3) *F(3,1))/
JacobF
Finv(2,3)= -(F(1,1) *F(2,3) - F(2,1) *F(1,3))/
JacobF
Finv(3,1)= (F(2,1) *F(3,2) - F(3,1) *F(2,2))/
JacobF
Finv(3,2)= -(F(1,1) *F(3,2) - F(3,1) *F(1,2))/
JacobF
Finv(3,3)= (F(1,1) *F(2,2) - F(1,2) *F(2,1))/
JacobF
endif

return
end
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