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A B S T R A C T

The Digital Twin (DT) constitutes an integration between cyber and physical spaces and has recently become a
popular concept in smart manufacturing and Industry 4.0. The related literature provides a DT characterisation
and identifies the problem of updating DT models throughout the product life cycle as one of the knowledge
gaps. The DT must update its performance by analysing the variable data in real time of the physical asset,
whose behaviour is constantly changing over time. The automatic update process involves a data quality
problem, i.e., ensuring that the captured values do not come from measurement or provoked errors. In this
work, a novel methodology has been proposed to achieve data quality in the interconnection between digital
and physical spaces. The methodology is applied to a real case study using the DT of a real solar cooling
plant, acting as a learning decision support system that ensures the quality of the data during the update
of the DT. The implementation of the methodology integrates a neurofuzzy system to detect failures and a
recurrent neural network to predict the size of the errors. Experiments were carried out using historical plant
data that showed great results in terms of detection and prediction accuracy, demonstrating the feasibility of
applying the methodology in terms of computation time.
1. Introduction

Data-driven smart manufacturing is one of the pillars of Industry
4.0, as a strategic part of the quest to maximise production by op-
timising its processes. Data acquisition is an essential element, as it
records the behaviour and evolution of industrial processes throughout
their life cycle. The evolution and innovation of the Industrial Internet
of Things, smart sensors, different industrial communication protocols,
and other technologies make it possible to acquire data in real time to
improve decision making.

The Digital Twin (DT) concept has recently become popular in the
Industry 4.0 sector. Grieves presented the conceptualisation of DT1 as
part of a study on Product life cycle Management (PLM), (Grieves and
Vickers, 2017). Grieves presents all the elements that make up the
DT: the physical entity, the virtual entity, and the interconnection of
the data flow, which inextricably links and connects the two entities.
Since the DT neologism, several articles have introduced different
concepts; however, most of them share the same elements of the initial
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1 NASA formalised the Digital Twin concept as an integrated multiphysics, multiscale, probabilistic simulation of an as-built system that uses the best available

physical models, sensor updates, fleet history, and real-time sensor data (Glaessgen and Stargel, 2012).

conceptualisation (Glaessgen and Stargel, 2012; Boschert and Rosen,
2016; Grieves and Vickers, 2017; Haag and Anderl, 2018; Saracco,
2019).

DT is based on high-fidelity models capable of accepting and in-
corporating modifications to their behaviour during their life cycle to
realise the concept of context-awareness (Hribernik et al., 2021). The
development of DT facilitates the analysis of behaviour in different
physical situations, operations, and control methods, since it can be
performed virtually, avoiding experimentation. Furthermore, the use
of DT optimises production efficiency and energy savings in industrial
processes (Pileggi et al., 2019; Onile et al., 2021). During the life cycle
of an industrial asset, the physical entity is affected by continuous op-
eration, leading to a decrease in performance. Therefore, an important
requirement for the DT is the ability to update its performance at a
certain frequency. The study is carried out with the aim of developing a
sensor-based DT composed of computational models built on historical
data from the physical counterpart. During the asset’s life cycle, the
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update is done using the more recent collected data of the physical part
to readjust the models of the DT. When updating tasks are triggered,
the following questions arise:

• What happens when the data that feed the DT are corrupted or
contain incorrect values?

• When is it considered that a change in data should trigger the
update of the digital twin?

failure or simply a drift in a sensor can trigger the twin’s models
earning mechanism in an unintended way. As a result, retraining a
T requires a priori analysis of the real-time output data of the system.
herefore, an important first step is to detect the incorrect data to assess
he decision to start the learning routine.

Sensor errors in industrial processes can be caused by noise, mal-
unction, or, occasionally, incorrect instrument handling. The applica-
ion of fault detection techniques, such as predictive, diagnostic, and
onitoring systems, maximises operational availability and reduces

perational risks. These techniques are often enriched with real-world
ata to diagnose and detect failures with high efficiency. These systems
ntegrate smart sensors and models based on artificial intelligence that
re integrated into the DT of physical entities.

In this work, a case study of a solar cooling plant (SCP) has been
hosen, for which there is already a DT, (Chicaiza et al., 2021). A
ystem to detect faults in sensor output has been proposed as a tool
o support the decision to retrain the DT. The proposed system is
ased on models that combine fuzzy logic techniques and NNs. The
odels classify whether or not a sensor fault occurs at a specific time

nstant and then predict the correct value for that sensor applying
egression based on recurrent neural networks (RNNs) with long–short-
erm memory (LSTM) layers. Model-based fault detection systems are
ell known and widely used (Ding, 2008). Models are trained using a
ata collection built from historical and simulated SCP data. Following
hese ideas, a system capable of establishing retraining rules for the DT
nd capable of detecting erroneous behaviour in the SCP is obtained.
he developed methodology is a key piece in the periodic updating
rocess of the DT since it filters poor-quality data to be fed to the
odels composing the DT. Initially, it is assumed that only one sensor

an fail in a same time unit, however, later in the article experiments
how that is possible to detect failures in more than one sensor in a
ingle time unit.

The rest of the article is organised as follows. Section 2 summarises
ome techniques used in fault detection based on operational data and
ighlights the contribution of the present work. Section 3 introduces
he general workflow of the proposed data quality methodology and
ts contribution to the DT update. Section 4 describes the case studied
n the scope of this work, that is, the plan from which the DT is
btained. A description of the training and validation data sets is given
n Section 5. In Sections 6 and 7 the neurofuzzy detection and the offset
rediction networks are depicted. Section 8 analyses the results of a
omplete implementation of the proposed methodology applied to the
ase studied, and a comparison with a similar approach is made. The
rticle ends in Section 9, with the conclusions and future research work.

. Related work

Today, failure detection during the life cycle of industrial com-
onents is an essential task to early apply the required maintenance
ctivities to avoid possible breakdowns. Given the increase in the use
f data to optimise industrial processes, there is extensive literature
n the use of ANNs in the development of fault detection and classi-
ication applications, due to their ease of implementation and efficient
elf-learning capabilities.

In Tang et al. (2020), the authors process large mechanical data
sing a continuous wavelet transform and a deep convolutional neu-
al network (CNN) model for fault classification and diagnosis in a
2

ydraulic axial piston pump and use T-SNE to reduce characteristics
and visualise classification. Different types of faults were precisely
identified and high classification accuracy was achieved for the piston
pump. However, the authors highlight the difficulty of the CNN model
in handling time–frequency distributions. In Kang et al. (2021), a novel
machine learning-based approach is used to automate the prediction of
the remaining useful life of the equipment on continuous production
lines. The proposed model applies normalisation and PCA techniques
for data pre-processing; then, grid search for parameter optimisation
and multilayer NNs are used for failure prediction. The results show
that the performance of these techniques is affected by external factors
such as dimension, noise level, and environmental variation. The work
done in Heo and Lee (2018) uses deep neural networks (DNNs) for fault
detection and classification in the Tennessee Eastman process (chemical
process). The authors claim that different architectures of NN need to
be tested to see if they fit better for fault detection and classification
problems. In Jamil et al. (2015) the authors detect and classify the line
to ground fault in a power transmission line, using voltage and current
measurements as input to the neural scheme (feedforward NN with
backpropagation learning method). A systematic study on the applica-
tion of ANN and hybridised ANN models for the detection and diagnosis
of photovoltaic faults was conducted in Li et al. (2021). Similarly, the
work of Wang et al. (2020) employs CNNs, DNNs based on automatic
encoders, and standalone SoftMax classifiers for the detection and clas-
sification of open-circuit high-voltage DC faults of modular multilevel
converters (MMC-HVDCs). A survey on fault monitoring, detection, and
classification in smart grid systems is presented in Labrador Rivas and
Abrão (2020). In this research, a great number of machine learning
techniques are presented to solve problems of this kind, such as models,
ANN, DNN, support vector machine, and others (Labrador Rivas and
Abrão, 2020); all yield great results. Furthermore, Ruiz-Moreno et al.
(2022) combines multilayer perceptrons NNs with a defocusing stage to
detect and distinguish mirror and flow rate faults in the Fresnel-solar
field located at the Seville Engineering School, the same plant used in
the experiments of the present work. The NN is used to detect faults
and classify them into two main locations, and the defocusing stage is
used to increase the accuracy of the network. This research is strongly
related to the present work because both are dedicated to classifying
different types of fault in the same solar plant.

The Adaptive Neuro-Fuzzy Inference System (ANFIS) proposed by Ja
(1993) uses the learning capacity of ANN and FL to represent knowl-
edge in an interpretable form. ANFIS is a widely used hybrid model in
classification, prediction, and modelling problems, (Zhang and Morris,
1996; Camacho et al., 2019a; Escaño et al., 2020; Shah and Wang,
2021). ANFIS has the capability to construct an input–output mapping
based on human knowledge in the form of fuzzy if–then rules, which
can handle imprecise input data (uncertainty). Detection and classifi-
cation of faults such as partial shading, series resistance, and shorted
shunt diodes in photovoltaic arrays (PVA) are developed in Belaout
et al. (2018) by fuzzy logic classifiers using experimental data and
with an ANFIS to improve classification performance. The proposed
technique was capable of correctly discriminating between five types
of fault that occur in the PVA and demonstrated superiority over an
ANN classifier.

The main contribution of this work is a novel methodology to
address the data quality problem related to the DT update during
its lifetime. The proposed methodology combines the techniques with
better performance in the literature to feed high-quality data to the
models composing the DT. The methodology is applied effectively to
the particular case study of a DT of an SCP. Furthermore, the method-
ology can generally be applied to the data quality problem of similar
sensor-based DT in other industrial scenarios.

In the specific SCP case study, the methodology integrates an ANFIS
to detect and classify failures in sensor signals, with a deep RNN
system to predict the offset error per sensor. The advantage of using
the ANFIS once trained is to be able to observe the internal structure

and to interpret the logical inference. The ANFIS technique was also
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chosen because of its computationally fast performance in classification
problems. On the other hand, the use of RNNs was appropriate to
make offset predictions based on sensor signals over time. Finally, a
comparison was made between the proposed methodology and the
work in Ruiz-Moreno et al. (2022) in terms of the scope of both
techniques and the accuracy of the fault detection results.

3. DT updating: Data quality methodology

The interconnection between the DT and the physical asset is the
basis for the long-term use of the DT technology. The physical part
retrieves data related to variables and processes using sensors, allowing
the DT to update its behaviour throughout the asset’s life cycle. The
DT update is performed periodically by retraining the DT model with
recent data from the physical counterpart. In this process, failures in the
collected data lead to a gap between the digital and physical parts. As
a result, the data quality problem is essential in the DT update process.

To address the data quality problem, an evaluation of different
dimensions is needed, such as accuracy, confidence, completeness, data
volume, and data reception time, as proposed in Klein and Lehner
(2009). To be able to assess each dimension, it is necessary to combine
a fault detection method with a mechanism that predicts what the
data should be like. The methodology proposed in this work ensures
data quality during the data exchange process based on historical data
recovered by the sensor system.

Initially, it is assumed that only one sensor can fail at a specific mo-
ment in time. This assumption is made since there is a low probability
of a malfunction in more than one sensor in the same unit of time. In
real scenarios, sensors that retrieve incorrect readings are quickly fixed
or replaced. However, in Section 8 experimental results show the ability
of the methodology to be adapted to detect failures in multiple sensors
at the same time.

The methodology consists of two parallel flows: the Fault Detection
System (FDS), which detects sensor failures, and the Offset Error Pre-
diction (OEP), for measuring the severity of the detected failures. The
algorithm 1 represents a pseudocode that describes the methodology
workflow, where 𝑠1, 𝑠2,… 𝑠𝑁 are the measured values retrieved by the
physical asset (sensor output), the variables 𝑓1, 𝑓2,… , 𝑓𝑁 are binary
variables outputted by the FDS and �̂�1, �̂�2,… �̂�𝑁 are the predictions of
the expected value of each sensor used to calculate the offset errors,
where 𝑁 is the number of sensors considered in the DT. The offset
error of the 𝑖th sensor is calculated as the absolute difference between
the sensor output and the prediction of the expected output, |𝑠𝑖 − �̂�𝑖|. As
he FDS and OEP flows are independent, the execution efficiency of the
ethodology can be improved by making the detection and prediction

lows run as parallel parts in the algorithm.
In this work, machine learning techniques were used to implement

he methodology proposed for a specific case study: the DT of an SCP.
ig. 1 shows the specific architecture used in this work. A detector
ased on a neurofuzzy classifier with PCA projections has been de-
eloped for the FDS flow, while an RNN was trained for each sensor
n the OEP flow. Therefore, discrepancies between measured signals
nd predicted signals can be compared, allowing the DT to keep only
igh-quality data for its posterior update.

The methodology can be implemented to contribute to the DT
pdate process during its life cycle. The DT update process consists
f a simple loop procedure that starts after a previously defined time
nterval. The values of every sensor reading are verified for faults
uring the time interval, storing fault-free readings to update the DT
odels at the beginning of each loop.

The proposed methodology is generic for working with similar
T systems that receive data from their physical counterpart through

ensors. The methodology can be adapted to other systems by adding
ew sensors to the workflow. In addition, other data science techniques
an be used in the fault detection and offset prediction process. In the
articular case of the SCP, a detailed explanation of the sensors is given
3

n the next Section.
Algorithm 1: Algorithm for the data quality methodology work-
flow. The input is the measured values of 𝑁 sensors and the
output is the fault detection list and the sensor offset error
list. The 𝐹𝐷𝑆 function detects sensors failures, while the 𝑂𝐸𝑃
function predicts expected sensor values.

Data: 𝑁, 𝑠1, 𝑠2,… , 𝑠𝑁
Result:  , 

1 𝑡ℎ𝑟𝑒𝑎𝑑1: 𝐹𝐷𝑆(𝑠1, 𝑠2,… , 𝑠𝑁 );
2 𝑡ℎ𝑟𝑒𝑎𝑑2: 𝑂𝐸𝑃 (𝑠1, 𝑠2,… , 𝑠𝑁 );
3 𝑓1, 𝑓2,… , 𝑓𝑁 = 𝑎𝑤𝑎𝑖𝑡(𝑡ℎ𝑟𝑒𝑎𝑑1);
4 �̂�1, �̂�2,… �̂�𝑁 = 𝑎𝑤𝑎𝑖𝑡(𝑡ℎ𝑟𝑒𝑎𝑑2);
5  = [𝑓1, 𝑓2,… , 𝑓𝑁 ];
6  = 𝑛𝑒𝑤 𝐿𝑖𝑠𝑡();
7 𝑖 = 0;
8 while 𝑖 < 𝑁 do
9 if 𝑓𝑖 = 1 then
10 .𝑎𝑑𝑑(|�̂�𝑖 − 𝑠𝑖|);
11 end
12 else
13 .𝑎𝑑𝑑(0);
14 end
15 𝑖 = 𝑖 + 1;
16 end
17 return  , 𝑂;

Fig. 1. Schematic diagram of the system architecture.

4. Case study: Cooling process through a solar plant

The plant under study is located on the roof of the main building of
the School of Engineering of the University of Seville. The plant consists
of three subsystems: a solar field, an absorption chiller machine, and
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Fig. 2. Fresnel-type solar field.

a PCM storage tank. The Fresnel-type solar field consists of several
mirrors that concentrate solar radiation onto a vacuum receiver tube.
A heat transfer fluid (pressure water) inlet at one end of the receiver
tube flows through it, increasing its temperature, and obtaining water
at a higher temperature at the outlet.

The heat transfer fluid transfers the thermal energy to the absorp-
tion chiller machine, which operates on a double-effect thermodynamic
absorption cycle. The hot side uses the water supplied by the solar
field as a high-temperature source. The cold side chills a stream of
water through different concentrations of Lithium-Bromide solution
and evaporation/condensation heats. The chilled water on the cold side
is used in the building’s air-conditioning system, whereas the cooled
water on the hot side is fed back to the Fresnel solar collector. More
information on the plant can be found in Bermejo et al. (2010). In this
work, only one part of the plant has been chosen: the Fresnel solar field.

4.1. Description of the Fresnel solar field

The main source of energy supply to increase the temperature of
the heat transfer fluid in the SCP is the Fresnel solar field subsystem
(see Fig. 2). It consists of a series of linear Fresnel collectors (LFCs)
installed on the roof of the building with an East–West orientation
(𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = 37.4108972◦, 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 = −6.0006621◦). The solar field
concentrates sun irradiation onto a 64-m receiver tube where the
pressurised water circulates. In addition, it has a secondary reflector
that optimises optical efficiency and improves the performance of the
installation. A further description can be found in Robledo et al. (2011).

The field model utilised by LFC employs equations akin to those
employed for a parabolic solar field, only differing in the use of a
distributed parameter model (DPM) to calculate the thermodynamic
properties of the fluid, the geometric efficiency, and the shading factor.
The DPM considers the spatial distribution of the SCP, providing a
better representation of the fluid heat transfer model (Camacho et al.,
2019a,b). The DPM was used to simulate the solar field and observe
the behaviour of the variation of the fluid outlet temperature (𝑇𝑓 ). The
physical equations of the dynamic model describe the energy balance
as follows:

𝜌𝑚𝐶𝑚𝐴𝑚
𝜕𝑇𝑚
𝜕𝑡

= 𝐼𝐾𝑜𝑝𝑡𝑛𝑜𝐺 −𝐻𝑙(𝑇𝑚 − 𝑇𝑎)…

…− 𝑙𝑝𝐻𝑡(𝑇𝑚 − 𝑇𝑓 )

𝑙𝑝𝐻𝑡(𝑇𝑚 − 𝑇𝑓 ) = 𝜌𝑓𝐶𝑓𝐴𝑓
𝜕𝑇𝑓
𝜕𝑡

+ 𝜌𝑓𝐶𝑓 𝑞
𝜕𝑇𝑓
𝜕𝑙

(1)

Where 𝑚 refers to the metal, 𝑓 is the fluid, 𝐶 and 𝜌 are the specific heat
capacity and density, respectively; 𝐴 is the area of the cross section, 𝐼
4

is the direct normal irradiance (DNI), 𝐾𝑜𝑝𝑡 is the optical efficiency, 𝑛𝑜
is the geometric efficiency, 𝐺 is the aperture, 𝐻𝑙 is the global thermal
loss coefficient, 𝑙𝑝 is the perimeter of the absorption tube, and 𝐻𝑇 is the
coefficient of heat transmission (Gallego et al., 2020; Machado et al.,
2022).

The DT of this solar field has been developed by using the dynamic
model based on fuzzy inference systems (FIS) designed in Chicaiza et al.
(2021). To train the FIS, real and artificial data generated from the dif-
ferential equation model (1) were used, solved with the Euler forward
integration method with the step 0.25 𝑠. The integration time has been
chosen to be small enough to avoid numerical instabilities (Gallego
et al., 2020).

The resulting DT contains rules that capture the non-linear be-
haviour of the plant. One advantage of this technique is that more
rules can be added once trained. New rules can be added by human
experts and may include constraints, association between parameters,
and behavioural predictions. The DT simulates the behaviour of the
outlet temperature of the heat transfer fluid flowing in the absorption
machine, which cools water for use in the air conditioning system of
the University of Seville.

5. Preparation of operating data set

In the training process of the methodology models, an extensive
collection of data corresponding to the historical output values of
the solar plant sensors was used. The data set contains values from
direct solar radiation (𝐼), ambient temperature (𝑇𝑎𝑚𝑏), water flow rate
(𝑄), inlet temperature (𝑇𝑖𝑛), and outlet temperature (𝑇𝑜𝑢𝑡) sensors. In
addition to the historical data sensors, new data was generated using
the model in Section 4.1.2 The model (1) quite closely simulates the
temperature dynamics of the Linear Fresnel Collector (LFC) system.

The resulting data set represents the fault-free sensor readings per
minute for 14 summer days during 11 to 18 h, 6798 samples in total.
The data set is divided into 12 days (5839 samples) for training and 2
days (959 samples) for validation. Each day contains data related to five
variables: Inlet temperature, outlet temperature, ambient temperature,
effective irradiance, and flow.

The DPM has been quite useful in exploring multiple scenarios
under different conditions during the LFC solar field workflow. As a
result, the detection and prediction algorithms are general enough to
cover all scenarios. Fig. 3 shows the behaviour of the Fresnel-type solar
field variables on one of the days.

The fault-free data were subjected to an outlier purification pre-
process, where a smoothing technique based on Gaussian filters was
performed for each variable in time. From the absolute error between
the smoothed and real data, the mean 𝑚𝑖 and the standard deviation 𝑠𝑡𝑑𝑖
were calculated for the 𝑖th sensor, and the threshold value 𝑡𝑖 = 𝑚𝑖+2𝑠𝑡𝑑𝑖.
Finally, the values in the 𝑖th sensor with absolute error greater than 𝑡𝑖
with respect to the smoothed data were considered outliers and were
removed. Later, a second pre-processing step was performed to address
the data completeness problem. The completeness problem arises when
there is missing data in the sensors or when the outlier detection
process deletes entries in the sequence of reading values of the sensors.
In this case, a linear interpolation method was used to fill in the missing
entries on the basis of its neighbouring values in the sequence.

For the fault detection task, more data with faults in the variables
were included. Faults were simulated by adding positive and negative
values to the variables in the operational data. This added value is what
we consider an offset. In Ruiz-Moreno et al. (2022), the authors create
offsets in the SCP flow sensor by adding and subtracting values in the
interval [0.5, 5] m3∕h. In this work, flow faults are created by adding
and subtracting the offset of 2.5 m3∕h, which is approximately in the

2 The entire set of data can found in https://github.com/fabio-rodriguez/
SCP-dataset.

https://github.com/fabio-rodriguez/SCP-dataset
https://github.com/fabio-rodriguez/SCP-dataset
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Fig. 3. Outlet fluid temperature performance.
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Table 1
Induced failures in the different variables of the solar field.

Individual faults added
Variables Unit 𝐅𝐩𝐨𝐬 𝐅𝐧𝐞𝐠

𝑄 [m3∕h] +2.5 −2.5
𝐼 [W∕m2] +150 −150
𝑇𝑖𝑛 [◦C] +6 −6
𝑇𝑜𝑢𝑡 [◦C] +6 −6

middle of the interval, and coincides with the 25% of the mean flow
value throughout the data. Following this idea, the offsets for the rest of
the sensors were fixed in 25% of the mean value of the respective sensor
in the data set. Fuzzy detectors have to classify the data into three
different classes: normal operation, false positive, and false negative
in the aforementioned sensors, as shown in Table 1.

Faults induced by measurements of solar irradiation and water flow
are shown in Fig. 4. Faults have been added in such a way that no more
than one fault can occur at the same instant of time. It is intended to
build a 1-fault-tolerant system that, having sensor readings at a given
instant of time, can detect the faulty sensor if there is one.

6. Fuzzy detector

A fault detection method is developed using a neurofuzzy classifier
with PCA projections. The classifier is based on an adaptive neurofuzzy
inference system (ANFIS) to obtain a digital model capable of detecting
faults in the variables measured by the target sensors of the Fresnel
solar field. From the measured values, the detector (Fig. 5) must detect
faults in the variable(s), when present, by assigning the binary variables
𝐹𝑞 , 𝐹𝑇𝑜𝑢𝑡 , 𝐹𝑇𝑖𝑛 , 𝐹𝑇𝑒𝑥𝑡 , 𝐹𝐼𝑒𝑓 with a value 1 (CORRECT) when there is a fault
or 0 (INCORRECT) when there is no fault.

6.1. Principal components analysis

Some preliminary work has been done on the data set (including
offsets) to train the neurofuzzy classifiers. First, a normalisation process
is added to the learning set using Min–Max feature scaling so that
all values fall in the range [0, 1]. The measurements of each sensor
5

have a different scale, which can affect the learning process due to
Table 2
Set of variables for each fuzzy classifier: (𝑇ℎ) represents the thermal leap,
that is, the difference between the outlet and inlet temperature, and (𝐻𝑡)
represents the coefficient of metal–fluid heat transmission.

Fuzzy classifiers
Variables Group

Solar radiation Flow 𝐃𝐼 =
[

𝑇𝑎𝑚𝑏 , 𝐼 , 𝑇 ℎ
]

Flow 𝐃𝑄 =
[

𝑇𝑜𝑢𝑡 , 𝑇 ℎ1 , 𝑄
]

Inlet temp 𝐃𝑇𝑖𝑛 =
[

𝑄 , 𝑇ℎ , 𝑇𝑖𝑛
]

Outlet temp 𝐃𝑇𝑜𝑢𝑡 =
[

𝐻2
𝑡 , 𝑇 ℎ , 𝑇𝑜𝑢𝑡

]

inconsistencies. It is solved by the normalisation process, thus avoiding
the different nature and magnitude of the variables. Later, the fault
detection data set was divided into three sets.

• (𝐜𝐥𝐚𝐬𝐬𝑁𝑜𝑟𝑚): data without failures
• (𝐜𝐥𝐚𝐬𝐬𝐹𝑝𝑜𝑠 ): data with positive offset failure
• (𝐜𝐥𝐚𝐬𝐬𝐹𝑛𝑒𝑔 ): data with negative offset failure

The design of the fuzzy classifier for each variable uses different
roups of variables. A Principal Component Analysis (PCA) is per-
ormed on each group of variables to obtain a covariance matrix 𝐏𝐂𝐀𝑐

𝑣
that is used to obtain the projection of each class in the space of the
first principal component. The groups formed for each fuzzy classifier
are shown in Table 2.

The PCA algorithm is applied offline to the entire training set (𝐒𝑇 𝑟𝑛),
obtaining the total covariance matrix 𝐏𝐂𝐀𝑇 𝑜𝑡𝑎𝑙

𝑣 . Additionally, the PCA
is calculated for each class composing the training set.

𝐒𝑇 𝑟𝑛 =
⎡

⎢

⎢

⎢

⎣

𝐃𝑁𝑜𝑟𝑚
𝑣
𝐃𝐹𝑝𝑜𝑠
𝑣

𝐃𝐹𝑛𝑒𝑔
𝑣

⎤

⎥

⎥

⎥

⎦

(2)

The PCA showed that, for each 𝐏𝐂𝐀𝑐
𝑣, the first principal compo-

nent contained more than 99% of the variability. Therefore, only this
component is used to represent the data in one dimension without an
appreciable loss of accuracy.
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Fig. 4. Faults in the sensor measurement for a summer day.
Fig. 5. Failures detector schematic. Sensors measurements feed the neuro-fuzzy classifiers. The neuro-fuzzy classifier’s outputs are the detection of the failures where the subindex
indicates the variable being detected.
𝑒𝑔}
6.2. Obtaining projected prototypes on the main components

After PCA calculation, the matrices 𝐏𝐂𝐀𝑐
𝑣 →

{

𝐏𝑁𝑜𝑟𝑚
𝑣 ,𝐏𝐂𝐀𝐹𝑝𝑜𝑠

𝑣 ,𝐏𝐂𝐀𝐹𝑛
𝑣

and 𝐏𝐂𝐀𝑇 𝑜𝑡𝑎𝑙
𝑣 referred to as load matrices were obtained. In the matrices,

the classes 𝑐 →
{

𝑁𝑜𝑟𝑚, 𝐹𝑝𝑜𝑠, 𝐹𝑛𝑒𝑔
}

indicate: normal operation, false
positive, false negative; and the subindex 𝑣 is the sensor. These matrix
are used to obtain the projection of the data, since they contain the
coefficients of the principal components of each variable.

The prototype 𝐏 for a class is given by its projection on a single
axis in space, that is, each class 𝐃𝑐

𝑣 is projected onto the first principal
component of the different classes. This projection is the product
between the class 𝐃𝑐

𝑣 →
{

𝐃𝑁𝑜𝑟𝑚
𝑣 ,𝐃𝐹𝑝𝑜𝑠

𝑣 ,𝐃𝐹𝑛𝑒𝑔
𝑣

}

and the first principal
component of the corresponding matrix 𝐏𝐂𝐀𝑐

𝑣.

𝑁𝑜𝑟𝑚𝐏𝑐
𝑣 = 𝐃𝑁𝑜𝑟𝑚

𝑣 × 𝐏𝐂𝐀𝑐
𝑣 (3a)

𝐹𝑝𝑜𝑠𝐏𝑐 = 𝐃𝐹𝑝𝑜𝑠 × 𝐏𝐂𝐀𝑐 (3b)
6

𝑣 𝑣 𝑣
𝐹𝑛𝑒𝑔𝐏𝑐
𝑣 = 𝐃𝐹𝑛𝑒𝑔

𝑣 × 𝐏𝐂𝐀𝑐
𝑣 (3c)

where 𝐏𝑐
𝑣 →

{

𝐏𝑁𝑜𝑟𝑚
𝑣 ,𝐏𝐹𝑝𝑜𝑠

𝑣 ,𝐏𝐹𝑛𝑒𝑔
𝑣

}

is a set of matrices containing the
different projections obtained from the variables that constitute each
class of each data group 𝐃𝑐

𝑣. Furthermore, a general prototype 𝑔𝐏𝑐
𝑣 is

obtained for each class by the product with the matrix 𝐏𝐂𝐀𝑇 𝑜𝑡𝑎𝑙
𝑣 .

𝑔𝐏𝑐
𝑣 = 𝐃𝑐

𝑣 × 𝐏𝐂𝐀𝑇 𝑜𝑡𝑎𝑙
𝑣 (4)

Finally, the training set used to detect sensor faults consists of the
prototypes of each of the classes and their general prototype for each
ANFIS that will form the neural classifier.

𝐓𝐫𝐧𝑁𝑜𝑟𝑚
𝑣 =

[

𝑁𝑜𝑟𝑚𝐏𝑁𝑜𝑟𝑚
𝑣

𝑁𝑜𝑟𝑚𝐏𝐹𝑝𝑜𝑠
𝑣

𝑁𝑜𝑟𝑚𝐏𝐹𝑛𝑒𝑔
𝑣

𝑔𝐏𝑁𝑜𝑟𝑚
𝑣

]

, (5a)

𝐓𝐫𝐧𝐹𝑝𝑜𝑠𝑣 =
[

𝐹𝑝𝑜𝑠𝐏𝑁𝑜𝑟𝑚
𝑣

𝐹𝑝𝑜𝑠𝐏𝐹𝑝𝑜𝑠
𝑣

𝐹𝑝𝑜𝑠𝐏𝐹𝑛𝑒𝑔
𝑣

𝑔𝐏𝐹𝑝𝑜𝑠
𝑣

]

, (5b)

𝐓𝐫𝐧𝐹𝑛𝑒𝑔 =
[

𝐹𝑛𝑒𝑔𝐏𝑁𝑜𝑟𝑚 𝐹𝑛𝑒𝑔𝐏𝐹𝑝𝑜𝑠 𝐹𝑛𝑒𝑔𝐏𝐹𝑛𝑒𝑔 𝑔𝐏𝐹𝑛𝑒𝑔
]

, (5c)
𝑣 𝑣 𝑣 𝑣 𝑣
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Fig. 6. Prototypes of the training set for the irradiance and water flow variable.
t
𝐏

Table 3
ANFIS architecture parameters.

Description ANFIS
MF type: 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛

Optimisation method: ℎ𝑦𝑏𝑟𝑖𝑑
Output MF type: 𝑙𝑖𝑛𝑒𝑎𝑟

𝐅𝐈𝐒𝑛𝑣 𝐈𝑛 𝐐𝑛 𝐓𝑛
𝐢𝐧 𝐓𝑛

𝐨𝐮𝐭

Number MFs: 3 3 3 3
Number rules: 3 3 3 3
Influence range: 0.60 0.80 0.80 0.80
Epoch number: 500 200 500 200

The prototypes for the validation and check sets were obtained
ollowing the same procedure. Fig. 6 shows the prototypes obtained
or the training sets for the variables irradiance and water flow, re-
pectively. The figure represents the data for the different classes used
o train each FIS. These classes are well separated in the principal
omponent space.

.3. Fault detection classifier design

An ANFIS model was used to define 𝐜𝐥𝐚𝐬𝐬𝑛𝑣, using the prototypes of
ach class as input and the general prototype as output. In this way,
everal ANFIS models were obtained to estimate the prediction for each
lass. The Subtractive Clustering (SC) method was used in the training
f ANFIS structures, (Chiu, 1994). The parameters of each ANFIS layer
re updated using a hybrid learning method in Jang (1993), which
ombines gradient descent to optimise the antecedent and least squares
arameters to determine the linear parameters of the consequence. The
arameters for each ANFIS architecture are the same for each 𝐅𝐈𝐒𝑛𝑣

model. These parameters are shown in Table 3 for all variables.
Since faults are induced offsets, the Root Mean Square Error (RMSE)

is similar for each 𝐅𝐈𝐒𝑛𝑣 model obtained on each variable. Therefore,
the models 𝐅𝐈𝐒𝑁𝑜𝑟𝑚

𝑣 , 𝐅𝐈𝐒𝐹𝑝𝑜𝑠𝑣 and 𝐅𝐈𝐒𝐹𝑛𝑒𝑔𝑣 have similar error indices
𝑅𝑀𝑆𝐸𝑇 𝑟𝑛 and 𝑅𝑀𝑆𝐸𝐶ℎ𝑘, but differ from the models 𝐅𝐈𝐒 for each
variable. Table 4 shows the errors obtained in the learning process of
each model.

After obtaining the 𝐅𝐈𝐒𝑛𝑣 models, the class to which the new data
belong is determined. Therefore, a cost function was defined that
determines which of the 𝐅𝐈𝐒𝑛𝑣 models reaches the real prototype.

𝐽 𝑖 = ‖

‖

‖

𝑃 ∗
𝑟𝑒𝑎𝑙𝑣

− 𝑃 𝑖
𝐹 𝐼𝑆𝑛

𝑣

‖

‖

‖

2
2 (6)

where 𝑃 ∗
𝑟𝑒𝑎𝑙𝑣

represents the real prototype of the data to be classified
and 𝑃 𝑖

𝐹 𝐼𝑆𝑛
𝑣

represents the prototype estimated by the 𝐅𝐈𝐒𝑛𝑣 model. To
determine the class of data: failure or not, an Exhaustive Search Algo-
rithm (ESA) has been used, see Algorithm 2. This algorithm evaluates
the cost function with the output value provided by each model 𝐅𝐈𝐒𝑛𝑣
and determines the class by direct comparison, choosing the one that
minimises the cost function. The model with minimum 𝐽 𝑖

𝑚𝑖𝑛 defines the
7

class to which the new data belong.
Table 4
RMSE index obtained in the learning process for each ANFIS developed.
𝐑𝐌𝐒𝐄𝐦𝐢𝐧 ANFIS models developed

𝐅𝐈𝐒𝑁𝑜𝑟𝑚
𝐼 𝐅𝐈𝐒𝐹𝑝𝑜𝑠

𝐼 𝐅𝐈𝐒𝐹𝑛𝑒𝑔

𝐼
𝑅𝑀𝑆𝐸𝑇 𝑟𝑛 32.2497𝑒−3 32.2497𝑒−3 32.2497𝑒−3

𝑅𝑀𝑆𝐸𝐶ℎ𝑘 31.3575𝑒−3 31.3575𝑒−3 31.3575𝑒−3

𝐅𝐈𝐒𝑁𝑜𝑟𝑚
𝑄 𝐅𝐈𝐒𝐹𝑝𝑜𝑠

𝑄 𝐅𝐈𝐒𝐹𝑛𝑒𝑔

𝑄
𝑅𝑀𝑆𝐸𝑇 𝑟𝑛 11.4656𝑒−3 11.4655𝑒−3 11.4647𝑒−3

𝑅𝑀𝑆𝐸𝐶ℎ𝑘 10.4081𝑒−3 10.4074𝑒−3 10.3992𝑒−3

𝐅𝐈𝐒𝑁𝑜𝑟𝑚
𝑇𝑖𝑛

𝐅𝐈𝐒𝐹𝑝𝑜𝑠

𝑇𝑖𝑛
𝐅𝐈𝐒𝐹𝑛𝑒𝑔

𝑇𝑖𝑛
𝑅𝑀𝑆𝐸𝑇 𝑟𝑛 2.0375𝑒−3 2.0375𝑒−3 2.0375𝑒−3

𝑅𝑀𝑆𝐸𝐶ℎ𝑘 1.8326𝑒−3 1.8326𝑒−3 1.8326𝑒−3

𝐅𝐈𝐒𝑁𝑜𝑟𝑚
𝑇𝑜𝑢𝑡

𝐅𝐈𝐒𝐹𝑝𝑜𝑠

𝑇𝑜𝑢𝑡
𝐅𝐈𝐒𝐹𝑛𝑒𝑔

𝑇𝑜𝑢𝑡
𝑅𝑀𝑆𝐸𝑇 𝑟𝑛 2.1218𝑒−3 2.1218𝑒−3 2.1218𝑒−3

𝑅𝑀𝑆𝐸𝐶ℎ𝑘 2.0142𝑒−3 21.0719𝑒−3 47.3219𝑒−3

Algorithm 2: Exhaustive Searching Algorithm
Result: class

1 initialisation: 𝑐𝑙𝑎𝑠𝑠𝑣 = 0, 𝐽𝑐𝑙𝑎𝑠𝑠 = ∞;
2 for i=1:𝑖 ≤ 𝑛:i++ do

3 𝐽 𝑖 =
‖

‖

‖

‖

𝑃 ∗
𝑟𝑒𝑎𝑙𝑣

− 𝑃 𝑖
𝐹 𝐼𝑆𝑛

𝑣

‖

‖

‖

‖

2

2
;

4 if 𝐽 𝑖 < 𝐽𝑐𝑙𝑎𝑠𝑠 then
5 𝐽𝑐𝑙𝑎𝑠𝑠 = 𝐽 𝑖;
6 𝑐𝑙𝑎𝑠𝑠𝑣 = 𝑖;
7 end
8 end

6.3.1. Neuro Fuzzy classifier
The classifier is based on several ANFIS structures that detect mea-

surement failures in one of the solar field variables. Fig. 7 shows the
structure of the Neuro-Fuzzy classifier. The first principal component
𝐏𝐂𝐀𝑛

𝑣 obtained from each 𝐜𝐥𝐚𝐬𝐬𝑛𝑣 calculated previously in Section 6.1
remains as fixed parameters and serves to define the new prototypes in
the dimension of each class, where 𝑣 defines the variable sensors. When
he normalised data set is multiplied by the first principal component
𝐂𝐀𝐹𝑝𝑜𝑠

𝑣 , the prototype for the class 𝐜𝐥𝐚𝐬𝐬𝐹𝑝𝑜𝑠𝑣 is obtained. Multiplying the
data by 𝐏𝐂𝐀𝑁𝑜𝑟𝑚

𝑣 gives the projection in 𝐜𝐥𝐚𝐬𝐬𝑁𝑜𝑟𝑚
𝑣 . The input data passes

through the first component 𝐏𝐂𝐀𝐹𝑛𝑒𝑔
𝑣 and is projected into 𝐜𝐥𝐚𝐬𝐬𝐹𝑛𝑒𝑔𝑣 , thus

obtaining the corresponding prototype.
The calculated prototypes form the input vector that evaluates the

𝐅𝐈𝐒𝑛𝑣 models. Finally, the data are passed through the first princi-
pal component 𝐏𝐂𝐀𝑇 𝑜𝑡𝑎𝑙

𝑣 , obtaining the real prototype 𝑃 ∗
𝑟𝑒𝑎𝑙𝑣

, and the
resulting class in the ESA is determined.

After performing the detection process and determining 𝑐𝑙𝑎𝑠𝑠𝑛𝑣 to
which the incoming data set belongs, the Neuro-Fuzzy classifier will
output an integer in the range [1 − 3] where (𝑐𝑙𝑎𝑠𝑠𝑁𝑜𝑟𝑚

𝑣 ∈ 1, 𝑐𝑙𝑎𝑠𝑠
𝐹𝑝𝑜𝑠
𝑣 ∈

2, 𝑐𝑙𝑎𝑠𝑠
𝐹𝑛𝑒𝑔
𝑣 ∈ 3) which will be the input of the comparative block.

The comparative block consists of a rule (𝙸𝙵 𝑐𝑙𝑎𝑠𝑠𝑛𝑣 = 1 𝚃𝙷𝙴𝙽 𝐹𝑣 =
0 𝙴𝙻𝚂𝙴 𝐹𝑣 = 1)that identifies the value 𝑐𝑙𝑎𝑠𝑠𝑛𝑣 and assigns to the

variable 𝐹𝑣 a value of 1 when there is a defect or 0 when there is no
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Fig. 7. Neuro-Fuzzy classificator.
Fig. 8. Internal architecture of the Detector.
defect. This process is shown in the internal architecture of the detector
in Fig. 8.

As discussed in Section 2, an advantage of ANFIS is the possibility
of interpreting the internal structure inference system. In this case, we
have observed that the differences between 𝐅𝐈𝐒𝑁𝑜𝑟𝑚

𝑣 and 𝐅𝐈𝐒𝐹𝑛𝑒𝑔
𝑣 and

𝐅𝐈𝐒𝐹𝑝𝑜𝑠
𝑣 are only in the independent term of the consequent of each.

This process avoids training with failures and to provide a sensitiv-
ity adjustment parameter (the increment or decrement value of the
independent term).

7. NN regressors

In this section, NN-based models are presented to predict the correct
value of a faulty sensor at any specific time unit. The offset between the
input value and the prediction indicates the type of sensor discrepancy.
Networks use data about fault-free sensors to make regression predic-
tions. It is assumed that a failure occurs in a single sensor in the system
at a specific time unit. Two types of NN are presented:

1. The DNN is used to predict the correct value of one sensor given
the other values of the fault-free sensors.

2. RNN using LSTM layers is used to predict the correct value of one
sensor given the previous states of fault-free sensors.
8

7.1. Regression DNN

A regression DNN architecture is presented for sensor prediction.
The same architecture is used to train four networks, each of which is
used to predict 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒, 𝑤𝑎𝑡𝑒𝑟 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒, 𝑖𝑛𝑙𝑒𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 and 𝑜𝑢𝑡𝑙𝑒𝑡
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 in sensors. The architecture consists of a network with six
dense hidden layers, of which the first four have 40 units, 5th has 20
units, and 6th has 10 units. All hidden units have the RELU activation
function. The output layer has a single unit with a linear activation
function. The linear activation function allows the network to perform
the regression process to predict the numerical values of the faulty
sensor. Fig. 9 represents the proposed architecture.

The four networks learn from the training and data set in Section 5.
Before training, the data were normalised to mean 0 and deviation 1.
With this network, faulty sensors are predicted from the values of the
other fault-free sensors in the same instant of time. PCA is applied to the
predictor values and the principal components that explain a variance
greater than 0.9 are retained. The number of units in the input layers of
each network depends on the number of principal components chosen.

The networks are trained with Adam optimiser using a learning rate
of 0.001, with parameters: 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜀 = 1𝑒−7 and without
weight decay. The learning process is stopped after 2000 epochs with
parameters: batch_size = 10 and 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 100 𝑒𝑝𝑜𝑐ℎ𝑠. The loss function
to minimise is the Mean Absolute Error (MAE), defined by:

𝑀𝐴𝐸 =
∑𝑁

𝑖=1 |�̂� − 𝑦𝑖| (7)

𝑁
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Fig. 9. Regression DNN architecture.

here 𝑁 is the number of sensors, 𝑦𝑖 is the sensor value in one reading
nd the values �̂� are the predictions of the sensor output. Then |�̂� − 𝑦𝑖|
s the absolute prediction error of the sensor 𝑖th.

For all networks, the k-fold technique was used in the training
rocess with 𝑘 = 4 folds. Of the four models returned by k-keep, the one
ith the lowest MAE in the validation set is chosen. The use of other
NN architectures was attempted without significant improvement in

hese results. Smaller networks do not show to be accurate in the
egression for MAE measures, whereas larger architectures show signs
f overfitting.

.2. Regression RNN

As a second approach, an RNN is created using LSTM layers. RNN
rchitectures are popular when there exists a time dependence on
he data. LSTM layers are used to avoid convergence problems when
raining these types of networks. In this case, the correct value of a
aulty sensor is predicted given the values of the fault-free sensor from
he last 𝑘 sensor readings.

To predict a defective sensor from the other values in the training
ata set, a specific RNN architecture was implemented, Fig. 10. The
rchitecture consists of two LSTM layers with 40 units each, two dense
ayers with 20 and 10 units, and the RELU activation function. The
utput layer has only one unit with a linear activation function to make
he numerical prediction of the correct value for the faulty sensor. The
ecurrent layers at the beginning of the network are used to extract
eatures from consecutive states 𝑘 assuming the time dependence of the
ata. From these features, the last two fully connected layers predict the
xpected value of each sensor using regression.

Five LSTM networks were created, one for each sensor. As in
he previous case, the training and validation data were normalised
o mean 0 and deviation 1, and PCA was applied to the predictive
ensor values, keeping the principal components that explain a variance
reater than 0.9. Later, the data set is converted to temporal sequences
sing the parameter 𝑡, which indicates how many time instants in the
ast the network considered for the prediction. For example, if 𝑡 = 5 the

network will use for prediction the principal components of the fault-
free variables in the current time instant plus the components from the
9

Fig. 10. RNN architecture using LSTM layers.

last 5 time instants. The shape of the input of each network depends on
the number of principal components and the value chosen for 𝑡, Fig. 10.

As in DNN networks, the LSTM networks are trained with Adam
optimiser with parameters: 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999,
𝜀 = 1𝑒 − 7 and without weight decay. The learning process is stopped
after 2000 epochs with parameters: 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 10 and 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 100
𝑒𝑝𝑜𝑐ℎ𝑠. The loss function to minimise is the MAE.

The k-fold technique was used in the training process with 𝑘 = 4
folds. Of the four models returned by k-keep, the one with the lowest
MAE on the validation set was chosen. Other architectures for the
recurrent network were studied without a significant improvement in
precision in the validation set.

8. Results

In this section, simulation results of a complete implementation
of the methodology applied to the SCP are presented. The simulation
integrates two branches: the NF system for fault detection and the RNN
for offset error prediction. Experiments are presented for each specific
branch and for both branches combined. The test data set used in the
simulation is different from the training and validation data used to fit
the machine learning models and consists of real data from the plant.
Furthermore, a discussion of the results obtained is presented, including
a comparison with a similar approach in the literature.

In the detection branch experiments, the NF was tested with real
data from the plant. The input vectors are created by taking the
principal components of the sensor readings in the test data to evaluate
each 𝐅𝐈𝐒𝑛𝑣 model. The first evaluation was carried out considering
positive faults, negative faults, and fault-free values in the solar ra-
diation sensor. If the data do not contain solar radiation faults, the
values estimated by 𝐅𝐈𝐒𝐍𝐨𝐫𝐦𝐈 follow the real prototype that characterises
𝑐𝑙𝑎𝑠𝑠𝑁𝑜𝑟𝑚

𝐼 , Fig. 11(a). If the input data are positive for failure, the
model 𝐅𝐈𝐒𝐅𝐩𝐨𝐬𝐈 estimates the prototype 𝑐𝑙𝑎𝑠𝑠

𝐹𝑝𝑜𝑠
𝐼 , as shown in Fig. 11(b).

Finally, if negative faults are considered, the model that best estimates
the real prototype is 𝐅𝐈𝐒𝐅𝐧𝐞𝐠𝐈 that characterises 𝑐𝑙𝑎𝑠𝑠

𝐹𝑛𝑒𝑔
𝐼 , Fig. 11(c). For

evaluation, ESA performs a direct comparison to assign the correct class
to the values estimated by 𝐅𝐈𝐒𝐧𝐈 , which produces great results.

As can be seen in Fig. 11, the solar radiation pattern differs during
the day and at night. The decrease in irradiance due to the absence
of sunshine makes the classification less accurate, Fig. 12. In this case,
it is assumed that the operation of the plant changes to another mode
in which the solar collector is not used. Table 5 shows the confusion

matrix with the general classification results for the radiation sensor.
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Fig. 11. Prototype obtained by 𝐅𝐈𝐒𝐧𝐈 of the solar radiation.

Fig. 12. Class assignment by means of ESA with different 𝐈 data.

Fig. 13. Prototype obtained by 𝐅𝐈𝐒𝑛𝐐 of the flow rate.
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Fig. 14. Class assignment by means of ESA with different 𝐐 data.
Table 5
Confusion matrix 𝐈.

Predicted Classes
𝐅𝐧𝐞𝐠 Norm 𝐅𝐩𝐨𝐬

Actual
𝐅𝐧𝐞𝐠 419 0 0
Norm 0 400 19
𝐅𝐩𝐨𝐬 0 19 400

Precision 100% 95.47% 95.47%
Recall 100% 95.47% 95.47%
Accuracy 96.98%

Table 6
Confusion matrix 𝐐.

Predicted classes
𝐅𝐧𝐞𝐠 Norm 𝐅𝐩𝐨𝐬

Actual
𝐅𝐧𝐞𝐠 352 39 28
Norm 0 366 53
𝐅𝐩𝐨𝐬 3 0 416

Precision 84.01% 87.35% 99.28%
Recall 99.15% 90.37% 83.70%
Accuracy 90.21%

Similarly, experiments were performed considering positive faults,
egative faults, and fault-free values on the water flow sensor, Fig. 13.
he assignment of classes is shown in Fig. 14 and the respective
onfusion matrix is presented in Table 6. Results show that the NF
ystem is capable of correctly classifying, as shown in Fig. 15, a flow
ailure. Furthermore, the detector is fed data that contain faults in both
he output temperature and the flow sensors to test the accuracy of the
odel, as can be seen in Table 7. Simulations demonstrated the great
erformance of the NF detector in classifying faults presented in two
ensors at the same time, Fig. 16.

Regarding the offset error prediction branch, a study on the preci-
ion of the DNN and RNN architectures was developed. For each sensor,
ositive and negative offsets were simulated taking the rest of the
ensor to evaluate the networks. Table 8 shows the performance of the
NN and RNN architectures in the test set. In the case of RNN, a study
as carried out on the parameter 𝑡, which is the number of states in the
ast that the RNN uses to make predictions. In the study, the recurrent
etwork used 1, 5, 10, and 15 states in the past to check if there was
relationship between the current and previous states of the physical

ntity. In simulation results, the RNN architecture outperformed the
NN, proving the learning capabilities of the recurrent network to
11
Table 7
Results of Neuro-Fuzzy Classifiers.

NF classifier Flow rate failure data.
𝑐𝑙𝑎𝑠𝑠𝑁𝑜𝑟𝑚

𝑣 𝑐𝑙𝑎𝑠𝑠𝐹𝑝𝑜𝑠
𝑣 𝑐𝑙𝑎𝑠𝑠𝐹𝑛𝑒𝑔

𝑣

Water Flow: 34 23 362
Inlet Temp: 390 24 5
Solar radiation: 402 0 17

NF Classifier Outlet temperature failure data.
𝑐𝑙𝑎𝑠𝑠𝑁𝑜𝑟𝑚

𝑣 𝑐𝑙𝑎𝑠𝑠𝐹𝑝𝑜𝑠
𝑣 𝑐𝑙𝑎𝑠𝑠𝐹𝑛𝑒𝑔

𝑣

Water Flow: 393 23 3
Outlet Temp: 1 418 0
Solar radiation: 380 0 39

Table 8
Resulting mean and deviation of the MAE for the DNN and RNN networks in the
validation set.

Cases I Q 𝐓𝐢𝐧 𝐓𝐨𝐮𝐭

𝐷𝑁𝑁 10.70 ± 14.76 0.97 ± 1.48 12.73 ± 14.14 13.88 ± 15.25
𝐿𝑆𝑇𝑀 𝑡 = 1 14.31 ± 13.77 1.07 ± 1.43 14.65 ± 14.01 15.88 ± 14.82
𝐿𝑆𝑇𝑀 𝑡 = 5 13.71 ± 12.70 1.11 ± 1.61 13.51 ± 13.06 13.44 ± 12.58
𝐿𝑆𝑇𝑀 𝑡 = 10 11.90 ± 12.00 0.93 ± 0.91 14.31 ± 13.50 𝟏𝟐.𝟓𝟗 ± 𝟏𝟏.𝟓𝟎
𝐿𝑆𝑇𝑀 𝑡 = 15 𝟗.𝟔𝟎 ± 𝟗.𝟑𝟕 𝟎.𝟖𝟗 ± 𝟏.𝟐𝟎 𝟏𝟎.𝟖𝟐 ± 𝟏𝟎.𝟓𝟑 13.63 ± 11.61

detect patterns from data series. Furthermore, the results indicate that
the precision of the prediction increases as the value of 𝑡 increases,
reaching the best precision when 𝑡 = 15. In this way, the relation in
time of the sensor values is demonstrated.

8.1. Integration of the fault detection system and the offset error prediction

When neurofuzzy detection models are joined with recurrent pre-
diction models, a full implementation of the proposed methodology is
obtained. The entire system has the ability to detect defective sensors in
the SCP and measure the offset of failure, Algorithm 1. The implemen-
tation of the entire system can be found on Github.3 In the code, the
detection and prediction models are executed in parallel, maximising
the time in the computation. The experiments were performed with a
3.20 GHz processor with 16.0 GB of RAM. The programming language
used was Python 3.8.

3 https://github.com/fabio-rodriguez/dataqualitySCP

https://github.com/fabio-rodriguez/dataqualitySCP


Computers in Industry 151 (2023) 103958F. Rodríguez et al.
Fig. 15. Classification with flow rate failure data.
Fig. 16. Classification of irradiance with outlet temperature failure.
For testing the proposed methodology, a simulation was executed
with real data corresponding to a working day of the SCP, from 11:00
am to 6:00 pm. Data failures were induced by simulating offsets. Fig. 17
shows the result of the proposed methodology applied to the SCP, using
the RNN architecture in the offset prediction with a value of 15 for the
parameter 𝑡, which reached better results in previous experiments.

In the simulation, faults are simulated in all sensors with the restric-
tion that only one sensor fails at the same time. In each reading, every
sensor entry is verified for faults using the NF classifiers, and offsets
are calculated using the RNN outputs. In this particular experiment,
the historical record is subsequently filled with readings that contain
failures, which obviously leads to bad predictions. To overcome this
issue, when a sensor is detected to be faulty, the historical record takes
the prediction of the expected value made by the RNN, so the historical
record is filled with fault-free values and approximations of the faulty
values. In this realistic simulation, errors in detection and prediction
are carried out throughout the work day. Despite these drawbacks,
Table 9 shows promising results in terms of fault detection accuracy
and offset prediction error.

In real-world system applications, users must create their own defi-
12

nition of sensor failure. For example, taking the parameters 𝑛 and 𝛼, 𝑛
Table 9
Detection accuracy (DA) and mean prediction error (MPE) in offset prediction for a
working day using the parameter 𝑡 = 15 for RNN.

Sensor DA MPE

Irradiance 0.89 34.56 ± 68.19
Flow 0.83 0.61 ± 1.07
Inlet Temp. 0.83 1.35 ± 2.50
Outlet Temp. 0.88 1.62 ± 2.66

representing a number of states and 𝛼 representing a probability value
(0 ≤ 𝛼 ≤ 1). A definition of system failure could be the proportion of
faulty states found in consecutive 𝑛 states; if this proportion is greater
than 𝛼, then the current state is declared faulty. This kind of concept
can avoid the point where the system detects occasional outliers, such
as sensor noise.

8.2. Comparison and discussion

The methodology and results presented are compared with a similar

approach in the literature. In Ruiz-Moreno et al. (2022), a multilayer
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Fig. 17. LSTM networks prediction with 𝑡 = 15.
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perceptron network is used to detect and isolate faults in real time in
the Fresnel solar field. The faults are grouped into two main categories:
those related to the mirrors and their reflectivity and faults in the flow
rate. To improve the performance of the network, a decoupling stage
is proposed in which the collectors are defocused and the flow rate
is decoupled from reflexion and collector efficiency. Great results are
shown in the fault classification process, reaching a prediction accuracy
of 94.2% in the test set.

Several differences between the present work and Ruiz-Moreno
et al. (2022) can be highlighted. Unlike the quoted article, the method-
ology proposed in this work is a general-purpose system that can
be adapted to similar sensor-based DTs in industry, and can allow
classification between 𝑁 types of failure. Furthermore, the proposed
methodology is not only a failure classification system, but also a
system that allows the variable under suspicion to be compared with
its expected value, which allows for a multidimensional assessment of
the data quality. One application can be the prediction of displacement
errors, which is useful to give an idea of the severity of sensor damage.

Regarding the data set, in Ruiz-Moreno et al. (2022) the authors
used simulated data and considered low dynamics with smooth changes
throughout the day, while the proposed approach uses a data set that
combines real SCP data with simulated data, in which dynamic be-
haviour is considered. Furthermore, the authors did not assume failures
in temperature readings, while we considered failures in any of the
plant sensors. All of this makes the system predictors developed more
reliable and realistic.

In terms of classification accuracy, the authors compared several
network architectures, testing with different numbers of layers and
units per layer. The model that retrieved the best results consisted of
three hidden layers of 200, 100, and 50 units, respectively. However,
the NF detection system proposed in this work requires a relatively low
number of epochs to accurately fit the data set and allows the use of
expert knowledge to improve the detection of faults. These facts make
it easier to update and upgrade the NF detector during the plant life
13

cycle. The performance of the NF system, on the more realistic data f
set that has been used, is greater than 90% for each sensor, so both
techniques are competitive. Furthermore, in this work, a simulation was
performed with real data for a working day of the SCP and considers
the error carried during the predictions; however, results with precision
over 80% were obtained. Finally, unlike Ruiz-Moreno et al. (2022),
in the present work a study on the time dependence of the data was
carried out. For the prediction of the offset, an RNN was applied that
demonstrates that the historical record of the sensors can be treated as
time sequences.

The approach presented in that work detects faults at the level
of the feedforward controller, since, as can be seen in the results
presented, if a fault is added to this flow rate, it produces a change
in the output temperature, and the same happens if the fault occurs
at the 𝐾𝑜𝑝𝑡 (Optical efficiency). The experiments with which the NN is
alidated are carried out together with the distributed-parameter model
resented in the article, which gives a constant reference temperature.
here are a total of 972 experiments with different initial conditions
nd in a time interval of 11 am−18 pm. Once a failure is detected, an
larm is triggered on that particular day, advising that maintenance is
equired.

There is a major difference between the approach presented in
his paper in relation to the comparative work, since the approach
resented in this paper focusses on the detection of incorrect data in
ensor measurements, and the comparative approach detects faults in
he controller. Furthermore, the presented approach has the ability to
ifferentiate whether the injection was positive or negative through
he NF-detector. A particularity of the work with which it is compared
resents failures in the variable 𝐾𝑜𝑝𝑡 that affects the product (𝐼 ∗
𝑜 ∗ 𝐾𝑜𝑝𝑡), which is part of the physical equation model (PDE) with
hich 𝑇𝑜𝑢𝑡 of the heat transfer fluid is determined. In this context,

his failure has been extrapolated as if it were the failure of the solar
adiation sensor, so the percentage that represents the failure in 𝐾𝑜𝑝𝑡
as been obtained and added to 𝐼 to compare whether detector is able
o distinguish between no failure, failure in irradiance, and failure in

low rate.
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Table 10
Confusion matrix from Ruiz-Moreno et al. (2022).

Predicted classes
𝐹𝑎𝑢𝑙𝑡𝑙𝑒𝑠𝑠 𝐾𝑜𝑝𝑡 𝑄

Actual
𝐹𝑎𝑢𝑙𝑡𝑙𝑒𝑠𝑠 324 0 0
𝐾𝑜𝑝𝑡 0 280 44
𝑄 0 57 267

Precision 100% 83.09% 85.85%
Recall 100% 86.42% 82.41%
Accuracy 89.61%

Table 11
Confusion matrix of NF-Detector.

Predicted classes
𝐹𝑎𝑢𝑙𝑡𝑙𝑒𝑠𝑠 𝐼 𝑄

Actual
𝐹𝑎𝑢𝑙𝑡𝑙𝑒𝑠𝑠 324 0 0
𝐼 0 324 0
𝑄 0 0 324

Precision 100% 100% 100%
Recall 100% 100% 100%
Accuracy 100%

As can be seen in the confusion tables (Tables 10 and 11), the pro-
osed detector, with the same operating conditions as the one presented
y Ruiz-Moreno et al. (2022), has a prediction capacity of 100%. The
ain difference lies in the variables used to detect flow and irradiance

ailures in Table 2. This selection also allows for simultaneous fault
etection.

. Conclusion

In this work, a methodology is proposed to collect high-quality data
rom sensor readings in a sensor-based DT during its life cycle. The
ata collected helps in the periodic updating process of the models
omposing the DT. The methodology can be applied to similar sensor-
ased DT case studies with different numbers and types of sensors.
urthermore, data science techniques can be improved to detect failures
n multiple sensors at the same time and can be easily integrated into
he workflow.

The proposed methodology was applied to a real DT of a SCP. In
his case study, a fuzzy classifier-based evaluator was developed to
etect possible failures in the data provided by solar field sensors, and
xamples of failure detection in solar radiation and flow water sensors
ere depicted. The evaluator is made up of several Takagi–Sugeno

uzzy inference systems that classify each sensor reading into three
ossibilities: positive fault, negative fault, and fault-free. The detection
ystem has shown excellent results in terms of accuracy and sensitivity
ates, outperforming a similar approach in the literature.

In general, there were great results in predicting the error offset of
he sensors. The study in the parameter 𝑡 demonstrated the recurrent

character inherent to the variables involved in the SCP, making the
recurrent LSTM-based network an ideal candidate for the learning
procedure. Machine learning techniques have been shown to have
excellent computational time performance, taking less than a second
to detect failures in each sensor reading. However, a study is needed
on the impact of increasing the value of the parameter 𝑡 to optimise
the accuracy of the networks. Future approaches can be dedicated to
improve the prediction of offsets by conducting this study.

In future work, it is proposed to complete a quality evaluation sys-
tem, assessing several dimensions (accuracy, confidence, completeness,
data volume, and timeliness). It is also interesting in future work to
extend this methodology to the rest of the critical variables of the solar
field that will have a physical-virtual interaction with its complete DT.
The solar field has different modes of operation depending on different
circumstances. The evaluation of the quality of the data will allow
14

for the auto-configuration of the DT to be done with the appropriate 𝜇
context. In addition, machine learning techniques will be improved to
detect failures that occur in multiple sensors at the same time. It will
also be a future research to determine detector fitting parameters for
each of the variables, exploiting the observed property of change only
in the independent term of the resulting ANFIS. This will allow not to
train with faulty data each time the detection is evaluated with more
or less threshold deviation.

Although the work initially focusses on the data quality of one
variable, subsequent tests are carried out in which it is observed that
the developed system, using the proposed methodology, is capable of
detecting multiple errors in several sensors simultaneously with good
performance. These cases are shown in Figs. 15 and 16 as well as in
Table 7. A simultaneous failure in two variables implies, due to the
architecture, a defect that is difficult to evaluate; there is a dependency
on the other variables in the evaluation system. The simultaneous
detection capability of the proposed detector opens a path for future
research in which simultaneous detection and evaluation of several
faults can be obtained.
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ppendix. Adaptive neuro-fuzzy inference system, ANFIS

The classifier based on ANFIS (Jang, 1993), is based on fuzzy TS
ystems (Takagi and Sugeno, 1985) and is composed of rules of type 𝑗:

𝙵 𝑥1 𝚒𝚜 𝐹1𝑗 𝚊𝚗𝚍 𝑥2 𝚒𝚜 𝐹2𝑗 𝚊𝚗𝚍 𝑥𝑖 𝚒𝚜 𝐹𝑖𝑗 ,

𝙷𝙴𝙽 ∶ 𝑓𝑗 (𝑥) = 𝑔0𝑗 + 𝑔1𝑗𝑥1 +⋯ + 𝑔𝑖𝑗𝑥𝑖

here 𝑔𝑖𝑗 ∈ ℜ are parameters, 𝑥𝑖 are inputs, 𝑓𝑗 output, respectively,
or each rule, and 𝐹𝑖𝑗 represents the fuzzy sets defined by Gaussian
embership functions (MF) of the type:

𝐹𝑖𝑗 (𝑥𝑖) =
1

1 +

[

(

𝑥𝑖−𝑐𝑖𝑗
𝑎𝑖𝑗

)2
]𝑏𝑖𝑗

− 1
2

(

𝑥𝑖−𝑐𝑖𝑗
𝑎𝑖𝑗

)2

(A.1)
𝐹𝑖𝑗 (𝑥𝑖) = 𝑒
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Fig. A.18. Fuzzy Neural Network (Jang, 1993).
here 𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗 is the set of parameters used to vary the MFs. The
alue of the function 𝜇𝐹𝑖𝑗 takes for a given 𝑥𝑖 is known as the degree

of membership of 𝑥𝑖 for the fuzzy set 𝐹𝑖𝑗 . Fig. A.18 presents an ANFIS
s an example with 𝑛 input variables and one output variable. The first
ayer is made up of the membership functions of each 𝐴𝑖𝑗 , defined by
he membership degree.

𝐹𝑖𝑗 ∶ 𝑥𝑖 ∈ R ⟼ 𝜇𝐹𝑖𝑗 (𝑥𝑖) ∈ R (A.2)

The output of each node 𝑖 is 𝜇𝐹𝑖𝑗 (𝑥𝑖), the degree of membership of 𝑥𝑖.
For the definition of these membership functions, Gaussian functions
are used. The second layer features nodes labelled 𝛱 that implement
fuzzy engine inference.

𝜔𝑗 (𝑥) = 𝜇𝐹1𝑗 (𝑥1) ⋅ 𝜇𝐹2𝑗 (𝑥2) ⋅ ⋯ ⋅ 𝜇𝐹𝑛𝑗 (𝑥𝑛) (A.3)

Or

𝜔𝑗 (𝑥) = 𝑚𝑖𝑛{𝜇𝐹1𝑗 (𝑥1), 𝜇𝐹2𝑗 (𝑥2),… , 𝜇𝐹𝑛𝑗 (𝑥𝑛)} (A.4)

The third layer normalises the inference motor. The output of each node
of this layer is:

𝑎𝑖(𝑥) =
𝜔𝑖(𝑥)

∑𝑁
𝑖=1 𝜔𝑖(𝑥)

(A.5)

𝑁 is the number of rules of the system. The fourth layer has adaptive
nodes, and the fifth layer is the defuzzyfication node. For TS systems,
the output could be the following:
𝑁
∑

𝑖=1
𝑎𝑖(𝑥) ⋅ 𝑓𝑖(𝑥) =

∑𝑁
𝑖=1 𝜔𝑖(𝑥) ⋅ 𝑓𝑖(𝑥)
∑𝑁

𝑖=1 𝜔𝑖(𝑥)
(A.6)
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