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Abstract
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1 Introduction

Determining sufficient and necessary conditions for the existence of a period annulus
in planar differential systems is a classical problem in qualitative theory of planar
vector fields. For the particular case that the period annulus ends in a monodromic
singularity, such a problem is known as Center Problem, which was exhaustively
studied for polynomial vector fields (see, for instance, Romanovski and Shafer 2009).
This problem has also been considered in the context of planar piecewise smooth
differential systems (see, for instance, Coll et al. 2001, 1999; Gasull and Torregrosa
2003; Novaes and Silva 2022, 2021; Pleshkan and Sibirskii 1973).

However, due to the complexity imposed by the nonsmoothness, the center problem
is not solved even for the simplest family of piecewise smooth differential systems,
namely piecewise linear differential systems with two zones separated by the straight
line � = {

(x, y) ∈ R
2 : x = 0

}
,

ẋ =
{

ALx + bL , if x ≤ 0,
ARx + bR, if x ≥ 0.

(1)

Here, x = (x, y) ∈ R
2, AL = (aL

i j )2×2, AR = (aR
i j )2×2, bL = (bL

1 , bL
2 ) ∈ R

2,

bR = (bR
1 , bR

2 ) ∈ R
2, and the dot denotes the derivativewith respect to the independent

variable t . The Filippov’s convention (Filippov 1988) is assumed for trajectories of
(1).

The main goal of this paper is to close the problem of the existence of crossing
period annuli for system (1) by providing a characterization for the existence of such
objects by means of a few basic operations on the parameters.

Since system (1) is piecewise linear, two obvious conditions implying the existence
of period annuli are:

(A) TL = 0, DL > 0, and aL < 0; or
(B) TR = 0, DR > 0, and aR > 0,

where TL , TR and DL , DR denote, respectively, the traces and determinants of the
matrices AL and AR and

aL = aL
12bL

2 − aL
22bL

1 and aR = aR
12bR

2 − aR
22bR

1 . (2)

Indeed, condition (A) implies that system (1) has a linear center (and so a period
annulus) in the half-plane {(x, y) ∈ R : x < 0}, and condition (B) implies that system
(1) has a linear center (and so a period annulus) in the half-plane {(x, y) ∈ R : x > 0}.

Apart the trivial cases above, system (1) admits period annuli whose orbits cross the
separation line �. Regarding those period annuli we may quote the following papers.
In Freire et al. (2012),sufficient conditions were provided for piecewise linear systems
of kind (1) formed by two foci andwithout sliding set to have a global center around the
origin. In Buzzi et al. (2013) it was classified the centers at infinity for piecewise linear
perturbations of linear centers. In Medrado and Torregrosa (2015), it was established
sufficient conditions in order for a monodromic singularity at the separation line �
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to be a center. Finally, in Freire et al. (2021), the authors have characterized when
systems of kind (1), formed by two foci, have a center at infinity.

In this paper, we present a general and concise characterization of the existence of
a crossing period annulus for system (1). This characterization will be given in terms
of their parameters and, unlike the mentioned papers, regardless the local nature of
each linear system.

Notice that the existence of a crossing periodic orbit for system (1) implies trivially
the existence of the Poincaré half-maps associated with �. In turn, such maps exist if,
and only if, the following set of conditions hold:

(H) :
⎧
⎨

⎩

aL
12aR

12 > 0;
aL ≤ 0 and 4DL − T 2

L > 0, or aL > 0;
aR ≥ 0 and 4DR − T 2

R > 0, or aR < 0.

Indeed, taking into account the direction of the flow on the separation line x = 0, it
is straightforward to see that the inequality aL

12aR
12 > 0 is necessary for the existence

of crossing periodic solutions. The other two conditions will be discussed below (see
Propositions 1 and 2).

Now, we present the main result of this paper.

Theorem 1 Consider the planar piecewise linear differential system (1). Let TL , TR

and DL , DR be, respectively, the traces and determinants of the matrices AL and AR

and let aL and aR be the values given in expression (2). Denote

ξ0 := aR TL − aL TR, ξ∞ := T 2
L DR − T 2

R DL , and β := aL
12bR

1 − bL
1 aR

12. (3)

Then, the differential system (1) has a crossing period annulus if, and only if, the
condition (H) holds, sign(TR) = −sign(TL), and ξ0 = ξ∞ = β = 0.

At this point, we must clarify the dynamical meanings of the values ξ0, ξ∞, and β

and of the relationship sign(TR) = −sign(TL).
First, under the hypothesis aL

12aR
12 > 0, system (1) has a sliding region contained in

� and delimited by the points
(
0,−bL

1 /aL
12

)
and

(
0,−bR

1 /aR
12

)
provided that β does

not vanish. Accordingly, the condition β = 0 indicates that system (1) does not have
any sliding region.

Second, when system (1) does not have a sliding region, as it follows from Propo-
sition 14 of Carmona et al. (2022), the sign of the value ξ0 (called by ξ in that work)
provides the stability of the origin of system (1) when it is a monodromic singular-
ity. Moreover, from Proposition 15 of Carmona et al. (2022), under the assumption
sign(TR) = −sign(TL) �= 0, the sign of the value c∞ = TLξ∞ determines the stability
of the infinity for system (1) when it is monodromic.

Finally, since system (1) is linear on each side of the separation straight line �,
the signs of the traces TL and TR determine the (area) contraction/expansion of the
system on each side of � and so the condition sign(TR) = −sign(TL) ensures a kind
of balance between the contraction of the system in one zone and the expansion of the
system in the other zone.
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Theorem1 is proven in Sect. 3. Its proof is based on a recent integral characterization
for Poincaré half-maps for planar linear differential systems introduced in Carmona
and Fernández-Sánchez (2021), which has been successfully used to analyze periodic
behavior of piecewise linear systems (see, for instance, Carmona et al. 2021b, 2022,
2023). This characterization as well as some useful properties of the Poincaré half-
maps will be introduced in Sect. 2.

2 Poincaré Half-Maps and Displacement Function: Some Preliminary
Results

In this section, after introducing a canonical form for system (1) in Sect. 2.1, the
definition of the Poincaré half-maps for planar linear differential systems will be
presented in Sect. 2.2. Some useful properties of these maps, provided in Carmona
et al. (2021a), will be collected in Sect. 2.3. In Sect. 2.4, a displacement function will
be given together with some of its main features.

2.1 Canonical Form

As it was said in Introduction, the existence of crossing periodic solutions of sys-
tem (1) implies straightforwardly the first condition of Hypothesis (H), that is,
aL
12aR

12 > 0. Moreover, under this condition, Freire et al. (2012) stated that the dif-
ferential system (1) is reduced, by a homeomorphism preserving the separation line
� = {

(x, y) ∈ R
2 : x = 0

}
, into the following Liénard canonical form

{
ẋ = TL x − y,

ẏ = DL x − aL ,
for x ≤ 0,

{
ẋ = TR x − y + b,

ẏ = DR x − aR,
for x ≥ 0, (4)

being aL and aR the values given in expression (2), TL , TR and DL , DR , respectively,
the traces and determinants of the matrices AL and AR , and b = β/aR

12, where β is
given in expression (3).

2.2 Integral Characterization of Poincaré Half-Maps

The periodic solutions of the piecewise linear differential system (4) are studied via
two Poincaré half-maps defined on �: the forward Poincaré half-map yL : IL ⊂
[0,+∞) −→ (−∞, 0] and the backward Poincaré half-map yb

R : I b
R ⊂ [b,+∞) →

(−∞, b].
On the one hand, the forward Poincaré half-map takes a point (0, y0), with y0 ≥ 0,

and maps it to a point (0, yL(y0)) by traveling through the flow of (4) in the positive
time direction. Clearly, it is determined by the left linear differential system of (4) and
its formal definition will be given in Proposition 1.

On the other hand, the backward Poincaré half-map takes a point (0, y0), with
y0 ≥ b, and maps it to a point(0, yb

R(y0)) by traveling through the flow of (4) in
the negative time direction. Clearly, it is determined by the right linear differential
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system of (4). Notice that the simple translation y 	→ y − b applied to this right
linear system allows us to write yb

R(y0) = yR(y0 − b) + b and I b
R = IR + b, where

yR : IR ⊂ [0,+∞) → (−∞, 0] is the backward Poincaré half-map of (4) for b = 0,
that is, yR = y0R and IR = I 0R . The formal definition of the map yR and its domain IR

will be given in Proposition 2.
In Propositions 1 and 2, we will need the following concept of Cauchy principal

value:

PV

{∫ y0

y1
f (y)dy

}
:= lim

ε↘0

(∫ −ε

y1
f (y)dy +

∫ y0

ε

f (y)dy

)
,

for y1 < 0 < y0 and f continuous in [y1, y0] \ {0} (see, for instance, Henrici 1988).
Note that if f is also continuous at 0, then the Cauchy principal value coincides with
the definite integral.

The forward Poincaré half-map yL refers to the linear system

{
ẋ = TL x − y,

ẏ = DL x − aL ,
(5)

which corresponds with the left linear system of (4). Thus, its definition, its domain
IL , and its analyticity are given by Theorem 19, Corollary 21, and Corollary 24 of
Carmona and Fernández-Sánchez (2021). In the following proposition, we summarize
the mentioned results. (see Carmona et al. 2022, [Theorem 1]).

Proposition 1 The forward Poincaré half-map yL is well defined if, and only if, aL ≤ 0
and 4DL − T 2

L > 0, or aL > 0. In this case, IL := [λL , μL) �= ∅ and the following
statements hold:

(a) The right endpoint μL of the interval IL is the smallest strictly positive root of the
polynomial WL(y) = DL y2 − aL TL y + a2

L , if it exists. Otherwise, μL = +∞.
(b) The left endpoint λL of the interval IL is greater than or equal to zero. If λL > 0,

then yL(λL) = 0, aL < 0, 4DL − T 2
L > 0, and TL < 0. Moreover, if yL(λL) < 0,

then λL = 0 and aL < 0, 4DL − T 2
L > 0, and TL > 0.

(c) The polynomial WL verifies WL(y) > 0 for y ∈ ch(IL ∪ yL(IL)) \ {0}, where
ch(·) denotes the convex hull of a set.

(d) The forward Poincaré half-map yL is the unique function yL : IL ⊂ [0,+∞) −→
(−∞, 0] that satisfies

PV

{∫ y0

yL (y0)

−y

WL(y)
dy

}
= qL(aL , TL , DL) for y0 ∈ IL , (6)

where

qL(aL , TL , DL) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if aL > 0,
πTL

DL

√
4DL−T 2

L

if aL = 0,

2πTL

DL

√
4DL−T 2

L

if aL < 0.
(7)
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(e) The forward Poincaré half-map yL is analytic in Int(IL).

On the other hand, the backward Poincaré half-map yR refers to the linear system

{
ẋ = TR x − y,

ẏ = DR x − aR,

which corresponds with the right linear system of (4) for b = 0. Thus, its definition,
its domain IR , and its analyticity are obtained from Proposition 1 by means of the
change of variables (t, x) 	→ (−t,−x) and taking (aL , DL , TL) = (−aR, DR,−TR)

in system (5). (see Carmona et al. 2022, [Theorem 2]).

Proposition 2 The backward Poincaré half-map yR is well defined if, and only if,
aR ≥ 0 and 4DR − T 2

R > 0, or aR < 0. In this case, IR := [λR, μR) �= ∅ and the
following statements hold:

(a) The right endpoint μR of its definition interval IR is the smallest strictly positive
root of the polynomial WR(y) = DR y2 − aR TR y + a2

R, if it exists. Otherwise,
μR = +∞.

(b) The left endpoint λR of the interval IR is greater than or equal to zero. If λR > 0,
then yR(λR) = 0, aR > 0, 4DR − T 2

R > 0, and TR > 0. Moreover, if yR(λR) < 0,
then λR = 0 and aR > 0, 4DR − T 2

R > 0, and TR < 0.
(c) The polynomial WR verifies WR(y) > 0 for y ∈ ch(IR ∪ yR(IR)) \ {0}.
(d) The backward Poincaré half-map yR is the unique function yR : IR ⊂

[0,+∞) −→ (−∞, 0] that satisfies

PV

{∫ y0

yR(y0)

−y

WR(y)
dy

}
= qR(aR, TR, DR) for y0 ∈ IR, (8)

where

qR(aR, TR, DR) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if aR < 0,
− πTR

DR

√
4DR−T 2

R

if aR = 0,

− 2πTR

DR

√
4DR−T 2

R

if aR > 0.
(9)

(e) he backward Poincaré half-map yR is analytic in Int(IR).

Remark 1 Notice that the integral that appears in (6) (resp. (8)) is divergent for aL = 0
(resp. aR = 0). Nevertheless, in this case, the Cauchy principal value provides

yL(y0) = −e

πTL√
4DL −T 2

L y0,

(

resp. yR(y0) = −e

−πTR√
4DR−T 2

R y0

)

y0 ≥ 0. (10)

In any other case, that is, aL �= 0 (resp. aR �= 0), the Cauchy principal value can be
removed because the integral is a proper integral.
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2.3 Properties of Poincaré Half-Maps

Some useful properties of the Poincaré half-maps yL and yR will be collected in the
next results. The proofs of these properties for the map yL are given in Carmona
et al. (2021a), and they can be extended to yR by means of the change of variables
(t, x) 	→ (−t,−x) and taking (aL , DL , TL) = (−aR, DR,−TR) in system (5). The
first one (Proposition 3) provides, as a direct consequence of expressions (6) and
(8), the first derivative of the Poincaré half-maps. The second result (Proposition 4)
establishes the relative position between the graph of the Poincaré half-maps and
the bisector of the fourth quadrant. The third result (Proposition 5) gives the first
coefficients of the Taylor expansions of the Poincaré half-map yR at the origin. The
last result (Proposition 6) shows the first coefficient of the Newton-Puiseux series
expansion of yL around a point ŷ0 > 0 such that yL(ŷ0) = 0.

Proposition 3 The first derivatives of the Poincaré half-maps yL and yR are given by

y′
L(y0) = y0WL(yL(y0))

yL(y0)WL(y0)
< 0 for y0 ∈ int(IL),

y′
R(y0) = y0WR(yR(y0))

yR(y0)WR(y0)
< 0 for y0 ∈ int(IR),

where the polynomials WL and WR are given in Propositions 1 and 2, respectively.

Proposition 4 The following statements hold.

(a) The forward Poincaré half-map yL satisfies the relationship

sign (y0 + yL(y0)) = −sign(TL) for y0 ∈ IL \ {0}.

In addition, when 0 ∈ IL and yL(0) �= 0 or when TL = 0, then the relationship
above also holds for y0 = 0.

(b) The backward Poincaré half-map yR satisfies the relationship

sign (y0 + yR(y0)) = sign(TR) for y0 ∈ IR \ {0}.

In addition, when 0 ∈ IR and yR(0) �= 0 or when TR = 0, then the relationship
above also holds for y0 = 0.

For the sake of simplicity, the next result is only given for the map yR , which will
be used later on in the proof of Theorem 1. A version for the map yL can be stated in
an analogous way.

Proposition 5 Assume that 0 ∈ IR and yR(0) = ŷ1 < 0, then the backward Poincaré
half-map yR is a real analytic function in IR and its Taylor expansion around the
origin writes as

yR(y0) = ŷ1 + WR
(
ŷ1

)
y20

2a2
R ŷ1

+ O
(

y30

)
.
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Again, for the sake of simplicity, the next result is only provided for the map yL .
An analogous result for the map yR can be also stated.

Proposition 6 Assume that there exists a value ŷ0 > 0 such that yL(ŷ0) = 0. Then,
aL < 0, ŷ0 = λL , that is, ŷ0 is the left endpoint of the definition interval Il of yL

and the Poincaré half-map yL admits the Newton-Puiseux series expansion around
the point ŷ0 given by

yL(y0) = aL

√
2λL

WL(λL)
(y0 − λL)1/2 + O(y0 − λL).

2.4 Displacement Function

Once the Poincaré half-maps have been characterized, a displacement function can be
defined for system (4).

Suppose that I b := IL ∩(IR +b) �= ∅. The displacement function δb is then defined
in I b as follows:

δb : I b −→ R

y0 	−→ δb(y0) := yb
R(y0) − yL(y0) = yR(y0 − b) + b − yL(y0).

(11)

From Propositions 1 and 2, one has I b = [λb, μb), where λb = max{λL , λR + b}
and μb = min{μL , μR + b}. In addition, δb is continuous on I b and analytic on
Int(I b).

Remark 2 Notice that, by the continuity of δb on Ib and the analyticity on Int(Ib), a
crossing period annulus exists if, and only if, δb(y0) = 0 for every y0 ∈ I b. Obviously,
in this case, the i th order derivative satisfies δ

(i)
b (y0) = 0 for every y0 ∈ I b and i ∈ N.

Of course, when y0 = λb, δ
(i)
b (y0) = 0 refers to the lateral derivative.

Now, some of the properties of δb (in particular, relevant expressions for the sign of
the derivatives) will be stated in the next proposition. Its proof can be seen in Carmona
et al. (2022).

Proposition 7 Let us consider the displacement function given in (11) for b = 0.
Suppose that y∗

0 ∈ int(I 0) satisfies δ0(y∗
0 ) = 0. Denote y∗

1 = yR(y∗
0 ) = yL(y∗

0 ) < 0
and define

c0 := aRaL (aR TL − aL TR) ,

c1 := aR TR DL − aL TL DR,

c2 := a2
L DR − a2

R DL .

(12)

Then, the following statements hold:

(a) The derivative of the displacement function δ0 defined in (11) verifies

sign
(
δ′
0(y∗

0 )
) = sign(F(y∗

0 , y∗
1 )), (13)
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being

F(y0, y1) = c0 + c1y0y1 + c2(y0 + y1). (14)

(b) Moreover, if δ′
0(y∗

0 ) = 0, then the second derivative of δ0 verifies

sign
(
δ′′
0 (y∗

0 )
) = sign

(
TL

(
c2y∗

0 + c0
)) = −sign

(
TR

(
c2y∗

1 + c0
))

.

Remark 3 This remark is devoted to provide some useful and interesting relationships
between the coefficients ξ0, ξ∞, c0, c1 and c2 (given in expressions (3) and (12)),
which will be used later on.

The set of polynomial functions {WL , WR}, with WL and WR defined in Proposi-
tions 1 and 2, is linearly dependent if, and only if, c0 = c1 = c2 = 0.

Moreover, the following equalities hold:

c0 = aRaLξ0, c0

(
DL

DR

)
− c2

( −aL TL

−aR TR

)
+ c1

(
a2

L
a2

R

)
= 0, (15)

TLc1 + aLξ∞ = DL TRξ0, and TRc1 + aRξ∞ = DRTLξ0. (16)

3 Characterization of Crossing Period Annuli

This section is dedicated to the proof of Theorem 1. It starts with a result on partial
necessary conditions for the existence of a crossing period annulus. In particular, this
result states that if system (1) has a crossing period annulus, then it cannot have a
sliding region. This result has already been obtained in Freire et al. (2021) by in the
case that system (1) is formed by two foci.

Lemma 1 If the piecewise linear differential system (1) has a crossing period annulus,
then the condition (H) holds, the value β defined in (3) vanishes, and sign(TR) =
−sign(TL).

Proof Notice that if system (1) has a crossing period annulus, then, in particular,
aL
12aR

12 > 0 and, therefore, system (1) can be transformed into system (4), which will
also have a crossing period annulus. Hence, I b = [λb, μb) �= ∅, the Poincaré half-
maps are well defined and so, from Propositions 1 and 2, we have that Hypothesis (H)
holds.

Now, we show that the existence of a crossing period annulus implies that b = 0
and, consequently, β = 0. Suppose, by reduction to absurdity, that system (4) has
a crossing period annulus and b �= 0. Let us assume that b > 0; otherwise, by
applying the transformation (t, y) 	→ (−t,−y), we can change the sign of b. This
transformation also changes the signs of TL and TR , but this will not be important in
getting a contradiction. In the sequel, our reasoning distinguishes whether or not b
belongs to the interval I b.

On the one hand, let us consider b ∈ I b. Then, 0 ∈ IR and b ∈ IL . If yR(0) = 0, it
follows that δb(b) = yR(b − b) − yL(b) + b = −yL(b) + b > 0 and this contradicts
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the fact that δb(y0) = 0 for every y0 ∈ I b (see Remark 2). If yR(0) < 0, then, from
Proposition 5, one obtains y′

R(0) = 0. Thus, if yL(b) < 0, from Proposition 3, one
get y′

L(b) < 0; if, on the other hand, yL(b) = 0, then, from Proposition 6 (by taking
ŷ0 = b), one gets that

lim
y0↘b

y′
L(y0) = −∞.

In both cases, δ′
b(b) �= 0 which contradicts the fact that δ′

b(y0) = 0 for every y0 ∈ I b

(see Remark 2).
On the other hand, consider b /∈ I b. We know that λb = max{λL , λR + b}. First,

let us assume that λb = λR + b, which implies that λL ≤ λR + b. Taking into account
that b /∈ I b, we have that λR > 0. Thus, by statement (b) of Proposition 2, we have
yR(λR) = 0. Since λR + b ∈ IL , then yL(λR + b) ≤ 0. Hence δb(λR + b) =
yR(λR) + b − yL(λR + b) > 0, which contradicts the fact that δb(λR + b) = 0.
Second, let us assume that λb = λL , which implies that λL ≥ λR + b ≥ b. Taking
into account that b /∈ I b, the last inequality implies, in fact, that λL > b > 0. Thus,
by statement (b) of Proposition 1, we have yL(λL) = 0 and, then, by Proposition 6,

lim
y0↘λL

y′
L(y0) = −∞. (17)

From Remark 2, yL(λL) = 0 implies that yR(λL − b) = −b < 0 which, in turns,
from statement (b) of Proposition 2 and taking into account that λL > b, implies that
λL − b ∈ Int(IR). Hence, Proposition 3 implies that

y′
R(λL − b) < 0. (18)

The relationships (17) and (18) contradicts the fact that δ′
b(λL) = 0.

Therefore, we have shown that the existence of a crossing period annulus implies
that b = 0 and, consequently, β = 0.

Finally, b = 0 implies that yL(y0) = yR(y0) for every y0 ∈ I b and, from
Proposition 4, it follows that sign(TR) = −sign(TL) and the proof is finished. ��

3.1 Proof of Theorem 1

Let us start by assuming that the differential system (1) has a crossing period annulus.
From Lemma 1, (H) holds, β = 0, and sign(TL) = −sign(TR). In addition, since
TL TR = 0 implies that TL = TR = 0 and, therefore, ξ0 = ξ∞ = 0, then it only
remains to show that ξ0 = ξ∞ = 0 for the case TL TR < 0.

Recall that, under the first condition of (H), that is, aL
12aR

12 > 0, system (1) can
be transformed into system (4), with b = 0, which will also have a crossing period
annulus.

From hypothesis and taking into account Remark 2, the displacement function δb

for b = 0 verifies δ0(y0) = δ′
0(y0) = δ′′

0 (y0) = 0 for every y0 ∈ Int
(
I 0

)
and, by

123



Journal of Nonlinear Science            (2023) 33:88 Page 11 of 13    88 

means of statement (b) of Proposition 7,

TL(c2y0 + c0) = TR(c2y0 + c0) = 0, ∀ y0 ∈ Int
(
I 0

)
.

Since TL TR < 0, we have that c0 = c2 = 0. In addition, from (13) and (14), we
have that c1y0 yL(y0) = c1y0 yR(y0) = 0 for every y0 ∈ Int

(
I 0

)
and, consequently,

c1 = 0.
From Remark 3, the relationship c0 = c1 = c2 = 0 indicates that the polynomials

WL(y) = DL y2 − aL TL y + a2
L and WR(y) = DR y2 − aR TR y + a2

R are linearly
dependent. By one hand, if aL = 0, then aR = 0 and so ξ0 = 0. Furthermore, in this
case, from (10), one can see that the existence of a crossing period annulus, that is,
the condition yL(y0) = yR(y0) for y0 ≥ 0 leads, by a direct computation, to ξ∞ = 0.
On the other hand, if aL �= 0, then aR �= 0. Thus, since c0 = 0, from (15), one gets
ξ0 = 0 and so any of the relationships in (16) implies ξ∞ = 0, because c1 = 0.

Reciprocally, consider the planar piecewise linear differential system (1) and
assume that condition (H) holds, sign(TL) = −sign(TR), and β = ξ0 = ξ∞ = 0. Let
us show the existence of a crossing period annulus for system (4) and, consequently,
for (1).

Note that if TL TR = 0, taking into account that sign(TL) = −sign(TR), we have
that TL = TR = 0. Thus, from (6) and (8), since the integrands are odd functions, it is
trivial that yL(y0) = yR(y0) = −y0 for every y0 ∈ I 0. This implies the existence of
a crossing period annulus. Thus, for the rest of the proof, we can assume TL TR < 0.

From (15) and (16), ξ0 = ξ∞ = 0 implies c0 = c1 = 0. Now, we show that
c2 = 0. Indeed, if aL = aR = 0, then c2 = a2

L DR − a2
R DL = 0 and, otherwise, if

a2
L + a2

R �= 0, then the second relationship of (15) implies c2 = 0.
Since c0 = c1 = c2 = 0, from Remark 3, the polynomials WL(y) = DL y2 −

aL TL y + a2
L and WR(y) = DR y2 − aR TR y + a2

R are linearly dependent, that is,
WL = kWR . Moreover, k > 0. Indeed, if a2

L + a2
R �= 0, then k > 0 immediately,

otherwise, if aL = aR = 0, from (H), we have DL , DR > 0 and, again, k > 0.
Hence, sign(aL) = −sign(aR), because TL TR < 0. In addition, ξ∞ = 0 implies

that DL = (TL/TR)2DR . Thus, k = (TL/TR)2 and

DL = k DR, TL = −√
k TR, and aL = −√

k aR .

Therefore,

PV

{∫ y0

yL (y0)

−y

WL(y)
dy

}
= 1

k
PV

{∫ y0

yL (y0)

−y

WR(y)
dy

}

and the functions qL and qR defined in expressions (7) and (9) satisfy

qL(aL , TL , DL) = qL

(
−√

k aR,−√
k TR, k DR

)
= 1

k
qR(aR, TR, DR).

Now, from Propositions 1 and 2, we see that yL and yR have the same integral charac-
terization and, consequently, they coincide, that is, yL (y0) = yR(y0) for y0 ∈ IL = IR .
This implies the existence of a crossing period annulus and the proof is finished.
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