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Some dynamical properties of the semigroups are obtained 
from a description of the Koenigs map of the semigroup.
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1. Introduction

The study of Hardy spaces of Dirichlet series is a topic of increasing interest in the liter-
ature in the last 25 years starting with the fundamental paper of Hedenmalm, Lindqvist, 
and Seip [20]. The two recent monographs [13] and [21] are samples of this reality where 
the state of the art can be found. Among the different relevant topics regarding these 
spaces, the study of composition operators plays a significant role. After some consider-
able effort, Gordon and Hedenmalm [18] got a characterization of bounded composition 
operators on the Hardy space of Dirichlet series H2. They introduced the following class 
where, as usual, given θ ∈ R, we denote Cθ := {s ∈ C : Re(s) > θ} and C+ = C0:

Definition 1.1. Given an analytic function Φ : C+ → C+, we say that Φ belongs to the 
Gordon-Hedenmalm class G if:

(1) There exists cΦ ∈ N ∪ {0} and ϕ a Dirichlet series such that

Φ(s) = cΦs + ϕ(s), s ∈ C+. (1.1)

(2) If cΦ = 0, then Φ(C+) ⊂ C1/2.

The value cΦ is known as the characteristic of the function Φ.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Gordon and Hedenmalm proved that a composition operator is bounded on H2 if 
and only if its symbol belongs to G. Later on, Bayart [4] obtained some results on the 
boundedness of composition operators on the spaces Hp for 1 ≤ p ≤ +∞, being an open 
problem the complete characterization for p /∈ 2N ∪ {+∞}. It is already known that 
Φ ∈ G is not sufficient to assure the boundedness of the composition operator CΦ on 
Hp, for 1 ≤ p < 2. This is a consequence of a deep result due to Harper [19] about the 
so-called local embedding problem and the previous work of Bayart and Brevig [5] (see 
also [21, p. 274]).

Our goal is to study semigroups of composition operators on the Hardy space of 
Dirichlet series Hp for 1 ≤ p ≤ +∞. The study of semigroups of composition operators 
in the setting of Banach spaces of analytic functions was initiated with the seminal paper 
of Berkson and Porta [7]. They proved that a semigroup of composition operators {CΦt

}
is strongly continuous in the Hardy space of the unit disc if and only if the family of 
functions {Φt} is a continuous semigroup of holomorphic functions in the unit disc. This 
research has been extended to other spaces, having an analogue characterization in cases 
like Bergman spaces but rather different in others cases like the disc algebra, the Bloch 
space or BMOA. See [1], [2], [3], [8], [9], [11], [16] and references therein.

In this paper, we tackle for the first time the study of semigroups of composition 
operators in the setting of Banach spaces of Dirichlet series. Before going to such topic, 
in Section 3 we prove some properties of continuous semigroups of holomorphic functions 
(see Definition 3.1) in the class G. In particular, we show that for functions belonging 
to such semigroups their characteristic must be 1, what implies that their Denjoy-Wolff 
point is ∞ and they are parabolic maps.

In Section 4, we prove

Theorem 1.2 (Theorems 4.4 and 4.6). Let 1 ≤ p < ∞. Let {Φt}t≥0 be a semigroup of 
analytic functions, such that Φt ∈ G for every t > 0 and denote by Tt the composition 
operator Tt(f) = f ◦ Φt. Then, the following assertions are equivalent:

a) {Tt}t≥0 is a strongly continuous semigroup in Hp.
b) {Φt}t≥0 is a continuous semigroup.
c) Φt(s) → s, as t goes to 0, uniformly in Cε, for every ε > 0.

We stress in this result that the convergence of Φt to the identity is uniform in half-
planes Cε and not only on compact sets.

The main result in Section 5 is a characterization of the holomorphic functions in the 
right half-plane that are infinitesimal generators of semigroups in the class G. Namely,

Theorem 1.3 (Theorem 5.1). Let H : C+ → C+ be analytic. Then, the following state-
ments are equivalent:
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a) H is the infinitesimal generator of a continuous semigroup of elements in the class 
G.

b) H ∈ H∞(Cε), for all ε > 0.
c) H is a Dirichlet series.

Beyond the semigroups of translations (Φt(s) = s + at, with a ∈ C+ \ {0}, for s ∈ C+
and t ≥ 0), it is not easy to provide explicit examples of continuous semigroups in G. One 
of the main interest of Theorem 1.3 is that it guarantees the existence of many different 
examples.

We also use Theorem 1.3 to describe the infinitesimal generator of the semigroups 
of composition operators as well as its domain (see Proposition 5.7). At the end of 
this section, we prove that there is no non-trivial uniformly continuous semigroup of 
composition operators in Hp for 1 ≤ p < ∞ (see Theorem 5.8). In Section 6 we study 
the Koenigs function of a continuous semigroup in the class G and show that, up to 
the semigroups of automorphims, all of them are maps of zero hyperbolic step (see 
Proposition 6.10).

We conclude the paper with Section 7 where we show that there is no non-trivial 
strongly continuous semigroups of compositions operators in H∞ (see Theorem 7.1).

In Section 2, we collect some definitions and properties about Hardy spaces of Dirichlet 
series and composition operators between them. Most of these properties are well-known 
and we give a reference for them. In other cases, such properties are probably new or we 
could not find a reference. In such a case, for the sake of completeness, we have provided 
a proof.

2. The Hp spaces and their composition operators

2.1. Dirichlet series

We denote by D the space of convergent Dirichlet series, namely the series

ϕ(s) =
∞∑

n=1
ann

−s,

which are convergent in some half-plane Cθ. To any Dirichlet series ϕ(s) =
∑∞

n=1 ann
−s, 

one can associate the following abscissae:

σc(ϕ) = inf{Re s :
∞∑

n=1
ann

−s is convergent};

σb(ϕ) = inf{σ :
∞∑

n=1
ann

−s is bounded on Cσ};

σu(ϕ) = inf{σ :
∞∑

ann
−s is uniformly convergent on Cσ};
n=1
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σa(ϕ) = inf{Re s :
∞∑

n=1
ann

−s is absolutely convergent}.

It is known that

σc(ϕ) ≤ σb(ϕ) = σu(ϕ) ≤ σa(ϕ) ≤ σc(ϕ) + 1.

The proofs of these inequalities can be found in [21, Section 4.2] or [13, Chapter 1].
We shall also consider certain subspaces of D. Indeed, given Λ a multiplicative semi-

group of N (that is, 1 ∈ Λ and mn ∈ Λ whenever m, n ∈ Λ), we define

DΛ := {f ∈ D : an = 0 if n /∈ Λ } .

Note that the class D is nothing but the result of taking Λ = N in DΛ.
At some point we will also need the following results concerning Dirichlet series. See 

[21, Theorem 8.4.1] for a proof of the first one and [13, Remark 1.20] for a detailed proof 
of the second one.

Theorem 2.1. Let σ, ν ∈ R. Consider ϕ : Cσ → Cν analytic such that it can be written as 
a Dirichlet series in a certain half-plane. Then, σu(ϕ) ≤ σ. In particular, ϕ is bounded 
in Cσ+ε for all ε > 0.

Lemma 2.2. Let m be a positive integer and ϕ(s) =
∑∞

n=m ann
−s be a Dirichlet series 

in D whose first non-zero coefficient is am. Then, msϕ(s) → am as Re (s) → +∞.

The next theorem is probably well-known for specialists, but we could not find a 
reference so that we have included its proof.

Theorem 2.3. Let ϕ(s) =
∑∞

n=1 ann
−s be a Dirichlet series convergent in Cη. Then ϕ is 

not one-to-one in Cη.

Proof. The result is trivial if ϕ is constant. Otherwise, take N = min{n ≥ 2 : an 
= 0}. 
We may assume that a1 = 0 and aN = 1. Write ϕ(s) = N−s + h(s) and γ(s) = N−s for 
all s ∈ Cη.

Take ε < (N − 1)/N2. Since limRe s→+∞ h(s)Ns = 0 (see Lemma 2.2), there is s0 > η

such that |h(s)| < N−Re sε whenever Re s > s0.
Take x > s0 + 1 and m ∈ Z. Write g(s) := N−s −N−x and f(s) := ϕ(s) −N−x, for 

s ∈ Cη. Consider the segments

Γa,m = [a− iπ/ ln(N), a + iπ/ ln(N)] + 2mπi/ ln(N),

Δ = [a− iπ/ ln(N), a + 2 − iπ/ ln(N)] + 2mπi/ ln(N),
a,m
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for every a ∈ R. Notice that γ(Γa,m) is the circle centered at 0 and with radius N−a, that 
is C(0, N−a), and γ(Δa,m) is the segment that joins the points −N−a with −N−(a+2). 
Now, take the rectangle

Γm = Γx−1,m ∪ Γx+1,m ∪ Δx−1,m ∪ Δx−1,m+1.

On the one hand, notice that Γm is contained in the half-plane Re s > s0. Thus, for any 
s ∈ Γm, it holds

|g(s) − f(s)| = |h(s)| < N−Re sε ≤ N−(x−1)ε. (2.1)

On the other hand, observe that

γ(Γm) = γ(Γ0) = C(0, N−(x−1)) ∪ C(0, N−(x+1)) ∪ [−N−(x−1),−N−(x+1)].

Thus, for s ∈ Γm, we have

|g(s)| = |γ(s) −N−x| = |N−s −N−x|
≥ min{|N−(x−1) −N−x|, |N−(x+1) −N−x|} ≥ N−x−1(N − 1).

(2.2)

Since ε < (N − 1)/N2, we deduce that for all s ∈ Γm, (2.1) and (2.2) imply

|g(s) − f(s)| < |g(s)|.

The point x + i2mπ/ ln(N) is the center of Γm and g(x + i2mπ/ ln(N)) = 0 (in fact, it is 
the unique zero of g in the interior of such rectangle). Now, Rouché’s Theorem implies 
that the equation ϕ(s) = N−x has a solution in the interior of each Γm what clearly 
shows that ϕ is not univalent. �
2.2. The Hp spaces

Before moving onto the study of composition operators between the Hp spaces, we 
shall recall how these ones are constructed.

If {pj}j≥1 is the increasing sequence of prime numbers, given a natural number n, we 
will denote its prime number factorization

n = pκ1
1 pκ2

2 · · · pκd

d

by n = (pj)κ. This associates uniquely to n the finite multi-index κ(n) = (κ1, κ2, . . . ).
The Bohr lift of a Dirichlet series

ϕ(s) =
∑

ann
−s
n≥1
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is the power series Bϕ(z) =
∑

n≥1 anz
κ(n), z ∈ D∞. For 1 ≤ p < ∞, we define the Hardy 

space of Dirichlet series Hp as the space of Dirichlet series ϕ such that Bϕ is in Hp(D∞), 
and we set

‖ϕ‖Hp := ‖Bϕ‖Hp(D∞) =

⎛
⎝∫
T∞

|Bϕ(z)|p dm∞(z)

⎞
⎠

1/p

,

where m∞ denotes the Haar measure of infinite polytorus T∞, which is simply the 
product of the normalized Lebesgue measure of the torus T in each variable. For p = 2, 
we have that

‖ϕ‖H2 =
( ∞∑

n=1
|an|2

)1/2

.

It is easy to see that Hq ⊂ Hp and that given ϕ ∈ Hq it holds ‖ϕ‖p ≤ ‖ϕ‖q, whenever 
1 ≤ p ≤ q < ∞. The construction of the Hardy spaces of Dirichlet series that we have 
just outlined gives rise to a Banach space of analytic functions in the half-plane C1/2. In 
fact, their abscissae of absolute convergence, σa(ϕ), is smaller or equal to 1/2. This is a 
consequence of Helson’s inequality:

( ∞∑
n=1

|an|2
d(n)

) 1
2

≤ ‖ϕ‖1 (2.3)

for any function ϕ(s) =
∑∞

n=1 ann
−s ∈ H1, where d(n) denotes the number of divisors 

of n (see [21, Theorem 6.5.9]).
For ε ≥ 0, the space of bounded Dirichlet series H∞(Cε) consists of all analytic 

functions bounded in Cε such that they can be written as a Dirichlet series in a certain 
half-plane. If we endow the space H∞(Cε) with the norm given by

‖ϕ‖H∞(Cε) = sup
s∈Cε

|ϕ(s)|,

we obtain a Banach space. For ε = 0, we simply write H∞ to denote H∞(C+). It holds 
that H∞ ⊂ Hp for all p < +∞.

Given Λ a multiplicative semigroup of N, a related space that will appear throughout 
the paper is

H∞
Λ (Cε) = {ϕ(s) =

∞∑
n=1

ann
−s ∈ H∞(Cε) : an = 0 if n /∈ Λ}.

It is clear that H∞
Λ (Cε) is a closed subspace of H∞(Cε). Moreover, the class DΛ is an 

algebra and so H∞
Λ (Cε) is a unital Banach algebra. Indeed, let ϕ1(s) =

∑∞
n=1 bnn

−s and 
ϕ2(s) =

∑∞
n=1 cnn

−s be two elements in DΛ. Then, their product is given by
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ϕ1ϕ2(s) =
∞∑

n=1

(∑
kl=n

bkcl

)
n−s =

∞∑
n=1

dnn
−s.

Now, if n = kl /∈ Λ, we have that either k /∈ Λ or l /∈ Λ. In any case, this implies that 
the corresponding coefficient vanishes and so does dn. Then, ϕ1ϕ2 ∈ DΛ. Since DΛ is a 
linear space, we deduce that it is also an algebra.

It is known that the pointwise evaluation functionals are bounded on Hp. Namely, 
given s ∈ C such that Re s > 1/2, the functional δs(ϕ) = ϕ(s), for all ϕ ∈ Hp, satisfies 
that

‖δs‖(Hp)∗ = (ζ(2Re s))1/p, (2.4)

where ζ denotes the Riemann zeta map (see [21, page 273]). In the case of H2, we will 
also need the boundedness of the evaluation of the derivative. Thus, for the sake of 
completeness, we have included a brief proof of this fact.

Lemma 2.4. Let k ∈ N ∪ {0} and s ∈ C1/2. The functional δks : H2 → C given by

ϕ �→ ϕ(k)(s)

is bounded. In fact, given σ > 0, it is uniformly bounded for s ∈ C1/2+σ.

Proof. Writing ϕ(s) =
∑∞

n=1 ann
−s, we recall that

ϕ(k)(s) =
∞∑

n=1
(− log n)kann−s, s ∈ C1/2.

Fix σ > 0. For s ∈ C1/2+σ,

|ϕ(k)(s)| ≤
∞∑

n=1

(logn)k|an|
nRe(s) ≤

( ∞∑
n=1

(logn)2k

n1+2σ

)1/2 ( ∞∑
n=1

|an|2
)1/2

< ∞.

Then, |ϕ(k)(s)| ≤ C(σ)‖ϕ‖H2 , s ∈ C1/2+σ. �
The next Montel-type theorem for Dirichlet series, due to Bayart, will be needed 

several times in this paper. We state it for the sake of clearness:

Theorem 2.5 (Bayart [4]). Let {fj}j be a bounded sequence in H∞. Then, there exist 
both a subsequence {fnk

} and a function f ∈ H∞, such that fnk
converges uniformly to 

f on each half-plane Cε, for all ε > 0.
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2.3. Composition operators

In their seminal work [18], Gordon and Hedenmalm focused their attention on com-
position operators in the Hilbert space H2. More precisely, given an analytic function 
Φ : C1/2 → C1/2, the composition operator is defined as CΦ(f) = f ◦ Φ, whenever f is 
analytic in C1/2. As a matter of nomenclature, Φ is often said to be the symbol of the 
composition operator CΦ. Now, what are the minimal requirements for a given analytic 
function Φ : C1/2 → C1/2 to define a bounded composition operator in H2? Reciprocally, 
once we have the boundedness of such an operator, what properties does Φ satisfy? To 
answer this matter, in [18] the authors introduced the now so-called Gordon-Hedenmalm 
class, denoted by G, even though they did not use this name in their original paper. This 
class is one of the cornerstones of the present work.

Definition 2.6. Let Φ : C+ → C+ be an analytic function.

(1) We say that Φ belongs to the class G∞ if there exist cΦ ∈ N ∪ {0} and ϕ ∈ D such 
that

Φ(s) = cΦs + ϕ(s). (2.5)

The value cΦ is known as the characteristic of the function Φ.
(2) We say that Φ belongs to the Gordon-Hedenmalm class G if Φ ∈ G∞ and Φ(C+) ⊂

C1/2 in case cΦ = 0.

Remark 2.7. Assume cΦ ∈ N for a certain Φ ∈ G∞ like in (2.5). By Lemma 2.2, it holds

cΦ = lim
Re s→+∞

Φ(s)
s

.

Thus, by Julia-Wolff-Carathéodory’s Lemma (see [10, Theorem 1.7.8]), ReΦ(s) ≥ cΦRe s
for all s ∈ C+. Therefore, ϕ sends C+ into C+. In addition, by Theorem 2.1, we have 
that σu(ϕ) ≤ 0.

The result Gordon and Hedenmalm proved reads as follows. The reader is addressed 
to [18] for a proof.

Theorem 2.8 (Gordon-Hedenmalm). An analytic function Φ : C 1
2

→ C 1
2

defines a 
bounded composition operator CΦ : H2 → H2 if and only if Φ has a holomorphic ex-
tension to C+ that belongs to the class G.

This characterization is also valid for the spaces Hp whenever p ∈ 2N. As far as we 
know, the characterization of the boundedness of composition operators in the other 
Hardy spaces of Dirichlet series remains open. We use the following result from Bayart’s 
work [4] (see also [21, Theorem 8.10.11]).
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Theorem 2.9 (Bayart). Let Φ : C1/2 → C1/2 be analytic and 1 ≤ p < ∞.

(a) If CΦ : Hp → Hp is bounded, then Φ ∈ G.
(b) If Φ ∈ G and cΦ ≥ 1, then CΦ : Hp → Hp is bounded.

Remark 2.10. From the proof of the sufficiency for the non-zero characteristic case in 
[18, Theorem B], it follows that ‖CΦ‖H2 ≤ 1. That is, the composition operator CΦ is a 
contraction on H2 whenever the characteristic cΦ is a natural number. In fact, this was 
extended to the other values of p ∈ [1, ∞) by Bayart (see [21, Theorem 8.10.1]). This 
observation will play a key role in subsequent sections.

The characterization of bounded composition operators on H∞ was obtained by Ba-
yart in [4] (see also [6, Proposition 2]). It shows that there are more bounded composition 
operators on H∞ than on H2:

Theorem 2.11. A function Φ : C+ → C+ defines a bounded composition operator CΦ :
H∞ → H∞ if and only if Φ belongs to the class G∞.

Next result confirms the well behaviour of the class DΛ under the action of CΦ, where 
Φ(s) = cΦs + ϕ(s) with ϕ ∈ DΛ and cΦ ∈ N ∪ {0}. Our proof is a slight modification of 
the proof of [18, Theorem A] once we know that DΛ is an algebra.

Theorem 2.12. Let θ, ν ∈ R. Consider Φ : Cθ → Cν an analytic map such that it can be 
written as

Φ(s) = cΦs + ϕ(s),

where cΦ ∈ N ∪ {0} and ϕ ∈ DΛ. Then, Φ generates a composition operator CΦ : DΛ →
DΛ, that is, f ◦ Φ ∈ DΛ for all f ∈ DΛ.

Proof. Let f(s) =
∑

n≥1 ann
−s ∈ DΛ. Then,

f ◦ Φ(s) =
∞∑

n=1
ann

−Φ(s) =
∞∑

n=1
ann

−cΦs−ϕ(s).

Since ϕ ∈ DΛ, there exists σ > 0 such that ϕ ∈ H∞
Λ (Cσ). Now, as H∞

Λ (Cσ) is a Banach 
algebra, we have that

n−ϕ(s) = exp(− log nϕ(s)) ∈ H∞
Λ (Cσ).

On the other hand, for n ∈ Λ, clearly, n−cΦs ∈ DΛ. Thus n−cΦs ∈ H∞
Λ (Cσ). Putting all 

together, we conclude that
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n−cΦsn−ϕ(s) ∈ H∞
Λ (Cσ).

Taking this into account, for σ1 > σ big enough so that f converges absolutely in Cσ1 ,

sup
s∈Cσ1

|ann−cΦsn−ϕ(s)| ≤ C|an|n−cΦσ1 .

This proves that the composition f ◦ Φ lies in H∞
Λ (Cσ1) and so in DΛ. �

The classes G and G∞ are stable under composition and the characteristic of the 
composition is the product of the characteristics. This fact is relevant when dealing with 
semigroups of functions in these classes.

Proposition 2.13. Let Φ, Ψ ∈ G∞ (resp. Φ, Ψ ∈ G). Then, Φ ◦Ψ ∈ G∞ (resp. Φ ◦Ψ ∈ G). 
Moreover, cΦ◦Ψ = cΦcΨ.

Proof. Given Φ, Ψ ∈ G∞ and f ∈ H∞, Theorem 2.11 guarantees that f ◦Φ ∈ H∞. Now, 
once more, f ◦ (Φ ◦ Ψ) = (f ◦ Φ) ◦ Ψ ∈ H∞. Then, Φ ◦ Ψ is a symbol of a bounded 
composition operator from H∞ into H∞. Therefore, again by Theorem 2.11, necessarily, 
Φ ◦Ψ ∈ G∞. Similarly, replacing the role in this argument of H∞ by H2 and Theorem 2.11
by Theorem 2.8, we get that Φ ◦ Ψ ∈ G whenever Φ, Ψ ∈ G.

For the second part of the statement, since we already know that Φ ◦Ψ ∈ G∞, we can 
write

Φ ◦ Ψ(s) = cΦ◦Ψs + η(s), cΦ◦Ψ ∈ N ∪ {0} and η ∈ D. (2.6)

But also

Φ ◦ Ψ(s) = cΦΨ(s) + ϕ(Ψ(s)) = cΦcΨs + cΦψ(s) + ϕ(Ψ(s)). (2.7)

Identifying (2.7) and (2.6), we find that

0 = (cΦcΨ − cΦ◦Ψ)s + cΦψ(s) + ϕ(Ψ(s)) − η(s).

Dividing by s in the latter identity, we find that

0 = cΦcΨ − cΦ◦Ψ + 1
s

(cΦψ(s) + ϕ(Ψ(s)) − η(s)) .

If we let Re(s) → +∞, by Lemma 2.2, the term in parenthesis converges. Hence, it is 
bounded. This yields the desired conclusion. �
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3. Semigroups of analytic functions

Semigroups of analytic functions in the unit disc D (and then in the right half-plane) 
have been a subject of study since the early 1900s. In 1978, Berkson and Porta [7]
studied continuous semigroups of analytic self-maps of the unit disc in connection with 
composition operators. This paper meant the resurgence of this area. The state of the 
art can be seen in [10]. We recall the definition straightaway.

Definition 3.1. We say that a family {Φt}t≥0 of analytic functions Φt : C+ → C+ is a 
semigroup if it verifies the following two algebraic properties:

• Φ0(s) = s.
• For every t, u ≥ 0, Φt ◦ Φu(s) = Φt+u(s).

If, in addition, it satisfies that Φt converges to Φ0 uniformly on compact subsets of C+

as t → 0+, we say that it is a continuous semigroup.

It is worth recalling that any holomorphic function in a continuous semigroup is 
univalent (see, e.g., [10, Theorem 8.1.17]).

A key goal in this paper is the study of semigroups of analytic functions {Φt} in the 
Gordon-Hedenmalm class G and in the class G∞. From now on, for convenience, we shall 
write ct instead of cΦt

. Our first result studies the behaviour of the mapping t �→ ct. 
As we are about to see, the continuous semigroup structure forces this mapping to be 
necessarily constantly equal to 1. This is the content of the next proposition.

Proposition 3.2. Let {Φt}t≥0 be a continuous semigroup of analytic functions in the class 
G∞. Then, the family of characteristics {ct}t≥0 is constantly equal to 1.

Proof. By Proposition 2.13, the characteristic of Φt ◦ Φu(s) = Φu+t(s) satisfies cu+t =
cuct. We claim that the application f : R+ ∪ {0} → R given by f(t) := ct is measurable. 
Indeed, for each n ∈ N, define the functions hn(t) = Φt(n)/n. By hypothesis, these 
functions are continuous as functions of t (see [10, Theorem 8.1.15]). Lemma 2.2 yields

lim
n→∞

hn(t) = lim
n→∞

Φt(n)
n

= ct.

Recalling that the pointwise limit of continuous functions is measurable, the claim fol-
lows. Summing up, f is a measurable function satisfying that f(u + t) = f(u)f(t), for 
all s, t ≥ 0. By [10, Theorem 8.1.14], either f(t) ∈ {0, 1}, or there exists λ ∈ R such that 
f(t) = eλt for every t ≥ 0. Since ct ∈ N∪{0} for every t ≥ 0, necessarily ct ∈ {0, 1}. Since 
the function Φt must be univalent, by Theorem 2.3, we have that ct ≥ 1. Consequently, 
ct = 1 for every t ≥ 0. �
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Remark 3.3. If the functions of the semigroup belong to the class G, there is an alternative 
way to conclude the above proof without using the univalence of the functions of the 
semigroup. Indeed, take s0 > 0 such that cs0 = 0. Then ct = ct−s0cs0 = 0 for every 
t ≥ s0. Note that this implies that whenever cu = 1, then ct = 1 for every t ≤ u. 
Therefore, there is a point t0 such that ct = 1 if t < t0 and ct = 0 if t > t0. We claim 
that t0 = ∞. If it were equal to zero, it would mean that ct = 0 for every t > 0. Now, 
since Φt → Φ0 as t → 0 on compact sets of C+, we would have that Φt(1/4) → 1/4 as 
t → 0. However, since Φt ∈ G, we know that Re(Φt(1/4)) > 1/2, in contradiction with 
our last statement. Assume that 0 < t0 < ∞. Then

c 4
3 t0

= c 2
3 t0

c 2
3 t0

= 1.

However, this contradicts the fact that ct = 0 for any t > t0. Hence, t0 = ∞ and, 
consequently, ct = 1 for any t ≥ 0.

It is worth pointing out that there are non-continuous semigroups of functions in the 
class G. For example, take a non-continuous function f : R → R such that f(t + u) =
f(t) +f(u) for all t, u ∈ R and consider Φt(s) = s +if(t). Clearly, {Φt} is a non-continuous 
semigroup in G.

If a holomorphic self-map Φ of C+ is not an elliptic automorphism and has a fixed 
point s0 in C+, then its iterates converge uniformly on compact subsets of C+ to the 
constant function s0 (see [10, Proposition 1.8.3]). If {Φt} is a semigroup in the class G∞, 
by Proposition 3.2, ReΦt(s) ≥ ctRe s = Re s for all s. This clearly implies that Φt has 
no fixed point in C+ and, in fact, by [10, Theorem 8.3.1], the Denjoy-Wolff point of the 
semigroup is ∞, that is,

lim
t→+∞

Φt(s) = ∞, s ∈ C+. (3.1)

Moreover, for every t > 0, by Lemma 2.2,

lim
Re s→+∞

Φt(s)
s

= 1.

With the standard classification of dynamics, this means that each function Φt is a 
parabolic self-map of C+ (see [10, Section 1.8] for the classification in the setting of the 
unit disc).

4. Semigroups of composition operators

The theory of strongly continuous semigroups of bounded operators on Banach spaces 
has been a fruitful tool in a great number of areas in Analysis. Let us recall this notion.
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Definition 4.1. Let X be a Banach space and {Tt}t≥0 a family of bounded operators from 
X into itself. We say that {Tt}t≥0 is a semigroup if it verifies the following two algebraic 
properties:

(i) T0 = Id, where Id denotes the identity map on X;
(ii) For every t, u ≥ 0, Tt ◦ Tu = Tt+u.

If, in addition, it satisfies that

(iii) limt→0+ Ttf = f for all f ∈ X

we say that it is a strongly continuous semigroup (also known as C0-semigroup).

It is well-known that (iii) is equivalent to the fact that, for each f ∈ X, the map 
[0, +∞) 
 t �→ Tff is continuous [15, Page 3, Proposition 1.3].

Clearly, if we have a semigroup of analytic functions {Φt}, we obtain a semigroup of 
composition operators {CΦt

}, whenever such composition operators are well-defined. The 
converse is also true because a composition operator completely determines its symbol:

Lemma 4.2. Let Φ, Ψ : Cη → Cη, with η ≥ 0, be two analytic functions such that 
k−Φ = k−Ψ for every k ∈ N. Then, Φ = Ψ.

Proof. By hypothesis, for each k ∈ N,

exp((Φ(s) − Ψ(s)) log k)) = 1, Re s > η.

This forces that there is mk ∈ Z such that (Φ(s) −Ψ(s)) log k = 2mkπi for all s. If m2 is 
not zero, then log 3/ log 2 ∈ Q. However, this is not true, so m2 = 0 implying Φ = Ψ. �
Proposition 4.3. Let 1 ≤ p ≤ ∞. Let {Φt}t≥0 be a collection of analytic functions in the 
class G∞. If {Tt}t≥0 is a semigroup of composition operators in Hp, where Tt = f ◦ Φt, 
then {Φt}t≥0 is a semigroup of analytic functions.

Proof. The semigroup structure of {Tt}t≥0 guarantees that for every f ∈ Hp

f ◦ Φt+u = Tt+u(f) = Tt ◦ Tu(f) = (f ◦ Φu) ◦ Φt = f ◦ (Φu ◦ Φt)

for every u, t ≥ 0. By Lemma 4.2, we have that Φt+u = Φu ◦ Φt for every u, t ≥ 0. The 
same argument shows that Φ0 is the identity map. �

Now, we are ready to state and prove the main result of this section. It establishes a 
one-to-one relationship between strongly continuous semigroups of composition operators 
in H2 and continuous semigroups in the Gordon-Hedenmalm class.
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Theorem 4.4. Let {Φt}t≥0 be a semigroup of analytic functions, such that Φt ∈ G for 
every t > 0 and denote by Tt the composition operator Tt(f) = f ◦Φt. Then, the following 
assertions are equivalent:

a) {Tt}t≥0 is a strongly continuous semigroup in H2.
b) {Φt}t≥0 is a continuous semigroup.
c) Φt(s) → s, as t goes to 0, uniformly in Cε, for every ε > 0.

Proof. We begin showing a) implies b). Take f(s) = m−s, with m ∈ N, m ≥ 2. Then, 
we consider the family of functions gt(s) = f ◦ Φt(s) = m−Φt(s). By a), gt converges to 
f in H2, as t goes to 0. The functions gt are analytic in C+ and for every s ∈ C+ and 
t ≥ 0 ∣∣∣m−Φt(s)

∣∣∣ = m−Re(Φt(s)) < 1.

Hence, for every t ≥ 0, gt(s) = m−Φt(s) ∈ H∞(C+) and, as we already know (see 
Theorem 2.12), it is also in the class D. In other words, for every t ≥ 0, gt ∈ H∞ and the 
family {gt : t ≥ 0} is uniformly bounded in C+. Thus, Bayart’s Theorem 2.5 guarantees 
that m−Φt(s) → m−s uniformly on half-planes Cε as t → 0. Multiplying by ms, we have 
that

ms−Φt(s) → 1, t → 0

where the convergence takes place uniformly in vertical strips of Cε, since the function 
ms is no longer bounded in any half-plane Cε.

Fix 0 < ε < η and S = S(ε, η) = Cε \ Cη. We assume that ε + 2π
ln 2 < η. There is 

δ1 > 0 such that |2s−Φt(s) − 1| < 1/2 for all s ∈ S and t < δ1. For each t < δ1, the image 
of the continuous function S 
 s �→ s −Φt(s) must be contained in one of the connected 
components of the set {w ∈ C : |2w − 1| < 1/2}. Therefore there is kt ∈ Z such that

∣∣∣∣s− Φt(s) −
2πikt
ln 2

∣∣∣∣ < π

ln 2 , (4.1)

for all s ∈ S and t < δ1. Denote εt(s) = s − Φt(s) − 2πi
ln 2kt. Since 2εt(s) converges to 1

uniformly in s ∈ S as t goes to 0, by (4.1), we have that εt(s) converges to 0 uniformly 
in s ∈ S as t goes to 0. In particular, there is δ2 < δ1 such that

|εt(s)| < 1/2, for all t < δ2 and s ∈ S. (4.2)

Our goal is to show that whenever t is small enough, it holds kt = 0. This would prove 
that Φt(s) → s uniformly on the vertical strip S(ε, η). To establish this, firstly we have 
to prove two statements. The first one claims that kt+τ = kt + kτ whenever t, τ ∈ [0, δ3)
for some 0 < δ3 < δ2/2. The second one states that, for every k ∈ Z, the sets
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Fk = {t ∈ [0, δ3) : kt = k}

are closed. Let us see first how the conclusion follows from these two claims. The family 
{Fk}k∈Z is a countable covering of the interval [0, δ3) which, clearly, has non-empty 
interior. If each Fk is closed, then, Baire’s category theorem guarantees the existence of 
a k̃ such that Fk̃ has non-empty interior. Thus, there exist t ∈ Fk̃ and δ4 > 0 such that 
[t, t + δ4] ⊂ Fk̃. Therefore, thanks to the first claim,

k̃ = kt+δ′ = kt + kδ′ , for every δ′ ∈ [0, δ4].

Since t ∈ Fk̃, we have that kδ′ = 0 for every δ′ ∈ [0, δ4]. That is, kt = 0 for every 
t ∈ [0, δ4), as desired. This shows that a) implies b) since given a compact set in C+
there are 0 < ε < η such that the strip S(ε, η) contains the compact set.

Let us prove the first claim. Using the semigroup structure we find that

0 = Φt(Φτ (s)) − Φt+τ (s)

= Φτ (s) −
2ktπi
ln 2 − εt(Φτ (s)) − (s− 2kt+τπi

ln 2 − εt+τ (s))

= 2πi
ln 2(kt+τ − kt − kτ ) − ετ (s) + εt+τ (s) − εt(Φτ (s)).

(4.3)

Take s0 = (ε + η)/2 and t < δ1, by (4.1),

ε < s0 ≤ Re Φt(s0) ≤ s0 + π

ln 2 = ε + η

2 + π

ln 2 < η,

where we have used that ε + 2π
ln 2 < η. Therefore, for t and τ small enough such that 

t + τ < δ2, by (4.2), we have

max{|ετ (s0)|, |εt+τ (s0)|, |εt(Φτ (s0))|} <
1
2 .

Since kt, kτ , and kt+τ are integers, equality (4.3) shows that kt + kτ − kt+τ = 0.
We move onto the second claim. Let {tn} be a sequence in Fk such that tn → b as 

n → ∞. Without loss of generality, we may assume that tn → b−. Since Tt is strongly 
continuous on H2, we have that m−Φtn converges to m−Φb on H2 for every m ∈ N (see 
[15, Page 3, Proposition 1.3]). Arguing as the beginning of this proof, we have

mΦb(s)−Φtn (s) → 1, as n → ∞ (4.4)

uniformly on S. For every n ≥ 1,

Φb(s) − Φtn(s) = εtn(s) − εb(s) + 2πi (k − kb).
ln 2
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Up to taking a subsequence (that we still denote {tn}), by Montel’s Theorem, we may 
assume that the sequence {εtn − εb} converges uniformly on compact sets of S to a 
function g. Moreover,

2g(s)+ 2πi
ln 2 (k−kb) = 1.

Thus there is α such that g(s) = α for all s. Using again (4.2), we have that |α| ≤ 1. 
Moreover, by (4.4), for each m there is qm ∈ Z such that

α + 2πi
ln 2(k − kb) = 2πi

lnm
qm.

This implies that qm
lnm is constant. But this can happen only if qm = 0 for all m (otherwise, 

we would get that ln 2
ln 3 is a rational number). Thus, α + 2πi

ln 2 (k − kb) = 0. Since |α| ≤ 1, 
we get that k = kb and b ∈ Fk.

With this we finish the proof of a) implies b). Nevertheless we notice that we have 
proved that a) implies something stronger than b). Namely, that Φt converges to the 
identity map, as t goes to 0, uniformly in vertical strips of Cε for every ε > 0. We will 
use this fact later on in the proof of a) implies c).

We now prove b) implies a). Using [15, Theorem 1.6], we know that the strong con-
tinuity of the semigroup {Tt}t≥0 is equivalent to the continuity in the weak operator 
topology. Therefore, this is what we are going to prove. Let f ∈ H2. By Gordon and 
Hedenmalm’s Theorem 2.8, since Φt ∈ G for every t ≥ 0, we know that each Φt de-
fines a bounded composition operator in the Hilbert space H2. This fact together with 
Remark 2.10 yield

‖CΦt
f‖H2 = ‖f ◦ ϕt‖H2 ≤ ‖Cϕ‖‖f‖H2 ≤ ‖f‖H2 .

Therefore, the set {f ◦ Φt}t≥0 is bounded in H2. This guarantees the existence of a 
subsequence {tk}k∈N , tk → 0 as k → ∞ and g ∈ H2, such that

f ◦ Φtk
w−−−→ g.

Now, given that the pointwise evaluation functional δs is bounded for s in C1/2 (see 
Lemma 2.4), the weak convergence implies that

f ◦ Φtk(s) → g(s), k → ∞,

for every s ∈ C1/2. On the other hand, f ◦Φt(s) → f(s), as t goes to 0, for every s ∈ C1/2. 
This forces f(s) = g(s) for every s ∈ C1/2, so Ttf

w−→ f as t → 0. By [15, Theorem 1.6], 
the claim is proven.

By the definition of continuous semigroup, c) implies b) is obvious so that it remains 
to show that a) implies c). We already know that a) is equivalent to b). Then, by Proposi-
tion 3.2, we have that ct = 1. Moreover, this implies that Φt(s) → s as t → 0+, uniformly 
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in vertical strips of Cε. This already implies c). Indeed, since Φt ∈ G and ct = 1 for every 
t > 0, Φt(s) = s + ϕt(s). Therefore, ϕt → 0 as t → 0+ uniformly on vertical strips of Cε

for every ε > 0. The Dirichlet series ϕt sends C+ into its closure. Thus by Theorem 2.1, 
it is bounded on Cε for every ε > 0. Therefore, its supremum on Cε coincides with the 
supremum in the vertical strip ε < Re(s) < σ0 for any σ0 > ε (see [17, Section III.5, 
Exercise 7] or [22, Chapter 12, Exercise 9]). Thus, ‖ϕt‖H∞(Cε) tends to zero as t goes to 
0, and we are done. �
Remark 4.5. Let us see how the semigroup structure is essential for a) implies b). Take 
a sequence {xn}n of real numbers such that |xn| → ∞ when n → ∞ and m−ixn → 1
as n → ∞ for all natural number m. The existence of such sequence {xn} is guaranteed 
by Kronecker’s Lemma. Indeed, if {pj} is the sequence of prime numbers, it is enough 
to see that p−ixn

j → 1 as n → ∞ for all j. By Kronecker’s Lemma, see [13, Proposition 
3.4], for each n ∈ N, the set

{(p−ix
1 , p−ix

2 , . . . , p−ix
n ) : x ∈ R}

is dense in Tn. Since the set {(p−ix
1 , p−ix

2 , . . . , p−ix
n ) : x ∈ [−n, n]} is compact with 

empty interior (whenever n ≥ 2), we have that

{(p−ix
1 , p−ix

2 , . . . , p−ix
n ) : |x| ≥ n}

is also dense in Tn. Thus, we can find xn such that |xn| ≥ n and

|p−ixn
j − 1| ≤ 1

n

for j = 1, . . . , n.
Now define Tnf = f ◦ Φn, where Φn(s) = s + ixn for s ∈ C+. Then, Tnf → f in H2

as n → ∞ because if f(s) =
∑∞

m=1 amm−s ∈ H2, using the Dominated Convergence 
Theorem, we obtain

lim
n→∞

‖f − f ◦ Φn‖2
H2 = lim

n→∞

∞∑
m=1

|am|2|1 −m−ixn |2 = 0.

However, by the definition of {xn}n, Φn does not converge to the identity map as n → ∞.

Theorem 4.4 still holds for 1 ≤ p < ∞.

Theorem 4.6. Let 1 ≤ p < ∞. Let {Φt}t≥0 be a semigroup of analytic functions, such 
that Φt ∈ G for every t > 0 and denote by Tt the composition operator Tt(f) = f ◦ Φt. 
Then, the following assertions are equivalent:

a) {Tt}t≥0 is a strongly continuous semigroup in Hp.
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b) {Φt}t≥0 is a continuous semigroup.
c) Φt(s) → s, as t goes to 0, uniformly in Cε, for every ε > 0.

Proof. Bearing in mind Theorem 4.4, we only have to prove the equivalence between a)
and b).

Consider a continuous semigroup of analytic functions {Φt}t>0 in the half-plane C+, 
whose elements are in the class G. We know that, necessarily, ct = 1 for every t. Now, 
Bayart’s Theorem 2.9 guarantees the boundedness of the composition operator Tt for 
every t ≥ 0 in Hp. Not only that, but the operator is a contraction (see Remark 2.10). 
Bearing in mind these facts, the proof of this implication can be adapted from the one 
of Theorem 4.4 except for the case p = 1, since H1 is not reflexive. To solve this little 
inconvenience, we use the density of H2 in H1 with respect to the H1 norm. Indeed, by 
the Hp spaces inclusion, we have that

‖f ◦ Φt − f‖H1 → 0, as t → 0+

for every f ∈ H2. Now, given f ∈ H1 and ε > 0, there is g ∈ H2 such that ‖f − g‖H1 <

ε/2. Therefore, using Remark 2.10, we have

‖Tt(f) − f‖H1 ≤ ‖Tt(f) − Tt(g)‖H1 + ‖Tt(g) − g‖H1 + ‖g − f‖H1 ≤ ε + ‖Tt(g) − g‖H1 .

Thus, lim supt→0 ‖Tt(f) − f‖H1 ≤ ε. The arbitrariness of ε shows that limt→0 ‖Tt(f) −
f‖H1 = 0.

Reciprocally, given a semigroup of elements in the class G, if we have a strongly 
continuous semigroup of composition operators from Hp into Hp, the proof of a) implies 
b) in Theorem 4.4 still holds for this range of p. Indeed, the proof only requires to consider 
the Dirichlet series m−s, with m ∈ N, which belongs to any Hp and the strong continuity 
of the operator semigroup in some Hp. �
Remark 4.7. For the case p = ∞, the previous theorem is no longer true. The prob-
lem for the equivalence lies on the implication “b) ⇒ a)”. As we shall see, the only 
strongly continuous semigroup of composition operators {Tt}t≥0 is the trivial one (see 
Theorem 7.1).

5. The infinitesimal generator

In the study of both semigroups of operators and of holomorphic functions, the in-
finitesimal generators play a fundamental role. See, e.g., [10, Chapter 10] for the case 
of holomorphic semigroups. Regarding semigroups of operators we refer the reader ei-
ther to [15, Chapter II] or [23, Chapter 13]. The aim of this section is to characterize 
the infinitesimal generators of continuous semigroups in the Gordon-Hedenmalm class. 
As a byproduct, we will describe the infinitesimal generator of a strongly continuous 
semigroup of composition operators in Hardy spaces of Dirichlet series.
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Let us recall that given a Banach space X and {Tt}t≥0 an operator semigroup where 
Tt : X → X, the infinitesimal generator of the semigroup is defined as

Af = lim
t→0+

Ttf − f

t
, (5.1)

where the convergence is considered in the norm topology. We denote by D(A) the set 
of all f ∈ X such that the limit (5.1) exists.

A classical result from general semigroup theory guarantees that if the semigroup of 
composition operators {Tt}t≥0 is strongly continuous, then D(A) is dense in the space 
X (see, e.g., [15, Page 37, Theorem 1.4]).

5.1. Infinitesimal generator of a semigroup of holomorphic functions in G

A remarkable result of Berkson and Porta [7] asserts that each continuous semigroup 
of holomorphic self-maps of C+ is locally uniformly differentiable with respect to the 
parameter t ≥ 0. That is, there exists

H(s) = lim
t→0+

Φt(s) − s

t
, for all s ∈ C+ (5.2)

and such limit is uniform on compact sets of C+. In particular, H is holomorphic. 
Moreover, Φt is the solution of the Cauchy problem:

∂Φt(s)
∂t

= H(Φt(s)) and Φ0(s) = s ∈ C+. (5.3)

The function H is called the infinitesimal generator of the semigroup {Φt}. In fact, in [7, 
Theorem 2.6], it is proved that H is the infinitesimal generator of a continuous semigroup 
of analytic functions with Denjoy-Wolff point ∞ if and only if H(C+) ⊂ C+.

Let us recall that the Denjoy-Wolff point of a semigroup in the Gordon-Hedenmalm 
class is ∞. Thus, its infinitesimal generator is a holomorphic function sending the right 
half-plane into its closure. Clearly the converse of this assertion does not hold. The main 
result of this section is the following characterization of the infinitesimal generators of 
continuous semigroups in the Gordon-Hedenmalm class.

Theorem 5.1. Let H : C+ → C+ be analytic. Then, the following statements are equiva-
lent:

a) H is the infinitesimal generator of a continuous semigroup of elements in the class 
G.

b) H ∈ H∞(Cε), for all ε > 0.
c) H ∈ D.
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The proof of this result will be given at the end of this subsection (see page 27). In 
fact, it will be an easy consequence of some more general results.

Theorem 5.2. Let {Φt}t≥0 be a continuous semigroup of analytic functions in C+ such 
that Φt ∈ G for every t > 0 and H its infinitesimal generator. Then, H ∈ H∞(C1/2+σ), 
for every σ > 0. In addition, if Φt(s) = s + ϕt(s), Λ is a multiplicative semigroup of N, 
and ϕt ∈ DΛ for all t, then H ∈ H∞

Λ (C1/2+σ).

For clarity, we have extracted the following lemma for the proof of Theorem 5.2. The 
proof of this lemma is similar to the one of [22, Lemma 10.29].

Lemma 5.3. Let f ∈ H2 and 1/2 < α < β. Consider the vertical strip Ω = {s ∈ C : α <

Re (s) < β} and define F : Ω × Ω → C by

F (z, w) =

⎧⎪⎪⎨
⎪⎪⎩

f(z)−f(w)
z−w if z 
= w,

f ′(z) if z = w.

(5.4)

Then, the function F is uniformly continuous on Ω × Ω.

Proof. Choose ε > 0. By Lemma 2.4, there is M > 0 such that |f ′′(s)| ≤ M for all 
s ∈ Ω. Take δ = ε/M and z0, z1 ∈ Ω such that |z0 − z1| < δ. Consider the curve

γ(t) = tz0 + (1 − t)z1, t ∈ [0, 1].

Then,

|f ′(z0) − f ′(z1)| =

∣∣∣∣∣∣
1∫

0

f ′′(γ(t))(z0 − z1)dt

∣∣∣∣∣∣ ≤ M |z0 − z1| < ε.

Now, take (z0, w0), (z1, w1) ∈ Ω × Ω such that |z0 − z1| < δ and |w0 − w1| < δ. Notice 
that

|F (z0, w0) − F (z1, w1)| =

∣∣∣∣∣∣
1∫

0

(f ′(w0 + t(z0 − w0)) − f ′(w1 + t(z1 − w1))) dt

∣∣∣∣∣∣
≤

1∫
0

|f ′(w0 + t(z0 − w0)) − f ′(w1 + t(z1 − w1))|dt < ε,

since |w0 + t(z0 − w0) − w1 − t(z1 − w1)| ≤ δ and we are done. �
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Proof of Theorem 5.2. Fix σ > 0. By Lemma 2.4, there is a constant C(σ) > 0 such 
that |f(s)| ≤ C(σ)‖f‖H2 and |f ′(s)| ≤ C(σ)‖f‖H2 for all f ∈ H2 and s ∈ Cσ+1/2.

Given ε > 0 and h(s) = 2−s, take f ∈ H2 a function in the domain of the infinitesimal 
generator of the strongly continuous semigroup Tt = CΦt

in H2 such that ‖f−h‖H2 < ε. 
Moreover, we have

|f(s) − h(s)| ≤ C(σ)ε (5.5)

and

|f ′(s) − h′(s)| ≤ C(σ)ε, (5.6)

for all s ∈ C1/2+σ. Thus, using (5.5) and (5.6) for σ/2 and ε small enough, both |f | and 
|f ′| are bounded below by a positive constant in the vertical strip Ω = {s ∈ C : 1

2 + σ
2 <

Re (s) < 1
2 + 3σ} ⊂ C1/2+σ/2.

Take the function F introduced in Lemma 5.3 associated with the function f and 
consider the function

K(z, w) =

⎧⎪⎪⎨
⎪⎪⎩

2−z−2−w

z−w, if z 
= w,

− ln(2)2−z, if z = w.

Then, given z, w ∈ Ω,

|F (z, w) −K(z, w)| ≤
1∫

0

|f ′(w + t(z − w)) − h′(w + t(z − w))|dt

≤ C(σ/2)‖f − h‖H2 ≤ C(σ/2)ε.

(5.7)

Let us give a lower bound of |K|,

|K(z, w)| =
∣∣∣∣2−z − 2−w

z − w

∣∣∣∣ = 2−Re(z) |1 − 2z−w|
|z − w| .

Note that |1 − 2u|/|u| tends to ln 2 as |u| → 0. Thus, there is δ0 > 0 such that

|K(z, w)| ≥ 2−Re(z) ln 2
2 ,

whenever |z − w| ≤ δ0. Therefore, there exists C > 0 such that |K(z, w)| > C for all 
z, w ∈ Ω with |z − w| ≤ δ0. Taking ε ≤ C

2C(σ/2) , (5.7) necessarily forces |F (z, w)| > C/2
for any z, w ∈ Ω such that |z − w| ≤ δ0.

By Theorem 4.4, Φt converges to the identity map uniformly in Ω. Hence, for t small 
enough and 1/2 +σ < Re s < 1 + 2σ, it holds Φt(s) ∈ Ω and |Φt(s) − s| < δ0. Therefore, 
2
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|F (Φt(s), s)| ≥ C/2 and limt→0 F (Φt(s), s) = F (s, s) = f ′(s) uniformly in Ω′ = {s ∈ C :
1
2 + σ < Re (s) < 1

2 + 2σ}. Thus limt→0
1

F (Φt(s),s) = 1
f ′(s) uniformly in Ω′.

By the very definition of infinitesimal generator, there exists g ∈ H2 such that

lim
t→0

f(Φt(s)) − f(s)
t

= g(s) (5.8)

in the norm of H2. Then

lim
t→0

f(Φt(s)) − f(s)
t

= g(s),

uniformly on the vertical strip Ω′.
The introduction of the function F allows us to rewrite the incremental quotient in 

(5.2) as

gt(s) := ϕt(s)
t

= Φt(s) − s

t
= f(Φt(s)) − f(s)

t
· 1
F (Φt(s), s)

.

Putting all together, and using that both g and 1
f ′ are bounded on Ω′, we have

H(s) = lim
t→0+

Φt(s) − s

t
= g(s)

f ′(s) ,

uniformly on the vertical strip Ω′. H is a holomorphic function in C+ and gt converges 
uniformly on Ω′ to H. Thus the family {gt} is uniformly Cauchy as t tends to 0 in Ω′, 
and then in C1/2+σ thanks to [17, Section III.5, Exercise 7] (or [22, Chapter 12, Exercise 
9]). Therefore, {gt} converges uniformly to H in C1/2+σ. Thus H ∈ H∞(C1/2+σ) for 
every σ > 0.

In the case ϕt ∈ DΛ for all t, we obtain that gt ∈ H∞
Λ (C1/2+σ), for all t, and thus 

H ∈ H∞
Λ (C1/2+σ). �

The converse of Theorem 5.2 requires the next technical theorem. Following the ideas 
in the Picard-Lindelöf Theorem, for σ > 0 and δ > 0 small, we consider the space X
consisting on the collection of functions f : C1+σ× [0, δ] → C1+σ satisfying the following 
three properties

i) f is continuous on C1+σ × [0, δ];
ii) s �→ f(s, t) − s ∈ H∞(C1+σ) for each t ∈ [0, δ];
iii) The map given by

[0,δ] → H∞(C1+σ)

t �→ f(s, t) − s

is continuous.
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Notice that X depends on σ and δ but we do not write explicitly such dependence in 
order to simplify the exposition. We endow X with the distance defined for f, g ∈ X as

d(f, g) = ‖f − g‖∞ = sup
s∈C1+σ,
t∈[0,δ]

|f(s, t) − g(s, t)|. (5.9)

Note that conditions ii) and iii) guarantee that d : X × X → [0, ∞). In fact, (X, d) is 
complete. Indeed, let {fn}n be a Cauchy sequence of elements in X. Since

|fn(s, t) − fm(s, t)| ≤ d(fn, fm)

for all s and t, we have that the sequence {fn(z, t)}n is Cauchy in C. This guarantees 
the existence of the limit

f(s, t) := lim
n→∞

fn(s, t).

A standard argument shows that this convergence is uniform in C1+σ × [0, δ], so that 
f is continuous. Regarding the second property, the uniform limit of bounded Dirichlet 
series in C1+σ yields again a bounded Dirichlet series in the same half-plane. Eventually, 
t �→ f(z, t) − z maps the interval [0, δ] into the algebra H∞(C1+σ) and, being f the 
uniform limit of continuous f , the map is continuous too. Therefore, the metric space 
(X, d) is complete.

Proposition 5.4. Let H : C+ → C+ analytic and such that H ∈ H∞(C1/2+σ) for every 
σ > 0. We define the operator T in X given by

Tf(s, t) = s +
t∫

0

H(f(s, τ))dτ, f ∈ X, (s, t) ∈ C1+σ × [0, δ].

Then, there is δ = δ(H, σ) small enough, such that

(1) T : X → X,
(2) T is contractive.

Proof. Observe that for s ∈ C1/2+2σ, the uniform convergence of the Dirichlet series 
defining H allows us to write

−H ′(s) =
∞∑

n=1
an log nn−s.

Now, since H ∈ H∞(C1/2+σ), by the Cauchy integral formula, we obtain that H ′ is 
bounded in C1+σ for every σ > 0. Fix σ > 0. Take
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M = max{ sup
s∈C1+σ

|H ′(s)|, sup
s∈C1+σ

|H(s)|}

and δ < 1/M .
Let us see first that Tf maps C1+σ × [0, δ] into C1+σ. This is indeed the case because

Re (Tf(s, t)) = Re (s) +
t∫

0

Re (H(f(s, τ)))dτ > 1 + σ

where we have used that Re (H) ≥ 0. For the continuity, notice that

|Tf(s, t) − Tf(s0, t0)| ≤ |s− s0| +

∣∣∣∣∣∣
t∫

0

H(f(s, τ))dτ −
t0∫

0

H(f(s0, τ))dτ

∣∣∣∣∣∣
≤ |s− s0| +

t∫
0

|H(f(s, τ)) −H(f(s0, τ))| dτ +
t0∫
t

|H(f(s0, τ))|dτ

≤ |s− s0| + M |t− t0| + M

t∫
0

|f(s, τ) − f(s0, τ)| dτ.

From these inequalities and the very definition of X, we deduce that Tf is continuous 
in C1+σ × [0, δ].

Now, we verify that s �→ Tf(s, t) − s =
∫ t

0 H(f(s, τ))dτ belongs to H∞(C1+σ). In 
virtue of Theorem 2.12 we deduce that H ◦ f(·, τ) ∈ D for every τ and since H ∈
H∞(C1/2+σ), we have that F (·, τ) = H ◦ f(·, τ) ∈ H∞(C1+σ). Moreover, using again 
that H ′ is bounded, we deduce that the function τ �→ F (·, τ) is continuous. Thus, 
using that H∞(C1+σ) is a Banach space, we have that 

∫ t

0 H(f(·, τ))dτ also belongs to 
H∞(C1+σ) and that the map t �→

∫ t

0 H(f(·, τ))dτ is continuous. Thus, we have obtained 
(1).

For the contractivity, let f1, f2 ∈ X. Then,

|Tf1(s, t) − Tf2(s, t)| ≤
t∫

0

|H(f1(s, τ)) −H(f2(s, τ))| dτ ≤ M

t∫
0

|f1(s, τ) − f2(s, τ)|dτ

≤ tM‖f1 − f2‖∞ = tMd(f1, f2) ≤ δMd(f1, f2).

Since δM < 1, we get the contractivity. �
Theorem 5.5. Let H : C+ → C+ analytic and such that H ∈ H∞(C1/2+σ) for every 
σ > 0. Then, H is the infinitesimal generator of a continuous semigroup {Φt}t≥0 where

Φt(s) = s + ϕt(s)
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and ϕt ∈ D, for all t, that is, {Φt} is a continuous semigroup in the Gordon-Hedelmann 
class G.

Proof. We notice that whenever the boundary of C+ is attained, then H is constant and 
the result is straightforward. Thus, we assume that H : C+ → C+. By the Berkson-Porta 
Theorem [7, Theorem 2.6], there exists a unique continuous semigroup {Φt}t≥0 in C+
such that H is its infinitesimal generator. In particular, the map [0, δ) 
 t �→ Φt(s) is 
the unique solution of the Cauchy problem

∂Φt(s)
∂t

= H(Φt(s)) and Φ0(s) = s ∈ C+.

On the other hand, and following the notation introduced in Proposition 5.4, by the 
Banach Fixed Point Theorem, there are δ > 0, a continuous function f : C2× [0, δ] → C2
satisfying the following three properties

i) s �→ f(s, t) − s ∈ H∞(C2) for each t ∈ [0, δ];
ii) the map given by t �→ f(s, t) − s from [0, δ] to H∞(C2) is continuous;
iii) and f is a fixed point of the operator introduced in Proposition 5.4. That is

f(s, t) = s +
t∫

0

H(f(s, τ))dτ, f ∈ X, (s, t) ∈ C2 × [0, δ].

Write gt(s) = f(s, t) for s ∈ C2 and t ∈ [0, δ]. Clearly, the map [0, δ) 
 t �→ gt(s) is a 
solution of the Cauchy problem

∂gt(s)
∂t

= H(gt(s)) and g0(s) = s ∈ C2.

Thus, by the uniqueness of the Cauchy problem, Φt(s) = gt(s) for 0 ≤ t < δ and 
Re s > 2. In particular, this implies that s �→ Φt(s) − s is a Dirichlet series for t < δ. 
That is, for those values of t, Φt ∈ G. Finally, by Proposition 2.13 and the very definition 
of semigroup, we deduce that Φt ∈ G for all t. �
Remark 5.6. If the function H in Theorem 5.5 belongs to H∞

Λ (C1/2+σ), with Λ a mul-
tiplicative semigroup of natural numbers, our proof can be easily adapted to get that 
ϕt ∈ DΛ for all t > 0.

One way to provide examples of continuous semigroups is the following. Consider a 
holomorphic function G : D → C+, with G(z) =

∑∞
n=0 anz

n, z ∈ D. Fix an integer q ≥ 2
and define

H(s) = G(q−s) =
∞∑

an(qn)−s, s ∈ C+.

n=0



M.D. Contreras et al. / Journal of Functional Analysis 285 (2023) 110089 27
By Theorem 5.5, there exists a continuous semigroup {Φt}t≥0 in G such that H is its 
infinitesimal generator. Moreover, by the previous remark, as Λ = {qn : n ≥ 0} is a 
multiplicative semigroup, it is easy to deduce that for every t ≥ 0 there exists gt : D →
C+ holomorphic such that Φt(s) = s + gt(q−s), s ∈ C+. We will see a concrete example 
of this situation in Example 6.11.

Proof of Theorem 5.1. For a) implies b), we use first Theorem 5.2 and then Theorem 2.1. 
The fact that b) implies c) is trivial. For c) implies a), we use Theorem 2.1 and we find 
that σu(H) ≤ 0. This allows us to apply Theorem 5.5 and a) follows. �
5.2. Infinitesimal generator of a strongly continuous semigroup of composition 
operators in Hp

Let 1 ≤ p < ∞ and take a strongly continuous semigroup of composition operators 
{Tt}t given by Ttf = f ◦Φt, where {Φt}t is a continuous semigroup in the class G. Denote 
by A the infinitesimal generator of {Tt}. By Theorem 5.1, the infinitesimal generator of 
{Φt}t is a Dirichlet series H sending C+ in C+. Take f ∈ D(A). Then, by the very 
definition of A and the chain rule

Af(s) = lim
t→0+

f ◦ Φt(s) − f(s)
t

= f ′(s) ∂
∂t

(Φt(s))
∣∣∣
t=0

= f ′(s)H(s)

whenever Re s > 1/2. Moreover, we have obtained that

D(A) ⊂ {f ∈ Hp : Hf ′ ∈ Hp}.

The other inclusion was proved in [9, Theorem 2] in a much more general context using 
properties of the resolvent of a semigroup of operators. Thus, we have:

Proposition 5.7. Let 1 ≤ p < ∞ and take a strongly continuous semigroup of composition 
operators Ttf = f ◦ Φt in Hp. Then, there is a Dirichlet series H : C+ → C+ such that 
the infinitesimal generator is given by the operator A(f) = Hf ′ and

D(A) = {f ∈ Hp : Hf ′ ∈ Hp}.

From the very beginning of our exposition, we have been working with strongly con-
tinuous semigroups. Another standard and useful notion of semigroups of operators are 
those which are uniformly continuous. Let us recall this notion. Consider a Banach space 
X and a semigroup of operators {Tt}t in X. It is said that {Tt}t is uniformly continuous 
if and only if Tt converges, as t goes to 0, to the identity map in the norm of the space 
of bounded operators in X. Clearly, every uniformly continuous semigroup is strongly 
continuous. A classical result states that a strongly continuous semigroup with infinites-
imal generator A is uniformly continuous if and only if A is bounded and if and only 
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if D(A) = X. In such a case, Tt = etA for all t > 0. See, e.g., [15, Corollary 1.5, Page 
39]. We will show that no non-trivial semigroup of composition operators is uniformly 
continuous on Hp.

Theorem 5.8. 1 ≤ p < ∞. Let {Tt}t≥0 be a uniformly continuous semigroup of composi-
tion operators in Hp. Then, Tt = Id for every t ≥ 0.

Proof. By Proposition 5.7, if the semigroup is strongly continuous with infinitesimal 
generator A, then

D(A) = {f ∈ Hp : Hf ′ ∈ Hp},

where H : C+ → C+ is a Dirichlet series. Assume that A is bounded. Notice that, for 
each n ≥ 2, the operator Mn : Hp → Hp given by Mn(f) = n−sf is an isometry. Using 
this, we have that

‖A(n−s)‖Hp = ‖H(n−s)′‖Hp = logn ‖Hn−s‖Hp = log n ‖H‖Hp .

Since ‖n−s‖Hp = 1 for all n, we deduce that the operator A is bounded in Hp if, and 
only if, H ≡ 0. Clearly, this forces Tt = Id for every t ≥ 0, as desired. �
6. The Koenigs function of semigroups in G

In this section, we provide a characterization of the Koenigs function of a given contin-
uous semigroup in the class G. In fact, this study provides more new dynamic information 
about the semigroup. Indeed, we prove that, up to automorphims, the functions of a con-
tinuous semigroups in the class G are of zero hyperbolic step. For a reference to this topic 
for general semigroups we refer the reader to [10, Chapter 9].

Theorem 6.1. [10, Theorem 9.3.5] Let {Φt}t≥0 be a non-elliptic continuous semigroup of 
analytic functions in C+. Then there exists a univalent function h : C+ → C such that

h ◦ Φt(s) = h(s) + t. (6.1)

The function h is unique up to an additive constant.

The function h is known as the Koenigs function of the semigroup. The interest about 
such function is that its study can provide quite useful information about the semigroup. 
Indeed, since the function h is univalent, we can recover the semigroup {Φt}t≥0 as

Φt(s) = h−1(h(s) + t).

If we differentiate with respect to t in (6.1) and evaluate at t = 0, the chain rule gives 
in the left-hand side
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∂

∂t
(h ◦ Φt(s))

∣∣
t=0 = h′(Φ0(s))H(s) = h′(s)H(s),

where H is the infinitesimal generator of the semigroup {Φt}. The right hand-side gives

∂

∂t
(h ◦ Φt(s))

∣∣
t=0 = 1.

Therefore,

h′(s) = 1
H(s) . (6.2)

Before describing the Koenigs function of a semigroup in the class G, we study some 
properties of the coefficients of the infinitesimal generator. In what follows, given a 
continuous semigroup {Φt}t≥0 of analytic functions in the class G, we write Φt(s) =
s + ϕt(s) and ϕt(s) =

∑
n≥1 an(t)n−s. Then its infinitesimal generator H is given by

H(s) = lim
t→0+

ϕt(s)
t

(6.3)

uniformly in vertical strips of C1/2+σ. Hence, we can write

H(s) = lim
t→0+

ψt(s), (6.4)

where ψt(s) =
∑

n≥1 cn(t)n−s, with cn(t) = an(t)/t. Let {bn}n≥1 be the sequence of 
coefficients of the infinitesimal generator H.

Lemma 6.2. For every n ∈ N, bn = a′n(0).

Proof. For n ∈ N fixed, using the integral formula for the coefficient of a Dirichlet series 
[13, Proposition 1.9], we get

|cn(t) − bn| = lim
T→+∞

1
2T

∣∣∣∣∣∣
T∫

−T

(ψt(1 + iy) −H(1 + iy))n1+iydy

∣∣∣∣∣∣
≤ lim

T→+∞

1
2T

T∫
−T

|ψt(1 + iy) −H(1 + iy)|ndy

≤ n sup
s∈Ω

|ψt(s) −H(s)|

where Ω = {s ∈ C : 3
4 < Re(s) < 3

2}. If we let t → 0+, by Theorem 5.2, the supremum 
vanishes and we find that, for each n ∈ N,

cn(t) → bn as t → 0+.
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On the other hand, for each n ∈ N

lim
t→0+

cn(t) = lim
t→0+

an(t)
t

= a′n(0).

The uniqueness of the limit gives the desired conclusion. �
Lemma 6.3. For every n,

an(t + u) = an(u) +
n∑

k=1

ak(t)bkn(u), (6.5)

where bkn(u) stands for the kth coefficient of n−Φu(s).

Proof. The semigroup structure of the Φt forces the Dirichlet series ϕt to satisfy the 
following relation

ϕt+u(s) = ϕt(s + ϕu(s)) + ϕu(s), (6.6)

for all t, u ≥ 0 and s ∈ C+. Since the space D is a linear space, we have that the 
composition ϕt(s +ϕu(s)) is in D since it can be written as the difference of two Dirichlet 
series. This can also be deduced from Theorem 2.12. In particular, this implies that in 
a sufficiently remote half-plane, the series converges absolutely. This observation allows 
us to reorder the series ϕt(s + ϕu(s)) at will, so that

ϕt(s + ϕu(s)) =
∞∑

n=1
an(t)n−Φu(s) =

∞∑
n=1

an(t)
∑
k=n

bnk (u)k−s =
∞∑

n=1

(
n∑

k=1

ak(t)bkn(u)
)
n−s.

Knowing this and using the standard procedure to recover the coefficients of a Dirichlet 
series in (6.6), we find that for every n and t, u ≥ 0 identity (6.5) holds. �
Proposition 6.4. Let {Φt} be a continuous semigroup in G. With the notation introduced 
above, Re b1 ≥ 0 and a1(t) = b1t, for all t ≥ 0. In addition, if the functions of the 
semigroup {Φt}t≥0 are not automorphims of C+, then Re (b1) > 0.

Proof. Since, limRe(s)→+∞ ϕt(s) = a1(t) and ϕt : C+ → C+, we deduce that the map 
t �→ a1(t) is measurable and Re(a1(t)) ≥ 0 for every t ≥ 0. Now, using (6.5) for n = 1, 
we find that

a1(u + t) = a1(u) + a1(t).

That is, a1(·) is additive and measurable. Then, a1(t) = λt for some λ ∈ C (see, e.g., [10, 
Theorem 8.1.11]). Since, Re (a1(t)) ≥ 0, we have that Re(λ) ≥ 0. By Lemma 6.2, λ = b1.
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Assume now that the functions of the semigroup {Φt}t≥0 are not automorphims of 
C+. Fix t > 0. There exists N ≥ 2 such that aN 
= 0 and

ϕt(s) = a1 + aNN−s + g(s)

with g(s) = o(N−Re (s)). Given 0 < ε < |aN |, we can take ν > 0 such that, for every 
s ∈ Cν , it holds |g(s)| ≤ εN−Re (s). Assume now that Re (a1(t)) = 0. Then,

0 < Re (ϕt(s)) = Re (a1(t)) + Re (aNN−s) + Re g(s) = Re (aNN−s) + Re g(s).

Taking s0 such that Re (aNN−s0) = −|aN |N−Re (s0) with Re s0 > ν, we have

0 < Re (aNN−s0) + Re g(s0) = −|aN |N−Re (s0) + Re g(s0)

≤ −|aN |N−Re (s0) + εN−Re (s0) = −NRe (s0)(|aN | − ε).

A contradiction. Therefore, Re (a1(t)) > 0 and Re b1 > 0. �
Remark 6.5. Related to the statement of the above proposition, it is worth mentioning 
that if Φt0 is an automorphism of C0 for one t0 > 0, then Φt is an automorphism of C0
for all t ≥ 0 (see [10, Theorem 8.2.4]).

Going back to the Koenigs function, we will prove that its derivative is a Dirichlet 
series. This result lies in the next property of the Banach algebra structure of H∞. For 
a proof see, e.g., [21, Pages 148, 149].

Theorem 6.6. The invertible elements of H∞ are the functions f ∈ H∞ such that there 
is δ > 0 with |f | > δ.

Theorem 6.7. Let {Φt}t≥0 be a non-trivial continuous semigroup of analytic functions in 
the class G and H its infinitesimal generator. Then, 1/H is a Dirichlet series.

Proof. We know that H ∈ H∞(Cσ) for all σ > 0. The statement of Theorem 6.6 holds 
for this algebra. Let b1 be the first coefficient of H. Then, by Proposition 6.4, Re b1 ≥ 0. 
If the semigroup is formed by automorphisms, then H is constant and the result is clear. 
Otherwise, Re b1 > 0 and H : C+ → C+. Hence, 1/H is holomorphic. We know that there 
is ν > 0 such that |b1 −H(s)| < |b1|/2, whenever Re s > ν. So that, |H(s)| > |b1|/2. By 
Theorem 6.6, 1/H is a Dirichlet series in Cσ. Thus 1/H is a Dirichlet series in C+. �

Bearing in mind the above theorem, equation (6.2), and Theorem 5.1, we deduce:

Corollary 6.8. Let h be a holomorphic function in C+. Then h is the Koenigs function 
of a continuous semigroup in G if and only if h′ is a Dirichlet series satisfying h′(C+) ⊂
C+ \ {0}.
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That is, h is the Koenigs function of a continuous semigroup in G if and only if, up 
to an additive constant, h belongs to the class K given by

K := {h : C+ → C : Re (h′) ≥ 0, h(s) = d1s−
∑
n≥2

dn
ln(n)n

−s, dn 
= 0 for some n}.

Many properties of a continuous semigroup can be rewritten in terms of the geometry 
of the image of the Koenigs function. Denote by ω the hyperbolic distance in C+. Let 
us recall that a continuous semigroup with no fixed points in C+ is of positive hyperbolic 
step if there is s0 ∈ C+ such that limt→+∞ ω(Φt(s0), Φt+1(s0)) > 0. If such a point 
exists, then limt→+∞ ω(Φt(s), Φt+1(s)) > 0 for all s. Otherwise, the semigroup is said 
to be of zero hyperbolic step. This classification provides information about the speed 
of convergence of the trajectories of the semigroup to the Denjoy-Wolff point. It can be 
proved that a parabolic semigroup is of zero hyperbolic step if and only if h(C+) is not 
contained in a horizontal half-plane [12, Proposition 3.2] (see also [10, Theorem 9.3.5]).

Lemma 6.9. Given h ∈ K,

a) If Re (d1) = 0, then h(s) = d1s and h(C+) is a horizontal half-plane.
b) If Re (d1) > 0, then h(C+) contains a non-horizontal half-plane. In particular, it is 

not contained in a horizontal half-plane.

Proof. We start by proving a). If Re(d1) = 0, then H = 1/h′ is the infinitesimal generator 
of a semigroup in the class G such that

H(s) = 1
d1

+
∑
n≥2

cnn
−s.

By Proposition 6.4, cn = 0 for all n ≥ 2 and h(s) = d1s. Then h is a dilation followed 
by a rotation of angle ±π/2. Therefore, it takes any vertical half-plane Cν , ν ∈ R, into 
a horizontal half-plane.

Now, we prove b) using Rouché’s Theorem. Set f(s) = d1s and g(s) = − 
∑

n≥2
dn

ln(n)n
−s.

Let us fix ε > 0. There exists σ > 0 such that for every s ∈ Cσ

|h(s) − d1s| = |g(s)| =

∣∣∣∣∣∣
∑
n≥2

dn
ln(n)n

−s

∣∣∣∣∣∣ < ε.

Take R > 0 such that |d1|R > ε. Fix σ′ > σ + R and a ∈ Cσ′ . Set f1(s) = h(s) − d1a

and f2(s) = f(s) − d1a = d1(s − a). Now, for every s ∈ Cσ

|f1(s) − f2(s)| = |h(s) − f(s)| = |g(s)| < ε

and, for every s ∈ ∂D(a, R),
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|f2(s)| = |f(s) − d1a| = |d1(s− a)| = |d1|R.

Thus

|f1(s) − f2(s)| < |f2(s)|, for every s ∈ ∂D(a,R).

Then, by Rouché’s Theorem, f1 and f2 have the same number of zeros inside D(a, R). 
Hence, since f2(a) = 0, we deduce that there exists c ∈ D(a, R) ⊂ Cσ, such that 
f1(c) = 0. Then, h(c) = d1a. Therefore h(C+) contains d1Cσ′ . Since Re d1 > 0, d1Cσ′ is 
a non-horizontal half-plane. �
Proposition 6.10. Let {Φt} be a continuous semigroup in the class G which are not au-
tomorphims of C+. Then the semigroup is of zero hyperbolic step.

We end this section with an example showing that in general the image of the Koenigs 
map of a continuous semigroup in G is not contained in a half-plane.

Example 6.11. By Theorem 5.1, the function H(s) = 2−s+1 is the infinitesimal generator 
of a continuous semigroup in G. By (6.2), its Koenigs map is given by

h(s) = log(1 + 2s)
ln 2 = s + Log(1 + 2−s)

ln 2 ,

where log means a suitable continuous branch of the logarithm and Log denotes the main 
branch of the logarithm. For all k ∈ Z, the horizontal line

{s ∈ C : s = x + iy, x ∈ R, y = (2k + 1)π
ln 2 }

is contained in h(C+), so that h(C+) cannot be contained in a half-plane. The reader 
can check that

Φt(s) = 1
ln 2 log(2t − 1 + 2s+t) = s + t + 1

ln 2Log(1 + 2−s(1 − 2−t)), t ≥ 0, s ∈ C+.

7. Semigroups of composition operators in H∞

Theorem 2.11 and Proposition 4.3 show that given an algebraic semigroup of com-
position operators {Tt}t≥0 = {CΦt

}t≥0 in H∞, the family of functions {Φt}t≥0 is an 
algebraic semigroup of analytic functions in C+ satisfying that

Φt(s) = cΦt
s + ϕt(s), s ∈ C+

where cΦt
∈ N ∪ {0} and ϕt ∈ D. In this section we prove that
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Theorem 7.1. Let {Tt}t≥0 be a strongly continuous semigroup of composition operators 
in H∞. Then, Tt = Id for every t ≥ 0.

We need a preliminary lemma whose proof is a slight adaptation of “a) implies b)” in 
Theorem 4.4 so that we omit it:

Lemma 7.2. Let {Φt} be a semigroup in G∞. If {Tt}t≥0 = {CΦt
}t≥0 is a strongly contin-

uous semigroup in H∞, then {Φt}t≥0 is a continuous semigroup in G.

Proof of Theorem 7.1. Write {Tt}t≥0 = {CΦt
}t≥0. By Lemma 7.2, {Φt}t≥0 is a continu-

ous semigroup in C+. Therefore, it has an infinitesimal generator H : C+ → C+. H is an 
holomorphic function in C+. Assume that H is non-zero. Take L a linear fractional map 
sending the unit disc onto the right half-plane. Then H ◦ L is a holomorphic function 
from D into C+. Then it has non-tangential limit at almost every point in the boundary 
of the unit disc and, since it is non-zero, there is a point in the boundary of the unit disc 
such that the limit is a complex number different from zero (see, e.g., [14, Theorems 3.2 
and 2.2]). Then, there are y ∈ R, ε > 0, and δ > 0 such that

|H(x + iy)| > δ, (7.1)

for all x ∈ (0, ε).
A standard argument shows that the infinitesimal generator of the semigroup {Tt} is 

given by A(f) = Hf ′ and, arguing as we did in the proof of Proposition 5.7, its domain 
is

D(A) := {f ∈ H∞ : Hf ′ ∈ H∞}.

We claim that for every f ∈ D(A) there exists

lim
x→0+

f(x + iy).

Let us proof this claim. Take f ∈ D(A). Therefore, there exists M > 0 such that

|H(s)f ′(s)| < M, s ∈ C+.

Now, given s = x + iy such that x ∈ (0, ε), putting together this bound and (7.1),

δ|f ′(s)| < M.

Then,

sup |f ′(x + iy)| ≤ M

δ
. (7.2)
x∈(0,ε)
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This estimate will allow us to apply the Dominated Convergence Theorem to

f(x + iy) = f(ε + iy) −
ε∫

x

f ′(u + iy)du. (7.3)

Indeed, (7.2) and the fact that χ(x,ε) → χ(0,ε) as x → 0+ allows us to apply the Domi-
nated Convergence Theorem to the integral in (7.3). Taking the limit when x → 0+, we 
find that

lim
x→0+

f(x + iy) = lim
x→0+

⎛
⎝f(ε + iy) −

ε∫
x

f ′(u + iy)du

⎞
⎠ = f(ε + iy) −

ε∫
0

f ′(u + iy)du.

Therefore, the above claim holds.
Take now a function f ∈ D(A)

‖·‖H∞
. Again we have that

lim
x→0+

f(x + iy)

exists. Let us assume on the contrary that such limit does not exist. Then, there would 
exist two sequence of positive real numbers {un}n∈N and {vn}n∈N both tending to zero 
and λ1, λ2 ∈ C, λ1 
= λ2 such that

lim
n→∞

f(un + iy) = λ1 and lim
n→∞

f(vn + iy) = λ2.

Set κ = 1
3 |λ1 − λ2| > 0. Since f ∈ D(A)

‖·‖H∞
, there exists g ∈ D(A) such that

‖f − g‖H∞ < κ.

Let λ := limx→0+ g(x + iy) (the limit exits by above claim). Then, for every n ∈ N

|f(un + iy) − g(un + iy)| < κ.

Letting n → ∞, we have that |λ1 − λ| ≤ κ. An identical argument for {vn}n instead of 
{un}n allows to deduce that |λ2 −λ| ≤ κ. However, this contradicts the choice we did of 
κ. Therefore, for each f ∈ D(A)

‖·‖H∞
, there exists

lim
x→0+

f(x + iy).

In virtue of [15, Theorem 1.4, page 37], in order to get a contradiction with the fact 
that H is non-zero, it suffices to find a function in H∞ which does not lie in the closure 
of the set D(A). Consider the holomorphic function in the unit disc
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F (z) = exp
(
i log

(
1 + z

1 − z

))
.

Since F is bounded, we have that f(s) = F (2−s+iy), s ∈ C+, belongs to H∞. But the 

limit limx→0+ f(x + iy) does not exist so that f /∈ D(A)
‖·‖H∞

. Therefore, H is the null 
function and the semigroup is the trivial one. �
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