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Transfer reactions of exotic nuclei including core deformations: 11Be and 17C
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Background: Reactions with halo nuclei from deformed regions exhibit important deviations from the inert
core + valence picture. Structure and reaction formalisms have recently been extended or adapted to explore the
possibility of exciting the underlying core.
Purpose: We will study up to what extent transfer reactions involving halo nuclei 11Be and 17C can be reproduced
with two different models that have previously shown a good success reproducing the role of the core in light
halo nuclei.
Methods: We focus on the structure of 11Be and 17C with two core + valence models: Nilsson and a semimicro-
scopic particle-rotor model using antisymmetrized molecular dynamic calculations of the cores. These models
are later used to study 16C(d, p) 17C and 11Be(p, d ) 10Be transfer reactions within the adiabatic distorted wave
approximation. Results are compared with three different experimental data sets.
Results: A good reproduction of both the structure and transfer reactions of 11Be and 17C is found. The
Nilsson model provides an overall better agreement for the spectrum and reactions involving 17C while the
semimicroscopic model is more adequate for 11Be, as expected, since the 17C core is closer to an ideal rotor.
Conclusions: Both models show promising results for the study of transfer reactions with halo nuclei. We expect
that including microscopic information in the Nilsson model, following the spirit of the semimicroscopic model,
can provide a useful, yet simple framework for studying newly discovered halo nuclei.
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I. INTRODUCTION

The study of exotic nuclei is one of the main topics in
current nuclear physics research. They are nuclei far from
the stability line, with a rather different ratio of protons to
neutrons from that of stable nuclei. Because of that, they
usually exhibit very different properties from those of stable
nuclei. A particularly interesting case is that of halo nuclei.
These are weakly bound systems composed of one or two
highly delocalized valence particle(s) and a relatively compact
core. As a schematic picture, the valence particles form a halo
of matter around the core.

Weakly bound nuclei are conveniently described within
few-body models, in which deformations of the fragments
are usually ignored. However, core deformations are known
to affect significantly both the structure and the dynamics
of these systems [1–4]. Therefore, deformation needs to be
included in structure and reaction models, for a meaningful
and reliable description of reactions including these nuclei.
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In previous works, the effect of core deformations in nu-
clear reactions has been included within the particle-rotor
model, which is based on a weak-coupling limit. This model
may be inaccurate for well-deformed nuclei, for which ap-
proaches based on the strong-coupling limit, such as the
well-known Nilsson model, might provide a more suitable
framework.

In this work, we present an exploratory study of the de-
formed weakly bound nuclei 17C and 11Be within the Nilsson
model. A two-body model is considered: a neutron moving
in a deformed potential generated by the core. Although this
is not the first application of the Nilsson model to these
nuclei [5,6], a novelty of our work is the use of a pseu-
dostate method to compute the bound and unbound states of
the system. In this method, the energies of these states and
their associated wave functions are obtained diagonalizing the
internal Hamiltonian in a basis of square-integrable functions,
for which we employ the transformed harmonic-oscillator
functions (THO) which has been successfully applied to the
discretization of the continuum of weakly bound nuclei for its
application to breakup and transfer direct reactions both for
two-body and three-body systems [2,7].

For comparison purposes, we also present calculations for
the same nuclei based on the so-called PAMD model, in which
the Hamiltonian is constructed using the transition densities
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of the corresponding cores calculated in the antisymmetrized
molecular dynamics (AMD) formalism. The PAMD model
was introduced in Ref. [8] and applied to 11Be and 19C with a
promising reproduction of the structure of both nuclei. Results
for 17C can be found in Refs. [9,10].

To assess the quality and reliability of the developed mod-
els, the calculated wave functions are applied to transfer
reactions involving these nuclei. Two transfer reactions have
been studied by implementing the results of the structure
calculations, 16C(d, p) 17C and 11Be(p, d ) 10Be. The adiabatic
distorted-wave approximation (ADWA) [11] has been used
for this purpose. The results of theoretical calculations are
compared with the experimental data recently measured in
GANIL and RCNP.

The Nilsson scheme has been previously applied to reac-
tions involving light exotic nuclei [12–14] but only to extract
the required spectroscopic factors, which are then combined
with single-particle wave functions calculated in a spherical
potential. However, to the best of our knowledge, this is the
first time that the effect of the deformation is considered also
on the radial form factor of the transfer reaction for exotic
nuclei and, not only, for the calculation of the corresponding
spectroscopic factor. As already shown in stable nuclei [15],
there is a non-negligible effect on the radial extension of the
form factor due to the deformation. One can only expect this
effect to increase considerably in the case of halo nuclei.

The paper is organized as follows: Sec. II. is about the
structure formalism, it focuses on the description of the novel
approach based on the Nilsson model and also briefly explains
the PAMD model. Section III shows the application of the
ADWA approach to one neutron transfer reactions. The results
of the application of the two models to the 17C and 11Be nuclei
can be seen in Sec. IV. In Sec. V we study the reactions
16C(d, p) 17C and 11Be(p, d ) 10Be. Finally, we discuss the
main results in Sec. VI.

II. STRUCTURE FORMALISM

We consider a composite nucleus, described as a two-body
system, comprising a weakly bound nucleon coupled to a core.
The Hamiltonian of the system can be written as

H = T (�r) + V�s(r)(�� · �s) + Vvc(�r, ξ ) + hcore(ξ ), (1)

where T (�r ) is the kinetic energy operator for the rela-
tive motion between the valence and the core, hcore(ξ ) is
the Hamiltonian of the core, and Vvc(�r, ξ ) is the effective
valence-core interaction. A spin-obit term with the usual
radial dependence V�s(r) is added to this valence-core interac-
tion. ξ denotes the core degrees of freedom, so the dependence
of Vvc(�r, ξ ) on it accounts for core-excitation effects.

In this work, two different models have been considered,
which can be regarded as opposite limits of the coupling
strength, namely, strong and weak coupling. For the strong
coupling, the Nilsson model, as formulated in Ref. [16], was
used. For the weak-coupling case, we employ the semimi-
croscopic particle-plus-AMD (PAMD) model proposed in
Ref. [8]. This second model obtains the coupling poten-
tial Vvc(�r, ξ ) convoluting an effective NN interaction with

microscopic transition densities of the core nucleus calculated
with antisymmetrized molecular dynamics (AMD) [17,18].

The eigenfunctions of the Hamiltonian, for a given energy
ε, are characterized by the parity π and the total angular
momentum �J , resulting from the coupling of the angular
momentum �j of the valence particle to the core angular mo-
mentum �I . These functions can be generically expressed as

�Jπ

εM (�r, ξ ) =
∑

α

RJπ

εα (r)�M
αJ (r̂, ξ ), (2)

where �M
αJ (r̂, ξ ) refers to the eigenstates of J2 and Jz resulting

for the coupling of �j to �I ,

�M
αJ (r̂, ξ ) ≡ [

Y j
�s(r̂) ⊗ φI (ξ )

]
JM . (3)

Here, �� is the orbital angular momentum of the valence par-
ticle relative to the core, which couples to the spin of the
valence particle �s to give the particle total angular momentum
�j. The label α denotes the set of quantum numbers {�, s, j, I}.
Y jm

�s (r̂) denotes the wave function resulting from coupling the
spin of the valence particle with the corresponding spherical
harmonic.

A. Nilsson model

A key aspect of the Nilsson model is that, instead of con-
sidering the relative motion valence-core in the space fixed
laboratory frame (�r ), it considers the intrinsic frame (�r′),
which rotates jointly with the core. For this frame, if we
assume that the core has a permanent deformation, we can
assume that the potential Vvc depends on �r′ with the same
geometry and does not depend explicitly on ξ .

In the original Nilsson model, the valence-core interaction
is assumed to be an anisotropic harmonic-oscillator potential.
However, in this work, a more realistic Woods-Saxon potential
is used and a permanent axially symmetric quadrupole defor-
mation is applied. Following [16], we obtain to first order in
the deformation parameter β:

V Nilsson
vc (r, θ ′) = Vc(r) − βr

dVc(r)

dr
Y20(θ ′), (4)

where θ ′ is the angle with respect to the symmetry axis of the
core and r′ coincides with r, the relative distance between core
and valence. Note that deformations with β > 0 and β < 0
correspond, respectively, to prolate and oblate shapes. Expres-
sion (4) can be in principle applied to deform any central
potential Vc(r), and, in particular, if an isotropic harmonic-
oscillator potential is used, the original Nilsson model term
for the anisotropic oscillator is recovered.

Considering this potential and the kinetic and spin-orbit
terms, with the parameters from [5] for 17C and different val-
ues of β, the Nilsson diagram shown in Fig. 1 is obtained. This
diagram shows how the single-particle energy levels of the
valence nucleon change as the deformation parameter varies.
Except for β = 0, these levels do not have well-defined values
of � and j, but they can be characterized by their parity π and
the projection � of �j along the axial symmetry axis. With the
deformation, the spherical levels degenerated in � separate
according to their � values and begin to mix with other levels
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FIG. 1. Nilsson diagram obtained for 17C by diagonalization in
the THO basis using the parameters from [5]. Solid lines represent
positive-parity levels, while negative-parity levels are represented by
dashed lines.

with the same �. For β > 0, the Nilsson levels originating
from the same spherical level split in energy according to
their � value, with higher � values lying at higher energies.
Due to the symmetry of the system, the � and −� projection
states are equivalent, therefore each Nilsson level has twofold
degeneracy.

The complete Hamiltonian of the system also includes an
intrinsic core term. In this case, the core is approximated
by a perfect rotor. Therefore, hcore depends on the angular
momentum of the core, but the relation �I = �J − �j can be used,
resulting in

hNilsson
core = h̄2

2J
�I2 = h̄2

2J ( �J − �j)2, (5)

where J is the moment of inertia of the core. This collective
term mixes the different single-particle Nilsson levels, causing
� to stop being a good quantum number for the eigenstates of
the full Hamiltonian.

In this model, the eigenstates are expressed as

�Jπ

εM

(�r′, ω
) =

∑
ν

RJπ

εν (r)�M
νJ (r̂′, ω), (6)

where now ν corresponds to the quantum numbers {�, s, j,�}
with � > 0. The functions �M

νJ (r̂′, ω) are defined as

�M
νJ

(
r̂′, ω

) =
√

2J + 1

4π

[
Y j�

�s

(
r̂′)DJ

M�(ω)∗

+(−1)J− jY j−�

�s

(
r̂′)DJ

M−�(ω)∗
]
. (7)

The definition of Ref. [19] is used for the rotation matrices
DJ

M�(ω) and the three Euler angles are denoted by ω. The
functions �M

νJ (r̂′, ω) are orthonormal and take into account
the symmetry regarding the � and −� projections.

Assuming the core to be a rotor, expressions (2) and (6) are
equivalent and can be interchanged using the relation

RJπ

εα (r) =
√

2I + 1

2J + 1

√
1 + (−1)I

∑
�

〈 j�I0|J�〉RJπ

εν (r), (8)

where � and j are the same for α and ν and 〈 j�I0|J�〉 is
a Clebsch-Gordan coefficient. This expression is obtained by
transforming �M

αJ (�r, ξ ) into �M
νJ (r̂′, ω), using the properties

of the rotational matrices.

B. The transformed harmonic oscillator basis

In this section, we briefly review the method followed in
the present work to obtain the eigenvalues of the Hamiltonian
and their associated wave functions.

The eigenstates of a two-body Hamiltonian, like that of
Eq. (1), follow the expression (2) or (6), and the radial func-
tions RJπ

εα (r) or RJπ

εν (r) can be determined in several ways.
A common procedure is to insert the expansion (2) into the
Schrödinger equation, giving rise to a set of coupled dif-
ferential equations for the radial functions RJπ

εα (r) (see, e.g.,
Ref. [20]).

Alternatively, these functions can be obtained by diago-
nalizing the Hamiltonian in a discrete basis. This basis is
chosen in the form ψbasis

nτJM = Rbasis
n� (r)�M

τJ , where τ can be
α = {�, s, j, I} or ν = {�, s, j,�} and the function �M

τJ is
given by (3) or (7), respectively. Thus, the eigenstates of the
Hamiltonian can be expanded in the discrete basis as

�Jπ

iM =
∑
nτ

CiJπ

nτ ψbasis
nτJM =

∑
nτ

CiJπ

nτ Rbasis
n� (r)�M

τJ . (9)

There are many possible choices for the basis functions
Rbasis

n� (r) (Gaussian, harmonic oscillator, Laguerre, etc.). In
this work we use the transformed harmonic-oscillator (THO)
basis, obtained from the harmonic-oscillator basis with an
appropriate local scale transformation (LST) [21,22].

If the LST function is denoted by s(r), the THO states are
obtained as

RTHO
n� (r) = s

r

√
ds

dr
RHO

n� [s(r)], (10)

where RHO
n� (s) (with n = 1, 2, . . .) is the radial part of the usual

HO functions. According to the definition given above, the
LST is indeed not unique. Here, we adopted a parametric form
for the LST from Karataglidis et al. [23]:

s(r) =
⎡
⎣ 1(

1
r

)m + (
1

γ
√

r

)m

⎤
⎦

1
m

, (11)

which depends on the parameters m and γ . The extension of
RHO

n� (s) will also depend on the oscillator length b. Note that,
asymptotically, the function s(r) behaves as s(r) ∼ γ

√
r and

hence the functions obtained by applying this LST to the HO
basis behave at large distances as exp(−γ 2r/2b2). Therefore,
the ratio γ /b can be related to an effective linear momentum,
keff = γ 2/2b2, which governs the asymptotic behavior of the
THO functions. As the ratio γ /b increases, the radial exten-
sion of the basis decreases and, consequently, the eigenvalues
obtained upon diagonalization of the Hamiltonian in the THO
basis tend to spread at higher excitation energies. Therefore,
γ /b determines the density of eigenstates as a function of
the excitation energy. In all calculations presented in this
work, the power m has been taken as m = 4. This choice is
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discussed in Ref. [23] where the authors found that the results
are weakly dependent on m.

Note that, by construction, the family of functions RTHO
n� (r)

constitute a complete orthonormal set. Moreover, they decay
exponentially at large distances, thus ensuring the correct
asymptotic behavior for the bound wave functions. In practical
calculations, a finite set of τ channels and wave functions as
in Eq. (10) are retained, and the Hamiltonian is diagonalized
in this truncated basis, giving rise to a set of eigenvalues {εJπ

i }
and their associated eigenfunctions, {�Jπ

iM}. As the basis size
is increased, the eigenstates with negative energy will tend to
the exact bound states of the system, while those with positive
eigenvalues can be regarded as a finite representation of the
unbound states.

This analytical THO basis has been successfully applied to
the structure and reactions of two-body systems in Ref. [24]
and generalized to the case in which core excitations are
included [25].

III. ONE-NEUTRON TRANSFER REACTIONS

As in the case of stable nuclei, a significant source of
information of halo nuclei stems from the analysis of trans-
fer reactions involving these nuclei. We focus on C(d, p)A
and A(p, d )C reactions, where A corresponds to one of the
nuclei studied with our models and C to its respective core.
In this case, they are studied using the adiabatic distorted-
wave approximation (ADWA) [11]. The formalism for this
approximation is identical to that of the distorted-wave Born
approximation (DWBA), with the difference that adiabatic po-
tentials are calculated between deuteron and the other nucleus.
The reason for using ADWA instead of DWBA is to take into
account, approximately, the effect of deuteron break-up on the
calculation.

Considering for definiteness the (d, p) case, the transition
amplitudes are calculated in post form:

T post
i f = 〈χ (−)

�kpA
ψCA|Vpn + UpC − UpA|χ (+)

�kdC
ψd〉, (12)

where χ�kdC
and χ�kpA

are distorted waves for the entrance
and exit channels, respectively, depending on the correspond-
ing deuteron and proton momenta. The function ψd stands
for deuteron ground-state wave function, generated with the
potential Vpn. The operators UpC and UpA are optical poten-
tials for the p + C and p + A systems. Our structure model
is implemented in the overlap ψCA ≡ 〈C|A〉. Starting from
expression (2), it can be shown

ψCA(�r ) =
∑

j

〈JM| jm jImI〉RJπ

εα (r)Y j
�s(r̂). (13)

Therefore, only the RJπ

εα (r) functions resulting from our mod-
els are needed. The transition amplitudes are calculated for
given states of nuclei A and C, in our models, which implies
well-defined {Jπ , ε, I} values with their compatible j values.

Similarly, in the (p, d ) case, the transition amplitudes are
calculated in prior form. The amplitudes and their corre-
sponding cross sections are calculated by using the FRESCO

code [26].

Experimental Nilsson PAMD
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FIG. 2. Experimental and calculated energy levels of 17C. Start-
ing from the left, the second column is the Nilsson model and the
third is the PAMD. Experimental values are from Refs. [29,30].

IV. APPLICATION TO 17C AND 11Be

The Nilsson Hamiltonian has been built and diagonalized
in the THO basis for the 17C and 11Be systems. To ensure
convergence, the values 0 � � � 6 and 1 � n � 30 have been
considered. The results of this model have been compared
with those obtained with the PAMD model from Refs. [9,25],
also diagonalized in the THO basis. In this case, 0 � � � 3
and 1 � n � 30 are used. This model only considers the
ground state 0+ and the first-excited state 2+ for the core, so
it would not be consistent to consider higher values of �.

A. Structure of 17C

In the Nilsson calculations presented in this work, the ge-
ometry of the central Woods-Saxon potential used in Ref. [5]
for 17C is adopted (R = 3.266 fm, a = 0.67 fm). The strength
of this central potential Vc(r) is fixed to 44.27 MeV. Conse-
quently, following the relation from Ref. [16], a 8.825 MeV
strength is obtained for the spin-orbit part V�s(r) keeping the
same geometry. The value h̄/2J = 0.3 MeV is used for the
core Hamiltonian, compatible with the excitation energy of
the first-excited state 2+ of 16C (1.766 MeV [27]). The defor-
mation parameter β takes the value 0.34, similar to the value
0.33 used by Amos et al. [28]. The deformation obtained in the
Nilsson model can be compared with the PAMD calculation
following the prescription of Ref. [8] and considering as ra-
dius of the core the inflection point of the central potential. For
17C, we obtain β = 0.44, 29% larger than the value obtained
in the Nilsson model.

With these parameters, the Hamiltonian is fully defined
and diagonalized in the THO basis using b = 2.4 fm and
γ = 2.7 fm1/2. Thus, the energies of the bound states of 17C,
shown in the central spectrum of Fig. 2, are negative eigen-
values of this Hamiltonian. In the same figure, on the left, the
experimental values [29,30] for these levels are shown and,
on the right, the results of the PAMD model. In all cases we
have a 3/2+ ground state, a 1/2+ first excited and a 5/2+
second-excited state. It should be noted that while the PAMD
model predicts the second-excited state as a near-threshold
resonance, in the new Nilsson model it appears as a bound
state whose energy is closer to the experimental one. Also,
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FIG. 3. Radial parts of the wave function obtained for the ground
state of 17C. The panel (a) shows the most relevant components in the
Nilsson model according to their quantum numbers �, j, and �. The
panel (b) shows the components, both for the Nilsson (solid lines)
and PAMD (dashed lines) models, according to �, j, and I . Core
radius for these two models are indicated with arrows.

the first-excited state is closer in energy to the experimental
value in the Nilsson model than in the PAMD.

To assess possible improvements of the PAMD model,
some particle-rotor models adjusted to the geometry obtained
with the PAMD model have been tested. From the analysis of
these results, it is obtained that including the 4+ state of 16C
is needed to significantly improve the spectrum, considering
in this case states of 16C up to � = 4. The need to include
the 4+ state for a better description of the 17C spectrum is
also suggested in Ref. [28]. Thus, a possible improvement
of the PAMD model would be to include this 4+ state that
would require extra transition densities. Other changes, such
as a more suitable spin-orbit potential, would be useful, but
by themselves they do not achieve the required spectrum
agreement.

The radial parts of the ground-state wave function are
shown in Fig. 3. The top panel shows the functions uν (r) =
rRJπ

εν (r) for the Nilsson model, whereas on the lower panel the
functions uα (r) = rRJπ

εα (r) are compared for both models. It is
also shown the radius of the core for both models, RPAMD and
RNilsson, obtained as the inflection point of the corresponding
central potential. The resulting functions differ mainly in the
norm of the components, which are the weights of Table I.

TABLE I. Weights of the main components for the wave function
of the ground state and first-excited state of 17C. Components with
weights less than 0.005 are not included.

State 3/2+
gs 1/2+

1

Model Nilsson PAMD Nilsson PAMD

|(�s) j ⊗ 0+〉 0.012 0.028 0.668 0.512
|s1/2 ⊗ 2+〉 0.375 0.349
|d3/2 ⊗ 2+〉 0.064 0.131 0.028 0.040
|d5/2 ⊗ 2+〉 0.366 0.492 0.299 0.448
|d5/2 ⊗ 4+〉 0.179

In our assumed simplified two-body model, in which anti-
symmetrization between the valence neutron and the core is
neglected, spectroscopy factors (SF) cannot be strictly ob-
tained. However, as long as these antisymmetrization effects
are not large, these weights can be approximately regarded
as SF. It should be noted that the Nilsson model predicts a
non-negligible weight for the component with a 4+ core state,
while the PAMD model does not consider this core state. This
means that, in general, the rest of the weights are lower in the
Nilsson model.

Figure 4 shows the radial parts of the first-excited state
wave function of 17C. It can be seen that the spatial extension
is much larger in this case. The root mean square radius for
this state is 6.55 fm in the Nilsson model and 5.24 fm in the
PAMD, while for the ground state the value is around 4 fm in
both models. Therefore, the results of both models corroborate
the halo nature of this state. Table I also compares the weights
of the components for this state.

The differences here are slightly affected by the energy dis-
crepancy between PAMD and experimental spectra. However,
as shown in Ref. [9], the wave functions vary very little if one
readjusts the interaction to put the state at the right energy
besides the obvious change on the asymptotic decay. Weights
relevant for present transfer calculations, for example, remain
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FIG. 4. Radial part of the wave function obtained for the first-
excited state of 17C. The results of the Nilsson (solid lines) and
PAMD (dashed lines) models are compared, the arrows indicate the
core radius for each model.
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basically unchanged with a variation of up to 3%. Therefore,
this will not influence significantly transfer cross section re-
sults included in Sec. V. For s waves, one should also consider
that the radial distribution will change if one approaches the
16C(0+) + n threshold. In Ref. [9], one can see that by setting
the bound state 1/2+ to the experimental energy, the root
mean square radius increases by 10%, approaching the value
obtained in the Nilsson model.

B. Structure of 11Be

The 11Be nucleus has been extensively studied in previous
works which successfully reproduce structure observables.
Our Nilsson Hamiltonian for 11Be uses as starting point the
model Be12-b of Ref. [31], which consists of a Woods-
Saxon central potential with a parity-dependent strength, a
spin-orbit potential with strength 8.5 MeV (both with R =
2.483 fm, a = 0.65 fm) and a permanent quadrupole defor-
mation with β = 0.67. This value is consistent with the value
β = 0.7 extracted from the PAMD model following the pre-
scription of Ref. [8] and considering the inflection point of the
central potential as R. Our Nilsson model also uses h̄/2J =
0.56 MeV for the 10Be core, which is compatible with the
excitation energy of its first 2+ state (3.368 MeV [32]). With
the rest of the parameters already set, the parity-dependent
strength is adjusted slightly to reproduce the experimental
energies of the bound states (52.43 MeV for positive-parity
states and 49.62 MeV for negative ones). In the same way, the
PAMD model allows for a parity-dependent renormalization
factor. The purpose of this parity dependence is to reproduce
the inversion of the 1/2+ and 1/2− bound-state levels of 11Be.
As explained in Ref. [8], this inversion is partly ascribed to
core deformation, but also to other effects not included in
our treatment. In any case, the difference between strengths
according to parity does not exceed 6% for both models.

The Nilsson Hamiltonian is diagonalized in a THO basis
with b = 2.0 and γ = 2.5 fm1/2. Figure 5 compares the 11Be
states obtained with this model up to 4 MeV, those obtained
with PAMD and the experimental levels [33,34]. In this figure,
in addition to the 10Be(0+) + n threshold, the 10Be(2+) + n
threshold is also indicated. Both models reproduce the exper-
imental energies of the ground state 1/2+ and the first-excited
state 1/2−, while the energies of the resonances 5/2+, 3/2−,
and 3/2+ are better reproduced in the PAMD model. In case
of the 5/2− resonance, the Nilsson model predicts it above
4 MeV and, for the PAMD model, it is well below. The
reason for this difference is the effect of including the 4+ core
state in the calculation. In the PAMD model, the state 5/2−
corresponds mostly to a |p1/2 ⊗ 2+〉 configuration. However,
in the Nilsson model, there is a mixture of configurations
|p3/2 ⊗ 4+〉 and |p1/2 ⊗ 2+〉 resulting in two possible 5/2−
resonances. One of them, for which the component with p3/2

dominates, is close to the threshold 10Be(0+) + n, but it is a
forbidden state due to the Pauli exclusion principle. The other
is allowed, but it is above 4 MeV.

Figure 6 compares the wave function of the 11Be ground
state obtained for the Nilsson (the most relevant components)
and PAMD models. The results are quite similar, with a clear
dominance of the |s1/2 ⊗ 0+〉 component. It can be seen that
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FIG. 5. Spectrum obtained for 11Be with the Nilsson and
the PAMD models calculations compared with the experimental
one [33,34].

this component has a greater weight in the PAMD model,
while the opposite occurs with the |d5/2 ⊗ 2+〉 component.
Clearly, the |d3/2 ⊗ 2+〉 component is not very relevant for
this state. Likewise, Fig. 7 shows the radial part of the wave
function for the first 5/2+ resonance obtained in both models.
Since the resonances occur at different energies depending on
the model, the asymptotic part is clearly different. However,
the behavior is very similar for r < 5 fm.

V. APPLICATION TO REACTIONS

The differential cross sections for the transfer reactions
16C(d, p) 17C and 11Be(p, d ) 10Be have been calculated using
the adiabatic distorted-wave approximation (ADWA) [11].
The post and the prior forms are used, respectively, which
require the overlap functions 〈17C | 16C〉 and 〈10Be | 11Be〉.
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These functions are taken from the results of our structure
models.

A. 16C (d, p) 17C

For this reaction, the cross section for the transfer to bound
states of 17C has been calculated. The results are compared
with the recent experimental data from GANIL [10]. These
data were obtained in inverse kinematics with a 16C beam
at 17.2 MeV/nucleon. Regarding the potentials used in the
reaction calculation, the Chapel-Hill (CH89) parametriza-
tion [35] was employed for the p + 17C optical potential,
whereas the Reid soft-core potential [36] was used for the n +
p interaction. The d + 16C adiabatic potential was built within
the Johnson-Tandy finite-range prescription [37], assuming
the CH89 parametrization for the nucleon + 16C potentials.

Figure 8 shows the comparison of the results of the two
models with the experimental data when the first- and second-
excited states of 17C are populated. For the case of the
first-excited state, we find good agreement between the results
of our models and the data [Fig. 8(a)]. From the comparison
of the experimental data with finite-range ADWA calculations
using the CH89 parametrization, spectroscopy factors (SF) are
obtained in Ref. [10]. A value of 0.80 ± 0.22 was extracted for
the configuration |s1/2 ⊗ 0+〉 of the 17C 1/2+

1 state. This SF
is compatible with the value 0.67 obtained with the Nilsson
model, but not so much with the 0.51 of the PAMD (see
Table I). For the second-excited state [Fig. 8(b)], both models
provide a reasonable agreement for the angular distribution,
although they underestimate the experimental cross section.
From these data, a 0.62 ± 0.13 spectroscopy factor is ob-
tained for the configuration |d5/2 ⊗ 0+〉, while the Nilsson and
PAMD models predict smaller values, namely, 0.33 and 0.32,
respectively. To improve the agreement with the data, it would
be necessary for our structure model to obtain a larger weight
of this |d5/2 ⊗ 0+〉 component. For that, a more accurate
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FIG. 8. Angular distribution of the 16C(d, p) 17C reaction at 17.2
MeV/nucleon when the 17C first-excited state 1/2+

1 (a), and second-
excited state 5/2+

1 (b) are populated. The results using the Nilsson
and PAMD models are compared with the experimental data [10].

treatment of the Pauli exclusion principle and antisymmetriza-
tion would be possibly needed.

To distinguish these two states experimentally it was neces-
sary to measure γ rays in coincidence and hence the angular
distribution for the ground state is not presented. However,
Fig. 9 shows the angular distribution when any of the bound
states of 17C are populated; that is, the sum of contributions
from all these states. Furthermore, the analysis of the transfer
data performed in Ref. [10] predicts for the |d3/2 ⊗ 0+〉 con-
figuration a very small spectroscopic factor, below 0.08, in
agreement with the prediction of the two models considered
here (cf. Table I). Considering the results, transfer to the
second-excited state 5/2+ is by far the greatest contribution
for this reaction; therefore, the discrepancy between the data
and our calculations comes mainly from the one we found for
this state.

B. 11Be (p, d ) 10Be

The differential cross section for this transfer reaction has
been calculated when the ground state 0+ and first-excited
state 2+ of 10Be are populated. Calculations have been per-
formed for two different incident energies and the results
are compared with the experimental data corresponding to
those energies. For both energies, the calculations have been
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FIG. 9. Differential cross section of 16C(d, p) 17C for transfer to
all bound states at 17.2 MeV/nucleon. For both models, the sum of
the results for all bound states are shown and they are compared with
the experimental data [10].

performed using the Johnson-Tandy prescription for the d +
10Be potential [37] and the Reid Soft-Core n + p interac-
tion [36]. Experimentally, in both cases the reaction has been
studied in inverse kinematics using a 11Be beam.

First, the comparison of our calculations with the data from
the Research Center for Nuclear Physics (RCNP) for a 11Be
beam 26.9 MeV/nucleon [38] is shown in Fig. 10. For this
calculation, a renormalized CH89 parametrization has been
used for the p + 11Be optical potential [39]. This potential
applies two normalization factors to the central part of the
CH89 parametrization to improve the agreement with the ex-
perimental data of the elastic scattering at 26.9 MeV/nucleon:
0.78 for the real part and 1.02 for the imaginary part. CH89
parametrization was also employed for the construction of the
d + 10Be adiabatic potential.

Taking into account the error bars in Fig. 10, the results
of both models are compatible with the experimental data.
Figure 10(a) corresponds to the transfer to the ground state
of 10Be (0+), where the results of both models are remarkably
similar. However, Fig. 10(b) shows that, when the first-excited
state 2+ is populated, the PAMD model gives a smaller cross
section, getting closer to the data.

GANIL data for a beam at 35.3 MeV/nucleon [40] are
compared with our results in Fig. 11. In this case, for the
calculations, the p + 11Be potential was obtained from the
parametrization of Watson, Sigh, and Segel [41]. For consis-
tency, the same parametrization is used for the construction of
the adiabatic d + 10Be potential.

Both models provide reasonable overall agreement with
the experimental data. The Nilsson model is slightly closer
to the data for the transfer leading to the 10Be ground state
[Fig. 11(a)]. However, Fig. 11(b) shows how the PAMD model
is again the closest to the data for the transfer to the 2+ state
of 10Be.

In Refs. [38] and [40], some values of spectroscopic fac-
tors (SFs) for the 〈10Be | 11Be〉 overlap were obtained from
the comparison of the measured data with ADWA calcula-
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FIG. 10. Angular distribution of the 11Be(p, d ) 10Be cross sec-
tion at 26.9 MeV/nucleon when 10Be ground state 0+ (a), and
first-excited state 2+ (b) are populated. The solid lines represent the
results applying the different models and they are compared with the
experimental data [38].

tions. As the weights of the α components are considered
an approximation of these spectroscopic factors, in Table II,
the experimental SF are compared with the weights ob-
tained through the Nilsson and PAMD models. In general, the
weights of both models are approximately compatible with
the ranges of experimental values for SF. Note that there is a
significant difference between the Nilsson and PAMD models
in the case of 〈10Be(2+)| 11Be(1/2+

gs)〉 overlap, due to the
aforementioned difference in the component |d5/2 ⊗ 2+〉. This
is the main reason for the discrepancy between the models for
the 11Be(p, d ) 10Be(2+) differential cross section.

TABLE II. Spectroscopic factors for the 11Be(p, d ) 10Be reaction
to the 0+ ground state and 2+ excited state in 10Be. The values
resulting from our theoretical models are compared with the ranges
of values from the analysis of the experimental data.

SF Experimental data Theoretical model

| 11Be(1/2+
gs )〉 RCNP [38] GANIL [40] Nilsson PAMD

〈10Be(0+)| 0.82 ± 0.15 0.66–0.80 0.78 0.85
〈10Be(2+)| 0.26 ± 0.09 0.13–0.38 0.21 0.15
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GANIL [40].

VI. SUMMARY AND CONCLUSIONS

A deformed two-body approach based on the Nilsson
model has been applied to the study of exotic nuclei, with
emphasis on one-neutron halo nuclei. This model considers
a neutron moving in a deformed potential generated by the
core. This interaction consists of central Woods-Saxon po-
tential, a noncentral term that assumes the permanent axial
quadrupole deformation of the former and a spin-orbit term.
The full Hamiltonian of the system also includes a collective
rotational term to account for core excitation. The results of
this model are compared with those of the PAMD model [8].
In both cases the energies and wave functions are obtained by
diagonalizing the Hamiltonian in the transformed harmonic
oscillator (THO) basis. Using the adiabatic distorted-wave
approximation (ADWA), the results of our two models have
been applied to the study of one-neutron transfer reactions and
their application to break up reactions is in progress.

The Nilsson and PAMD models have been applied to 17C,
whose first-excited state is a one-neutron halo candidate, and
to the well-known halo nucleus 11Be. Using the deforma-
tion parameter β = 0.34, the Nilsson model gives a good
description of the bound states in 17C, better than the semimi-
croscopic PAMD model. From the analysis of the results,
the relevance of the 4+ core state stands out, a state that is

not included in the PAMD model. Furthermore, both models
present a large spatial extension in the wave function of the
first-excited state, supporting the halo nature of this state.
On the other hand, the PAMD model better reproduces the
experimental spectrum of 11Be. However, the Nilsson model
predicts similar results by applying a deformation of β =
0.67. In both models, a parity-dependent strength is needed,
but the difference between parities is less than 6%.

The structure models are tested by studying the transfer
reactions 16C(d, p) 17C and 11Be(p, d ) 10Be. For the for-
mer, calculations were performed for an energy of 17.2
MeV/nucleon, and the results were compared with the ex-
perimental data from GANIL [10]. Good agreement is found
with the data for the differential cross section for to the 17C
first-excited state (1/2+

1 ). As discussed in Ref. [10], this state
is a candidate for being a halo state. Both models predict a
large extension for this state and provide a good reproduction
of the experimental data, thus adding more evidence to the
halo nature of this excited state. In case of the second-excited
state 5/2+

1 , our calculations are clearly below the experi-
mental data. This suggests that the weight of the component
|d5/2 ⊗ 0+〉 of the 5/2+

1 state, should probably be higher than
the values obtained with the two models presented here. In
general, although the results of both models are very similar,
we can conclude that the Nilsson model are closer to the data.
This work shows the transfer to the bound states of 17C, but
the transfer to the continuum states is also being studied and
the results will be presented in a subsequent publication.

The 11Be(p, d ) 10Be transfer reaction has been stud-
ied at two different energies, 26.9 MeV/nucleon and
35.3 MeV/nucleon. In the first case, the results of the reac-
tion calculations using the two different structure models are
compared with the RCNP data [38] and, in the other case, the
calculations are compared with the experimental data from
GANIL [40]. In both cases, for the transfer to the ground
state of 10Be, a reasonable agreement is obtained with the two
models. For the transfer to the first-excited state of 10Be, the
PAMD model is closer to the data. This is mainly due to the
fact that the weight of the |d5/2 ⊗ 2+〉 component is smaller in
this model.

Since the PAMD model provides better results both in the
transfer cross section and for the predicted resonant energies,
this model seems to be more adequate to describe the structure
of 11Be. However, for 17C, the Nilsson model gives a more
accurate description of both the spectrum and the transfer
reaction studied, making it a more suitable framework for
modeling the structure of 17C. This may be due to the in-
clusion of the 4+ core state by the Nilsson model, which
is absent in our PAMD model. In view of these results, it
would be interesting to extend the PAMD model presented
here by including, at least, the 4+ excited state of the core.
This would require the knowledge of the corresponding tran-
sition densities which, in principle, could be also evaluated
within the AMD model. The importance of including this
16C state has been suggested by other models [28]. It can
also be an indication of how, depending on the nucleus,
the strong- or weak-coupling approach between the valence
nucleon and core is more appropriate. In any case, both de-
formed two-body models reasonably described the structure
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of 17C and 11Be. Furthermore, because they use the same
THO formalism, they can be equally easily used in reactions
calculations.

A pending task for these two models is a more correct
application of the Pauli principle. Here we have removed those
final bound eigenstates that we consider occupied by compar-
ing with the spherical and Nilsson limits. The Nilsson model
is more convenient in this regard because it allows single-
particle Nilsson states to be removed or partially blocked in
a more sophisticated way.

The Nilsson-inspired model presented here and the PAMD
model have been applied for the first time to transfer reactions
with 17C and 11Be. Application to 19C is in progress and
extension to other weakly bound nuclei is planned. As both
models also provide radial wave functions, the halo nature of
the nuclei will be consistently considered in the analysis of the

reaction. In addition, it is intended to incorporate microscopic
information into the model, in a way similar to what is done
in the PAMD model or even beyond.
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