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A B S T R A C T

Electrical analogues of linear mechanical systems have traditionally been obtained using a set
of rules that can potentially be tedious when applied to complex systems. In addition, such rules
do not cover all the possibilities of mechanical systems including rotational and translational
generalized coordinates. The present work establishes a comprehensive and systematic method-
ology for obtaining the electrical analogue of any mechanical system modelled by rigid bodies,
springs, and dampers. The method is simple and straightforward. First, the dynamic equations
of the mechanical system are derived into matrix form. These equations are then translated
to the electrical domain by means of the electromechanical analogy and, finally, the electrical
circuit is obtained by direct inspection of the matrices. In addition, the method can deal with
a combination of translational and rotational coordinates in the definition of the mechanical
model. To support the proposed method, and beyond the planar vehicle models found in the
literature, the electrical analogue of a linear 3D 7-DOF full car model is presented in this work.

. Introduction

.1. Motivation

The electromechanical analogy is an exceptionally versatile tool for the study and understanding of the combination of both
echanical and electrical systems. For example, it has been used since the 30–40 s of the twentieth century in the study of vibrations

f linear mechanical systems from an electrical standpoint [1–5]. It consists of the study of electrical analogues of mechanical
ystems by using well-known methods for electrical networks. This paper aims to explore this analogy, in the context of linear
odels in vehicles and mechatronic systems. The proposed methodology is restricted to linear mechanical systems. Nevertheless,

he literature shows a large number of works that utilizes electric analogues of linear mechanical systems. Therefore, the present
ethod is expected to be useful for a significant number of researchers. Through the electromechanical analogy, this paper seeks to

hed new light on how engineers can, for example, effectively design and operate efficient vehicle control systems and mechatronic
tructures using simple methods. Overall, this paper contributes toward the advancement of engineering knowledge by proposing a
ovel method to facilitate design strategies. Specifically, the new methodology proposed to obtain electrical analogues of linear
echanical systems is applied to a full car model. This is a representative example of a relatively complex problem that may
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Table 1
Classical analogy between variables in mechanical and electrical systems.

Electrical variables

Mechanical variables Force-voltage Force-current

Force [N] 𝐹 𝑢 Voltage [V] 𝑖 Current [A]
Velocity [ms−1] 𝑣 𝑖 Current [A] 𝑢 Voltage [V]
Stiffness [Nm−1] 𝑘 𝑆 Elastance [F−1] 𝐵 Compliance [H−1]
Mass (inerter) [kg] 𝑚 𝐿 Inductance [H] 𝐶 Capacitance [F]
Damping [Nsm−1] 𝑑 𝑅 Resistance [Ω] 𝐺 Conductance [Ω−1]

be unaffordable using the known rules for obtaining electrical analogues of mechanical systems. Moreover, the topic of vehicle
dynamics is one of the most discussed in the field of multibody system dynamics [6]. The results from this research will help the
implementation of reliable solutions in several fields like electric mobility solutions across all industries. With this in mind, this
paper is highly motivated by its potential to open up new horizons when exploring methods for improving vehicle performance
using electromechanical analogies.

It is worth to note that this work does not pursue a gain in computational efficience but to offer mechatronic engineers a pos-
ibility to leverage well-established electrical analysis techniques in electrical analogues, leading to a more intuitive understanding
nd interpretation of the behaviour of the corresponding mechanical systems.

.2. Background and literature review

In this section, the background on the electromechanical analogy is outlined along with a brief overview on the existing literature.
n addition, a comparison with other techniques commonly found in the field is provided. An interesting reading about the beginnings
nd evolution of the electromechanical analogy is the work presented by Gardonio & Brennan [7]. More recently, the physical
rigins of the correspondences between the laws and the elements of the electrical, mechanical, and acoustic domains are discussed
y Bertuccio [8].

Traditionally, two different approaches can be followed to obtain the electrical analogue of a mechanical system, i.e., the force–
voltage and the force–current analogy. Historically, the force–voltage analogy (also known as direct analogy) was first introduced [2].
In this analogy, the force is related to the electrical voltage and the velocity to the current. Subsequently, the force–current analogy
(also known as inverse analogy) was proposed as an alternative [1,9] to solve some issues encountered in the direct analogy.
For example, the mechanical and electrical system preserves the same topology in the force–current analogy and may be more
appropriate or easy to derive in some cases. The force–current analogy is also proposed in more recent studies as the best choice for
robotics applications [10]. Nevertheless, both analogies are valid and can be applied to the same mechanical systems resulting in
dual circuits [3]. Table 1 summarizes the relationships between variables and elements of mechanical and electrical systems for the
force–voltage and force–current analogies. From the relations shown in this table, the electrical analogue of a mechanical system can
be obtained by applying a set of rules, where the topology of both systems must maintain certain relationships [3,11,12]. However,
these simple rules need to be further elaborated to analyse relatively complex mechanical systems, such as those presenting inertial
coupling [13].

Beyond purely mechanical systems, the use of analogues is of notable interest in multidomain problems. For example, the
case of an electrical rotating machine where the electrical subsystem is linked to the mechanical one. To deal with this kind of
multidomain problems, the mechanical system is usually replaced with its electrical analogue and then attached to the existing
electrical system [14,15]. The analogies between the different dynamic systems, such as mechanical, electrical, thermal, or fluid
systems, are based on the similarity between their dynamic equations. Jeltsema and Scherpen [16] discuss the relationships between
different physical domains on the basis of energy and power considerations. Recently, de Silva [17] proposed a systematic approach
to unify multidomain systems into a single model with physically representative variables, including several illustrative examples.

The so-called electromechanical analogy is not the only approach to deal with multidomain dynamic systems. For example, Bond
Graph (BG) graphical method has been frequently employed in the literature. In this method, the components of the system interact
with each other through energy ports [18]. In addition, system components are combined by respecting their nature. Many authors
have used the BG method to deal with mechatronic systems, see for instance [19–21]. Geitner [22] emphasizes BG as an excellent
tool to study different abstraction levels and power flow structure comparison of dynamical systems. Sass et al. [23] compared three
different modelling strategies (virtual work principle, linear graph and bond graph theories) to solve electromechanical multibody
systems, concluding that BG is interesting for showing energy interactions between the different parts of the model. However, it has
some limitations when considering complex three-dimensional (electro)mechanical systems. They pointed out several disadvantages,
such as the difficulty of applying a causality assignment and the generation of constraints at the velocity level. Other authors have
also pointed out the limitations of the BG method for complicated circuits, where the step-by-step procedure to achieve the BG
scheme can become an issue [19]. In addition, once the graph for the system is obtained, the dynamical equations should be derived.
This is not an easy task as highlighted in [23] due to its complexity, and therefore different simulation softwares are commonly
used [19,22,24].

A remarkable utility of the analogy in multidomain systems is related to recent developments in vehicles in general, and electric
2

vehicles in particular, such as in the modelling, optimization and control of vehicle suspension [25–30]. The electrical analogue



Mechanical Systems and Signal Processing 200 (2023) 110511J. López-Martínez et al.

p
o
s
i
a
s

n
o
f

1

b
b
m
A
a
e
d

o
i
f
f
a
e
r

t
s

1

w
s
7
s
i

2

m
a
s
d

has also been used in the study of hybrid electric vehicle drive trains [31]. In these works, the electrical analogue of the vehicle
suspension is used. Most authors adopt a 2-DOF model (quarter-car), while a more complex analogue model of a half-car is presented
in [13]. However, the analogue of a complete model of the full car [32] has not been found in the literature. Such a model would
be of interest in the design of active suspensions and control systems [33]. Another potential application related to automotive
suspension systems is vibration energy harvesting in hydraulic shock absorbers [34–36], or in tyres, where the characteristic of
piezoelectric materials is exploited to achieve an autonomous source of energy for sensors located inside the tyres [37–40].

In other fields, also focused on energy harvesting, electromechanical analogies have been used in applications including
iezoelectric components [41–43], and in the analysis of electromechanical devices for the backpacks [44]. A significant number
f works are related to the analysis of structural dynamic problems [45–48], as well as to the modelling of electromechanical
ystems [49–52] and Micro-Electro-Mechanical Systems (MEMS) [53]. Other interesting applications found in the literature
nclude inductive power transfer systems [54], ultrasonic transducer arrays utilized in medical imaging and nondestructive testing
pplications [55], standing-wave linear ultrasonic motors models [56], and building an electrical circuit analog of a Hamiltonian
ystem with non-holonomic constraint [57].

Therefore, the electromechanical analogy has proven useful in several fields, and it is expected that its use will be extended to
ew applications. The analogy between different physical domains has contributed to find new elements such as the inverter [58],
r the memristor [59,60] and its mechanical analog, a tapered dashpot [61]. In addition, analogy is of interest in the educational
ield, where it is proposed as a tool that helps to understand different subjects [62].

.3. Contributions

Typically, the electrical analogue of a mechanical system is obtained by applying a set of rules based on the relationships
etween variables and elements of mechanical and electrical systems [3,11]. However, as previously described, such rules can
e tedious or even fail to provide a solution for complex systems, since they do not cover all possibilities. This is the case for
echanical systems presenting inertial coupling [13], or those that include rotational and translational generalized coordinates.
uthors’ previous work [13] dealt with obtaining the electrical analogue of two different 2D vehicle models, a half-car and a three-
xle vehicle. To that aim, the known set of rules available in the scientific literature to generate an electric analogue by translating
ach mechanical element into the corresponding electrical one were applied. In addition, a new found analogy, not previously
escribed, between inertial coupling and electrostatic capacitor coupling was presented there.

Unlike previously existing works, the present paper proposes a new methodology, based on the equivalence between the matrices
f the mechanical equations and those of the electrical circuit analogue equations. This methodology allows to obtain analogues
n a straightforward way, and facilitates the application of the approach to complex mechanical systems. To demonstrate the
easibility and broad applicability of the proposed methodology, we have presented an electrical analogue of a linear 3D 7-DOF
ull car model, which has not been previously published in the literature. The electrical analogue of such model is an example of
complex mechanical model in which the difficulty to obtain the electrical analogue by direct application of the usual rules on an

lement-by-element basis is evidenced. As will be shown, the present method can also handle a combination of translational and
otational coordinates in the definition of the mechanical model.

Overall, as a contribution and to facilitate the development and application of electro-mechanical analogy in complex systems,
he present work establishes a comprehensive and systematic methodology to obtain the electrical circuit analogue of a mechanical
ystem. Specifically, the aims of the present work are as follow:

(i) To establish a comprehensive and systematic methodology for obtaining the electrical analogue of any mechanical system
modelled by rigid bodies, springs, and dampers.

(ii) To explain how the methodology can deal with a combination of translational and rotational coordinates in the definition of
the mechanical model.

(iii) To develop the electrical analogue of a linear 3D 7-DOF full car model and to validate the electrical model through
simulations.

.4. Outline

The paper is organized as follows: Section 1 provides readers with background and context in the electromechanical analogy along
ith the contributions presented. Section 2 describes the methodology for obtaining electrical analogues of mechanical systems. A

imple 2-DOF mechanical model is used as an example to better understand the process. In Section 3 the equation of motion of a
-DOF full car model and its electrical analogue is derived and presented. The equivalence between both models is validated by
imulations in Section 3.3. Section 5 discusses the salient features of the proposed method in comparison with other approaches,
ncluding previous research on the subject by the authors of this paper. Finally, Section 6 draws the main conclusions.

. Comprehensive methodology to obtain electromechanical analogues

This section presents a comprehensive and systematic methodology to obtain electrical analogues of mechanical systems. The
ethod applies to any linear multi-DOF model of a mechanical system modelled by rigid bodies, springs and dampers. The main

dvantages are its simplicity and systematic applicability. Inertial, damping and elastic couplings in the mechanical system are
olved automatically without the need to interpret them as electrical couplings [13]. The key points of the method are explained in
3

etail and illustrated using a simple example.
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Fig. 1. Steps of the methodology.

2.1. Description of the method

An interesting feature of the proposed method is that it can be applied to any linear model of a mechanical system despite of
the type of coordinates chosen, which can be either translational or rotational or a mixture of both types. The method presented
here consists of three main steps as shown in Fig. 1 and is detailed as follows.

Step 1. Building the mechanical model equations
Firstly, the equations of motion are obtained for a given model of a mechanical system using any of the many methods of Classical

Mechanics. The configurational state of a model with 𝑛 degrees of freedom can be defined by means of a 𝑛×1 vector of generalized
coordinates 𝒙. When the generalized coordinate vector includes only one type of coordinates, either translational or rotational, it will
be said that the coordinate vector is homogeneous. In the case that the set of coordinates includes both translational and rotational
coordinates, a homogenization technique must be used to end up having an equivalent generalized coordinate vector containing
only one type of coordinates, either rotational or translational, and therefore being homogeneous. The equations of motion can be
expressed in the following matrix equation:

𝑴�̈� +𝑫�̇� +𝑲𝒙 = 𝒇 (1)

where 𝑴 , 𝑫 and 𝑲 are 𝑛 × 𝑛 mass, damping, and stiffness matrices with constant elements, respectively. Variables �̈�, �̇� and 𝒙 are
the 𝑛 × 1 acceleration, velocity, and displacement time-dependent vectors, respectively, and 𝒇 is the 𝑛 × 1 time-dependent force
vector. Note that vectors are represented by bold and small letters, while matrices are represented by bold and capital letters.
Non-bold letters represent scalars. Eq. (1) may be derived by using any of the existing methods to obtain the equations of motion of
a mechanical system [63]. A systematic and commonly used method for systems with a large number of DOFs is Lagrange’s method,
see for example S.S. Rao [63]. In this work, Lagrange equations of the second kind in terms of the generalized coordinate vector 𝒙
are expressed as

d
d𝑡

( 𝜕𝑇
𝜕�̇�

)

− 𝜕𝑇
𝜕𝒙

+ 𝜕𝑉
𝜕𝒙

+
𝜕𝐹𝑅
𝜕�̇�

= 𝒇𝒂 (2)

where 𝑇 and 𝑉 are the kinetic and the potential energies, 𝐹𝑅 is a Rayleigh dissipation function accounting for the energy dissipated
by the dampers and 𝒇𝒂 is the generalized applied force vector. Eq. (2) results in the equation of motion and can be expressed in
the matrix form of Eq. (1). Note that 𝒇𝒂 may be different from 𝒇 of Eq. (1), since 𝒇 may also include forcing terms arising from
inertial, damping or stiffness forces as usually happens in systems with moving supports.

An important consideration in this first step is the need to use a vector with homogeneous coordinates, i.e., it can only contain
rotational or translational coordinates but not a mixture of them. Otherwise, some equations would be formulated in terms of
equilibria of forces and other equations would be formulated in terms of equilibria of moments, what precludes the direct application
of the electrical analogy as described in this document. To overcome this issue, fictitious displacement/rotation coordinates can be
defined instead of rotation/displacement coordinates. This approach results in obtaining a full set of homogeneous coordinates. An
illustrative example of how to deal with mixed coordinates is shown in Section 2.2.2 below.

Step 2. Translation to the electrical domain
The second step of the method involves the translation of the differential equations to the electrical domain. This stage leads

to a matrix system similar to the mechanical matrices shown in Eq. (1). The rationale is that the model dynamics are equivalent
in both domains. Any of the two traditional approaches to obtain electrical analogues can be used, i.e. the force–voltage or the
force–current analogy. Table 2 shows the equivalence between matrices and vectors of both domains. Note that this is consistent
with the equivalence of variables in Table 1.

If the force–current analogy is used, then Eq. (1) for the mechanical system can be rewritten as

𝑪�̈� +𝑮�̇� + 𝑩𝝓 = 𝒊 (3)
4
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Table 2
Analogue matrices and vectors for the mechanical and electrical domains.

Electrical domain

Mechanical domain Force-voltage Force-current

Force 𝒇 𝒖 Voltage 𝒊 Current
Position 𝒙 𝒒 Charge 𝝓 Flux
Stiffness 𝑲 𝑺 Elastance 𝑩 Compliance
Mass 𝑴 𝑳 Inductance 𝑪 Capacitance
Damping 𝑫 𝑹 Resistance 𝑮 Conductance

where 𝑪, 𝑮 and 𝑩 are the capacitance, conductance and compliance (inverse of inductance) matrices, respectively, 𝝓 is the flux
inkage vector (�̇� = 𝒖 is the node voltage vector) and 𝒊 is the current source vector.

Similarly, by using the force–voltage analogy, Eq. (1) is rewritten as

𝑳�̈� +𝑹�̇� + 𝑺𝒒 = 𝒖 (4)

here 𝑳, 𝑹 and 𝑺 are the inductance, resistance and elastance (inverse of capacitance) matrices, respectively, 𝒒 is the charge vector
�̇� = 𝒊 is the current vector) and 𝒖 is the voltage source vector.

It is worth noting that despite the clear preference in the literature for the force–current method over the force–voltage method
it better reflects the structure of the mechanical system) the methodology presented here is completely general. The choice of one
ethod over the other is left to the researcher. It should be noted that the selection of one method or the other will result in a
ifferent (dual) circuit that can be solved by the most appropriate network analysis method.

tep 3. Building the electrical circuit analogue
The third step allows the electrical analogue circuit to be built by simple inspection of the matrices using the properties of

he node-voltage method or the mesh-current method [64]. The usual way to proceed when using these methods is to obtain the
atrices from existing electrical circuits. However, in the proposed methodology one proceeds oppositely, i.e. the electrical circuit

s obtained from the matrices.
Both node-voltage and mesh-current methods are based on Kirchhoff’s laws. They allow one to determine by simple inspection

f the obtained matrices, whether an electrical element is connected between two nodes of a circuit and its value. The electrical
ircuits produced by the two approaches are dual to one another and hence reflect the same mechanical model in two distinct ways.

For the sake of brevity, the force–current analogy along with the node-voltage method will be used in the following sections.
hus, the application of the force–voltage analogy and mesh-current method is not presented in detail and is left to the reader.
hose not familiar with these methods are referred to [64].

By means of the node-voltage method, the electric circuit can be built by inspection of the matrices in Eq. (3). The steps are
numerated as follows:

1. For a 𝑛-dimensional vector 𝒖, a circuit diagram with 𝑛+1 nodes is built. The 𝑛+1 node is the reference or ground node (node
0) and is an analogue to the ground in a mechanical system.

2. For each entry 𝑎𝑗𝑘 in matrix 𝑨 = {𝑪 ,𝑮,𝑩}, the corresponding electrical elements are created between nodes following the
rules below:

(a) A non-zero off-diagonal (𝑗 ≠ 𝑘) entry 𝑎𝑗𝑘 indicates an electrical element connected between node 𝑗 and 𝑘. Note that
all matrices are symmetric, and thus, 𝑎𝑗𝑘 = 𝑎𝑘𝑗 . The value of the element in the circuit is the matrix entry with an
opposite sign.

(b) An electrical element should be connected between node 𝑗 and ground (0), if the sum of all off-diagonal elements
in row 𝑗, ∑ 𝑎𝑗𝑖 with 𝑖 ≠ 𝑗, is not equal to the diagonal element 𝑎𝑗𝑗 (with opposite sign). The value of this electrical
element is the sum of all elements in row 𝑗.

3. For every non-zero 𝑗 entry in vector 𝒊, a current source should be placed between node 𝑗 and ground (0).

2.2. Application of the method

In the following, the 2-DOF mechanical model of Fig. 2 is used to illustrate the application of the proposed methodology in detail.
The mechanical model consists of a bar of mass 𝑚 and moment of inertia 𝐼𝐺, connected to the ground by two spring-damper pairs
arranged in parallel and separated by a distance 𝑙. An external force 𝑓 (𝑡) is acting on the centre of mass of the bar. For simplicity,
the time dependence of the generalized applied force vector on time 𝑡 will be omitted.
5
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Fig. 2. 2-DOF mechanical model.

2.2.1. Using a homogeneous set of coordinates
As explained before, a homogeneous set of coordinates must only contain either translational or rotational coordinates, but

not both types. In this example, the system can be modelled using two translational coordinates, therefore, using a homogeneous
coordinate set. Let the displacements 𝑥1 and 𝑥2 be used as the independent variables, being the components of the generalized
coordinates vector

𝒙 =
(

𝑥1 𝑥2
)𝑇 (5)

The equations of motion can be obtained by using Lagrange equations shown in Eq. (2). The terms of kinetic energy 𝐿, potential
energy 𝑉 and Rayleigh dissipation function 𝐹𝑅 can be written as follows:

𝑇 =
𝐼𝐺

(

�̇�1 − �̇�2
)2

2𝑙2
+

𝑚
(

𝑙1�̇�2 + 𝑙2�̇�1
)2

2𝑙2

𝑉 =
𝑘1𝑥12

2
+

𝑘2𝑥22

2

𝐹𝑅 =
𝑑1�̇�21
2

+
𝑑2�̇�22
2

(6)

The generalized force vector is obtained from the virtual work associated with the applied force, 𝑓 . Then, the applied force, 𝑓 ,
results in the following generalized force vector:

𝒇 𝑎 = 𝒇 =

⎛

⎜

⎜

⎜

⎝

−
𝑓𝑙2
𝑙

−
𝑓𝑙1
𝑙

⎞

⎟

⎟

⎟

⎠

(7)

Introducing 𝑇 , 𝑉 , 𝐹𝑅 and 𝒇 𝑎(𝑡) into Eq. (2), the following ODE system is obtained:

⎛

⎜

⎜

⎜

⎝

𝑙22𝑚 + 𝐼𝐺
𝑙2

𝑙1𝑙2𝑚 − 𝐼𝐺
𝑙2

𝑙1𝑙2𝑚 − 𝐼𝐺
𝑙2

𝑙12𝑚 + 𝐼𝐺
𝑙2

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑴

(

�̈�1
�̈�2

)

⏟⏞⏟⏞⏟
�̈�

+
(

𝑑1 0
0 𝑑2

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝑫

(

�̇�1
�̇�2

)

⏟⏞⏟⏞⏟
�̇�

+
(

𝑘1 0
0 𝑘2

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝑲

(

𝑥1
𝑥2

)

⏟⏞⏟⏞⏟
𝒙

=

⎛

⎜

⎜

⎜

⎝

−
𝑓𝑙2
𝑙

−
𝑓𝑙1
𝑙

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝒇

(8)

which may be written in the simple matrix form of Eq. (1).
Once the equations of motion of the mechanical system are obtained, vectors and matrices in Eq. (8) can be created using the

force–current analogy as follows (see Table 2):

𝑪 = 𝑴

𝑮 = 𝑫

𝑩 = 𝑲

𝝓 = 𝒙

𝒊 = 𝒇

(9)

resulting in Eq. (3). Finally, following the rules of the node-voltage method, the circuit in Fig. 3(a) is obtained as a result of the
force–current analogy in Fig. 2. The values of the electrical elements are:

𝐶 =
𝑙2𝑚 𝐺 = 𝑑 𝐵 = 𝑘
6

1 𝑙 1 1 1 1
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Fig. 3. (a) Force-current and (b) force–voltage analogues of the 2-DOF mechanical model of Fig. 2.

𝐶2 =
𝑙1𝑚
𝑙

𝐺2 = 𝑑2 𝐵2 = 𝑘2

𝐶3 =
𝐼𝐺 − 𝑙1𝑙2𝑚

𝑙2
𝑖1 = −

𝑓𝑙2
𝑙

𝑖2 = −
𝑓𝑙1
𝑙

As mentioned previously, a similar procedure could be carried out using the force–voltage analogy along with the mesh-current
method, leading to the dual circuit shown in Fig. 3(b). For this dual circuit, the correspondence between the numerical values of
the passive elements are 𝑆𝑖 → 𝐵𝑖, 𝐿𝑖 → 𝐶𝑖 and 𝑅𝑖 → 𝐺𝑖, while the sources are 𝑢𝑖 → 𝑖𝑖 and the mesh currents 𝑖𝑖 → 𝑢𝑖.

2.2.2. Using a set of translational and rotational coordinates
The electrical analogue of a mechanical system depends on the set of independent coordinates chosen. As shown in Fig. 2, the

displacement of the centre of mass of the bar 𝑥, and the rotation angle 𝜃, could also be selected as the independent variables. In
such cases, the generalized coordinates of the vector include translational and rotational coordinates

𝒙 =
(

𝑥 𝜃
)𝑇 (10)

To obtain a homogeneous coordinate vector, fictitious displacement coordinates can be defined instead of rotation coordinates.
In this illustrative example, a fictitious displacement coordinate 𝑥𝜃 is defined as follows:

𝑥𝜃 = 𝑙𝜃 (11)

which have a direct relation to angle 𝜃. By introducing the new coordinate, 𝑥𝜃 , the full set of coordinates is now homogeneous and
the generalized coordinate vector reads as

𝒙 =
(

𝑥 𝑥𝜃
)𝑇 (12)

Note that distance 𝑙 has been used as an arbitrary multiplying factor that allows having all equations written as force balances
nd all coordinates representing displacements. Thus, the force–current analogy can be directly applied. Interestingly, a different
ultiplying factor could be chosen without loss of generality. For instance, if a unit length is used, the value of angle 𝜃 can be read

directly from the value of generalized coordinate 𝑥𝜃 .
Now, repeating the previously described procedure, the equations of motion obtained by using Lagrange equations result in

⎛

⎜

⎜

⎝

𝑚 0

0
𝐼𝐺
𝑙2

⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑴

(

�̈�
𝑥𝜃

)

⏟⏞⏟⏞⏟
�̈�

+

⎛

⎜

⎜

⎜

⎝

𝑑1 + 𝑑2
𝑙2𝑑2 − 𝑙1𝑑1

𝑙
𝑙2𝑑2 − 𝑙1𝑑1

𝑙
𝑙12𝑑1 + 𝑙22𝑑2

𝑙2

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑫

(

�̇�
𝑥𝜃

)

⏟⏞⏟⏞⏟
�̇�

+

⎛

⎜

⎜

⎜

⎝

𝑘1 + 𝑘2
𝑙2𝑘2 − 𝑙1𝑘1

𝑙
𝑙2𝑘2 − 𝑙1𝑘1

𝑙
𝑙12𝑘1 + 𝑙22𝑘2

𝑙2

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑲

(

𝑥
𝑥𝜃

)

⏟⏞⏟⏞⏟
𝒙

=
(

−𝑓
0

)

⏟⏞⏞⏟⏞⏞⏟
𝒇

.

(13)

The electrical analogue can be drawn by inspection of the matrices in Eq. (13) by using the node-voltage method. Fig. 4(a) shows
he analogue result after applying the force–current to the mechanical system in Fig. 2. The values of the electrical elements are:

𝐶1 = 𝑚 𝐵1 =
𝑙2𝑘1 +

(

𝑙1 + 2𝑙2
)

𝑘2
𝑙

𝐶2 =
𝐼𝐺
𝑙2

𝐵2 =

(

2𝑙22 + 𝑙1𝑙2
)

𝑘2 − 𝑙1𝑙2𝑘1
𝑙2

𝐺1 =
𝑙2𝑑1 +

(

𝑙1 + 2𝑙2
)

𝑑2
𝑙

𝐵3 =
𝑙1𝑘1 − 𝑙2𝑘2

𝑙

𝐺 =

(

2𝑙22 + 𝑙1𝑙2
)

𝑑2 − 𝑙1𝑙2𝑑1 𝑖 = −𝑓
7

2 𝑙2 1
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v

d

Fig. 4. (a) Force-current and (b) force–voltage analogues of the 2-DOF mechanical model of Fig. 2 with 𝒙 =
(

𝑥 𝑥𝜃
)𝑇 .

𝐺3 =
𝑙1𝑑1 − 𝑙2𝑑2

𝑙

Fig. 4(b) shows the result of the force–voltage analogy and the mesh-current method. For this circuit (dual of Fig. 4(a)), the
alues of the passive elements are 𝑆𝑖 = 𝐵𝑖, 𝐿𝑖 = 𝐶𝑖 and 𝑅𝑖 = 𝐺𝑖, while the source is 𝑢1 = 𝑖1 and the mesh currents 𝑖𝑖 = 𝑢𝑖.

It should be noted that Figs. 3 and 4 are both analogues of the same mechanical system shown in Fig. 2, but obtained using two
different independent coordinate sets. It is interesting to note that using the first set of coordinates

(

𝑥1 𝑥2
)

the mass matrix is not
diagonal, showing inertial coupling. On the contrary, using the second set of coordinates (𝑥 𝜃) the mass matrix is diagonal but the
stiffness and damping matrix are not, showing elastic and damping coupling. With this second set of coordinates the force 𝑓 , which
is applied coincident with the variable 𝑥, is translated directly as a source with the same value.

3. Electric analogue of a linear 7-DOF full car model

In this section, the proposed methodology is applied to obtain the electrical analogue of a complex mechanical model such as
the linear 7-DOF full car model. Based on the proposed methodology outlined in the previous section, the first step is to obtain the
mechanical equations using any classical mechanical method available.

3.1. Mechanical model of the full car

The conceptualization of the full car model is presented in Fig. 5. It consists of the main frame that is allowed to translate
vertically and rotate around the longitudinal axis (roll) and around a transversal axis (pitch). The motion of the main frame can
be therefore described by three coordinates: the displacement of the centre of mass, 𝑥, the roll angle, 𝛼, and the pitch angle, 𝛽.
Additionally, the displacement of three non-aligned points can be used to describe the vertical motion of the main frame. In this
case, the centre of mass, the rear left and rear right attachment points can be selected. The main frame is supported by four similar
sets of springs, dampers and masses representing the stiffness and damping properties of the suspensions and the tires along with
the unsprung masses. In addition, the vertical displacements 𝑦𝑑𝑖, 𝑦𝑑𝑑 , 𝑦𝑡𝑖 and 𝑦𝑡𝑑 of the left front, right front, left rear and right rear
wheels, respectively, will be considered due to the uneven profile of the ground.

It should be noted that two different sets of coordinates can be used: a set that only includes translational coordinates or a set
with a mixture of translational and rotational coordinates. Both sets of coordinates are widely used in the literature and deserve
special consideration. Interestingly, they lead to different analogue electrical circuits.

3.1.1. Using only translational coordinates
According to the previous description, the number of degrees of freedom of the model is seven and the vector of generalized

coordinates of the model, 𝒙, using only translational coordinates, reads as follows

𝒙 =
(

𝑥 𝑥𝑏𝑖 𝑥𝑏𝑑 𝑥𝑑𝑖 𝑥𝑑𝑑 𝑥𝑡𝑖 𝑥𝑡𝑑
)𝑇 (14)

Using Lagrange equations in Eq. (2), the system’s equations of motion have the following matrix structure:

𝑴�̈� +𝑫�̇� +𝑲𝒙 = 𝒇 𝑔 + 𝒇 𝑦 (15)

where 𝒇 𝑔 is a 7 × 1 constant vector accounting for gravitational forces and 𝒇 𝑦 is a 7 × 1 time-dependent vector accounting for the
8

ynamical loads induced by the unevenness of the ground.
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Fig. 5. 7-DOF model of the full car.

The mass matrix is symmetric and reads as follows:

𝑴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑚11 𝑚12 𝑚13 0 0 0 0
𝑚21 𝑚22 𝑚23 0 0 0 0
𝑚31 𝑚32 𝑚33 0 0 0 0
0 0 0 𝑚44 0 0 0
0 0 0 0 𝑚55 0 0
0 0 0 0 0 𝑚66 0
0 0 0 0 0 0 𝑚77

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (16)

with

𝑚11 = 𝑚 +
𝐼𝐺𝛽

𝑙𝑡2
𝑚12 = −

𝐼𝐺𝛽 𝑤𝑑

𝑊 𝑙𝑡2
(17)

𝑚13 = −
𝐼𝐺𝛽 𝑤𝑖

𝑊 𝑙𝑡2
𝑚22 =

𝐼𝐺𝛼 𝑙𝑡2 + 𝐼𝐺𝛽 𝑤𝑑
2

𝑊 2 𝑙𝑡2
(18)

𝑚23 = −
𝐼𝐺𝛼 𝑙𝑡2 − 𝐼𝐺𝛽 𝑤𝑑 𝑤𝑖

𝑊 2 𝑙𝑡2
𝑚33 =

𝐼𝐺𝛼 𝑙𝑡2 + 𝐼𝐺𝛽 𝑤𝑖
2

𝑊 2 𝑙𝑡2
(19)

𝑚44 = 𝑚𝑠𝑠𝑑𝑖 𝑚55 = 𝑚𝑠𝑠𝑑𝑑 (20)

𝑚66 = 𝑚𝑠𝑠𝑡𝑖 𝑚77 = 𝑚𝑠𝑠𝑡𝑑 (21)

where 𝑚 is the mass of the main frame, 𝐼𝐺𝛼 and 𝐼𝐺𝛽 are the roll and pitch moments of inertia of the main frame, 𝐿 = 𝑙𝑡 + 𝑙𝑑 is the
wheelbase, 𝑊 is the track width, 𝑙𝑑 and 𝑙𝑡 are the distances from the centre of mass to the front and rear axles, respectively, and
𝑤 and 𝑤 are the left and right half track width.
9

𝑖 𝑑
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The symmetric damping matrix is obtained as follows:

𝑫 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑑11 𝑑12 𝑑13 𝑑14 𝑑15 0 0
𝑑21 𝑑22 𝑑23 𝑑24 𝑑25 𝑑26 0
𝑑31 𝑑32 𝑑33 𝑑34 𝑑35 0 𝑑37
𝑑41 𝑑42 𝑑43 𝑑44 0 0 0
𝑑51 𝑑52 𝑑53 0 𝑑55 0 0
0 𝑑62 0 0 0 𝑑66 𝑑67
0 0 𝑑73 0 0 𝑑76 𝑑77

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (22)

with

𝑑11 =
𝐿2 𝑑𝑠𝑑𝑑

𝑙𝑡2
+

𝐿2 𝑑𝑠𝑑𝑖
𝑙𝑡2

(23)

𝑑12 =
𝐿𝑑𝑠𝑑𝑖 𝑤𝑖
𝑊 𝑙𝑡

−
𝐿𝑑𝑠𝑑𝑑 𝑤𝑑

𝑊 𝑙𝑡
−

𝐿𝑑𝑠𝑑𝑑 𝑙𝑑 𝑤𝑑

𝑊 𝑙𝑡2
−

𝐿𝑑𝑠𝑑𝑖 𝑙𝑑 𝑤𝑑

𝑊 𝑙𝑡2
(24)

𝑑13 =
𝐿𝑑𝑠𝑑𝑑 𝑤𝑑

𝑊 𝑙𝑡
−

𝐿𝑑𝑠𝑑𝑖 𝑤𝑖
𝑊 𝑙𝑡

−
𝐿𝑑𝑠𝑑𝑑 𝑙𝑑 𝑤𝑖

𝑊 𝑙𝑡2
−

𝐿𝑑𝑠𝑑𝑖 𝑙𝑑 𝑤𝑖

𝑊 𝑙𝑡2
(25)

𝑑14 = −
𝐿𝑑𝑠𝑑𝑖
𝑙𝑡

(26)

𝑑15 = −
𝐿𝑑𝑠𝑑𝑑

𝑙𝑡
(27)

𝑑22 = 𝑑𝑠𝑡𝑖 +
𝑑𝑠𝑑𝑖 𝑤𝑖

2

𝑊 2
+

𝐿2 𝑑𝑠𝑑𝑑 𝑤𝑑
2

𝑊 2 𝑙𝑡2
+

𝑑𝑠𝑑𝑖 𝑙𝑑2 𝑤𝑑
2

𝑊 2 𝑙𝑡2
−

2 𝑑𝑠𝑑𝑖 𝑙𝑑 𝑤𝑑 𝑤𝑖

𝑊 2 𝑙𝑡
(28)

𝑑23 =
𝐿𝑑𝑠𝑑𝑑 𝑙𝑑 𝑤𝑑 𝑤𝑖

𝑊 2 𝑙𝑡2
−

𝐿𝑑𝑠𝑑𝑖 𝑤𝑖
2

𝑊 2 𝑙𝑡
−

𝐿𝑑𝑠𝑑𝑑 𝑤𝑑
2

𝑊 2 𝑙𝑡
+

𝐿𝑑𝑠𝑑𝑖 𝑙𝑑 𝑤𝑑 𝑤𝑖

𝑊 2 𝑙𝑡2
(29)

𝑑24 =
𝑑𝑠𝑑𝑖 𝑙𝑑 𝑤𝑑

𝑊 𝑙𝑡
−

𝑑𝑠𝑑𝑖 𝑤𝑖
𝑊

(30)

𝑑25 =
𝐿𝑑𝑠𝑑𝑑 𝑤𝑑

𝑊 𝑙𝑡
(31)

𝑑26 = −𝑑𝑠𝑡𝑖 (32)

𝑑33 = 𝑑𝑠𝑡𝑑 +
𝑑𝑠𝑑𝑑 𝑤𝑑

2

𝑊 2
+

𝐿2 𝑑𝑠𝑑𝑖 𝑤𝑖
2

𝑊 2 𝑙𝑡2
+

𝑑𝑠𝑑𝑑 𝑙𝑑2 𝑤𝑖
2

𝑊 2 𝑙𝑡2
−

2 𝑑𝑠𝑑𝑑 𝑙𝑑 𝑤𝑑 𝑤𝑖

𝑊 2 𝑙𝑡
(33)

𝑑34 =
𝐿𝑑𝑠𝑑𝑖 𝑤𝑖
𝑊 𝑙𝑡

(34)

𝑑35 =
𝑑𝑠𝑑𝑑 𝑙𝑑 𝑤𝑖

𝑊 𝑙𝑡
−

𝑑𝑠𝑑𝑑 𝑤𝑑
𝑊

(35)

𝑑37 = −𝑑𝑠𝑡𝑑 (36)

𝑑44 = 𝑑𝑟𝑑𝑖 + 𝑑𝑠𝑑𝑖 (37)

𝑑55 = 𝑑𝑟𝑑𝑑 + 𝑑𝑠𝑑𝑑 (38)

𝑑66 = 𝑑𝑟𝑡𝑖 + 𝑑𝑠𝑡𝑖 + 𝑑𝑡𝑏 (39)

𝑑67 = −𝑑𝑡𝑏 (40)

𝑑77 = 𝑑𝑟𝑡𝑑 + 𝑑𝑠𝑡𝑑 + 𝑑𝑡𝑏 (41)

In the previous matrix, 𝑑𝑠𝑑𝑖, 𝑑𝑠𝑑𝑑 , 𝑑𝑠𝑡𝑖 and 𝑑𝑠𝑡𝑑 are the damping constants of the left front, right front, left rear and right rear
suspension dampers, respectively, 𝑑𝑟𝑑𝑖, 𝑑𝑟𝑑𝑑 , 𝑑𝑟𝑡𝑖 and 𝑑𝑟𝑡𝑑 are the damping constants of the left front, right front, left rear and right
rear wheel dampers, respectively, and 𝑑𝑡𝑏 is the damping constant of the torsion bar.

The stiffness matrix is also symmetric and can be expressed as follows

𝑲 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑘11 𝑘12 𝑘13 𝑘14 𝑘15 0 0
𝑘21 𝑘22 𝑘23 𝑘24 𝑘25 𝑘26 0
𝑘31 𝑘32 𝑘33 𝑘34 𝑘35 0 𝑘37
𝑘41 𝑘42 𝑘43 𝑘44 0 0 0
𝑘51 𝑘52 𝑘53 0 𝑘55 0 0
0 𝑘62 0 0 0 𝑘66 𝑘67
0 0 𝑘73 0 0 𝑘76 𝑘77

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (42)

where the elements of the matrix can be obtained by replacing in Eqs. (23)–(41) each damping coefficient by its parallel spring
10

stiffness coefficient according to Fig. 5. In the resulting expressions, the model parameters 𝑘𝑠𝑑𝑖, 𝑘𝑠𝑑𝑑 , 𝑘𝑠𝑡𝑖 and 𝑘𝑠𝑡𝑑 are the stiffness
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constants of the left front, right front, left rear and right rear suspension springs, respectively, 𝑘𝑟𝑑𝑖, 𝑘𝑟𝑑𝑑 , 𝑘𝑟𝑡𝑖 and 𝑘𝑟𝑡𝑑 are the stiffness
constants of the left front, right front, left rear and right rear wheel spring, respectively, and 𝑘𝑡𝑏 is the stiffness constant of the torsion
bar.

Finally, the vector of gravitational forces reads as

𝒇 𝑔 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝑔 𝑚
0
0

−𝑔 𝑚𝑠𝑠𝑑𝑖
−𝑔 𝑚𝑠𝑠𝑑𝑑
−𝑔 𝑚𝑠𝑠𝑡𝑖
−𝑔 𝑚𝑠𝑠𝑡𝑑

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (43)

hile the vector of forces induced by the ground unevenness reads as

𝒇 𝑦 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0
0

𝑑𝑟𝑑𝑖 �̇�𝑑𝑖 + 𝑘𝑟𝑑𝑖 𝑦𝑑𝑖
𝑑𝑟𝑑𝑑 �̇�𝑑𝑑 + 𝑘𝑟𝑑𝑑 𝑦𝑑𝑑
𝑑𝑟𝑡𝑖 �̇�𝑡𝑖 + 𝑘𝑟𝑡𝑖 𝑦𝑡𝑖
𝑑𝑟𝑡𝑑 �̇�𝑡𝑑 + 𝑘𝑟𝑡𝑑 𝑦𝑡𝑑

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (44)

It shall be noted that the mass, damping and stiffness matrices resulting from the selection of displacement coordinates shown
n Eq. (14) are all non-diagonal, showing inertial, damping and elastic coupling.

.1.2. Using translational and rotational coordinates
In a second approach, as stated above, it is common in vertical dynamic analysis of vehicles to use a set of mixed translational

nd angular coordinates. Following this approach, the new vector of generalized coordinates is

𝒙 =
(

𝑥 𝛼 𝛽 𝑥𝑑𝑖 𝑥𝑑𝑑 𝑥𝑡𝑖 𝑥𝑡𝑑
)𝑇 (45)

Now, as explained in Section 2.2.2, two fictitious displacement coordinates are introduced,

𝑥𝛼 = 𝑊 𝛼, 𝑥𝛽 = 𝐿𝛽. (46)

here 𝐿 is the wheelbase and 𝑊 is the track width (see Fig. 5). Then, repeating the previous process, the equation of motion can
e obtained for the following set of generalized coordinates:

𝒙 =
(

𝑥 𝑥𝛼 𝑥𝛽 𝑥𝑑𝑖 𝑥𝑑𝑑 𝑥𝑡𝑖 𝑥𝑡𝑑
)𝑇 (47)

This set of generalized coordinates leads to new matrices with different structures than those obtained using only translational
oordinates:

𝑴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑚11 0 0 0 0 0 0
0 𝑚22 0 0 0 0 0
0 0 𝑚33 0 0 0 0
0 0 0 𝑚44 0 0 0
0 0 0 0 𝑚55 0 0
0 0 0 0 0 𝑚66 0
0 0 0 0 0 0 𝑚77

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (48)

𝑫 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑑11 𝑑12 𝑑13 𝑑14 𝑑15 𝑑16 𝑑17
𝑑21 𝑑22 𝑑23 𝑑24 𝑑25 𝑑26 𝑑27
𝑑31 𝑑32 𝑑33 𝑑34 𝑑35 𝑑36 𝑑37
𝑑41 𝑑42 𝑑43 𝑑44 0 0 0
𝑑51 𝑑52 𝑑53 0 𝑑55 0 0
𝑑61 𝑑62 𝑑63 0 0 𝑑66 𝑑67
𝑑71 𝑑72 𝑑73 0 0 𝑑76 𝑑77

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (49)

𝑲 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

𝑘11 𝑘12 𝑘13 𝑘14 𝑘15 𝑘16 𝑘17
𝑘21 𝑘22 𝑘23 𝑘24 𝑘25 𝑘26 𝑘27
𝑘31 𝑘32 𝑘33 𝑘34 𝑘35 𝑘36 𝑘37
𝑘41 𝑘42 𝑘43 𝑘44 0 0 0
𝑘51 𝑘52 𝑘53 0 𝑘55 0 0
𝑘61 𝑘62 𝑘63 0 0 𝑘66 𝑘67

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

, (50)
11
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o

It is interesting to note that the mass matrix is now diagonal, therefore removing the inertial coupling. The value of the elements

f these mass, damping and stiffness matrices obtained for the set of mixed coordinates are detailed in Appendix A.
Using this set of coordinates, vectors 𝒇 𝑔 and 𝒇 𝑦 are identical to those of Eqs. (43) and (44), respectively.

3.2. Electrical analogue of the full car

Once the differential equations that model the vertical dynamics of the car are derived, the second step of the procedure to
obtain the electrical analogue is applied. As stated previously, unlike traditional approaches in which an attempt is made to establish
the structure of the electrical circuit by analogy with the mechanical one, the method proposed in this paper first establishes the
equations in both domains and then finds the appropriate structure of the electrical circuit.

3.2.1. Model based on translational coordinates only
Applying the force–current analogy according to Table 2, matrices 𝑪, 𝑮 and 𝑩 are identical to matrices 𝑴 , 𝑫 and 𝑲 defined in

Section 3.1.1 for the set of translational coordinates. Thus, the components of matrices 𝑪 , 𝑮 and 𝑩 are obtained using the following
relationships: 𝑐𝑗𝑘 = 𝑚𝑗𝑘, 𝑔𝑗𝑘 = 𝑑𝑗𝑘 and 𝑏𝑗𝑘 = 𝑘𝑗𝑘.

The values for the elements of each of these matrices are also defined in Section 3.1.1. Based on this matrix structure, following
the node-voltage method, an electric circuit can be synthesized as shown in Fig. 6, where, the values of the electrical elements
connected between non-ground nodes are

𝐶𝑗𝑘 = −𝑐𝑗𝑘, 𝐺𝑗𝑘 = −𝑔𝑗𝑘, 𝐵𝑗𝑘 = −𝑏𝑗𝑘 (51)

The electrical elements connected to the ground are obtained as

𝐶𝑗 =
7
∑

𝑘=1
𝑐𝑗𝑘, 𝐺𝑗 =

7
∑

𝑘=1
𝑔𝑗𝑘, 𝐵𝑗 =

7
∑

𝑘=1
𝑐𝑗𝑘 (52)

resulting in the following values expressed in terms of mechanical coefficients:

𝐶1 = 𝑚 𝐺4 = 𝑑𝑟𝑑𝑖 𝐵4 = 𝑘𝑟𝑑𝑖
𝐶4 = 𝑚𝑠𝑠𝑑𝑖 𝐺5 = 𝑑𝑟𝑑𝑑 𝐵5 = 𝑘𝑟𝑑𝑑
𝐶5 = 𝑚𝑠𝑠𝑑𝑑 𝐺6 = 𝑑𝑟𝑡𝑖 𝐵6 = 𝑘𝑟𝑡𝑖
𝐶6 = 𝑚𝑠𝑠𝑡𝑖 𝐺7 = 𝑑𝑟𝑡𝑑 𝐵7 = 𝑘𝑟𝑡𝑑
𝐶7 = 𝑚𝑠𝑠𝑡𝑑

It must be noted that some of the possible electrical elements connected to the ground result in a zero value after adding up all
elements in the corresponding row of the matrix, and have not been included in the above list nor drawn in Fig. 6.

Finally, the current source vector 𝒊 takes the value of the force vector 𝒇 𝑔 + 𝒇 𝑦 (see Eqs. (43) and (44)).

3.2.2. Model based on translational and rotational coordinates
In the following, the electrical analogue of the car is considered for the set of mixed translational and rotational coordinates.

According to the force–current analogy, matrices 𝑪, 𝑮 and 𝑩 are identical to matrices 𝑴 , 𝑫 and 𝑲 defined in Section 3.1.2.
Therefore, the following identities hold among the elements of the matrices: 𝑐𝑗𝑘 = 𝑚𝑗𝑘, 𝑔𝑗𝑘 = 𝑑𝑗𝑘 and 𝑏𝑗𝑘 = 𝑘𝑗𝑘. See Appendix A for
the value of the mechanical coefficients.

Applying the node-voltage method, the values of the electrical elements connected between non-ground nodes are obtained from
Eq. (51). Similarly, the electrical elements connected to the ground are obtained from Eq. (52). The resulting values expressed in
terms of mechanical coefficients are detailed in Appendix B. In contrast to the matrices obtained using only translation coordinates,
mixed coordinates lead to a larger number of electrical elements and connections between nodes (6 more branches), resulting in
a more complicated electrical circuit than the previous one shown in Fig. 6. This electrical circuit has not been drawn here, but it
can be easily built following the node-voltage method.

3.3. Harmonic analysis in the frequency domain

Once the dynamics have been defined through the system of equations in the electrical domain, the harmonic analysis in the
frequency domain can be carried out using phasors as detailed in [13]. The mapping of variables from the time domain to the
complex domain is specified in Table 3. This results in a system of linear equations in complex variable

[𝑌 ][�⃗� ] = [𝐼] → [�⃗� ] = [𝑌 ]−1[𝐼] (53)

where the matrix [𝑌 ] includes the complex admittances of the circuit, while [�⃗� ] and [𝐼] are the voltage and current phasor vectors,
respectively. To solve the problem, the admittance matrix is inverted, thus providing the voltage values at every node of the electrical
circuit. Once the voltages have been determined, the remaining currents can be found. In this way, the analogy can be undone and
12

the velocities and forces in the mechanical system can be obtained.
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Fig. 6. 7-DOF electric circuit for the full car model.

Table 3
Complex-valued equivalents of passive electrical linear elements.
Time domain Phasor Domain

Element Symbol Admittance Impedance

Capacitor 𝐶 �⃗�𝐶 = 𝐶𝜔𝑗 �⃗�𝐶 = 1
�⃗�𝐶

Inductor 𝐿 �⃗�𝐿 = 1
�⃗�𝐿

�⃗�𝐿 = 𝐿𝜔𝑗

Resistor 𝑅 𝐺 𝑅 = 1
𝐺

Series 𝑅 + 𝐿 + 𝐶 𝑌 = 1
�⃗�

�⃗� = 𝑅 +𝑋𝑗

Parallel 𝑅∕∕𝐿∕∕𝐶 𝑌 = 𝐺 + 𝐵𝑗 �⃗� = 1
𝑌

13
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Fig. 7. Simulink model of the electric circuit analogue presented in Fig. 6.

4. Numerical results and validation

This section presents a validation of the electrical analogue of the linear 7-DOF full car model. The validation is done in such a
way that the results of the mechanical model, obtained using regular linear mechanical system techniques, are compared to those
of the electrical circuit drawn in Fig. 6, which are obtained using the well-known software Simulink by Matlab′ . The mechanical
properties of the three-dimensional full car model are collected in Table 4, which are mainly taken from Ref. [65].

The type of analysis carried out is a harmonic steady-state vibration analysis in which the car model is assumed to travel with
a forward speed 𝑣 = 100 km/h on an uneven road having a harmonic profile characterized by a wavelength 𝜆 = 2 m and amplitude
𝑌 = 5 cm. In addition, the right wheels are assumed to experience harmonic unevenness with a phase shift, 𝑡𝜙 = 0.0540 s with
respect to the left wheels. Thus, the time-dependent functions 𝑦𝑑𝑖(𝑡), 𝑦𝑑𝑑 (𝑡), 𝑦𝑡𝑖(𝑡) and 𝑦𝑡𝑑 (𝑡) read as follows:

𝑦𝑑𝑖(𝑡) = 𝑌 sin (𝜔𝑡) (54)

𝑦𝑑𝑑 (𝑡) = 𝑌 sin
(

𝜔
(

𝑡 − 𝑡𝜙
))

(55)

𝑦𝑡𝑖(𝑡) = 𝑌 sin
(

𝜔𝑡 − 𝜙𝐿
)

(56)

𝑦𝑡𝑑 (𝑡) = 𝑌 sin
(

𝜔
(

𝑡 − 𝑡𝜙
)

− 𝜙𝐿
)

(57)

where 𝜔 = 2𝜋𝑣
𝜆

and 𝜙𝐿 = 2𝜋𝐿
𝜆

.
The reason for using a harmonic excitation for validation purposes in this work is twofold. On the one hand, the harmonic

excitation can be seen as an elementary excitation that is used to construct more complex excitations by using the discrete Fourier
transform in linear systems, since the superposition principle is applicable. Therefore, the electrical analogue can also be used with
more complex excitations, i.e. with random excitations. On the other hand, the harmonic excitation is sufficient to obtain results
that allow the conclusion that the electrical circuit and the mechanical system are, in fact, analogous to each other.

Eq. (15) can be rewritten without the constant gravitational force term, 𝒇 𝑔 , by defining a coordinate transformation, 𝒙 =
𝒙1 + 𝒌−1𝒇 𝑔 , that translate the origin of the coordinate system to a vertical equilibrium position. This way, the equations of motion
can be written more simply as

𝑴�̈�1 +𝑫�̇�1 +𝑲𝒙1 = 𝒇 𝑦(𝑡) (58)

where

𝒙1 =
(

𝑥1 𝑥𝑏𝑖1 𝑥𝑏𝑑1 𝑥𝑑𝑖1 𝑥𝑑𝑑1 𝑥𝑡𝑖1 𝑥𝑡𝑑1
)𝑇 (59)

As is usual in harmonic analysis of linear systems, the sinusoidal functions in Eqs. (54)–(57) can be substituted by complex
exponentials with frequency 𝜔. This way, the term 𝒇 𝑦(𝑡) can be written as

𝒇 (𝑡) = 𝒇 ei𝜔𝑡, 𝒇 ∈ C𝑛 (60)
14

𝑦 0 0
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Table 4
Mechanical properties of the car model.
Parameter Symbol Value Units

mass of the main frame 𝑚 1500 kg
pitch moment of inertia 𝐼𝐺𝛽 2160 kgm2

roll moment of inertia 𝐼𝐺𝛼 1500 kgm2

unsprung mass of the left front wheel 𝑚𝑠𝑠𝑑𝑖 70 kg
unsprung mass of the right front wheel 𝑚𝑠𝑠𝑑𝑑 70 kg
unsprung mass of the left rear wheel 𝑚𝑠𝑠𝑡𝑖 60 kg
unsprung mass of the right rear wheel 𝑚𝑠𝑠𝑡𝑑 60 kg

stiffness of the left front suspension 𝑘𝑠𝑑𝑖 35000 N/m
stiffness of the right front suspension 𝑘𝑠𝑑𝑑 35000 N/m
stiffness of the left rear suspension 𝑘𝑠𝑡𝑖 38000 N/m
stiffness of the right rear suspension 𝑘𝑠𝑡𝑑 38000 N/m
stiffness of the torsion bar 𝑘𝑡𝑏 20000 N/m

damping of the left front suspension 𝑑𝑠𝑑𝑖 1000 Ns/m
damping of the right front suspension 𝑑𝑠𝑑𝑑 1000 Ns/m
damping of the left rear suspension 𝑑𝑠𝑡𝑖 1100 Ns/m
damping of the right rear suspension 𝑑𝑠𝑡𝑑 1100 Ns/m
damping of the torsion bar 𝑑𝑡𝑏 100 Ns/m

stiffness of the left front wheel 𝑘𝑟𝑑𝑖 190000 N/m
stiffness of the right front wheel 𝑘𝑟𝑑𝑑 190000 N/m
stiffness of the left rear wheel 𝑘𝑟𝑡𝑖 190000 N/m
stiffness of the right rear wheel 𝑘𝑟𝑡𝑑 190000 N/m

damping of the left front wheel 𝑑𝑟𝑑𝑖 50 Ns/m
damping of the right front wheel 𝑑𝑟𝑑𝑑 50 Ns/m
damping of the left rear wheel 𝑑𝑟𝑡𝑖 50 Ns/m
damping of the right rear wheel 𝑑𝑟𝑡𝑑 50 Ns/m

centre of mass to front axle distance 𝑙𝑑 1.2 m
centre of mass to rear axle distance 𝑙𝑡 1.59 m
left half track width 𝑤𝑖 0.78 m
right half track width 𝑤𝑑 0.78 m
track width 𝑊 = 𝑤𝑖 +𝑤𝑑 1.56 m
wheelbase 𝐿 = 𝑙𝑑 + 𝑙𝑡 2.79 m

Fig. 8. Vertical velocity of the vehicle’s centre of mass, �̇�1(𝑡), calculated by solving the mechanical model as per Eq. (61) and by measuring the voltage of node
of the electric analogue, 𝑢1(𝑡), shown in Fig. 6.

hen, the steady-state response can be obtained as the imaginary part of the following complex vector

𝒙1(𝑡) = 𝑯 (𝜔)𝒇 0ei𝜔𝑡, (61)

where 𝑯 (𝜔) =
(

−𝜔2𝑴 + i𝜔𝑪 +𝑲
)−1.

The result for the vertical velocity of the vehicle’s centre of mass (CoM) �̇�1(𝑡) is shown in Fig. 8. It has been computed by solving
he mechanical model as per Eq. (61). This figure also plots the same velocity computed by measuring the voltage of node 1 𝑢1(𝑡)
n the electric analogue shown in Fig. 6. The Simulink model is shown in Fig. 7. The RMS values of velocity �̇�1(𝑡) and voltage 𝑢1(𝑡)
15

re also shown in Fig. 8. It can be seen that both, velocity profiles and RMS values, match perfectly.
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5. Discussion

The methodology described makes use of well-known methods from both the mechanical and electrical engineering fields,
aking the application of the proposed method more simple than the existing rules for obtaining electrical analogues of linear
echanical systems on an element-by-element basis. In essence, the method consists of obtaining the dynamic equations of the
echanical system in matrix form, translating these equations to the electrical domain, and finally getting the electrical circuit

y direct inspection of the matrices. To the author’s knowledge, this procedure has not been previously found in the literature. In
ddition, the method is equally applicable to both force–current and force–voltage analogies. The selection of one method or the
ther will result in two different but dual circuits. The proposed methodology has the advantage of being applicable to complex
echanical systems, with inertial, elastic, and damping coupling. It can also deal with translational, rotational, or a combination of

ranslational and rotational coordinates.
To prove the feasibility of the methodology, an electrical analogue of a 3D 7-DOF linear full car model is obtained and validated

hrough numerical results. Since in the existing literature only electrical analogues of quarter car and half car models have been
eported, the electrical analogue of a full car is a main contribution of this work, which is expected to be useful in future studies
elated to active suspension and energy harvesters. From the complexity of the resulting analog electric circuit of the full car model
nd, especially, from the values of the electrical elements reported in the appendices of this paper, it is easy to understand the great
ifficulty of arriving at this solution by applying the traditional rules.

The methodology proposed in this paper is different to that of Bond Graph method since it aims at finding an electrical analogue
f a mechanical system rather than combining the dynamic equations of the mechanical and the electrical components. This may be
seful for researchers working with electrical analogues of mechanical systems in the electrical domain. The proposed methodology
oes not grow in complexity when the topology of the mechanical system becomes more involved as it works directly on the system
atrices, which can be large or small but will always be two-dimensional array data structures. The use of electrical analogues leads

o a direct and straightforward solution for the dynamics of the whole electromechanical problem in the electrical domain, where
t is sufficient to apply the well-known techniques of circuit analysis without the need for additional new knowledge. Furthermore,
here is no need to deal neither with causalities issues nor exponential growth in the complexity of the system topology while
eeping simplicity at a minimum.

In addition to the described benefits of the proposed methodology, another advantage is its feasibility to be implemented in
pecific software for the construction of electromechanical analogues, which would enhance the use of analogues in the different
ields.

. Summary and conclusions

This work has presented a general and systematic methodology to obtain electrical analogues of any linear model of a mechanical
ystem. The method can be described in a few simple steps.

The model’s equations of motion are first determined and written in matrix form in the mechanical domain. This stage can be
arried out using any of the Classical Mechanics methods already available. The coordinates of the model must be homogeneous,
hich means that they can only be of one type – translational or rotational – but not both. This also implies homogeneity of the
ifferential equations, which can be either force or moment equations. If the original set of coordinates chosen when modelling the
ystem includes translational or rotational coordinates, they can easily be homogenized using length scale factors. The mechanical
atrices of the dynamic model are used to identify the electrical matrices in the second stage, exploiting the analogy between the
echanical and electrical domains. Finally, in the third phase, the analogue circuit is developed in the electrical domain using
ell-known methods in network analysis like node-voltage or mesh-current, depending on the analogy used. Once the method has
een described, a simple 2-DOF mechanical model is used to illustrate the application of the proposed methodology in detail.

To demonstrate the general applicability of the method, the electric analogue of a linear 7-DOF full car model is obtained, which
o the best of the authors’ knowledge was never published before. The electric analogue has been validated through a comparison
f the results from simulations of both the mechanical and the electrical models.

The main conclusions of this work are as follows:

(i) A complete and systematic methodology has been presented to obtain the electrical analogue of linear mechanical systems
of any level of complexity modelled by rigid bodies, springs and dampers.

(ii) The proposed methodology is straightforward and simple, and can be used in mechanical models that include a combination
of translational and rotational coordinates.

(iii) The electrical analogue of a 3D 7-DOF linear model of a complete car has been developed. This model is one of the main
contributions of this work and has exemplified the potential of the method in its application to complex mechanical systems.

The framework presented here is expected to help mechatronic engineers to analyse and design newly optimized and improved
lectromechanical components for vehicles and other mechatronic systems.

As a future research direction, the automatic generation of the electrical analogue of any arbitrary mechanical system from its
nertia, damping and stiffness matrices based on the presented methodology is envisaged.
16
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ppendix A. Mechanical matrices of the full car for the set of translational and rotational coordinates

This appendix details the values of the mass, damping and stiffness matrices of the full car obtained for the set of generalized
oordinates (see Section 3.1.2):

𝒙 =
(

𝑥 𝑥𝛼 𝑥𝛽 𝑥𝑑𝑖 𝑥𝑑𝑑 𝑥𝑡𝑖 𝑥𝑡𝑑
)𝑇 (A.1)

The mass matrix results in a diagonal matrix:

𝑴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑚11 0 0 0 0 0 0
0 𝑚22 0 0 0 0 0
0 0 𝑚33 0 0 0 0
0 0 0 𝑚44 0 0 0
0 0 0 0 𝑚55 0 0
0 0 0 0 0 𝑚66 0
0 0 0 0 0 0 𝑚77

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A.2)

with

𝑚11 = 𝑚 (A.3)

𝑚22 =
𝐼𝐺𝛼

𝑊 2
(A.4)

𝑚33 =
𝐼𝐺𝛽

𝐿2
(A.5)

𝑚44 = 𝑚𝑠𝑠𝑑𝑖 (A.6)

𝑚55 = 𝑚𝑠𝑠𝑑𝑑 (A.7)

𝑚66 = 𝑚𝑠𝑠𝑡𝑖 (A.8)

𝑚77 = 𝑚𝑠𝑠𝑡𝑑 (A.9)

The symmetric damping matrix is as follows:

𝑫 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑑11 𝑑12 𝑑13 𝑑14 𝑑15 𝑑16 𝑑17
𝑑21 𝑑22 𝑑23 𝑑24 𝑑25 𝑑26 𝑑27
𝑑31 𝑑32 𝑑33 𝑑34 𝑑35 𝑑36 𝑑37
𝑑41 𝑑42 𝑑43 𝑑44 0 0 0
𝑑51 𝑑52 𝑑53 0 𝑑55 0 0
𝑑61 𝑑62 𝑑63 0 0 𝑑66 𝑑67
𝑑71 𝑑72 𝑑73 0 0 𝑑76 𝑑77

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A.10)

with

𝑑11 = 𝑑𝑠𝑑𝑑 + 𝑑𝑠𝑑𝑖 + 𝑑𝑠𝑡𝑑 + 𝑑𝑠𝑡𝑖 (A.11)

𝑑12 =
𝑑𝑠𝑑𝑖 𝑤𝑖
𝑊

−
𝑑𝑠𝑡𝑑 𝑤𝑑
𝑊

−
𝑑𝑠𝑑𝑑 𝑤𝑑

𝑊
+

𝑑𝑠𝑡𝑖 𝑤𝑖
𝑊

(A.12)

𝑑13 =
𝑑𝑠𝑡𝑑 𝑙𝑡
𝐿

−
𝑑𝑠𝑑𝑖 𝑙𝑑
𝐿

−
𝑑𝑠𝑑𝑑 𝑙𝑑

𝐿
+

𝑑𝑠𝑡𝑖 𝑙𝑡
𝐿

(A.13)

𝑑14 = −𝑑𝑠𝑑𝑖 (A.14)

𝑑15 = −𝑑𝑠𝑑𝑑 (A.15)

𝑑16 = −𝑑𝑠𝑡𝑖 (A.16)

𝑑17 = −𝑑𝑠𝑡𝑑 (A.17)

𝑑 =
𝑑𝑠𝑑𝑑 𝑤𝑑

2
+

𝑑𝑠𝑡𝑑 𝑤𝑑
2
+

𝑑𝑠𝑑𝑖 𝑤𝑖
2
+

𝑑𝑠𝑡𝑖 𝑤𝑖
2

(A.18)
17

22 𝑊 2 𝑊 2 𝑊 2 𝑊 2
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𝑑23 =
𝑑𝑠𝑑𝑑 𝑙𝑑 𝑤𝑑

𝐿𝑊
−

𝑑𝑠𝑑𝑖 𝑙𝑑 𝑤𝑖
𝐿𝑊

−
𝑑𝑠𝑡𝑑 𝑙𝑡 𝑤𝑑
𝐿𝑊

+
𝑑𝑠𝑡𝑖 𝑙𝑡 𝑤𝑖
𝐿𝑊

(A.19)

𝑑24 = −
𝑑𝑠𝑑𝑖 𝑤𝑖
𝑊

(A.20)

𝑑25 =
𝑑𝑠𝑑𝑑 𝑤𝑑

𝑊
(A.21)

𝑑26 = −
𝑑𝑠𝑡𝑖 𝑤𝑖
𝑊

(A.22)

𝑑27 =
𝑑𝑠𝑡𝑑 𝑤𝑑
𝑊

(A.23)

𝑑33 =
𝑑𝑠𝑑𝑑 𝑙𝑑2

𝐿2
+

𝑑𝑠𝑑𝑖 𝑙𝑑2

𝐿2
+

𝑑𝑠𝑡𝑑 𝑙𝑡2

𝐿2
+

𝑑𝑠𝑡𝑖 𝑙𝑡2

𝐿2
(A.24)

𝑑34 =
𝑑𝑠𝑑𝑖 𝑙𝑑
𝐿

(A.25)

𝑑35 =
𝑑𝑠𝑑𝑑 𝑙𝑑

𝐿
(A.26)

𝑑36 = −
𝑑𝑠𝑡𝑖 𝑙𝑡
𝐿

(A.27)

𝑑37 = −
𝑑𝑠𝑡𝑑 𝑙𝑡
𝐿

(A.28)

𝑑44 = 𝑑𝑟𝑑𝑖 + 𝑑𝑠𝑑𝑖 (A.29)

𝑑55 = 𝑑𝑟𝑑𝑑 + 𝑑𝑠𝑑𝑑 (A.30)

𝑑66 = 𝑑𝑟𝑡𝑖 + 𝑑𝑠𝑡𝑖 + 𝑑𝑡𝑏 (A.31)

𝑑67 = −𝑑𝑡𝑏 (A.32)

𝑑77 = 𝑑𝑟𝑡𝑑 + 𝑑𝑠𝑡𝑑 + 𝑑𝑡𝑏 (A.33)

Finally, the stiffness matrix is as follows:

𝑲 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑘11 𝑘12 𝑘13 𝑘14 𝑘15 𝑘16 𝑘17
𝑘21 𝑘22 𝑘23 𝑘24 𝑘25 𝑘26 𝑘27
𝑘31 𝑘32 𝑘33 𝑘34 𝑘35 𝑘36 𝑘37
𝑘41 𝑘42 𝑘43 𝑘44 0 0 0
𝑘51 𝑘52 𝑘53 0 𝑘55 0 0
𝑘61 𝑘62 𝑘63 0 0 𝑘66 𝑘67
𝑘71 𝑘72 𝑘73 0 0 𝑘76 𝑘77

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A.34)

with

𝑘11 = 𝑘𝑠𝑑𝑑 + 𝑘𝑠𝑑𝑖 + 𝑘𝑠𝑡𝑑 + 𝑘𝑠𝑡𝑖 (A.35)

𝑘12 =
𝑘𝑠𝑑𝑖 𝑤𝑖
𝑊

−
𝑘𝑠𝑡𝑑 𝑤𝑑
𝑊

−
𝑘𝑠𝑑𝑑 𝑤𝑑

𝑊
+

𝑘𝑠𝑡𝑖 𝑤𝑖
𝑊

(A.36)

𝑘13 =
𝑘𝑠𝑡𝑑 𝑙𝑡
𝐿

−
𝑘𝑠𝑑𝑖 𝑙𝑑
𝐿

−
𝑘𝑠𝑑𝑑 𝑙𝑑

𝐿
+

𝑘𝑠𝑡𝑖 𝑙𝑡
𝐿

(A.37)

𝑘14 = −𝑘𝑠𝑑𝑖 (A.38)

𝑘15 = −𝑘𝑠𝑑𝑑 (A.39)

𝑘16 = −𝑘𝑠𝑡𝑖 (A.40)

𝑘17 = −𝑘𝑠𝑡𝑑 (A.41)

𝑘22 =
𝑘𝑠𝑑𝑑 𝑤𝑑

2

𝑊 2
+

𝑘𝑠𝑡𝑑 𝑤𝑑
2

𝑊 2
+

𝑘𝑠𝑑𝑖 𝑤𝑖
2

𝑊 2
+

𝑘𝑠𝑡𝑖 𝑤𝑖
2

𝑊 2
(A.42)

𝑘23 =
𝑘𝑠𝑑𝑑 𝑙𝑑 𝑤𝑑

𝐿𝑊
−

𝑘𝑠𝑑𝑖 𝑙𝑑 𝑤𝑖
𝐿𝑊

−
𝑘𝑠𝑡𝑑 𝑙𝑡 𝑤𝑑
𝐿𝑊

+
𝑘𝑠𝑡𝑖 𝑙𝑡 𝑤𝑖
𝐿𝑊

(A.43)

𝑘24 = −
𝑘𝑠𝑑𝑖 𝑤𝑖
𝑊

(A.44)

𝑘25 =
𝑘𝑠𝑑𝑑 𝑤𝑑

𝑊
(A.45)

𝑘26 = −
𝑘𝑠𝑡𝑖 𝑤𝑖
𝑊

(A.46)

𝑘27 =
𝑘𝑠𝑡𝑑 𝑤𝑑
𝑊

(A.47)

𝑘 =
𝑘𝑠𝑑𝑑 𝑙𝑑2 +

𝑘𝑠𝑑𝑖 𝑙𝑑2 +
𝑘𝑠𝑡𝑑 𝑙𝑡2 +

𝑘𝑠𝑡𝑖 𝑙𝑡2 (A.48)
18

33 𝐿2 𝐿2 𝐿2 𝐿2
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A
a

f

𝑘34 =
𝑘𝑠𝑑𝑖 𝑙𝑑
𝐿

(A.49)

𝑘35 =
𝑘𝑠𝑑𝑑 𝑙𝑑

𝐿
(A.50)

𝑘36 = −
𝑘𝑠𝑡𝑖 𝑙𝑡
𝐿

(A.51)

𝑘37 = −
𝑘𝑠𝑡𝑑 𝑙𝑡
𝐿

(A.52)

𝑘44 = 𝑘𝑟𝑑𝑖 + 𝑘𝑠𝑑𝑖 (A.53)

𝑘55 = 𝑘𝑟𝑑𝑑 + 𝑘𝑠𝑑𝑑 (A.54)

𝑘66 = 𝑘𝑟𝑡𝑖 + 𝑘𝑠𝑡𝑖 + 𝑘𝑡𝑏 (A.55)

𝑘67 = −𝑘𝑡𝑏 (A.56)

𝑘77 = 𝑘𝑟𝑡𝑑 + 𝑘𝑠𝑡𝑑 + 𝑘𝑡𝑏 (A.57)

ppendix B. Electrical elements obtained from the node-voltage method for the full car model and the set of translational
nd rotational coordinates

This appendix details the values of the electrical elements connected to the ground obtained applying the node-voltage method
rom the full car model for the set of translational and rotational coordinates (see Section 3.2.2).

𝐶1 = 𝑚

𝐶2 =
𝐼𝐺𝛼

𝑊 2

𝐶3 =
𝐼𝐺𝛽

𝐿2

𝐶4 = 𝑚𝑠𝑠𝑑𝑖

𝐶5 = 𝑚𝑠𝑠𝑑𝑑

𝐶6 = 𝑚𝑠𝑠𝑡𝑖

𝐶7 = 𝑚𝑠𝑠𝑡𝑑

𝐺1 =

(

𝑑𝑠𝑡𝑑 − 𝑑𝑠𝑡𝑖
)

𝑙𝑡 −
(

𝑑𝑠𝑑𝑑 + 𝑑𝑠𝑑𝑖
)

𝑙𝑑
𝐿

+

(

𝑑𝑠𝑑𝑖 − 𝑑𝑠𝑡𝑖
)

𝑤𝑖 −
(

𝑑𝑠𝑑𝑑 + 𝑑𝑠𝑡𝑑
)

𝑤𝑑

𝑊

𝐺2 =

(

𝑑𝑠𝑑𝑑 + 𝑑𝑠𝑡𝑑
)

𝑤𝑑
2 +

(

𝑑𝑠𝑑𝑖 + 𝑑𝑠𝑡𝑖
)

𝑤𝑖
2

𝑊 2
+

𝑑𝑠𝑑𝑑 𝑙𝑑𝑤𝑑 − 𝑑𝑠𝑑𝑖𝑙𝑑𝑤𝑖 − 𝑑𝑠𝑡𝑑 𝑙𝑡𝑤𝑑 + 𝑑𝑠𝑡𝑖𝑙𝑡𝑤𝑖
𝐿𝑊

𝐺3 =

(

𝑑𝑠𝑑𝑑 + 𝑑𝑠𝑑𝑖
)

𝑙𝑑2 +
(

𝑑𝑠𝑡𝑑 + 𝑑𝑠𝑡𝑖
)

𝑙𝑡2

𝐿2
+

𝑑𝑠𝑑𝑑 𝑙𝑑𝑤𝑑 − 𝑑𝑠𝑑𝑖𝑙𝑑𝑤𝑖 − 𝑑𝑠𝑡𝑑 𝑙𝑡𝑤𝑑 + 𝑑𝑠𝑡𝑖𝑙𝑡𝑤𝑖
𝐿𝑊

𝐺4 = 𝑑𝑟𝑑𝑖 +
𝑑𝑠𝑑𝑖𝑙𝑑
𝐿

−
𝑑𝑠𝑑𝑖𝑤𝑖
𝑊

𝐺5 = 𝑑𝑟𝑑𝑑 +
𝑑𝑠𝑑𝑑 𝑙𝑑
𝐿

+
𝑑𝑠𝑑𝑑𝑤𝑑
𝑊

𝐺6 = 𝑑𝑟𝑡𝑖 −
𝑑𝑠𝑡𝑖𝑙𝑡
𝐿

−
𝑑𝑠𝑡𝑖𝑤𝑖
𝑊

𝐺7 = 𝑑𝑟𝑡𝑑 −
𝑑𝑠𝑡𝑑 𝑙𝑡
𝐿

+
𝑑𝑠𝑡𝑑𝑤𝑑
𝑊

𝐵1 =

(

𝑘𝑠𝑡𝑑 − 𝑘𝑠𝑡𝑖
)

𝑙𝑡 −
(

𝑘𝑠𝑑𝑑 + 𝑘𝑠𝑑𝑖
)

𝑙𝑑
𝐿

+

(

𝑘𝑠𝑑𝑖 − 𝑘𝑠𝑡𝑖
)

𝑤𝑖 −
(

𝑘𝑠𝑑𝑑 + 𝑘𝑠𝑡𝑑
)

𝑤𝑑

𝑊

𝐵2 =

(

𝑘𝑠𝑑𝑑 + 𝑘𝑠𝑡𝑑
)

𝑤𝑑
2 +

(

𝑘𝑠𝑑𝑖 + 𝑘𝑠𝑡𝑖
)

𝑤𝑖
2

𝑊 2
+

𝑘𝑠𝑑𝑑 𝑙𝑑𝑤𝑑 − 𝑘𝑠𝑑𝑖𝑙𝑑𝑤𝑖 − 𝑘𝑠𝑡𝑑 𝑙𝑡𝑤𝑑 + 𝑘𝑠𝑡𝑖𝑙𝑡𝑤𝑖
𝐿𝑊

𝐵3 =

(

𝑘𝑠𝑑𝑑 + 𝑘𝑠𝑑𝑖
)

𝑙𝑑2 +
(

𝑘𝑠𝑡𝑑 + 𝑘𝑠𝑡𝑖
)

𝑙𝑡2

𝐿2
+

𝑘𝑠𝑑𝑑 𝑙𝑑𝑤𝑑 − 𝑘𝑠𝑑𝑖𝑙𝑑𝑤𝑖 − 𝑘𝑠𝑡𝑑 𝑙𝑡𝑤𝑑 + 𝑘𝑠𝑡𝑖𝑙𝑡𝑤𝑖
𝐿𝑊

𝐵4 = 𝑘𝑟𝑑𝑖 +
𝑘𝑠𝑑𝑖𝑙𝑑
𝐿

−
𝑘𝑠𝑑𝑖𝑤𝑖
𝑊

𝐵5 = 𝑘𝑟𝑑𝑑 +
𝑘𝑠𝑑𝑑 𝑙𝑑
𝐿

+
𝑘𝑠𝑑𝑑𝑤𝑑
𝑊

𝐵6 = 𝑘𝑟𝑡𝑖 −
𝑘𝑠𝑡𝑖𝑙𝑡
𝐿

−
𝑘𝑠𝑡𝑖𝑤𝑖
𝑊

𝐵7 = 𝑘𝑟𝑡𝑑 −
𝑘𝑠𝑡𝑑 𝑙𝑡
𝐿

+
𝑘𝑠𝑡𝑑𝑤𝑑
𝑊
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