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Quantum reinforcement learning in the presence of thermal dissipation
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A study of the effect of thermal dissipation on quantum reinforcement learning is performed. For this purpose,
a nondissipative quantum reinforcement learning protocol is adapted to the presence of thermal dissipation.
Analytical calculations as well as numerical simulations are carried out, obtaining evidence that dissipation does
not significantly degrade the performance of the quantum reinforcement learning protocol for sufficiently low
temperatures, in some cases even being beneficial. Quantum reinforcement learning under realistic experimental
conditions of thermal dissipation opens an avenue for the realization of quantum agents to be able to interact with
a changing environment, as well as adapt to it, with many plausible applications inside quantum technologies
and machine learning.
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I. INTRODUCTION

Quantum machine learning [1,2] aims at employing quan-
tum technologies to achieve machine learning tasks more
efficiently. Diverse quantum algorithms for machine learn-
ing have been proposed, including solvers for linear systems
of equations [3], quantum principal component analysis [4],
quantum support vector machines [5], quantum annealers [6],
quantum variational eigensolvers [7], quantum reinforcement
learning [8–15], quantum generative adversarial networks
[16], and quantum kernels [17]. Experimental implementa-
tions showing, in some instances, speedups with respect to
classical or other kinds of quantum algorithms have been car-
ried out on noisy intermediate-scale quantum devices [16–21].
Many of these works study the advantages of quantum tech-
nologies over classical machine learning. However, the effect
of thermal dissipation on quantum machine learning has
not yet been analyzed in depth, although performing a real
quantum experiment always involves working at nonzero
temperature and therefore a certain amount of such dissipa-
tion. Some preliminary results on this issue can be found in
Refs. [22,23].

In the field of quantum machine learning, as in the classical
case, algorithms can be classified into three main groups:
Supervised [24–32], unsupervised [33,34], and reinforcement
quantum algorithms [8–15]. In this paper we focus on the third
group, more specifically, on the effects of thermal dissipation
on this type of algorithm. Reinforcement learning algorithms
consist of successive interactions between a known agent and
an unknown environment alternating with a reward function
that improves a specific task performed by such an agent
[35,36]. The goal is to learn from the environment. The infor-
mation extraction from the environment and the channel used
to communicate the information to the agent and the action of
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the agent are established by the policy. The reward function
defines the criterion used to punish or reward certain actions
of the agent in order to improve its performance. Each reward
reinforces the current strategy, while the punishment forces an
adaptation of the strategy.

To study the effect of dissipation on quantum reinforce-
ment learning, in this paper we adapt the nondissipative
algorithm proposed in Ref. [15] to the presence of thermal dis-
sipation. For this purpose, the environment will be considered
to be an unknown quantum system whose dynamics, besides
including a unitary part associated with a given Hamiltonian
as in [15], also possesses a certain amount of thermal dissi-
pation. The goal is to extract information or learn from the
environment to obtain near-optimal knowledge of the eigen-
states of the Hamiltonian. The agent corresponds to a known
and manipulable quantum state that must conveniently adjust
to the dynamics of the environment in order to approach the
unknown eigenstate. It should be noted that the aim of this
work is not to analyze the scalability or speedup of this type
of protocols, which has been discussed previously [15,18], but
to study the effect of thermal dissipation on it. For this reason,
and for the sake of clarity, we will focus on the simplest case
of a two-level quantum system.

The structure of the remainder of this paper is as follows.
In Sec. II the nondissipative protocol proposed in Ref. [15]
is adapted to the presence of thermal dissipation. Emphasis
is placed on the peculiarities associated with the presence of
such dissipation. In Sec. III we discuss the numerical im-
plementation of the protocol and illustrate our results with
numerical simulations. In Sec. IV we present a summary and
conclusions for the main findings of our work.

II. PROTOCOL DESCRIPTION

In the nondissipative protocol proposed in Ref. [15], the
agent A is considered to be a known manipulable quantum
system described by a state vector |φ〉. The environment E is
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modeled as a black box that interacts with A for a time τ . The
effect of this interaction on A is characterized by a unitary
transformation U ≡ e−iτH/h̄ applied to the state vector |φ〉,
where H is an unknown interaction Hamiltonian whose eigen-
vectors are to be computed. For simplicity, we will henceforth
restrict the analysis to the case of a single qubit with state basis
vectors {|0〉, |1〉} and unknown interaction Hamiltonian

H = h̄ω

2
(|+〉〈+| − |−〉〈−|), (1)

where ω is a positive constant with dimensions of frequency
and {|+〉, |−〉} are the eigenvectors to be computed.

Suppose now that, in addition to interacting with E , A is
also in contact with a thermal bath B at a finite temperature T .
We will also assume that the combined action of E and B on
A is described by a Lindblad master equation of the form [37]

ρ̇t = − i

h̄
[H, ρt ] +

∑
j=±

� j

(
σ̃

†
j ρt σ̃ j − 1

2
{σ̃ j σ̃

†
j , ρt }

)
, (2)

where ρt is the density operator representing the state of A at
time t , σ̃− = |−〉〈+| = σ̃

†
+ is a Lindblad operator that induces

dissipative decay from the excited state |+〉 to the ground state
|−〉, and �± = �0e±h̄ω/(2kBT )csch[h̄ω/(2kBT )]/2, with �0 the
decay rate from the excited state to the ground state at zero
temperature. The frequency ω in Eq. (1) must be redefined
to include the frequency shift caused by the presence of the
thermal bath. The first term on the right-hand side in Eq. (2)
describes the coherent evolution of the system, while the sec-
ond term gives rise to dissipation.

By solving Eq. (2), the density operator at an arbitrary time
τ can be expressed in terms of the initial density operator ρ0

in the form

ρτ = E (ρ0) ≡
3∑

j=0

UEjρ0E†
j U

†, (3)

where {E0, E1, E2, E3} are the Kraus operators for the
generalized amplitude damping channel [38]. The explicit
expressions for these operators are [38]

E0 = √
p+(|+〉〈+| +

√
1 − γ |−〉〈−|), (4)

E1 = √
p+γ σ̃+, (5)

E2 =
√

1 − p+(
√

1 − γ |+〉〈+| + |−〉〈−|), (6)

E3 =
√

(1 − p+)γ σ̃−, (7)

where p+ = e−h̄ω/(2kBT )sech[h̄ω/(2kBT )]/2 is the thermal
equilibrium probability of the excited state and γ = 1 − e−�τ ,
with � = �+ + �− = �0coth[h̄ω/(2kBT )]. Note that in the
absence of dissipation, i.e., for �0 = 0, the parameter γ

vanishes and therefore E0 = √
p+I , E2 = √

1 − p+I , and
E1 = E3 = 0, with I the identity operator. Thus, Eq. (3)
reduces to ρτ = Uρ0U †, which is the case considered in
Ref. [15] with ρ0 = |φ〉〈φ|.

Bearing in mind the above results, the protocol proposed
in Ref. [15] can be adapted to the dissipative case as detailed
below. The procedure involves very many iterations, so the
state of A in the kth iteration is denoted by |φ(k)〉, with k ∈
N. We assume that, in the first iteration, A is prepared in one

of the basis states, for instance, in the state |φ(1)〉 = |0〉. The
states |0〉 and |φ(k)〉 are related by

|φ(k)〉 = D(k)|0〉, (8)

where D(k) is a unitary operator constructed inductively, start-
ing with D(1) = I and building D(k+1) out of D(k) as follows.

(i) From the initial density operator ρ
(k)
0 = |φ(k)〉〈φ(k)|, we

let the system evolve according to the Lindblad equation (2)
for a time τ . We call ρ (k)

τ = E (ρ (k)
0 ) the density at the end of

that evolution obtained by Eq. (3).
(ii) We extract information from ρ (k)

τ by measuring the ob-
servable M (k) = D(k)|1〉〈1|D(k)†. In order to always measure
the same observable M (1) = |1〉〈1| for all iterations, first we
apply the unitary transformation D(k)†ρ (k)

τ D(k) and then we
measure M (1). After the measurement process, the state of A is
|m(k)〉, with m(k) the outcome of the measurement, which can
be 0 or 1 with probabilities

P(k)
0 = 〈0|D(k)†ρ (k)

τ D(k)|0〉 (9)

and P(k)
1 = 1 − P(k)

0 , respectively. Once the measure-
ment has been completed, the state |φ(k)〉 can be
reconstructed from |m(k)〉 by the unitary transformation
D(k)[(1 − m(k) )I + m(k)σx]|m(k)〉, with σx = |0〉〈1| + |1〉〈0|.

(iii) If the outcome of the measurement is m(k) = 1,
we generate three pseudorandom angles α(k)

x , α(k)
y , and

α(k)
z , uniformly distributed in the exploration interval

[−w(k)π,w(k)π ]. The width of this interval is controlled by
the exploration parameter w(k), which is computed induc-
tively, starting with w(1) = 1 (maximum width) and building
w(k+1) out of w(k) using the rule

w(k+1) = min{1, [(1 − m(k) )r + m(k) p]w(k)}, (10)

with r < 1 and p > 1 the reward and the punishment rates
[15], respectively. In other words, the value of the exploration
parameter is updated according to the outcome of the pre-
ceding measurement m(k) and the corresponding reward or
punishment. Every time the measurement outcome is m(k) = 1
a punishment is applied by increasing the value of the explo-
ration parameter from w(k) to w(k+1) = min(1, pw(k) ), thus
widening the exploration interval. The min function is re-
quired since the maximum value of the exploration parameter
is 1. Conversely, when the measurement outcome is m(k) = 0
a reward is granted by decreasing the value of the exploration
parameter from w(k) to w(k+1) = rw(k), thus narrowing the ex-
ploration interval. Once the three pseudorandom angles α(k)

x ,
α(k)

y , and α(k)
z have been calculated, they are used to implement

the pseudorandom rotation

R(k) = e−iα(k)
y σ (k)

y /2e−iα(k)
z σ (k)

z /2e−iα(k)
x σ (k)

x /2, (11)

where the operators σ (k)
x , σ (k)

y , and σ (k)
z are related to the Pauli

operators σx, σy = i(|1〉〈0| − |0〉〈1|), and σz = |0〉〈0| − |1〉〈1|
by the unitary transformation σ (k)

α = D(k)σαD(k)†, with α = x,
y, and z.

(iv) Finally, we construct D(k+1) from D(k) as

D(k+1) = [(1 − m(k) )I + m(k)R(k)]D(k). (12)

Therefore, the trade-off between exploration and exploitation,
which is a characteristic of reinforcement learning [35], is
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regulated using the measurement outcome m(k). If the mea-
surement outcome is m(k) = 1, the agent decides to explore
and modifies its state from |φ(k)〉 to |φ(k+1)〉 = R(k)|φ(k)〉. In
contrast, if the measurement outcome is m(k) = 0, the agent
decides to exploit and keeps its state invariant, i.e., |φ(k+1)〉 =
|φ(k)〉.

Since, according to Eq. (11), R(k) is related to the pseudo-
random rotation

R̆(k) = e−iα(k)
y σy/2e−iα(k)

z σz/2e−iα(k)
x σx/2 (13)

by the unitary transformation R(k) = D(k)R̆(k)D(k)†, Eq. (12)
can also be expressed in the form

D(k+1) = D(k)[(1 − m(k) )I + m(k)R̆(k)]. (14)

The recursive relations (12) and (14) can easily be solved to
yield

D(k+1) =
1∏

j=k

[(1 − m( j) )I + m( j)R( j)] (15)

and

D(k+1) =
k∏

j=1

[(1 − m( j) )I + m( j)R̆( j)], (16)

respectively, where we use the ordered product notation∏1
j=k A j = AkAk−1 · · · A1 and

∏k
j=1 Aj = A1A2 · · · Ak .

The dissipative protocol just described, as well as the
nondissipative protocol analyzed in [15], can be related to a
Markov decision process (MDP) [39,40], as in the standard
reinforcement learning setup. The state space of this MDP is
represented by the set of all possible quantum states |φ〉 in
which the agent can be found. The action space is the set of all
rotations R, including the identity I , acting on these quantum
states. Since the actions or rotations act deterministically on
the agent states, the MDP is deterministic [36] and conse-
quently its transition model can be described in terms of a
transition function rather than a transition probability. Specif-
ically, the transition function is T (|φ〉, R) = R|φ〉, i.e., as a
result of the action R applied on state |φ〉, the state changes
to |φ′〉 = R|φ〉. Finally, the reward function of the MDP is
described by the function R(|φ〉, R) = R(R) that takes the
value r if R = I and p if R �= I . Given the functions T and
R, it is sufficient to know the current state |φ〉 and the current
action R to determine the next state |φ′〉 and the corresponding
reward, thus fulfilling the Markov property. Note, however,
that the decision rule (iv) that determines which action to
select, given the agent state at step k, is randomized and
history dependent [39,40]. Its randomness stems both from
the intrinsically random nature of the measurement outcomes
m(k) and from the dependence of the rotations R(k) on the pseu-
dorandom angles α(k)

x , α(k)
y , and α(k)

z . Its history dependence
is due to the fact that, as described in (iii), to generate these
pseudorandom angles, the value of the exploration parameter
w(k) must first be determined, which implies solving the re-
currence relation in Eq. (10) and thus knowing all the previous
history.

III. NUMERICAL RESULTS

We have carried out numerical simulations implementing
the protocol presented in the preceding section for a Hamilto-
nian of the form

H = h̄ω

2
σx, (17)

which corresponds to taking |±〉 = (|0〉 ± |1〉)/
√

2 in Eq. (1).
To deal with dimensionless quantities, we introduce the
dimensionless parameters τ̃ = ωτ , �̃0 = �0/ω, and T̃ =
kBT/(h̄ω). To simulate numerically the measurement process
appearing in item (ii) of Sec. II, we first calculate the prob-
ability P(k)

0 of obtaining m(k) = 0 using Eq. (9). Then we
draw a pseudorandom number ξ (k) uniformly distributed in the
interval [0, 1]. If ξ (k) � P(k)

0 , the outcome of the measurement
is m(k) = 0, whereas if ξ (k) > P(k)

0 the result will be m(k) = 1.
In order to assess the accuracy of the protocol, we calculate

the fidelity between the state |φ(k)〉 and the closest eigenvector
of H as a function of the number of iterations k. Since it is
not known a priori whether this eigenvector is |+〉 or |−〉, we
consider the greater of the two values, i.e.,

f (k) = max(|〈+|φ(k)〉|, |〈−|φ(k)〉|). (18)

The closer the value of f (k) is to 1 as k increases, the more
accurate the computation of the corresponding eigenvector
will be. In addition, at each iteration, the convergence of
the protocol is quantified by the exploration parameter w(k)

defined in item (iii) of Sec. II. The protocol is considered to
converge if w(k) approaches zero as k increases. Moreover,
the faster it approaches zero, the faster the convergence of the
protocol is.

In the numerical simulations presented here, we repeat the
protocol a large number N of realizations. Then, for each
value of k, the mean fidelity

F (k) = 1

N

N∑
j=1

f (k)
j (19)

and the mean exploration parameter

W (k) = 1

N

N∑
j=1

w
(k)
j (20)

are obtained by averaging over the N realizations, where the
subscript j refers to the jth realization of the protocol. The
number of realizations considered in this paper is N = 1000.
In Fig. 1 we plot the mean fidelity F (k) [Figs. 1(a) and 1(b)]
and the mean exploration parameter W (k) [Figs. 1(c) and 1(d)]
versus the number of iterations k. We consider two different
states for the first iteration, namely, |φ(1)〉 = (

√
3|0〉 + |1〉)/2

in Figs. 1(a) and 1(c) and |φ(1)〉 = (2
√

2|0〉 + |1〉)/3 in
Figs. 1(b) and 1(d). With different types of lines we depict
different values of the reward parameter r. When r is modi-
fied, the value of the punishment parameter p is also varied
according to the relation p = 2/r. The parameters associated
with thermal dissipation, i.e., the dimensionless decay rate at
zero temperature and the dimensionless temperature, are set at
�̃0 = 0.5 and T̃ = 0.3, respectively. As can be seen, the values
of the reward and punishment parameters affect the accuracy
and convergence of the protocol. The asymptotic values of
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FIG. 1. Dependence of (a) and (b) the mean fidelity F (k) and
(c) and (d) the mean exploration parameter W (k) on the number of
iterations k for different values of the reward parameter r. The state in
the first iteration is (a) and (c) |φ (1)〉 = (

√
3|0〉 + |1〉)/2 and (b) and

(d) |φ (1)〉 = (2
√

2|0〉 + |1〉)/3. The remaining parameter values are
�̃0 = 0.5, T̃ = 0.3, τ̃ = 1, N = 1000, and p = 2/r.

F (k) in the large iteration limit are less than 0.94 when r = 0.7,
reach values close to 0.98 in the case of r = 0.9, and take
intermediate values for r = 0.8. A more detailed analysis of
how the nondissipative protocol is affected by varying the
values of the reward and punishment parameters is provided
in Ref. [15]. Note, however, that the particular state chosen
for the first iteration does not seem to play a relevant role in
the accuracy and convergence of the protocol, as can be seen
by comparing Figs. 1(a) and 1(c) with Figs. 1(b) and 1(d).
In order to focus on the effect of thermal dissipation on the
performance of the protocol, we will henceforth set the reward
and punishment parameters to r = 0.9 and p = 2/r = 20

9 , re-
spectively, and the initial state to |φ(1)〉 = |0〉.

In Fig. 2 we plot the mean fidelity F (k) [Figs. 2(a) and
2(b)] and the mean exploration parameter W (k) [Figs. 2(c)
and 2(d)] versus k for the parameter values indicated in the
figure caption. With different types of lines we depict different
values of the dimensionless decay rate at zero temperature
�̃0. The figure illustrates the role played by the tempera-
ture in the accuracy and convergence of the protocol. For
dimensionless temperature T̃ = 0.3 [Figs. 2(a) and 2(c)], the
differences between the nondissipative case �̃0 = 0 (black
solid line) and the dissipative cases �̃0 = 0.5 (red dotted line)
and �̃0 = 1 (blue dashed line) are not significant. In the three
cases, the asymptotic values of F (k) in the large iteration
limit are very similar and quite close to 0.98 [see Fig. 2(a)]
and W (k) converges to zero rather quickly [see Fig. 2(c)].
Therefore, contrary to what might be expected, temperatures
much lower than h̄ω/kB are not required for the protocol to
work. Nonetheless, for sufficiently high dimensionless tem-
peratures, such as T̃ = 1.5, the protocol fails in the dissipative
cases, as shown in Figs. 2(b) and 2(d). On the one hand,
the asymptotic values of F (k) in the large iteration limit
are substantially less than in the absence of dissipation [see
Fig. 2(b)]. On the other hand, W (k) does not approach zero as
k increases [see Fig. 2(d)] and therefore the protocol does not
converge.

0.8

0.9

1

200 400
0

0.5

1

200 400

FIG. 2. Dependence of (a) and (b) the mean fidelity F (k) and
(c) and (d) the mean exploration parameter W (k) on the number of
iterations, k. Black solid lines depict the nondissipative case �̃0 = 0.
The dissipative cases are indicated with red dotted lines (�̃0 = 0.5)
and blue dashed lines (�̃0 = 1). The dimensionless temperature is
(a) and (c) T̃ = 0.3 and (b) and (d) T̃ = 1.5. The remaining parame-
ter values are τ̃ = 1, N = 1000, r = 0.9, and p = 20

9 .

In order to determine the range of temperatures in which
the protocol works well, in Fig. 3 we plot the asymptotic
values in the large iteration limit of the mean fidelity Fa and
the mean exploration parameter Wa as a function of the dimen-
sionless temperature T̃ . As can be seen, there is hardly any
difference between the dissipative and nondissipative cases
up to T̃ ≈ 0.4. Above that temperature, the Fa values in the
dissipative cases �̃0 = 0.5 (red dotted line) and �̃0 = 1 (blue
dashed line) decrease abruptly and become substantially less
than in the nondissipative case [see Fig. 3(a)]. Furthermore,
there is a rapid increase in Wa to nonzero values [see Fig. 3(b)],
which indicates that the protocol stops converging.

0.8

0.9

1

0 0.5 1 1.5 2
0

0.5

1

FIG. 3. Dependence of the asymptotic values in the large it-
eration limit of the mean fidelity, Fa, and the mean exploration
parameter, Wa, on the dimensionless temperature T̃ for different
values of �̃0. Black solid lines depict the nondissipative case �̃0 = 0,
while the dissipative cases are indicated with red dotted lines (�̃0 =
0.5) and blue dashed lines (�̃0 = 1). The remaining parameter values
are τ̃ = 1, N = 1000, r = 0.9, and p = 20

9 .
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FIG. 4. Dependence of the fidelities (a) 〈+|E (|+〉〈+|)|+〉 in
Eq. (21) and (b) 〈−|E (|−〉〈−|)|−〉 in Eq. (22) on �̃0 and T̃ for τ̃ = 1,
N = 1000, r = 0.9, and p = 20

9 .

To better understand the behavior observed in Fig. 3, it
is worth recalling that, in the nondissipative case, the de-
sign of the protocol is based on the fact that the states
|+〉〈+| and |−〉〈−| are fixed points of the quantum gate
E , i.e., E (|±〉〈±|) = |±〉〈±|. However, in the presence of
dissipation, |+〉〈+| and |−〉〈−| are no longer exact fixed
points of E , since the fidelities between the state |+〉〈+| and
E (|+〉〈+|), 〈+|E (|+〉〈+|)|+〉, and between the state |−〉〈−|
and E (|−〉〈−|), 〈−|E (|−〉〈−|)|−〉, are in general less than 1.
Specifically, from Eq. (3), it can be shown that

〈+|E (|+〉〈+|)|+〉 = 1 − (1 − p+)γ , (21)

〈−|E (|−〉〈−|)|−〉 = 1 − p+γ , (22)

which are clearly less than 1 if �̃0 �= 0 (dissipative case).
Despite this, there may be parameter values for which the
fidelities 〈+|E (|+〉〈+|)|+〉 and/or 〈−|E (|−〉〈−|)|−〉 are quite
close to 1. In that case, the corresponding states |+〉〈+| and/or
|−〉〈−| would behave as approximate fixed points and the pro-
tocol would still be applicable. Figure 4 shows the dependence
of the fidelities 〈+|E (|+〉〈+|)|+〉 and 〈−|E (|−〉〈−|)|−〉, ob-
tained using Eqs. (21) and (22), on �̃0 and T̃ . As can be
seen, there are regions where these fidelities are quite close
to 1. In particular, Fig. 4(b) shows that 〈−|E (|−〉〈−|)|−〉 is
quite close to 1 up to T̃ ≈ 0.4, which is the approximate value
beyond which the protocol starts to fail in Fig. 3.

From Figs. 2 and 3 it may be concluded that the effect of
dissipation is not very relevant for sufficiently low dimension-
less temperatures. However, a more exhaustive analysis of the
results reveals that it plays an important role in the protocol.
Figure 5 depicts separately the mean fidelity F (k)

− between the
state |φ(k)〉 and the ground state |−〉 [Figs. 5(a) and 5(b)] and
the mean fidelity F (k)

+ between the state |φ(k)〉 and the excited
state |+〉 [Figs. 5(c) and 5(d)], defined as

F (k)
∓ = 1

N

N∑
j=1

∣∣〈∓∣∣φ(k)
j

〉∣∣. (23)

While for T̃ = 0.3 the differences between the dissipative
and nondissipative cases are not significant when comparing

0

0.5

1

200 400
0

0.5

1

200 400

FIG. 5. Dependence of the state-specific mean fidelities (a) and
(b) F (k)

− and (c) and (d) F (k)
+ on the number of iterations k. Black

solid lines depict the nondissipative case �̃0 = 0. The dissipative
cases are indicated with red dotted lines (�̃0 = 0.5) and blue dashed
lines (�̃0 = 1). The dimensionless temperature is (a) and (c) T̃ = 0.3
and (b) and (d) T̃ = 1.5. The remaining parameter values are τ̃ = 1,
N = 1000, r = 0.9, and p = 20
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the mean fidelity F (k) [see Fig. 2(a)], they become rather
noticeable when comparing the state-specific mean fidelities
F (k)

− and F (k)
+ [see Figs. 5(a) and 5(c)]. In the nondissipative

case, F (k)
− and F (k)

+ are almost indistinguishable [black solid
lines in Figs. 5(a) and 5(c)], as is to be expected from the fact
that |+〉〈+| and |−〉〈−| are equivalent fixed points of E in the
absence of dissipation. By contrast, the presence of dissipation
substantially affects the state-specific fidelities, increasing
F (k)

− and decreasing F (k)
+ [red dotted lines and blue dashed

lines in Figs. 5(a) and 5(c)]. This is because, for T̃ = 0.3,
�̃0 = 0.5, and �̃0 = 1, |−〉〈−| is an approximate fixed point of
E but |+〉〈+| is not (see Fig. 4). As the temperature increases,
this difference becomes less appreciable, as can be seen in
Figs. 5(b) and 5(d).

One important aspect not considered so far is the depen-
dence of the protocol results on the evolution time τ . As
mentioned in Sec. II, in the absence of dissipation, i.e., for
�0 = 0, the action of E on A is represented by the quantum
channel E (ρ0) = e−iτH/h̄ρ0eiτH/h̄. For the case of the Hamil-
tonian H in Eq. (17), this quantum channel has the explicit
form

E (ρ0) = 1

2
(ρ0 + σxρ0σx ) + cos(τ̃ )

2
(ρ0 − σxρ0σx )

+ i sin(τ̃ )

2
[ρ0, σx], (24)

which is a periodic function of the dimensionless evolution
time τ̃ with period 2π . This periodicity is clearly visible in
Fig. 6(a), where the dependence of the asymptotic values in
the large iteration limit of the mean fidelity Fa on τ̃ in the
nondissipative case is depicted by a solid line. However, the
periodicity is not evident in the behavior of Wa, which always
remains close to 0 and indistinguishable from the abscissa
axis, as shown in Fig. 6(b). Of particular interest is the case
in which τ̃ is an integer multiple of 2π . In this case, it
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FIG. 6. Dependence of the asymptotic values in the large itera-
tion limit of (a) the mean fidelity Fa and (b) the mean exploration
parameter Wa on the dimensionless evolution time τ̃ for different
values of �̃0 and T̃ . Black solid lines depict the nondissipative case
�̃0 = 0. In (b) the black solid line is indistinguishable from the
abscissa axis. The dissipative cases are indicated with green closed
circles (�̃0 = 0.5 and T̃ = 0.01), red stars (�̃0 = 0.5 and T̃ = 1), and
blue open circles (�̃0 = 0.5 and T̃ = 10). The remaining parameter
values are N = 1000, r = 0.9, and p = 20
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follows from Eq. (24) that E does not modify the state of A
and therefore no learning is possible. Thus, for this case the
mean fidelity F (k) is independent of the number of iterations
k and consequently Fa = F (1) = 1/

√
2 ≈ 0.71, as it can be

observed in Fig. 6(a) (black solid line).
In the presence of dissipation, i.e., for �0 �= 0, the quantum

channel E (ρ0) in Eq. (3) ceases to be periodic in τ̃ due to
the exponential dependence of the parameter γ on the evolu-
tion time τ (see Sec. II). As a consequence, the oscillations
observed in Fig. 6(a) for the nondissipative case (black solid
line) are notably attenuated and, beyond a certain value of τ̃ ,
Fa becomes almost independent of τ̃ [see green closed circles,
red stars, and blue open circles in Fig. 6(a)]. The effect of
temperature on the behavior of Fa is quite revealing. The long
τ̃ values of Fa for the dissipative case decrease as the tem-
perature increases, as expected. Nonetheless, the Fa values are
substantially larger than those for the nondissipative case for
τ̃ values around the integer multiples of 2π . Therefore, under
these circumstances, dissipation plays a positive role in the
protocol fidelity. Note that for not too high temperatures, the
convergence of the protocol gauged by Wa is still guaranteed
around the above-mentioned τ̃ values [see green closed circles
and red stars in Fig. 6(b)].

IV. CONCLUSION

In this study we investigated the impact of thermal dis-
sipation on a protocol for quantum reinforcement learning.

To achieve this, we introduced a Lindblad dynamics for the
density operator of a two-state system in contact with a ther-
mal bath. First, we conducted a comprehensive theoretical
analysis of the protocol and established the relevant quantities
that characterize it. Subsequently, we performed a numerical
analysis to demonstrate the influence of thermal dissipation on
the protocol’s performance. It is important to understand how
thermal dissipation affects quantum reinforcement learning
because machine learning algorithms are typically not imple-
mented in machines that operate at absolute zero temperature
and therefore thermal effects cannot be avoided in real-world
situations.

The fundamental difference between the methodology pre-
sented in this study and that considered in Ref. [15] lies in
the way in which the agent interacts with the environment to
gather information from it. In Ref. [15] such an interaction
is free from dissipation and is therefore described by the
unitary transformation ρτ = Uρ0U †. However, in this study,
the interaction involves a certain degree of thermal dissipation
which causes it to deviate from unitarity [see Eq. (3)]. This
makes the description more realistic in our case as experi-
ments always take place at nonzero temperatures and therefore
in the presence of some degree of thermal dissipation.

The following are the main conclusions of this work.
(i) For sufficiently low temperatures, dissipation does not

necessarily have a negative effect on the accuracy of the pro-
tocol gauged by the mean fidelity F (k). In fact, our analysis
shows that there are ranges of parameter values for which the
dissipative protocol performs better than the nondissipative
one, as can be seen in Fig. 6. These results might be of interest
for the experimental implementation of this type of protocol,
since sometimes the presence of dissipation is unavoidable in
an actual experiment.

(ii) Dissipation is particularly relevant when evaluating the
state-specific mean fidelities F (k)

− and F (k)
+ . The influence of

dissipation on these fidelities depends dramatically on which
specific state is considered. While in the nondissipative case
F (k)

− and F (k)
+ are almost indistinguishable, in the dissipative

case they can be quite different. Specifically, for sufficiently
low temperatures, the mean fidelity with respect to the ground
state, F (k)

− , is much higher than the one obtained in the absence
of dissipation, whereas the mean fidelity with respect to the
excited state, F (k)

+ , is much lower. Therefore, if in an actual
experiment one were interested in specifically computing the
ground state, the presence of dissipation might be useful.
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