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A B S T R A C T

This article presents the formulation of the optimisation of a manufacturing process, through genetic
algorithms, managing the generation and demand of energy in a factory at periodic moments of time. The
strategy manages to minimise the daily energy cost and maximise the use of installed renewable energy,
also taking advantage of potential battery banks. A time series with a 24-hour horizon of energy production
from renewable sources and the electricity supply prices provided by the electricity market operator has been
considered. Furthermore, in the simulations, scenarios with different battery capacities have been tested, which
has allowed a preliminary study to be carried out for the installation of the electrical storage bank. The
results presented in this work show that 6% of energy costs can be saved per day, compared to the current
management decided by the manufacturing plant operators.
1. Introduction

According to the latest report of the International Energy Associa-
tion [1], approximately 41% of global consumption is due to industry
and its CO2 emissions account for 45% of total direct emissions from
end-use sectors. The increase in energy consumption is driven by
increased production in energy-intensive industrial sub-sectors.

Although energy optimisation techniques in other sectors (buildings,
microgrids, etc.) are already well known, a mature technology that
takes into account all aspects involved has not yet been established in
the industrial field. Energy efficiency is one of the most effective short-
and medium-term goals to reduce the carbon footprint of industry and
should be taken into account at all levels of the manufacturing pro-
cess. Industry 4.0’s main feature is the digitalisation of manufacturing
processes, which is the opportunity to save energy by optimising or
transforming technologies.

One of the ways to achieve energy efficiency in industry is by
optimising production planning, which, in addition to making the
process energy efficient, directly affects the cost of production and,
therefore, the cost of the product itself. Planning refers to the or-
der of actions to be carried out on a certain day, concerning the
use of machines and operators, to achieve the set production tar-
gets. Many research works present various methods to optimise this
production planning. In [2], based on the complexity of finding an
optimal schedule, a heuristic search approach is presented, based on a
simulation-optimisation framework that combines evaluation methods
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(simulation) and search methods (optimisation), through a reachability
(or state space) analysis of timed coloured Petri net models to schedule
flexible manufacturing systems (FMS). A different algorithm, based
on particle swarm optimisation integrated into a neural network, is
presented in [3]. In [4], the use of energy storage with the flexibility
of the production plan is considered, in order to achieve lower costs.
Some approaches use simulations to minimise grid dependence. In [5],
methods of energy flexibilisation of production systems are studied,
together with direct (battery) and indirect (thermal, flywheels, etc.)
energy storage systems are introduced into planning in [6], as a tool
to visualise the improvements that this would entail. In [7] a study is
shown on the high power consumption in manufacturing systems and
proposes several ways to optimise this consumption. A comprehensive
literature review on production planning and scheduling with the aim
of improving energy efficiency is provided in [8]. It covers various ap-
proaches and mathematical models used in optimising energy efficiency
in production.

One of the most widely used algorithms to solve the optimisation
problem is genetic algorithms. These algorithms have been widely
applied to job order scheduling problems [9]. Some applications are
shown in [10–13]

On the other hand, the use of renewable energies has a large share
in electricity generation worldwide (29% in 2020) with a year-on-year
growth of 10%. The most widely deployed are wind and photovoltaic,
which account for 2/3 of this generation [1,14]. The penetration of
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Nomenclature

Abbreviations

BB Baseline Behaviour
BESS Battery Energy Storage System
CHP Combined Heat and Power
CNC Computer Numerical Control
DENiM Digital intelligence for collaborative ENergy

management in Manufacturing
FMS Flexible Manufacturing Systems
GA Genetic Algorithms
IEA International Energy Association
IEC International Electrotechnical Commission
MP Electricity Market
PV Photovoltaic
RC Remaining Consumption
RESs Renewable Energy Sources
SCADA Supervisory Control And Data Acquisition
SOC State Of Charge of the battery
WT Wind Turbine

Variables

𝜂𝐶𝐻𝑃 Electrical Efficiency Rate of CHP
𝜂𝑐 Charge Efficiency
𝜂𝑑 Discharge Efficiency
𝛥𝑡 Sample Time
𝐶𝑑𝑎𝑦 Daily energy cost
𝐶𝑘
𝐶𝐻𝑃 CHP Production Cost

𝐶𝑘
𝑀𝑃 Obtained Energy Cost from the Grid

𝐷𝑇𝑃 Daily Production Target
𝐸𝑎𝑢𝑥, 𝑘
𝐵 Ideal energy from the battery

𝐸𝑘
𝐵 Energy charged to/discharged from the battery

𝐸𝑘
𝐶𝑁𝐶 CNC demand

𝐸𝑘
𝑅𝐶 Remaining Consumption or remaining demand

𝐸𝑘
𝑇 Global demand

𝐸𝑘
𝐶𝐻𝑃 Energy generated by the CHP

𝐸𝑎𝑢𝑥, 𝑘
𝑀𝑃 Unsatisfied demand

𝐸𝑘
𝑀𝑃 Purchased energy

𝐸𝑘
𝑃𝑉 Energy generated by the photovoltaic panels

𝐸𝑘
𝑅𝐸𝑆𝑠 Total energy obtained from the RESs at each

instant
𝐸𝑘
𝑊 𝑇 Energy generated by the wind turbine

𝑖 CNC sub-index ID
𝑘 Sample index
𝑀 Number of Manipulable CNCs
𝑛𝑘𝑜𝑏𝑗 Decision variables
𝑛𝑘𝐵 Battery operation
𝑛𝑘𝐶𝐻𝑃 CHP decision variable
𝑛𝑘𝐶𝐻𝑃 CHP operation
𝑛𝑘𝐶𝑁𝐶𝑖

CNC number i operation
𝑂𝐻 Optimisation horizon
𝑃𝐵, 𝑚𝑎𝑥 Maximum power exchange
𝑃𝑚𝑎𝑥
𝐶𝐻𝑃 Rated power of the CHP

𝑃 𝑜𝑓𝑓 ,𝑚𝑒𝑎𝑛
𝐶𝑁𝐶𝑖

Average Idle power
𝑃 𝑜𝑛,𝑚𝑒𝑎𝑛
𝐶𝑁𝐶𝑖

Average Operating power
𝑃𝑟𝑘𝑔𝑎𝑠 Price per MWh of gas
𝑃𝑟𝑘𝑀𝑃 Price per MWh purchased
𝑆𝑂𝐶𝑘 SOC at k instant
2

𝑆𝑂𝐶1 Initial State of Charge
𝑆𝑂𝐶𝑚𝑎𝑥 Battery capacity
𝑆𝑂𝐶𝑚𝑖𝑛 Minimum SOC allowed
𝑇 𝑘
𝐶𝑁𝐶𝑖 ,𝑜𝑛

CNC run for some time
𝑇𝑝𝑎𝑟𝑡 Production time of one part/Part produc-

tion time
𝑇𝑃𝑈 Total Produced Units

renewable energy has a great environmental impact, reducing CO2
and greenhouse gas emissions [15]. Additionally, the lower generation
costs of renewable energy sources (RESs) make their deployment in
the industry more attractive for supplying energy consumption to the
electricity grid. Industries are increasingly opting for the integration of
RESs in their different production processes. The implementation and
optimisation of RESs allow for an increase in the benefits of production
and minimise the consumption of energy produced by fossil fuels.

In a recent research study [16] a summary of relevant research
on the integration of renewables is given. The study concludes that
the best integration is achieved when the problem is tackled within
planning. Some research papers that address the problem of integrating
renewable energies in industry within the planning problem are as
follows: in [17,18] the focus is on smart planning to solve the problem
of overgeneration of renewable energies. In [19–21] other ways of
solving the problem of integrating renewables can be seen, taking them
into account in planning optimisation.

The literature review always presents a partial view of the problem,
i.e. energy optimisation in industry lacks a holistic view, including all
the elements involved (use of renewables, production planning, energy
storage, etc.). A recent research study [22] shows that the integration
of all these elements makes it possible to achieve all the benefits of
the above research. Although this study proposes a holistic approach,
the power and number of machines, in addition to the optimisation
resolution time, would make it impractical for schemes where changes
in atmospheric predictions of various renewable sources and machine
availability would have to be taken into account.

In the present work, decision variables in generation, storage and
demand have been taken into account to address the optimisation prob-
lem holistically. The objective of this work is to minimise the energy
cost of a real industrial process, indirectly achieving the maximisation
of the use of renewable energies in the planning optimisation problem,
using a Genetic Algorithm (GA). The real factory where it has been
applied does not contain a battery bank, and solutions have been
evaluated in various scenarios, in simulation, which include different
capacities of electric battery, to see how their inclusion affects the daily
energy cost of manufacturing.

The rest of the article is organised as follows. In Section 2 the
system where this study is focused is presented. Section 3 shows the
modelling carried out for each of the subsystems that make up the
real process: both the loads or machines that operate in manufacturing
and the energy sources and battery as a storage source that maximises
the use of RESs and the loads or machines that operate in manufac-
turing. The chosen optimisation method and its application to various
scenarios are presented in Section 4. Section 5 shows the results of the
evaluation. The optimisation strategy followed and the results obtained
are improved in Section 6. The article ends with Section 7, dealing with
conclusions and future work.

2. Case study: Manufacturing plant

This article proposes a solution for one of the pilot demonstra-
tion plants of the DENiM project [23]. This factory produces, 24 h
a day, various types of machined parts. It has multiple manufactur-
ing processes. The article focusses on one of the factory’s production
processes.
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From an energy point of view, the factory has renewable energy
sources (RESs): a wind turbine (WT) and a photovoltaic panel installa-
tion on the roof (PV); in addition, there is a combined heat and power
plant (CHP); and the connection to the electricity supplier with prices
given by the electricity market (MP).

As mentioned above, only the operation of one of the manufac-
turing processes will be modified, considering the rest of the factory
as non-modifiable energy consumption, which has been referred to
as Remaining Consumption. This manipulable process is composed of
several computer numerical control (CNC) machines that process the
parts in parallel, i.e. only one processing on one machine is necessary
for that part to be manufactured. The objective of this research is to
minimise the daily energy cost of the factory (𝐶𝑑𝑎𝑦). For this purpose,
the data of a past day will be used, for which all the necessary data are
available to know how the production of the manipulable process has
been carried out, together with the total demand and energy generation
of that day. This particular day has been denoted as Baseline Behaviour,
as this is the focus against which the optimisation results will be
compared. Although the actual plant does not have an electrical storage
system, this work will serve as a preliminary design study for the
implementation of a battery bank (B).

The daily energy cost (𝐶𝑑𝑎𝑦) is defined in Eq. (1), focussing on an
Optimisation Horizon (𝑂𝐻) of one day.

𝐶𝑑𝑎𝑦 =
𝑂𝐻
∑

𝑘=1
𝐶𝑘
𝑀𝑃 + 𝐶𝑘

𝐶𝐻𝑃

=
𝑂𝐻
∑

𝑘=1
𝐸𝑘
𝑀𝑃 ⋅ 𝑃𝑟𝑘𝑀𝑃 + 𝐸𝑘

𝐶𝐻𝑃 ⋅ 𝜂−1𝐶𝐻𝑃 ⋅ 𝑃𝑟𝑘𝑔𝑎𝑠

(1)

Being at each instant 𝑘

𝐶𝑘
𝑀𝑃 ≡ 𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒 𝑐𝑜𝑠𝑡, 𝐶𝑘

𝐶𝐻𝑃 ≡ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡

𝐸𝑘
𝑀𝑃 ≡ 𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦, 𝐸𝑘

𝐶𝐻𝑃 ≡ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦

𝑃 𝑟𝑘𝑀𝑃 ≡ 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 MWh 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑, 𝑃 𝑟𝑘𝑔𝑎𝑠 ≡ 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 MWh 𝑜𝑓 𝑔𝑎𝑠

𝜂𝐶𝐻𝑃 ≡ 𝐶𝐻𝑃 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑒

To achieve this objective it is necessary to:

1. Maximise the use of RESs because they have the lowest associ-
ated costs.

2. Select when to produce energy with CHP, and when to buy
energy from the electricity market.

3. Choose the best time to operate each CNC in the manipula-
ble process, concerning the daily production targets, without
wasting energy.

4. Decide when and how much to charge/discharge the battery.

The decision variables (𝑛𝑘) are the only variables whose value can
be modified within the 𝑂𝐻 to achieve the desired objective. To define
them, the four previous objectives and some limitations of the system
itself have been taken into account: the CNC machines and the CHP
operate in on/off mode, so their associated decision variables are of
binary type. However, the decision variables of the battery bank are
continuous, assuming that converters are installed. Table 1 summarises
all decision variables, their type and their limits.

The variable 𝑛𝑘𝐶𝑁𝐶𝑖
indicates whether the machine 𝑖 is operating at

time 𝑘. The variable 𝑛𝑘𝐶𝐻𝑃 indicates whether the CHP is operating at
time 𝑘. The variable 𝑛𝑘𝐵 indicates the amount of energy being charged
or discharged at time 𝑘. If 𝑛𝑘𝐵 > 0, the battery is discharging, if 𝑛𝑘𝐵 < 0,
the battery is charging and if 𝑛𝑘𝐵 = 0, the battery is neither charging
nor discharging.

Note that RESs have no decision variables because everything that
3

is produced is introduced into the electricity system, maximising the
Table 1
Definition of decision variables.

Variable Symbol Type Limits
lower & upper

CNC number i operation 𝑛𝑘𝐶𝑁𝐶𝑖
Binary 0 1

CHP operation 𝑛𝑘𝐶𝐻𝑃 Binary 0 1
Battery operation 𝑛𝑘𝐵 Continuous −1 1

Table 2
Time-related optimisation parameters.

Parameter Symbol Value Unit

Sample time 𝛥𝑡 0.5 h
Optimisation horizon 𝑂𝐻 48 samples

use of RESs. The Remaining Consumption and the MP do not have
a decision variable because the first is a non-modifiable demand that
must be satisfied, and the second is because all demands not satisfied
by other energy sources will be obtained from the MP. Fig. 1 shows all
the components of the factory, including the decision variables.

The system has constraints that limit the possible values of the
decision variables at each time 𝑘. The constraints implemented in the
system are shown in Eq. (2).

Model Constraints ≡

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑇𝑃𝑈 ≥ 𝐷𝑃𝑇
𝑆𝑂𝐶𝑚𝑎𝑥 ≥ 𝑆𝑂𝐶𝑘 ≥ 𝑆𝑂𝐶𝑚𝑖𝑛

𝑇 𝑘
𝐶𝑁𝐶𝑖 ,𝑜𝑛

≥ 𝑇𝑝𝑎𝑟𝑡
𝐸𝑘
𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = 𝐸𝑘

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(2)

In order of priority, the constraints appearing in Eq. (2) mean:

1. The Total Produced Units (𝑇𝑃𝑈) by the machines must be
equal to or greater than the Daily Production Target (𝐷𝑃𝑇 ). To
calculate the 𝑇𝑃𝑈 , the production time of one part (𝑇𝑝𝑎𝑟𝑡) given
in Table 3 is used.

2. The state of charge (SOC) of the battery at any instant (𝑆𝑂𝐶𝑘)
must be less than or equal to the battery capacity (𝑆𝑂𝐶𝑚𝑎𝑥) and
greater than or equal to the selected minimum (𝑆𝑂𝐶𝑚𝑖𝑛). This
restriction drastically increases the lifetime of the battery.

3. For a part to be produced correctly in an interval, the CNC
must run for some time (𝑇 𝑘

𝐶𝑁𝐶𝑖 ,𝑜𝑛
) equal to or longer than the

production time (𝑇𝑝𝑎𝑟𝑡) of one part.
4. The energy balance must be zero at each instant 𝑘. This implies

two things:

(a) All demands will always be met at all times.
(b) It is not allowed to sell energy to the grid, so the plant

cannot produce more than it consumes.

The values chosen for the time-related parameters are listed in
Table 2.

The Sampling Time (𝛥𝑡) is the period between samples 𝑘. In this
period, the values of the decision variables remain constant. The Op-
timisation Horizon (𝑂𝐻) is the total number of 𝑘 samples that the
optimisation algorithm will take into account when making decisions.

To decide the value of both variables, the following information
must be taken into account:

1. A daily production plan is developed in the factory. This plan
envisages the operation of the factory 24 h a day. To mimic it,
the value of the Optimisation Horizon (𝑂𝐻) must be equivalent
to one day.

2. The intraday electricity market price 𝑃𝑟𝑘𝑀𝑃 changes every half
hour. This variable has a high influence on the final cost of the
energy consumed, due to the high variability of prices in the
market. Therefore, the value of 𝛥𝑡 must be proportional to this

variability.
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Fig. 1. System setup of the factory.
S

Table 3
Production process parameters.

Parameter Symbol Value Unit

Daily production target 𝐷𝑃𝑇 378 parts
Part production time 𝑇𝑝𝑎𝑟𝑡 15 min
Number of manipulable CNCs 𝑀 7 machines

3. The smallest time parameter of the system is the production time
of each part (𝑇𝑝𝑎𝑟𝑡), fixed at a quarter of an hour. This implies
that it contributes nothing if 𝛥𝑡 is less than this time.

4. The lower the 𝛥𝑡, the more samples are taken into account in the
optimisation horizon, with 𝑂𝐻 being fixed, as is the case. This
implies that the calculation time is inversely proportional to the
value of 𝛥𝑡.

Given these issues, two options remain for 0.25 h and 0.5 h. The
econd option is the one chosen, as it reduces the number of samples
n the optimisation horizon, which allows a shorter calculation time,
ith a negligible loss of accuracy (in the case where one more part is
roduced than required).

The values of the decision variables of the Base Behaviour have been
btained from the planning executed in the production process during
he day to be optimised. The analysis of the recorded history of machine
peration with the time data provided the necessary information to
econstruct the production planning decided by the operators. At each
nstant 𝑘, this consumption has been subtracted from the global demand
𝐸𝑘
𝑇 ), also recorded over time, to obtain the Remaining Consumption

𝐸𝑘
𝑅𝐶 ), as can be seen in Eq. (3) and graphically in Fig. 2.

𝑘
𝑅𝐶 = 𝐸𝑘

𝑇 −
𝑀
∑

𝑖=1
𝐸𝑘
𝐶𝑁𝐶𝑖

(3)

The energy consumed by the manipulable process is approximately
1% of global demand (black line with unfilled/filled dots on Fig. 2 re-
pectively), implying that the margin to adjust the demand is reduced.

In Table 3 it can be seen the production process parameters. In par-
icular, it can be seen the production target for that day, the production
ime for each part and the number of machines that can be handled in
he process.

The prices throughout the day for gas (with a conversion for com-
arison) and the electricity supplier can be found in Fig. 3. The baseline
ehaviour can be seen graphically in Fig. 4. Knowing that the black
ines represent the different demands and that the bars represent the en-
rgy generated in each period of duration 𝛥𝑡 = 0.5 h, it is observed that:
t each instant the energy balance for each time interval is fulfilled,
4

b

Fig. 2. Comparison of process consumption versus Remaining Consumption.

with an excess of energy in some time intervals, normally produced
by the wind turbine; and the power generated by cogeneration is
zero, without taking into account the advantage of the price difference
between market and gas over time (this usually happens in the planning
of the real process).

In the following, all the subsystems that make up the system will be
explained.

3. System modelling

This Section will explain how the elements that make up the factory,
shown in Fig. 1, have been modelled. As a note, the internal electrical
circuit of the factory is assumed to be ideal (lossless), because the value
of the losses is small relative to the energy flowing through it.

3.1. CNC machines model

The energy model consists of integrating the average operating
(𝑃 𝑜𝑛,𝑚𝑒𝑎𝑛

𝐶𝑁𝐶𝑖
) or idle power (𝑃 𝑜𝑓𝑓 ,𝑚𝑒𝑎𝑛

𝐶𝑁𝐶𝑖
) in one period for each machine.

everal real consumption sequences of the CNCs of the process have
een analysed to obtain these powers for each machine 𝑖. The energy
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Fig. 3. Prices along the day. The difference between the price of gas and CHP is due
to the efficiency of CHP.

Fig. 4. Energy consumption with the baseline behaviour.

model, to calculate the energy consumed at each instant 𝑘 by all the
machines (𝐸𝑘

𝐶𝑁𝐶 ), can be seen in Eq. (4).

𝐸𝑘
𝐶𝑁𝐶 =

𝑀
∑

𝑖=1
𝛥𝑡 ⋅

⎧

⎪

⎨

⎪

⎩

𝑃 𝑜𝑛,𝑚𝑒𝑎𝑛
𝐶𝑁𝐶𝑖

if 𝑛𝑘𝐶𝑁𝐶𝑖
= 1

𝑃 𝑜𝑓𝑓 ,𝑚𝑒𝑎𝑛
𝐶𝑁𝐶𝑖

if 𝑛𝑘𝐶𝑁𝐶𝑖
= 0

(4)

Table 3 shows the number of CNC machines (𝑀) that can be
handled in the process.

3.2. Battery energy storage system model

A generic battery energy storage system (BESS) model has been
implemented to test the different sizes available and to see how battery
size influences the energy cost of the process.

The model parameters can be found in Table 4. As their values will
change depending on the scenario to be optimised, they have all been
referred to as battery capacity (𝑆𝑂𝐶𝑚𝑎𝑥). The maximum power (𝑃𝐵, 𝑚𝑎𝑥)
will always be equal to the capacity value divided by one hour, as
long as it does not exceed 7 MW since the electrical installation of
the factory is not prepared for a power higher than this value. For
larger capacities, 𝑃𝐵, 𝑚𝑎𝑥 = 7 MW. The battery can have different
charging and discharging efficiencies. The charge or discharge can
5

Table 4
Battery model parameters.

Parameter Symbol Value Unit

Minimum state of charge 𝑆𝑂𝐶𝑚𝑖𝑛 0.2 ⋅ 𝑆𝑂𝐶𝑚𝑎𝑥 MWh

Initial state of charge 𝑆𝑂𝐶1 𝑆𝑂𝐶𝑚𝑖𝑛 MWh

Max. power exchange 𝑃𝐵, 𝑚𝑎𝑥
𝑆𝑂𝐶𝑚𝑎𝑥

1ℎ
⩽ 7 MW

Charge efficiency 𝜂𝑐 0.95 –
Discharge efficiency 𝜂𝑑 0.95 −

Table 5
CHP model parameters.

Parameter Symbol Value Unit

Rated power 𝑃 𝑚𝑎𝑥
𝐶𝐻𝑃 435 kW

Electrical efficiency rate 𝜂𝐶𝐻𝑃 39.9 %

reach the maximum value given by the maximum power transmission.
The implemented model is described in Eqs. (5), (6) and (7). The
auxiliary variable 𝐸𝑎𝑢𝑥,𝑘

𝐵 represents the ideal energy (in the absence
of saturations, with perfect efficiency), and 𝐸𝑘

𝐵 is the energy charged
to/discharged from the battery at each instant 𝑘.

𝐸𝑎𝑢𝑥,𝑘
𝐵 = 𝑛𝑘𝐵 ⋅ 𝑃𝐵, 𝑚𝑎𝑥 ⋅ 𝛥𝑡 (5)

𝐸𝑘
𝐵 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

if 𝑛𝑘𝐵 ≥ 0
{

𝐸𝑎𝑢𝑥,𝑘
𝐵 ⋅ 𝜂𝑑 if 𝑆𝑂𝐶𝑘 ≥ 𝐸𝑎𝑢𝑥,𝑘

𝐵
𝑆𝑂𝐶𝑘 ⋅ 𝜂𝑑 in other cases

if 𝑛𝑘𝐵 < 0

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐸𝑎𝑢𝑥,𝑘
𝐵
𝜂𝑐

if 𝑆𝑂𝐶𝑘 − 𝐸𝑎𝑢𝑥,𝑘
𝐵 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥

𝑆𝑂𝐶𝑘 − 𝑆𝑂𝐶𝑚𝑎𝑥
𝜂𝑐

in other cases

(6)

𝑆𝑂𝐶𝑘+1 = 𝑆𝑂𝐶𝑘 −

⎧

⎪

⎨

⎪

⎩

𝐸𝑘
𝐵

𝜂𝑑
if 𝑛𝑘𝐵 ≥ 0

𝐸𝑘
𝐵 ⋅ 𝜂𝑐 if 𝑛𝑘𝐵 < 0

(7)

Recall that, according to Table 1, the decision variable 𝑛𝑘𝐵 contains
the sign of the operation to be performed.

3.3. CHP model

CHP stands for Combined Heat and Power. That is, heat and electric-
ity are produced from a single device. It is also known as cogeneration.
In the real scenario, the heat produced is not used. So in the modelled
system, it will not be used either.

The data needed for the model are the gas price throughout the day,
the efficiency of the CHP (𝜂𝐶𝐻𝑃 ), the percentage of electrical power
that is produced per MWh of gas and the rated power of the CHP
(𝑃𝑚𝑎𝑥

𝐶𝐻𝑃 ). These are all data provided by the manufacturer of the CHP,
namely in its datasheet. The value of the parameters can be seen in
Table 5.

The CHP installed in the process has only two modes of operation:
on, working at rated power; or off. The model implemented in Eq. (8)
reflects this behaviour, knowing that the CHP decision variable (𝑛𝑘𝐶𝐻𝑃 )
has been defined as binary.

𝐸𝑘
𝐶𝐻𝑃 = 𝑛𝑘𝐶𝐻𝑃 ⋅ 𝑃𝑚𝑎𝑥

𝐶𝐻𝑃 ⋅ 𝛥𝑡 (8)

Finally, the cost of this production (𝐶𝑘
𝐶𝐻𝑃 ) is calculated in Eq. (9).

𝐶𝑘 = 𝐸𝑘 ⋅ 𝜂−1 ⋅ 𝑃𝑟𝑘 (9)
𝐶𝐻𝑃 𝐶𝐻𝑃 𝐶𝐻𝑃 𝑔𝑎𝑠
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3.4. Electricity supplier at market prices

The electricity supplier, subject to the electricity market, will meet
demand when all other energy sources fail to do so. Electricity market
prices are obtained from a database of the electricity grid in which the
actual plant is located. It follows the curve of a regulated tariff.

In Eq. (10), the total energy obtained from the RESs at each instant
(𝐸𝑘

𝑅𝐸𝑆𝑠) is described as the sum of the energy generated by the wind
turbine (𝐸𝑘

𝑊 𝑇 ) and the photovoltaic panels (𝐸𝑘
𝑃𝑉 ).

𝐸𝑘
𝑅𝐸𝑆𝑠 = 𝐸𝑘

𝑊 𝑇 + 𝐸𝑘
𝑃𝑉 (10)

The unsatisfied demand (𝐸𝑎𝑢𝑥,𝑘
𝑀𝑃 ) is given by the energy balance,

which is summarised by Eq. (11). This demand can be negative because
RESs production covers all demand with its production at some point
in time.

𝐸𝑎𝑢𝑥,𝑘
𝑀𝑃 = −(𝐸𝑘

𝐶𝐻𝑃 + 𝐸𝑘
𝐵 + 𝐸𝑘

𝑅𝐸𝑆𝑠) + 𝐸𝑘
𝑅𝐶 +

𝑀
∑

𝑖=1
𝐸𝑘
𝐶𝑁𝐶𝑖

(11)

The RESs in the original system have no connection to the grid and
therefore cannot sell electricity. This constraint has been considered,
saturating the grid energy supply (𝐸𝑘

𝑀𝑃 ), as can be seen in Eq. (12).

𝐸𝑘
𝑀𝑃 =

{

0 if 𝐸𝑎𝑢𝑥,𝑘
𝑀𝑃 < 0

𝐸𝑎𝑢𝑥,𝑘
𝑀𝑃 in other cases

(12)

The cost of the power obtained from the grid (𝐶𝑘
𝑀𝑃 ) is calculated

in Eq. (13), from electricity market prices (𝑃𝑟𝑘𝑀𝑃 ).

𝐶𝑘
𝑀𝑃 = 𝐸𝑘

𝑀𝑃 ⋅ 𝑃𝑟𝑘𝑀𝑃 (13)

3.5. Renewable energy sources

The generation systems based on renewable energy sources have
great penetration and importance in the industry, as they help to re-
place the energy consumption of the grid, or in turn, supply the energy
demand required by the various equipment that make up the process.
This Section presents a brief description of two electricity generation
systems coupled to the internal electrical grid of the factory. The first
uses the wind resource through a wind turbine, and the other uses the
solar resource in a photovoltaic installation. The energy generated by
both systems is used in the different manufacturing processes within
the factory.

3.5.1. Wind turbine
The factory has a 3 MW wind turbine of onshore installation with a

windward rotor with a horizontal axis and three blades. The historical
data collected by the wind turbine’s SCADA contains the measurements
made by the sensors of the variables, one of which is the active power
generated. Besides, the SCADA stores the data on a day-by-day basis,
and the data logging is 10 min as a standard IEC 61400 wind industry
practice.

In this way, it is possible to observe the behaviour of the wind
turbine on different days, in this case for an entire calendar year.
Therefore, a data-driven approach is applied to analyse the planning
production schedule and maximise the use of RESs within the shop
floor.

Initially, a process of outliers removal, inconsistent data and an
interpolation of data (for missing samples) was carried out for each
variable. However, the data show that the active power generated is
saturated when there is an excess of renewable resources because the
wind turbine does not have a storage unit and is not connected to the
external grid. Therefore, these data have been removed by a clustering
process in order to capture realistic power behaviour. Fig. 5 shows the
data collected from one day of the active power generated by the wind
6

turbine. m
Fig. 5. Data collected by SCADA of the wind turbine: Active power data for a specific
day.

Fig. 6. Data collected by SCADA of the photovoltaic installation: Active power data
of a specific day.

3.5.2. Photovoltaic plant
The roof of the workshop building is equipped with a 210 kW

hotovoltaic installation, with a series-parallel configuration of 688
olar modules and three inverters that can reach an annual energy
roduction of approximately 160 MWh. In addition, each solar module
onsists of 120 cells and the total PV installation has a surface area of
107 m2. The SCADA of the PV plant collects data on the generated
ower and records it every minute. Also, a data-driven approach is ap-
lied to analyse behavioural patterns. In addition, data pre-processing
s performed, a process similar to that applied to the wind turbine data.
ig. 6 shows the collected data of one day that is used in planning
roduction to improve energy use.

. Optimisation solution

The objective of the optimisation is summarised in Eq. (14): to
inimise the daily energy cost (𝐶𝑑𝑎𝑦). To achieve this, the correct value

𝑘
ust be selected for the decision variables (𝑛𝑜𝑏𝑗), as these are the only
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variables that can be manipulated.

min
𝑛𝑘𝑜𝑏𝑗

𝐶𝑑𝑎𝑦 subject to Eq. (2) (14)

Looking at the Table 1, it can be seen that the problem contains
both integer and continuous variables, i.e. it is a mixed problem. To
solve this type of problem there are several optimisation algorithms.

Taking into account the type of optimisation problem; the pos-
sibility of improving the system model with more complex and re-
alistic descriptions; and looking at other similar works already im-
plemented [10]; genetic algorithms have been chosen among all the
optimisation algorithms.

Although genetic algorithms offer no guarantee of finding the global
solution in all cases, their advantages in terms of exhaustive explo-
ration, adaptability, flexibility and handling of complex problems make
them an attractive and effective option for these optimisation problems.

4.1. Concept of genetic algorithm

The genetic algorithm (GA) is essentially a heuristic search algo-
rithm. The algorithm mimics the process of natural selection, whereby
the strongest individuals are chosen for reproduction, resulting in the
offspring of the next generation [24].

Natural selection begins with the identification of the most robust
individuals within a population, which then produce offspring that
inherit their traits and are added to the next generation. If the parents
possess superior fitness, their offspring will also be superior and more
likely to survive. This cycle repeats itself, ultimately resulting in the
emergence of a generation with the most robust individuals. This
approach is also applicable to search problems: the genetic algorithm
tries to evaluate a set of solutions to a problem and select the best of
the group.

The algorithm consists of six stages: initial population, fitness evalu-
ation, selection process, crossover, mutation and termination condition.
These six stages will be repeated until the termination condition is met.
Each of the stages will be explained below using the nomenclature used
throughout this article.

Initial population. A population is a set of individuals. An individual
is a possible combination of values of the decision variables (𝑛𝑘) of
the optimisation problem. Any individual is a possible solution to the
problem. These values of the decision variables are called genes.

In the first iteration of the process, it is necessary to select a specific
population, from which the GA will start searching for the optimal
solution.

The size of the initial population is fixed and is given by the number
of genes (length of the individual) and the number of individuals de-
sired for each population. The latter is set by the parameter Population
Size.

Fitness assessment. The ability of an individual to compete with others
is determined by the fitness function, which assigns a fitness score to
each individual. In this second stage of the process, each individual
in the initial population is assessed. The probability of an individual
surviving is directly related to this fitness score. Individuals with a
higher fitness score are more likely to survive and pass on their genes
to the next generation.

Selection process. During the selection phase, the aim is to select the
fittest individuals and allow them to pass on their genes to the next
generation. This is done by evaluating the selection function which has
as input the fitness value from the previous step. This function returns
a value that is used to select the individuals that will be crossed to form
the new individuals of the new population.

The number of individuals selected is given by the parameter Elite
count. These individuals are the only ones that remain unmodified
7

between the old and the new population.
Table 6
Selected parameters of the genetic algorithm.

Param Value

Max stall generations 50
Population size 2500
Elite count 500
Selection function selectionstochunif
Crossover function crossoverlaplace
Crossover fraction 0.8
Function tolerance 10−6

Crossing. The most important stage in a genetic algorithm is the
crossover phase. Here, the evolution of the population takes place
through the mixing of pairs of individuals selected in the previous
phase. To mix each pair of individuals, a method is selected to mix
the genes of the pair. This method is known as the Crossover function.

Once the method for mixing individuals has been selected, as many
ndividuals are produced as are derived from the parameter Crossover
raction. This parameter indicates the percentage of individuals in a
opulation, excluding those selected in the selection phase, that have
een generated through the crossover. The remaining individuals, until
he population is complete, are generated through mutation.

utation. The purpose of mutation is to ensure that there is a variety
f traits within the population and to prevent the population from
onverging too early.

In the mutation stage, small random changes are made in individ-
als in the population to create the remaining offspring. The Mutation
unction is used to make these changes.

ermination condition. The last stage of the process is to decide whether
he termination condition has been reached. This condition can be

maximum number of iterations, a maximum number of iterations
ithout improvement, a minimum fitness value, and so on.

In this case, the maximum number of iterations without improve-
ent, given by the parameter Max Stall Generations, has been selected

s the termination condition. Furthermore, to determine whether an
mprovement has occurred, the parameter Function tolerance is used.
his parameter indicates the margin of fitness that the population must

mprove to consider that an improvement has occurred. If the im-
rovement is not higher than this value, no improvement is considered
o have occurred, and the counter of iterations without improvement
s incremented. If the improvement is higher, the iteration counter
ithout improvement is reset.

.2. Selected parameters

In Table 6 it can be seen that the main selected parameters of the
A that are common to the different scenarios will be explained below.
hese parameters have been empirically adjusted, rewarding values
hat obtain a better result in terms of the quality of the result and the
ime spent.

The mutation function is the only parameter that is modified in the
ifferent scenarios. A multitude of experiments have been carried out in
ach scenario by changing the mutation function until the best results
ere achieved. In these results, two different mutation functions were
sed:

1. Power mutation [25]: more accurate, but requires more com-
putational burden on mixed problems. It has been implemented
only in the scenario without batteries (Scenario 0.0).

2. Uniform mutation [26]: less precision, but less computational
burden. It has been used in scenarios with battery, because
in these scenarios, where binary variables and continuous are
mixed, the GA with the power mutation function is not able to

converge to a good solution, in a reasonable time.
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Table 7
Battery capacities of each subscenario.

Identification
Scenario.SubScenario

0.0 1.0 1.1 1.2

Battery capacity
MWh

0 1 5 10

To initialise the decision variables, a set of values has been taken
that make all machines and the CHP on for the entire OH, while at all
times the battery (only in scenarios with battery) are kept disconnected.
With this set, it is verified that at the start of the optimisation, the initial
set of individuals lies within the region created by the constraints, given
by Eq. (2).

4.3. Proposed scenarios

Two scenarios have been developed to see how battery consumption
affects final cost. The first scenario, compared to Fig. 1, does not
have a battery implemented. The second scenario is identical to the
first one, with the addition of a battery bank. Within this scenario,
three different battery capacities have been tested, resulting in three
sub-scenarios. Each subscenario in this scenario varies only in battery
capacity. The battery sizes chosen are shown in Table 7. Recall that all
battery parameters depend on 𝑆𝑂𝐶𝑚𝑎𝑥 for their configuration.

5. Optimisation results

The optimised energy distributions and, if applicable, the state of
charge of the battery over the entire optimisation horizon, for each
sub-scenario, will be shown below.

The graphs have been scaled as follows: in the graphs referring
to the energy sequences, each bar represents the total energy pro-
duced/consumed during that period of duration 𝛥𝑡; in the graphs
referring to the energy stored in the battery, the SOC of the battery in
p.u. at each instant 𝑘 has been represented. In both figures, the time has
been scaled with respect to the sampling period 𝛥𝑡 to better visualise
the results, maintaining the number of instants, starting at 12:00 AM.

Optimised scenario without battery (scenario v0.0). Fig. 7 shows the
optimised energy distribution in the battery-less scenario. It can be seen
that throughout the day, the balance of power is always met, that is,
at each instant, the overall demand (black line with filled dots) of the
factory is covered, first by RESs, i.e, by the WT (purple bars) and/or the
PV (yellow bars), and if necessary, additionally by purchasing energy
from MP (orange bars) or CHP (blue bars). In addition, it can be seen
that surplus energy (red bars) cannot be sold, so it is thrown away.

Compared to Fig. 4 (baseline behaviour), it can be seen that: the se-
quence of the manipulable CNC machines (black line with unfilled dots)
has been optimised, occupying the time instants with the lowest market
price and/or the highest amount of renewable energy generated. Due to
this, the excess energy (red bars) is lower, as the demand is adjusted to
the generation of renewable energy. In addition, the optimiser starts up
cogeneration, when deemed appropriate, to cover part of the demand.

Although the utilisation of excess energy is higher, it is not possible
to further reduce the amount of wasted energy because the margin
of the decision to adjust the demand is very small. To increase this
flexibility and to be able to adapt to prices and renewable generation,
a battery has been introduced.

Optimised scenario with one battery of 1 MWh (scenario v1.0). The
optimised energy distribution of the optimised scenario with a 1 MWh
battery can be seen in Fig. 8. This shows the energy stored (negative
green bars) and supplied (positive green bars) by the battery.

Comparing Fig. 8 with Fig. 7, it can be seen that excess energy is
less, because when there is excess energy, it is stored in the battery and
is used when there is less renewable energy generation.
8

Fig. 7. Energy distribution in the optimised scenario without battery.

Fig. 8. Energy distribution in the scenario with 1 MWh.

Fig. 9. State of charge of the battery of 1 MWh.
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Fig. 10. Energy distribution in the scenario with 5 MWh.

Fig. 11. State of charge of the battery of 5 MWh.

To illustrate this, the SOC of the battery for that day can be seen in
Fig. 9: the battery charge is completed several times a day. In addition,
in this Figure it can also be seen that saturation is met at the minimum
SOC to increase battery life.

In order to be able to use the surplus energy generated to the
maximum and thus maximise the use of renewable energies, a larger
battery has been introduced in the following scenario.

Optimised scenario with one battery of 5 MWh (scenario v1.1). In Fig. 10,
the energy distribution for the scenario with a medium-sized battery is
shown. In this figure it can be seen that the excess energy (red bars) is
zero.

Fig. 11 shows that the battery is fully utilised. To prove that a higher
capacity battery does not improve the result, a third scenario with a
larger battery was simulated.

Optimised scenario with one battery of 10 MWh (scenario v1.2). Fig. 12
shows the energy distribution of this scenario.

In Fig. 13 it can be seen that the improvement over the previous
scenario consists in storing all possible electricity from the market when
it reaches the minimum daily price, saturating at 7 MW at instant 9.5 h
(recall that Fig. 12 is scaled with 𝛥𝑡 = 0.5 h).

All results have been summarised in Table 8. Looking at these
results, the following conclusions can be drawn:
9

Fig. 12. Energy distribution in the scenario with 10 MWh.

Fig. 13. State of charge of the battery of 10 MWh.

Table 8
Summary of the results.

Optimisation
Strategy Daily money saving

Battery size

First 6.2%
–

12.6%
1 MWh

27.4%
5 MWh

39.2%
10 MWh

1. Although the decision margin on demand is small (11%), the
savings achieved are significant, without taking battery into
account a daily saving of 6.2% is achieved.

2. Inclusion of a battery considerably reduces the cost of energy;
the savings are directly proportional to the capacity of the
battery included. To this conclusion, it must be added that when
a BESS cost model is added, saturation will appear, limiting this
proportionality of capacity and savings.

3. The optimiser, based on GA, is able to find the optimal solution
in a reasonable time, even with a large number of variables.

6. Improving the optimisation strategy

Later, to reduce the optimisation time, the number of variables
in the CNCs was reduced. In the previous optimisation strategy, for
each instant 𝑘, there was a binary variable for each CNC. In this
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Fig. 14. System setup of the factory with the second strategy decision variables.
Table 9
Free variables of the second strategy.

Symbol Type Limits
lower & upper

𝑛𝑘𝐶𝑁𝐶 Integer 0 𝑀
𝑛𝑘𝐶𝐻𝑃 Binary 0 1
𝑛𝑘𝐵 Continuous −1 1

Table 10
Number of variables to optimise.

Optimisation
Strategy

Scenario
Zero

Scenario
One

First 384
variables

432
variables

Second 96
variables

144
variables

second strategy, there is only one integer variable for each instant that
indicates how many machines are on at that moment. The decision
variables of this strategy can be seen in Table 9.

With this change, two optimisations would be decoupled: how many
machines of each type would be turned on at each instant (which
depends only on the DPT) and which machines would be turned on to
meet the objective first. In Fig. 14 the factory system setup with these
decision variables is shown.

As the implemented model of CNCs only takes into account the
consumption of the machines, and this is identical for all the machines,
this second optimisation will be solved with a rule: the CNCs will be
numbered and the first ones will always be started first; for example,
if at an instant 𝑘 there must be 7 machines running, they will be
started from 1 to 7. This way of solving the second optimisation may
have problems when the sampling time (𝛥𝑡) is not a multiple of the
roduction time (𝑇𝑝𝑎𝑟𝑡) of one part In that case, another algorithm
ould be necessary, or the sampling time should be reduced.

The total number of variables to optimise in each of the strategies
roportional to the sampling time and optimisation horizon set out
n Table 2, is reflected in Table 10. As can be seen in this Table,
his strategy achieves a drastic reduction of variables without losing
recision in the result.

This reduction of variables makes it possible to take advantage of
he precision offered by the mutation function power mutation. At the

same time, to take advantage of the speed of the mutation function
uniform mutation, the genetic algorithm has been configured to perform
two serial optimisations: the first with the mutation function uniform
10

mutation, to obtain a preliminary solution quickly; and the second, with
Fig. 15. Comparison of results of the two optimisation strategies.

the mutation function power mutation, to obtain a solution closer to the
absolute minimum.

To initialise the variables, the same procedure has been followed
as in the first strategy, adapting the set of individuals to fit the new
representation but complying with all the restrictions to the same
extent.

6.1. Comparing results

The results obtained for each scenario for each of the two optimisa-
tion strategies are shown in Fig. 15. All data shown in Fig. 15 have
been summarised in Table 11, adding the processing times for each
optimisation and scenario.

In view of these results, the following conclusion can be drawn: the
second optimisation strategy, with its reduction of variables, improves
on the first in terms of time, without losing much precision (0.7% at
most).

If optimised once a day, this improvement does not justify the
temporal improvements obtained. But if it is optimised, as explained
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Table 11
Summary of the comparison.

Optimisation
Strategy Daily money saving

Battery size/Optimisation time

First 6.2%
–/2 min

12.6%
1 MWh/15 min

27.4%
5 MWh/92 min

39.2%
10 MWh/34 min

Second 6.2%
–/2 min

12.9%
1 MWh/5 min

27.2%
5 MWh/11 min

38.5%
10 MWh/7 min

in the next section, in a closed loop, that is, at each instant 𝑘 the whole
system is re-optimised, in order to feedback on all the updated data
of the system, the optimisation must be performed in a time shorter
than the sampling time (being, in this case, 𝑣𝑎𝑟𝐷𝑒𝑙𝑡𝑎𝑡 = 0.5;h). This
is the justification for the need to improve the optimisation time by
improving the optimisation strategy.

Finally, it is worth noting that the optimisation method imple-
mented in the system allows the battery size to be decided quite
precisely for this factory, being easily replicable for other systems.

7. Conclusion

This article has presented the formulation of the optimisation of
a manufacturing process, through genetic algorithms, managing the
generation and demand of energy in a factory at periodic moments
of time; The strategy manages to minimise the daily energy cost and
maximise the use of installed renewable energy, also taking advantage
of potential battery banks.

The result of the optimisation for one day decides the work sequence
of each machine, as well as the charge and discharge of the potential
battery bank and the contribution of an installed CHP.

Another optimisation strategy with fewer variables has also been
proposed and tested, obtaining similar results but improving the com-
putation time. In addition, in the simulations, scenarios with different
battery capacities have been tested, which has allowed a preliminary
study to be carried out for the installation of the electrical storage bank.

The results presented in this work show that 6% of energy costs can
be saved per day, compared to the current management decided by the
manufacturing plant operators. Furthermore, through the simulation-
based study, approximately another 6% additional savings can be
achieved by installing 1 MWh of battery, then increasing by approx-
imately 3% for each addition of MWh.

The work has been a study on a real factory, which will serve as
an initial framework, where, for future work, more elements can be
included to improve the model (uncertainties, other assets, etc.).

This work thus can be extended in several ways. First, because the
actual production process involving CNCs is a multi-stage manufactur-
ing process, the whole process could be implemented to improve the
accuracy of the optimisation.

In order to solve the problems of errors that may occur in the
system model, it is necessary to recalculate the entire optimisation.
These errors can be, for example, a machine that breaks down or a
weather forecast that is not fulfilled. In this case, continuous closed-
loop reprogramming based on genetic algorithms would correct these
errors at every 𝑘 sample without carrying forward errors. In addition,
variables could be further reduced to improve the optimisation compu-
tation time and improve the accuracy of the optimisation. This future
work justifies the search for a fast and accurate solution, since in order
to close the loop, the optimisation time needs to be shorter than the
sampling time.

Due to the uncertainties associated with the whole system (at-
ospheric predictions, failures, etc.), the incorporation of stochastic
odels within the predictive system will improve the accuracy of the
rediction, ultimately improving the final cost.
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