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Abstract

This paper proposes a new Fluid–Structure Interaction computational framework. The coupling between the solid and an
ncompressible fluid is formulated by means of the method of localized Lagrange multipliers (LLM). Instead of applying a direct
oupling between the fluid and the structure, which is the traditional approach, LLM introduces an intermediate surface with
ts own degrees of freedom that is connected to the fluid and structure sides using independent fields of localized Lagrange

ultipliers. This approach allows the connection of non-matching meshes with mortar or classical localized methods and
rovides consistent dynamic equations of motion for the interface that can be integrated in parallel. Interface multipliers are
ater eliminated and the interface motion is used to update the fluid and structure states. This way, dedicated stand-alone software

odules for the fluid and the structure are connected to a third interface system treating their interaction, thus preserving the
odularity of the single-discipline software modules. Different numerical examples are solved with the proposed methodology

o prove its efficiency and accuracy by running a series of classical dynamic FSI benchmark problems.
2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: FSI; Partitioned analysis; Coupled systems; Localized Lagrange multipliers

1. Introduction

The simulation of fluid–structure interaction (FSI) problems with finite elements is today a mature numerical
echnique with many applications in science and engineering. A combined Lagrangian description of motion for the
tructure with an arbitrary Lagrangian–Eulerian (ALE) form for the incompressible fluid is the preferred approach
hen the interface motions are not excessive and many different solution schemes are readily available for its

olution. However, there is still room for improvement in some aspects related with the accuracy, stability and
omputational efficiency of these methods. In particular, we believe that a broader view of the partitioning concept
an still bring important advantages to the formulation and implementation of more efficient FSI algorithms.

Historically, staggered partitioned solution procedures represent the first and most elementary computational
trategy for the simulation of fluid–structure interaction problems. These methods usually involve the use of a
redictor followed by the separate execution of each subdomain solver maintaining stability and accuracy. The idea
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goes back to the early works of Park and Felippa in the field of elasto-acoustic FSI problems [1–3] where the first
conditionally stable staggered solution procedures were proposed. Since then, much work has been dedicated to the
improvement of this concept [4,5]. For a general review of numerical methods for coupled FSI problems, see [6–8].

A coupled problem generally consists of two or more physical systems interacting at common boundaries
y exchanging information affecting their internal state. The physical equations governing the different systems
re usually discretized by using nonconformal space discretizations and often approximated with different time
ntegration schemes for the different domains. Three basic approaches may be distinguished for the solution of

ulti-physics coupled problems: loosely-coupled schemes, partitioned (staggered) schemes and monolithic schemes.
Particularly in FSI applications, loosely-coupled schemes solve the problem sequentially in an uncoupled fashion.

First the increment in the fluid solution is found on a fixed spatial domain, then the fluid forces on the structure
are collected, and finally the structural-solution increment is computed with these forces, which is followed by an
update of the mesh position. This enables the use of existing fluid and structural solvers, a significant motivation for
adopting this approach. If the fluid dynamical problem and the structural problem are solved in a loosely coupled
manner, without the feedback of subiterations, the coupling conditions at the interface will not be exactly satisfied at
each time step. This solution process works well particularly in aeroelastic applications or in applications involving
compressible viscous fluids where added mass effects are small [9,10]. For cases of moderate to high fluid–structure
density ratios, typically when the mass of the fluid subsystem is greater than the mass of the structure, the added-
mass effect of the surrounding fluid on the structure plays a dominant role and loose coupling schemes tend to be
unstable, especially in the context of incompressible flows [11]. In this case, the methods are conditionally stable,
inaccurate and very often the time-step limitations are so severe that the use of partitioned or monolithic schemes
is preferred.

In monolithic FSI schemes, the strongly-coupled equations of the fluid, the solid, and the mesh deformation
are solved simultaneously. The system of equations is obtained for each Newton iteration and solved directly or
iteratively. Monolithic schemes in FSI have been employed in isogeometrical analysis IGA [12,13] with the effect
of the structural and the mesh motion on the fluid equations included on the left-hand-side matrix for robustness
and the system solved with preconditioned GMRES methods. Monolithic approaches have been applied on multiple
FSI methods, like multigrid solvers [14,15], single field predictors [16], unified field formulations [17], Lagrangian
meshfree methods [18], hybrid Eulerian-ALE formulations [19] and applications in free-surface contact [20] or
coupled thermo-FSI problems [21]. Their main advantage is that monolithic FSI solvers are more robust. Many of
the convergence problems encountered with the loosely coupled approaches are completely avoided. However, the
monolithic approach necessitates writing a dedicated coupled fluid–structure solver, thus precluding the reuse of
existing fluid and structure solvers.

A compromise between the loosely and monolithic schemes is given by the partitioned FSI methods. Partitioned
coupling schemes try to compute the solution of the monolithic system by using an iterative process, involving the
repeated solution of the fluid and structure partitioned systems. The strength of this approach originates from its
modularity and the capability of using for each physics the most effective numerical method. Mathematically, they
are equivalent to an iterative solution of coupled equations by blocks using algebraic methods like Jacobi, Gauss–
Seidel or block Newton methods. Three different types of partitioned strategies exist. First, fixed-point iteration
methods [22] that algebraically resemble the block Gauss–Seidel or multiplicative Schwarz iteration for the solution
of systems of equations [23]. Block iterative Gauss–Seidel solves one system first, then transfers the interface newly
computed values to the other system, solves the second system, and this is repeated iteratively until convergence.
This process may not converge, even for starting values close to the solution. The stability of Block Gauss–Seidel
partitioned solution of the coupled problem was studied by [24] exchanging interface displacements and forces until
convergence. Among these methods are the fixed-point iterations with fixed or dynamic under-relaxation [25,26].
Block Gauss–Seidel partitioned solution methods have also been successfully employed for coupling finite element
and finite volume solvers [27,28]. Sencond, vector extrapolation methods constitute a generalization of the fixed-
point schemes that incorporate many history values in one relaxation step. This interpolation of the improves the
convergence [29]. Finally, Block-Newton methods solve the linearized equations by blocks using independent solvers.
For example, Block-Gauss elimination has been applied on the monolithic equations [30], four steps of solutions
exchanges are required per iteration and quadratic convergence is attained.

Partitioned schemes represent the predominant approach for FSI solvers with mixed Lagrangian-ALE formula-

tions. In their most basic form, involve a close loop between the fluid, the structure and the dynamic mesh, see
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J.A. González and K.C. Park Computer Methods in Applied Mechanics and Engineering 414 (2023) 116134

d

t

F
a
c
a
s

t
d
m
t

w
t
m
m
e
d

d
L
t
L
d

d

Fig. 1. Representation of a classical fixed-point iteration approach for the three-field coupled FSI problem. In a sequence of Dirichlet–
Neumann boundary solutions exchange, the Structure is solved first with the boundary forces λF exerted by the fluid to find the structural

isplacements uS. Then, the Dynamic Mesh of the fluid is informed of the new structure boundary displacements BSTuS and its position is
updated to uM. Finally, the Fluid is solved using the mesh velocities u̇M and its variables, velocity vF and pressure pF, are recalculated for
he next iteration.

ig. 1. For example in a fixed-point iteration method, inside a Dirichlet–Neumann iteration, the ALE fluid is defined
s the Dirichlet system, driven by the structural interface motion, while the structure system reacts to the Neumann
onditions applied by the fluid on the interface. Clearly, this scheme is more flexible than a monolithic approach. It
llows for the use of independent software modules, it is possible to employ different numerical methods for each
ystem, implement locally different time-integrators, adopt asynchronous time-integration.

Another important aspect of FSI modeling is to define how the state of one physical system is transferred across
he fluid–structure interface to the other. Note that normally, due to different space resolution requirements or simply
ue to the existence of complex interface geometries between the solid and the structure, we have to deal with non-
atching meshes at the interface and there is not a one-to-one mapping between boundary variables. For this task,

here exists two basic groups of coupling techniques [31]:

• Direct coupling methods: Finding direct operators relating the fluid and structure interface motions. The
classical techniques can be categorized into: point-to-point mapping based on interpolation with scattered
data points using for example radial basis functions, point-to-element projection where kinematical constraints
are enforced at the fluid nodes or quadrature points and common-refinement projection introducing a common
refinement surface for an accurate load transferring between fluid and structure.

• Lagrange multiplier methods: The interface constraints are enforced in a variationally consistent way by
using Lagrange multipliers to couple non-matching fluid and structure meshes. The most common method
of this group is the mortar method, which was originally proposed in the context of non-overlapping domain
decomposition and is referred in the literature as a coupling method with desirable mathematical and numerical
properties. Another member of this group is the method of localized Lagrange multipliers that uses independent
fields of Lagrange multipliers to connect the coupled systems with the shared interface.

The integration of the dual mortar method within a general ALE-FSI framework was first proposed in [16,32]
here a constrained coupled four-field system with a saddle point type structure is obtained, that is later reduced

o a classical three-field system by condensation of the Lagrange multiplier unknowns. The method adopts a
onolithic solution approach with Newton–Raphson iterations and attains optimal temporal convergence. Mortar
ethod provides higher accuracy but also requires, for the construction of the interface mapping operator, an

laborate process of projection of slave and master nodes onto the common interface, perform polygon clipping,
ivide clip polygon into triangular integration cells and perform Gaussian integration.

On the other hand, the LLM method introduces a dedicated interface system endowed with its particular
isplacement field and couples separately the fluid and the structure to the interface with independent fields of
agrange multipliers. Specifically in the field of FSI, the method of localized Lagrange multipliers has been applied

o study the interaction of flexible structures with acoustic fluids [33,34] and incompressible fluids adopting a pure
agrangian description of motion [35,36]. The extension of the method to FSI problems with incompressible fluids
escribed in ALE form is treated in this paper.

The potential advantages of separately coupling fluid and structure to an independent interface with its own

iscretization were also highlighted by Dettmer et al. [37–39] noting that, this way, the interface degrees-of-freedom
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Fig. 2. Simple one-dimensional FSI partitioned linear model coupled with classical Lagrange multipliers (left) or using localized Lagrange
multipliers (right). Introduction of localized Lagrange multipliers allows to solve for the interface accelerations that are used to update the
location of fluid and structure boundaries.

(DOFs) can then be connected to the fluid and the solid boundaries using independent interpolations. This allows
a more modular computer implementation and thus facilitates the maintenance and extension of the fluid and solid
solvers. It is also possible to employ connection techniques like the method of Lagrange multipliers for the data
transfer between the coupled systems.

This work proposes a new computational framework based on the use of LLM for the solution of FSI dynamic
coupled problems. Instead of applying a direct coupling between the fluid and structure meshes, which is the
traditional approach, the LLM introduces an intermediate system at the interface with its own degrees of freedom
that is connected to the fluid and structure sides using independent fields of localized Lagrange multipliers. This
approach brings a more modular computer implementation, allows the connection of non-matching meshes using
different methods and produces consistent dynamic equations of motion for the interface that can be efficiently
solved in parallel.

The paper is organized as follows. The following Section 2 introduces the idea of LLM in FSI illustrating with a
simple example the relevance of the dynamic interface equations of motion in a partitioned solution scheme of FSI
problems. Section 3 defines the governing equations of the four systems involved, dynamic mesh, fluid, structure
and interface. Section 4 derives the variational formulation of the coupled problem. The Galerkin finite element
approximation of these variational forms is performed in Section 5 including the stabilization of the fluid equations
to allow equal order velocity–pressure interpolations. The interface model presents an independent discretization
that needs to be designed in order for maximum accuracy. Its construction process is described in Section 7. Time
integration of the obtained nonlinear coupled equations using the generalized α-method is described in Section 8. A
monolithic version of the solution algorithm applying Newton method and subiterations is described in Section 9.
A culminating stage of the paper is the development of the partitioned algorithm presented in Section 10. We
believe that it is simple to understand and easy to implement. In essence, utilizes a time integration of the dynamic
interface equations for enhancing stability and parallelism of the partitioned scheme. In Section 11, a series of
numerical examples are compared with analytical solutions to demonstrate the accuracy and robustness of the
proposed methodology. Finally, Section 12 presents some concluding remarks.

2. Localized Lagrange multipliers in FSI

The method of Lagrange multipliers first entered into the FSI arena as a tool for improving the accuracy at the
interface between non-matching meshes. In practical applications, the multipliers are eliminated and the coupled
system solved monolithically. In this Section it is demonstrated how Lagrange multipliers through LLM also
provides a theoretically consistent dynamic equilibrium equation for the interface that can be treated as a truly
separated system under the influence of fluid and structure interactions.

The stability of FSI solution methods with Lagrange multipliers can be analyzed by using a simple one-
dimensional linear example proposed in [40,41]. The model is represented in Fig. 2 and consists of two linear
one-DOF models of the fluid and the structure, in our case connected by classical Lagrange multipliers (left) and

localized Lagrange multipliers (right). The equations of the FSI model treated with classical Lagrange multipliers
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Fig. 3. Convergence of the interface force for a partitioned 1D FSI model with ω = 1, ξ = 0.01 solved using classical Gauss–Seidel with
elaxation (GS-θ ), classical (LM) and localized (LMM) Lagrange multipliers. It is shown the iterative solution for the first time step, obtained
sing Newmark time integration method with average constant acceleration

(
γ =

1
2 , β =

1
4

)
and time step ∆t = 0.01. Convergence of the

nterface forces for structure masses α = 0.25 (left) and α = 0.75 (right). Gauss–Seidel without relaxation (θ = 1) is unstable for α < 0.75
hile implicit Lagrange multiplier methods are always stable solving the problem in only one iteration.

, see Fig. 2(left), are expressed:⎧⎪⎨⎪⎩
rF(vF, λ) = (1 − α)v̇F

+ 2ξωvF
− f F

− λ = 0

rS(uS, λ) = αüS
+ ω2uS

− f S
+ λ = 0

r I(vF, uS) = −v̇F
+ üS

= 0

(1)

here ω =
√

k/m is the natural frequency of the coupled system and ξ = c/(2 mω) is the damping ratio associated
to the fluid dissipation. Also the mass parameter 0 ≤ α ≤ 1 where problems involving strong added mass effects
are characterized by values of α close to zero, while small added mass effects are associated with values of α close
to one.

Next, the stability of a staggered scheme is investigated. The Gauss–Seidel with under-relaxation solution process
involves iterating on the interface multipliers in (1) as follows: knowing λi , first the structure equation rS(uS

i+1, λi )
is solved for the increment of structural displacements ∆uS

i+1 and then, using the interface condition r I(vF
i+1, uS

i+1)
fraction θ of this structural displacement is applied to the fluid interface, i.e., ∆vF

i+1 = θ∆uS
i+1. Then, the fluid

quation rF(vF
i+1, λi+1) can be solved for the updated interface forces λi+1 and the process is repeated until the

onvergence criteria |λi+1 − λi | < ε is satisfied.
The result of this procedure is shown in Fig. 3 where it is represented the convergence of the interface force

or increasing structural masses, α = 0.25 (left) and α = 0.75 (right), combined with different levels of under-
elaxation. It is observed that the unrelaxed solution (θ = 1) is only stable for large values of the structural mass
α > 0.75), hence some relaxation is needed and significant structural deformations can be taken into account
y an under-relaxation of the boundary geometry. We can see that small values of mass-ratio parameter α require
ower values of the under-relaxation factor θ to achieve unconditional stability [40]. Moreover, the required level
f under-relaxation for stability is not constant and depends on the fluid–structure mass ratio. Hence, this solution
trategy is parameter dependent and also difficult to parallelize.

On the other hand, a monolithic solution permits to eliminate the Lagrange multipliers and reduce the structure
nterface displacements finally needing to solve a full system with the rest of unknowns [32]. The result of this
olution method, indicated as LM in Fig. 3, is always stable and requires a single iteration for convergence in a
inear case. However, this strategy is not commonly employed in practical applications because it is computationally
ery expensive and difficult to parallelize. Also, iterating on the Lagrange multipliers would not be very effective
hen combined with an ALE description of the fluid motion, because direct updating of the fluid background mesh

equires first the determination of the interface displacements.
These difficulties can be avoided by using the method of localized Lagrange multiplies (LLM) exemplified in

I
ig. 2(right). The method introduces an explicit definition of the interface with displacement u and now fluid and
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a

structure are connected to this interface with independent Lagrange multipliers
(
λF, λS

)
. The semidiscrete equations

of motion in this case become:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

rF(vF, λF) = (1 − α)v̇F
+ 2ξωvF

− f F
+ λF

= 0

rS(uS, λS) = αüS
+ ω2uS

− f S
+ λS

= 0

rF
I (vF, uI) = v̇F

− üI
= 0

rS
I (uS, uI) = üS

− üI
= 0

r I
λ(λF, λS) = −λF

− λS
= 0

(2)

with three coupling equations, instead of one, corresponding to the two-side kinematic constraints plus the interface
equilibrium condition, given by the last equation r I

λ(λF, λS) = 0.
Suppose now that these LLM equations are being solved for a particular time-step by adopting the Newton–

Raphson iteration scheme. In this case, to solve for a new subiteration (i + 1), the incremental form of equations
is written:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 − α)(∆v̇F
i+1 + v̇F

i ) + 2ξωvF
i − f F

+ λF
i+1 = 0

α(∆üS
i+1 + üS

i ) + ω2uS
i − f S

+ λS
i+1 = 0

∆v̇F
i+1 − ∆üI

i+1 = 0

∆üS
i+1 − ∆üI

i+1 = 0

−λF
i+1 − λS

i+1 = 0

(3)

a linear system to be solved for the acceleration increments and the new multipliers. However, after isolating the fluid
and structure acceleration increments from the two first equations, substituting into the third and fourth boundary-
interface acceleration constraints and using the last interface equilibrium condition, the following interface update
equation is found:

∆üI
i+1 = −[(1 − α) v̇F

i + 2ξωvF
i − f F  

Fluid residual

] − [αüS
i + ω2uS

i − f S  
Structure residual

] (4)

where the right hand side represents the addition of fluid and structure boundary residuals at the previous iteration,
which is equal to the preceding unbalance of interface forces. These fluid and structure reaction forces can be
computed independently and in parallel from each physics, then the interface position updated and finally the fluid
and structure systems recalculated for the next iteration. It is noted that, when the problem is linear and the iteration
solution process made implicit, the described method converges in only one iteration as shown in Fig. 3 for Lagrange
multiplier methods.

Therefore, the basic idea of the proposed LLM method is simple, localized Lagrange multipliers can be eliminated
while the independent residuals of the fluid and the structure are used to update the position of the interface. After
this update, both systems can be actualized independently in parallel using the new position of the interface. In
the following, we will describe how this technique of LLMs can be applied to complex FSI interaction problems
presenting non-matching meshes.

3. Governing equations

In this section we introduce the governing equations of the FSI problem, which consists of a structural domain
ΩS(t) interacting with a deformable fluid domain field ΩF(t) in Rd , where d ∈ {2, 3} is the number of space
dimensions and t ∈ [0, T ] is the considered time interval, see Fig. 4. Both fields interact through a fluid–structure
common interface Γ = Γ F

∩ Γ S, where equilibrium and kinematic compatibility conditions need to be fulfilled.
The structure uses a Lagrangian description of motion and the fluid is described in Arbitrary Lagrangian Eulerian
(ALE) form. In the following, the fluid quantities are denoted by the superscript (·)F, the structure by (·)S and the

LE fields by (·)M.
Classical FSI methods are formulated in terms of interaction between these three systems. Here we introduce

n additional explicit representation of the interface, denoted as Γ , which follows the fluid and structure interfaces
and reformulate the FSI system in terms of interaction of the previous three systems with the interface. An extra

I
superscript (·) is introduced to indicate that the quantity is located at this FSI interface Γ .

6
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Fig. 4. Representation of a typical FSI scenario where a new interface Γ = Γ F
∩ Γ S is defined between the two systems and connected

sing localized Lagrange multiplier fields
(
λF, λS) to the fluid and the structure.

.1. Fluid equations in ALE form

The fluid is considered incompressible and governed by the Navier–Stokes equations in a deformable domain
F(t) kinematically described in ALE form by through mapping x : ΩM

0 → ΩM(t):

x (X, t) = X + uM (X, t) , ∀X ∈ ΩM
0 , t ≥ 0 (5)

here X ∈ ΩM
0 is a location in the reference configuration that through the ALE mapping locates the point x ∈ ΩF

n the actual fluid domain configuration and uM (X, t) is the displacement of the reference configuration at time
∈ [t0, T ]. Then, the velocity of points in the reference configuration is given as:

vM
=

∂x (X, t)
∂t

⏐⏐⏐
X

(6)

here (·)|X indicates ALE time derivative.
The incompressible Navier–Stokes equations in ALE form are expressed in terms of the fluid velocity vF (x, t)

nd the fluid pressure pF, satisfying conservation of momentum and the incompressibility condition in the domain
f interest together with the boundary conditions:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρF
{

∂vF

∂t

⏐⏐⏐
X

+
(
vF

− vM)
· ∇vF

− bF
}

− ∇ · σ F(vF, pF) = 0 in ΩF(t)

∇ · vF
= 0 in ΩF(t)

vF
= v̄F on Γ F

v

σ F
· nF

= t̄F on Γ F
t

(7)

here ρF is the constant fluid density, bF is a given body force per unit mass and
(
vF

− vM
)

is the ALE convective
elocity. The second order tensor σ F is the Cauchy stress tensor, which for a Newtonian fluid is given by:

σ F (vF, pF)
= −pF I + µFε

(
vF) (8)

ith µF the dynamic viscosity of the fluid, I the identity tensor and ε(vF) the symmetric strain-rate tensor calculated
s:

ε(vF) =
1
2

(
∇vF

+ ∇vFT
)

(9)

a symmetric second order tensor function of the fluid velocity gradients.
Finally, the fluid velocity v̄F on Dirichlet boundaries Γ F

v and the fluid traction t̄F on Neumann boundaries Γ F
t

need to be prescribed, together with the initial conditions:

vF
= vF

0 in ΩF
0 (10)

where the initial velocity field vF should also fulfill the incompressibility condition.
0

7
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3.2. Structure equations

The structure is assumed to present a nonlinear elastic behavior and its equations motion given by the equations
f elastodynamics expressed in strong form as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρS
(

∂2uS

∂t2 − bS
)

− ∇ · PS(uS) = 0 in ΩS(t)

uS
= ūS on Γ S

u

σ S
· nS

= t̄S on Γ S
t

(11)

here uS (x, t) is the displacement vector field, ρS the structural density, bS are the applied body forces per unit
ass and PS is the first Piola–Kirchhoff stress tensor with σ S

= J S−1 PS FST
the Cauchy stress tensor, FS the

eformation gradient tensor and J S
= det FS the Jacobian of the transformation. The interface tractions t̄S are

cting on the Neumann boundaries Γ S
t with normal vector nS and ūS defined on Γ S

u represent the Dirichlet boundary
onditions.

The material of the structure is assumed to exhibit a compressible Neo-Hookean behavior. This material presents
haracteristics that can be identified with the familiar material parameters found in linear elastic analysis. The strain
nergy density function and stress tensor of such a material is defined as:

ΨS (CS)
=

µS

2

(
CS

: I − d
)
− µS ln J S

+
λS

2

(
ln J S)2

, PS
=

∂ΨS

∂ FS (12)

here λS and µS are the material Lamé parameters and CS
= FST FS is the right Cauchy–Green tensor. Note that

in the absence of deformation, that is, when CS
= I and J S

= 1, the stored energy function vanishes as expected.
Furthermore, adequate initial conditions with prescribed displacement and velocity fields, uS

0 and vS
0 , are defined

s: {
uS

= uS
0 in ΩS

0

vS
= vS

0 in ΩS
0

(13)

or the complete structure at the initial time t0.

.3. Interface equations

Instead of performing a direct coupling between the fluid and the structure as in common FSI formulations, we
nclude an additional surface at the fluid–structure interface Γ (t) and describe its motion in time introducing an
ndependent displacement field uI (x, t). Then, see Fig. 4(right), fluid and structure are connected to this explicit
epresentation of the interface by using two independent fields of localized Lagrange multipliers, named λF on the
uid side and λS on the structure side. These two fields of Lagrange multipliers are identified with the interface

ractions on the fluid tF and the structure tS, appearing in Eqs. (7) and (11) as boundary tractions acting on
(t) = Γ F(t) ∩ Γ S(t), respectively. Finally, the coupling conditions on the fluid–structure interface are expressed

n strong form:⎧⎪⎪⎪⎨⎪⎪⎪⎩
vF

−
∂uI

∂t
= 0 on Γ (t)

uS
− uI

= 0 on Γ (t)

λF
+ λS

= 0 on Γ (t)

(14)

where the two first equations enforce the kinematical compatibility constraints of the fluid and structure with the
interface, while the last equation represents the equilibrium condition of the interface.

4. Weak formulation

In this section we derive the weak formulation of the different systems involved; the incompressible Navier–
Stokes equations expressed in ALE form for the fluid, the dynamic equilibrium equation of a nonlinear elastic

structure and the interface constraints coupling both systems.

8
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4.1. Weak form of fluid-mesh motion

The deformation of the ALE background domain ΩM is produced by the motion of the fluid–structure interface
Γ and assumed to satisfy the equations of linear elastostatics. In this case, the elastic material properties are purely
artificial parameters that are selected in order to minimize the fluid mesh distortion during the deformation process.
It is also needed to include a compatibility condition on Γ between the fluid mesh and the interface motion that is
enforced using an additional field of Lagrange multipliers.

To formulate this part of the fluid problem, adequate solution spaces UM and LM are defined respectively for the
mesh displacement fields uM and Lagrange multipliers λM with corresponding test function spaces WM and WM

I .
We can then derive the discrete weak form of the fluid-mesh motion, which consists in finding

(
uM, λM)

∈ UM
×LM

such that ∀
(
wM, wM

I

)
∈ WM

× WM
I , it is fulfilled:∫

ΩM
ε
(
wM)

: DM
: ε
(
uM) dΩ +

∫
Γ

wM
· λM dΓ +

∫
Γ

wM
I ·

(
uM

− uI) dΓ = 0 (15)

where DM is the elastic fourth order constitutive tensor with material parameters
(
λM, µM

)
selected to minimize the

fluid mesh distortion. Appropriated spaces for the interface displacements uI are introduced later in the definition
of the interface problem.

4.2. Weak form of the fluid problem

Let us now introduce admissible spaces VF and PF of trial functions on ΩF for the fluid velocities vF and pressure
pF, with their corresponding spaces of test functions WF

m and WF
c , respectively. The incompressible Navier–Stokes

balance equations expressed in ALE form (7) are multiplied by corresponding test functions
(
wF, wF

c

)
from their

respective spaces and integrated on the current configuration. Additionally, partial integration of the pressure and
viscous stresses is performed in the resulting balance of linear momentum. This reduces the occurring order of
spatial derivatives to one and leads to additional boundary integrals in the weak form of the fluid problem.

After these steps, the weak form of the fluid problem is derived, which consists in finding the fields
(
vF, pF, λF)

∈

VF
× PF

× LF such that:∫
ΩF

ρFwF
·

{
∂vF

∂t

⏐⏐⏐
X

+
(
vF

− u̇M)
· ∇vF

− bF
}

dΩ +

∫
ΩF

ε
(
wF)

: σ F dΩ −∫
ΓF

t

wF
· tF dΓ +

∫
Γ

wF
· λF dΓ +

∫
ΩF

wF
c ∇ · vF dΩ = 0 (16)

is fulfilled ∀
(
wF, wF

c

)
∈ WF

m × WF
c , where the unknown boundary tractions λF

= −tF can be interpreted as a
Lagrange multiplier vector appearing to compatibilize the fluid interface motion with the structure. The complete
approximation of these interface Lagrange multiplier fields will be specified later in combination with the interface
problem.

4.3. Weak form of the structure problem

For the structure, admissible spaces US of trial functions and WS of weighting functions are defined on ΩS for
he displacement field uS and its corresponding test functions wS. Then, the nonlinear structural equations (11)

ultiplied by arbitrary test function wS
∈ WS and integrated in the domain ΩS with subsequent partial integration

eads to the weak form that is expressed in the following terms: find
(
uS, λS)

∈ US
× LS such that:∫

ΩS
ρSwS

·

{
∂2uS

∂t2 − bS
}

dΩ +

∫
ΩS

∇wS
: PS dΩ −

∫
ΓS

t

wS
· tS dΓ +

∫
Γ

wS
· λS dΓ = 0 (17)

is fulfilled ∀wS
∈ WS. Here, the interface tractions on the structural side λS

= −tS arise from the needed
compatibility condition between the structure and the fluid interface. These multipliers are chosen from a
corresponding solution space defined in the following subsection.
9
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4.4. Weak form of the interface problem

Finally, for the formulation of the interface problem, we define on Γ adequate trial spaces U I, LF and LS

respectively for the interface displacements uI, Lagrange multipliers on the fluid side λF and multipliers located on
structure side λS, together with their corresponding weighting function spaces W I, WF

I and WS
I ; allowing to state

the interface problem in the form: find
(
uI, λF, λS)

∈ U I
× LF

× LS, such that:∫
Γ

{
wF

I ·

(
vF

−
∂uI

∂t

)
+ wS

I ·
(
uS

− uI)
+ wI

·
(
λF

+ λS)} dΓ = 0 (18)

is fulfilled ∀
(
wI, wF

I , w
S
I

)
∈ W I

× WF
I × WS

I . This is a weighted residual form of the interface equations (14)
enforcing in a weak sense, the kinematic compatibility constraints between fluid and structure with the interface,
together with the interface equilibrium condition.

5. FEM discretization

In the following Section, the spatial discretization of the weak forms by the FEM is performed. To discretize the
continuous problem, the domains of interest ΩF and ΩS, together with the interface Γ , are approximated by finite
element meshes allowing for non-matching discretizations at the interface.

5.1. Fluid ALE mesh discrete equations

The fluid ALE reference domain ΩF
0 is discretized by a finite element mesh of nM

e elements and nM
n nodes and

reated by assuming an elastostatic behavior. Then, the mesh displacements and interface tractions are interpolated
sing independent shape functions as:

uM(x, t) =

nM
n∑

i=1

N M
i (x) uM

i (t), λM(x, t) =

nM
n∑

i=1

φM
i (x) λM

i (t) (19)

here N M
i the standard shape function corresponding to node i with displacements uM

i . For the interface nodal
ractions λM

i , specific shape functions φM
i are defined that will be particularized later.

By applying a Galerkin finite element approximation to the weak form (15) assembling the finite element
ontributions to the equilibrium equation, a discrete residual vector is obtained:{

KMuM
+ BMλM

= 0

BMTuM
− LMuI

= 0
(20)

ith a constant mesh element artificial stiffness matrix:[
KM

αβ

]
i j

=

∫
ΩM

e

∂ N M
i

∂ Xδ

DM (λM
e , µM

e

)
αδβγ

∂ N M
j

∂ Xγ

dΩ (21)

nd interface coupling matrices given by the expressions:[
BM

αβ

]
i j

=

∫
Γ

N M
i φM

j dΓ δαβ,
[
LM

αβ

]
i j

=

∫
Γ

φM
i N I

j dΓ δαβ (22)

hat are used to enforce the interface moving boundary conditions on the interface DOFs of the fluid mesh. Note
hat the fluid-mesh stiffness matrix KM is constant and can be factorized at the beginning of the simulation, thus
eading to significant computational savings.

The material properties of the fluid mesh included in the element constitutive elastic tensor DM
e making use of

he mesh Lamé parameters µM and λM. These parameters are given in the 3D case by the expressions:

λM
e =

νM EM
e(

1 + νM
) (

1 − 2νM
) , µM

e =
EM

e

2
(
1 + νM

) (23)

here νM is a constant Poisson coefficient and EM
e = EM Ā/Ae the element Young’s modulus and a constant

M ¯
oisson coefficient ν where Ae is the element area and A is the mean element area of the mesh. As a result of

10



J.A. González and K.C. Park Computer Methods in Applied Mechanics and Engineering 414 (2023) 116134

c
g
e
t

5

a
w
i

w
v
a

B
A
t
P
w
∀

w

a
fi
S
t
fl

this definition, small fluid elements, which are typically located close to the structure boundaries, become stiffer
and are less likely to deform as much as the larger elements, which are normally placed in the far field areas where
the solution is not expected to exhibit complex behavior.

Even using this variable element stiffness strategy, for very large structural motions, the fluid-mesh distortion
an become excessive affecting the fluid problem accuracy. This arises the important question of how to maintain a
ood grid quality during the simulation. Although more advanced mesh update techniques could be used to alleviate
xcessive mesh distortion of the fluid mesh near the structural boundaries, this possibility has not been explored in
he paper. Different mesh moving methods are studied in [42,43].

.2. Stabilized fluid semi-discrete equations

The fluid ALE domain has been discretized by a finite element mesh of nF
e elements and nF

n nodes. For the
pproximation of the fluid velocity and pressure field inside the elements equal order shape functions are used,
hile the field of Lagrange multipliers is approximated on the fluid boundary using special interpolation functions

n the form:

vF(x, t) =

nF
n∑

i=1

N F
i (x) vF

i (t), pF(x, t) =

nF
n∑

i=1

N F
i (x) pF

i (t), λF(x, t) =

nF
n∑

i=1

φF
i (x) λF

i (t) (24)

here nF
n are the number of nodes of the fluid mesh and N F

i the standard shape functions with vF
i the nodal velocity

ector and pi the pressure of a particular node (i). Also a boundary multipliers interpolation with nodal values λF
i

nd shape functions φF
i is introduced to approximate the interface tractions applied to the fluid boundary.

It is well known that equal order interpolation of the fluid variables incurs in a violation of the Ladyzhenskaya–
abuška–Brezzi (LBB) condition, forbidding the converge of the numerical scheme. To avoid this difficulty the
LE-VMS variational multi-scale method is adopted [44,45], based on the addition of different stabilization terms

o the original weak form (16). In particular, the residual-based VMS framework combines streamline-upwind-
etrov–Galerkin (SUPG) and a least-squares-incompressibility-constraint (LSIC) stabilization terms. We can then
rite the stabilized discrete weak form of the problem, which consists in finding

(
vF, pF

)
∈ VF

× PF such that(
wF, wF

c

)
∈ WF

m × WF
c , it is fulfilled:∫

ΩF
ρFwF

·

{
∂vF

∂t

⏐⏐⏐
X

+
(
vF

− u̇M)
· ∇vF

− bF
}

dΩ +

∫
ΩF

ε
(
wF)

· σ F dΩ −

∫
ΓF

t

wF
· tF dΓ

+

∫
Γ

wF
· λF dΓ +

nF
e∑

e=1

∫
ΩF

e

τ SUPS
e

{(
vF

− u̇M)
· ∇wF}

· rF
m dΩ +

nF
e∑

e=1

∫
ΩF

e

ρFνLSIC
∇ · wFrF

c dΩ

−

nF
e∑

e=1

∫
ΩF

e

τ SUPS
e wF

·
{

rF
m · ∇vF} dΩ −

nF
e∑

e=1

∫
ΩF

e

∇wF

ρF :
{
τ SUPS

e rF
m

}
⊗
{
τ SUPS

e rF
m

}
dΩ +

nF
e∑

e=1

∫
ΩF

e

τ SUPS
e

∇wF
c

ρF · rF
m dΩ +

∫
ΩF

wF
c ∇ · vF dΩ = 0 (25)

ith strong forms of the fluid linear momentum and incompressibility residuals evaluated inside the element as:{
rF

m = ρF
{
v̇F

+
(
vF

− u̇M
)
· ∇vF

− bF
}

− ∇ · σ F

rF
c = ∇ · vF (26)

nd where the stabilization parameters τ SUPS, νLSIC are introduced to stabilize the same order velocity–pressure
nite element approximation. The notation SUPS, indicates that there is a single stabilization parameter for the
UPG and Pressure-Stabilizing/Petrov–Galerkin (PSPG) stabilizations, instead of two separate parameters. Note

hat when the residual terms (26) become zero inside the element, the stabilization terms vanish and the original

uid weak form is recovered.

11
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Our stabilization parameters are a direct translation of those proposed for the transient advection–diffusion–
eaction equation in the literature, particularized to the Navier–Stokes equation [46]. It takes into account the
ransient, convective and diffusion effects with the expression:

τ SUPS
e =

∆t
2

(
1 + Cr2

+ 4D2
)−

1
2

, νLSIC
e = h2

e/τ
SUPS
e (27)

here Cr =
⏐⏐vF
⏐⏐∆t/he is the element numerical Courant number, D = νF∆t/h2

e is the element diffusion number,
F

= ρF/µF the kinematic viscosity and he a measure of the characteristic element size. More elaborated stabilized
ormulations and stabilization parameters generalized for any element topology are available in the literature [45].

The stabilized weak form (25) is then discretized by the finite element method introducing equal-order velocity–
ressure approximations (24) to obtain the global semi-discrete fluid equations expressed in residual form as:{

rF
m

(
v̇F, vF, u̇M, pF, λF)

= r̂F
m

(
v̇F, vF, pF)

+ BFλF
= 0

rF
c

(
v̇F, vF, u̇M, pF)

= 0
(28)

where the first equation corresponds to the momentum conserving equation and the second to the incompressibility
constraint. These fluid semi-discrete residuals are expressed component-wise in the form:{

rF
mα

}
i =

∫
ΩF

ρF N F
i eα ·

{
v̇F

+
(
vF

− u̇M)
· ∇vF

− bF} dΩ +

∫
ΩF

ε
(
N F

i eα

)
· σ F dΩ −

∫
ΓF

t

N F
i eα · tF dΓ+

∫
Γ

N F
i eα · λF dΓ +

nF
e∑

e=1

∫
ΩF

e

τ SUPS
e

{(
vF

− u̇M)
· ∇N F

i eα

}
· rF

m dΩ

+

nF
e∑

e=1

∫
ΩF

e

ρFνLSIC
e

(
∇ · N F

i eα

)
rF

c dΩ−

nF
e∑

e=1

∫
ΩF

e

τ SUPS
e N F

i eα ·
{

rF
m · ∇vF} dΩ −

nF
e∑

e=1

∫
ΩF

e

∇N F
i eα

ρF :
{
τ SUPS

e rF
m

}
⊗
{
τ SUPS

e rF
m

}
dΩ (29)

{
rF

c

}
i =

∫
ΩF

N F
i ∇ · vF dΩ +

nF
e∑

e=1

∫
ΩF

e

τ SUPS
e

∇N F
i

ρF · rF
m dΩ (30)

with indexes α = {x, y, z} and i = {1, . . . , Nn} where Nn is the number of element nodes and eα represents the
anonical vector and where different stabilization terms, including evaluations of the strong forms (26), appear
ntegrated inside the element domain.

Linearizarion of these discrete residuals is required for a later application of the Newton–Raphson solution
lgorithm. Starting with the linearization of the fluid momentum residual, produces the finite element matrices:

MF
=

∂rF
m

∂ v̇F , CF
=

∂rF
m

∂vF , GF
=

∂rF
m

∂pF , BF
=

∂rF
m

∂λF (31)

here MF is the global mass matrix, CF the convective-viscous dissipation term, GF represents the pressure gradient
perator and BF a boolean assembly matrix. Expressed in matrix components:[

MF
αβ

]
i j

=

∫
ΩF

e

ρF N F
i N F

j dΩ δαβ +

∫
ΩF

e

τ SUPS
e ρF N F

j

(
vF

− u̇M)
· ∇N F

i dΩ δαβ (32)[
C̃F

αβ

]
i j

=

∫
ΩF

e

ρF N F
i

(
vF

− u̇M)
· ∇N F

j dΩ δαβ +

∫
ΩF

e

µF
∇N F

i · ∇N F
j dΩ δαβ+∫

ΩF
e

µF
∇N F

i · eβ∇N F
j · eα dΩ +

∫
ΩF

e

τ SUPS
e ρF (vF

− u̇M)
· ∇N F

i

(
vF

− u̇M)
· ∇N F

j dΩ+∫
ρFνLSIC

e ∇N F
i · eα∇N F

j · eβ dΩ (33)

ΩF

e

12



J.A. González and K.C. Park Computer Methods in Applied Mechanics and Engineering 414 (2023) 116134

w
t

w
T

w

5

m
e
a

w
p
t

e

w

w

c
i

[
GF

α

]
i j = −

∫
ΩF

e

∇N F
i · eα N F

j dΩ +

∫
ΩF

e

τ SUPS
e

(
vF

− u̇M)
· ∇N F

i ∇N F
j · eα dΩ (34)

[
BF

αβ

]
i j

=

∫
ΓF

e

N F
i φF

j dΓ δαβ (35)

ith indexes α, β = {x, y, z} and i, j = {1, . . . , Nn} where Nn is the number of element nodes and eα represents
he canonical vector.

Equivalently, linearization of the fluid incompressibility constraint residual produces the finite element matrices:

TF
=

∂rF
c

∂ v̇F , DF
=

∂rF
c

∂vF , SF
=

∂rF
c

∂pF (36)

here matrix DF represents the divergence operator, while TF and SF actuate as SUPS pure stabilization terms.
hese Jacobian matrices are expressed in index form as:[

TF
α

]
i j =

∫
ΩF

e

τ SUPS
e N F

j ∇N F
i · eα dΩ (37)

[
DF

β

]
i j

=

∫
ΩF

e

N F
i ∇N F

j · eβ dΩ +

∫
ΩF

e

τ SUPS
e ∇N F

i · eβ

(
vF

− u̇M)
· ∇N F

j dΩ (38)

[
SF]

i j =

∫
ΩF

e

τ SUPS
e

ρF ∇N F
i · ∇N F

j dΩ . (39)

ith an element stabilization parameter calculated using Eq. (27).

.3. Structure semi-discrete equations

For the structure, we take the continuous formulation given by Eq. (17) as the starting point, and use Galerkin’s
ethod to derive a weak form of the structural mechanics problem. For this task, we adopt again isoparametrical

lements and the classical FEM formulation, approximating the structural displacement field and the interface forces
s:

uS(x, t) =

nS
n∑

i=1

N S
i (x) uS

i (t), λS(x, t) =

nS
n∑

i=1

φS
i (x) λS

i (t) (40)

here nS
n are the number of nodes of the structural mesh, N S

i the structural shape function corresponding to a
articular node (i) with displacements uS

i and φS
i the interface multiplier shape functions with nodal values λS

i used
o enforce the interface compatibility conditions.

After introducing the discrete displacements (40) into the variational form (17), a residual form of the dynamic
quilibrium equations for the structure is found and expressed as:

rS (üS, uS, λS)
= r̂S (üS, uS)

+ BSλS
= 0 (41)

ith components:{
rS
α

}
i =

∫
ΩS

ρS N S
i eα ·

{
üS

− bS} dΩ +

∫
ΩS

(
∇N S

i eα

)
· PS dΩ −

∫
ΓS

t

N S
i eα · tS dΓ +

∫
Γ

N S
i eα · λS dΓ (42)

here α = {x, y, z} is the direction and i = {1, . . . nn} the element node number.
Partial derivatives of the discrete structural residual produces the following finite element matrices:

MS
=

∂rS

∂üS , KS
=

∂rS

∂uS , BS
=

∂rS

∂λS (43)

orresponding respectively to the mass matrix, tangent-stiffness matrix and the boolean operator used to assemble
nterface localized Lagrange multipliers on the structure DOFs. These matrices are computed as:[

MS
αβ

]
i j

=

∫
ρF N F

i N F
j dΩ δαβ (44)
ΩS
e

13
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Fig. 5. Interface interpolation and connection with structure and fluid boundaries using localized Lagrange multipliers. On the left, classical-
LLM methodology is applied using linear shape functions for the interface and Dirac delta functions for the Lagrange multipliers. On the
right, combination of the LLM approach adopting mortar method on the fluid side with linear interpolation functions and an interface-structure
coincident mesh.

[
KS

αβ

]
i j

=

∫
ΩS

e

(
∂ N S

i

∂xδ

DS (λS, µS)
αδβγ

∂ N S
j

∂xγ

+
∂ N S

i

∂ Xδ

PS
δγ

∂ N S
j

∂ Xγ

δαβ

)
dΩ (45)

[
BS

αβ

]
i j

=

∫
ΓS

e

N S
i φS

j dΓ δαβ (46)

here the structural stiffness matrix is a nonlinear function of the structural displacements.

.4. Interface semi-discrete equations

The interface formulation is based on the method of localized Lagrange multipliers proposed by Park et al. [47]
or the coupling of non-matching interfaces. We assume non-matching spatial discretizations at the fluid and
tructure boundaries and the method introduces separated fields of Lagrange multipliers for each side, together
ith an independent field of displacements for the interface as shown in Fig. 5. For that purpose, the interface

urface Γ is discretized with classical finite elements and shape functions:

uI(x, t) =

nI
n∑

i=1

N I
i (x) uI

i (t) (47)

here N I
i are the interface shape functions and uI

i the interface nodal displacements. The discretization of the
nterface can be designed later for optimal accuracy of the information passing through the interface. This process
s addressed in the next section.

Therefore, as a result of applying Galerkin method to the continuous weak form of the interface problem (18),
e obtain a group of three linear relations:⎧⎪⎪⎨⎪⎪⎩

rF
I

(
vF, u̇I)

= BFTvF
− LFu̇I

= 0

rS
I

(
uS, uI)

= BSTuS
− LSuI

= 0

rI (λF, λS)
= −LFT

λF
− LST

λS
= 0

(48)

where
(
BF, BS

)
are Boolean extraction matrices that capture fluid and structure boundary degrees of freedom and

he interface coupling operators
(
LF, LS

)
computed as:[

LF
αβ

]
i j

=

∫
Γ

φF
i N I

j dΓ δαβ,
[
LS

αβ

]
i j

=

∫
Γ

φS
i N I

j dΓ δαβ (49)

imply relate the fluid and solid boundary velocities with the interface velocity. The third equation in (48) represents

he equilibrium condition of the interface.

14
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c

Finally, the preceding discrete residual equations for the fluid (28), the structure (41) and the interface (49),

onstitute a group of coupled non-linear equations with five independent variables
(
vF, uS, λF, λS, uI

)
. The fluid

pressure pF and the fluid-mesh displacements uM are treated as dependent variables.

6. Discrete Lagrange multiplier spaces

LLM formulation simply introduces independent fields of multipliers on each side of the interface without
restricting their respective discrete spaces and it is also supported on an interface discretization that can be freely
chosen. This flexibility makes possible to combine the proposed three field partitioned approach with different
mesh coupling methods like classical-LLM or mortar methods, for example. Both possibilities are contemplated as
follows.

Within the classical-LLM method, the Lagrange multiplier interpolation functions adopted on the fluid and
structure boundaries

(
φF

i , φS
i

)
are defined as Dirac delta functions, hence the interface projection matrices (49) are

easily computed as evaluations of the interface shape functions at the fluid and structure nodal locations
(
xF, xS

)
.

For the interface interpolation
(
N I

i

)
basic linear shape functions are normally used, see Fig. 5(left).

If it is preferred, a classical mortar approach can be adopted by defining an interface mesh that matches one
of the boundaries as illustrated in Fig. 5(right). For example, choosing φS

i = N S
i on the structure side combined

with an interface mesh matching the structure, i.e. N I
i = N S

i , while φF
i = N F

i on the fluid side. With this particular
selection of multiplier spaces, the structure interface coupling operator LS becomes an identity matrix and the fluid
coupling operator is a classical mortar projector LF

= D−1M computed with the mortar matrices:[
Dαβ

]
i j =

∫
Γ

φF
i N F

j dΓ δαβ,
[
Mαβ

]
i j =

∫
Γ

φF
i N I

j dΓ δαβ (50)

where every slave node on the fluid boundary also serves as coupling node.

Remark 1. When comparing the complexity and computational cost of classical-LLM and MM one realizes that
one alternative is not clearly better than the other. Each one of them possesses its advantages and inconveniences. For
example, classical-LLM combined with Dirac delta functions eliminates the interface integration process required
by MM but introduces the difficulty of constructing an optimal interface discretization.

In any case, localization of multipliers avoids the non-unique definition problem at corner and cross-points
proposed in the method of classical Lagrange multipliers and also facilitates the partitioned solution of FSI problems
as will be demonstrated in the following sections.

7. Construction of the LLM interface mesh

The classical-LLM formulation mentioned in the previous section relies on the assumption that there exists a
discretization for the frame representing the fluid–structure interface. But the problem of defining a mesh for the
interface frame is not unique if the fluid and structure mesh are non-matching [48]. For example, one could construct
a frame mesh coincident with the structure discretization at the interface, or with the fluid discretization, or to define
a different mesh between those two. However, these arbitrary choices in general will not satisfy the force patch test
through the interface [49].

For constructing an interface mesh that satisfies the requirement of unicity and passes the force patch test, the
node locations of the interface frame are decided using the Zero Moment Rule (ZMR) originally proposed for
contact-impact problems [50]. The main concept behind the ZMR is to assure that the LLMs can exactly transmit
a constant stress state through the interface frame, thus passing the patch test. This condition can be satisfied if the
interface node locations are determined by the roots of the frame moment-equilibrium condition.

A 2D interface construction process is schematized in Fig. 6, in which nodal positions of the fluid interface xF

and the structure interface xS are considered known and a bending moment diagram M(x; xF, xS), due to the nodal
forces corresponding to a constant stress state, is constructed. The ZMR states that, for preservation of constant-
stress states, the location of the frame nodes xb must coincide with the roots of M(x). This rule can be expressed
as: ( I F S)
M x ; x , x = 0 (51)
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J.A. González and K.C. Park Computer Methods in Applied Mechanics and Engineering 414 (2023) 116134

x
a

w

f
n
n

8

l
f
s
i
s
a

a

Fig. 6. Classical LLM interface mesh construction from a defined position of the fluid boundary nodes xF and structure boundary nodes
S. The interface nodes are located at xI, the zero-moment roots of the bending moment diagram M(x) produced by the multiplier forces
cting on the interface.

here M0 represents the roots of the bending moment function for certain position of the fluid and the structure.
There exists a number of different works in the literature treating the problem of constructing LLM interfaces

or more complex cases. For example, the coupling of different numerical methods [51], treating pathologies of
onmatching meshes with gap elements [52–54] and automatic methods for the construction of LLM interfaces for
onmatching 3D meshes [55].

. Time integration

Generalized α-method is a general time-integrator with second-order accuracy and very small dissipation in the
ow frequency range, initially proposed by Chung and Hulbert [56] as an extension of the HHT α-method [57]
or the time integration of the second-order equations of structural dynamics. The method was later extended to
olve the first-order Navier–Stokes equations by Jansen [58] and analyzed for FSI problems in [59]. To describe
ts incorporation into the formulation, let us first divide the time interval of interest [0, T ] into a sequence of
ubintervals (tn, tn+1) with fixed time-step size ∆t = tn+1 − tn . The classical Newmark formulas are then applied to
pproximate velocities and displacements at next time step (n + 1) using information from the previous time step

(n) in the following form, for the fluid:

vF
n+1 = vF

n + ∆t
{
(1 − γ )v̇F

n + γ v̇F
n+1

}
= vF

p + δv v̇F
n+1 (52)

nd equivalently for the structure:{
u̇S

n+1 = u̇S
n + ∆t

{
(1 − γ )üS

n + γ üS
n+1

}
= u̇S

p + δvüS
n+1

uS
n+1 = uS

n + ∆t u̇S
n + ∆t2 {( 1

2 − β)üS
n + βüS

n+1

}
= uS

p + δu üS
n+1

(53)

where (γ, β) ∈ [0, 1] are the Newmark time integration parameters; δv = γ∆t and δu = β∆t2 are contribution
factors of the next-time acceleration to the velocity and displacement vectors; and the velocity predictions u̇F

p and
u̇S

p, together with the structural displacement prediction uS
p that are introduced to simplify upcoming expressions.

Next, the different terms of the semi-discrete equations are evaluated by separately averaging, between both
time instants (tn, tn+1), the inertia forces and the internal/external forces. To do that, two time averaging parameters
(αm, α f ) ∈ [0, 1] are introduced to define separately the time instants for the evaluation of inertia forces and
internal/external forces respectively. This average is defined for the fluid:{

v̇F
n+αm

= v̇F
n + αm

(
v̇F

n+1 − v̇F
n

)
vF

n+α f
= vF

n + α f
(
vF

n+1 − vF
n

) (54)

and similarly for the structure:{
üS

n+αm
= üS

n + αm
(
üS

n+1 − üS
n

)
uS

= uS
+ α

(
uS

− uS) (55)

n+α f n f n+1 n
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where inertia terms are computed at instant (n + αm) and internal/external terms at instant (n + α f ). The specific
value of the time averaging parameters (αm, α f ) is selected in order to maximize the accuracy and stability of
the algorithm. Note also that different time integration methods can be reproduced by a proper selection of these
parameters. In particular, αm = α f = 0 corresponds to the Newmark method, αm = α f =

1
2 to the Midpoint

lgorithm and αm = 1 with α f = α to the HHT α-method.
A final important aspect to discuss is the selection of the time-integration parameters. The optimal value of these

arameters is not the same for structural dynamics than for fluid dynamics and here we give priority to the stability
f the fluid solution. It is known that for the first-order linearized Navier–Stokes equations [58], the generalized
-method provides unconditional stability if the time averaging parameters satisfy the condition:

1
2 ≤ α f ≤ αm (56)

hile second-order accuracy is obtained with an specific choice of the time integration parameters:

γ =
1
2 + αm − α f , β =

1
4 (1 + αm − α f )2 (57)

ntroducing into the solution a small numerical damping of intensity controlled by the values of the two averaging
arameters αm and α f . These time averaging parameters can be selected from a desired spectral radius at infinity
ondition by using the expressions:

αm =
1
2

(
3 − ρ∞

1 + ρ∞

)
, α f =

1
1 + ρ∞

(58)

here ρ∞ ∈ [0, 1] is the spectral radius at infinity and its value can be used as a single parameter to control the
igh-frequency dissipation with the guarantee that second-order accuracy and unconditional stability are maintained.

. Monolithic quasi-direct FSI solver with LLMs

The finite element formulations described in Section 5 lead to a group of coupled nonlinear equations that need
o be solved for each time step of the simulation. In particular, note that the discrete ALE fluid momentum residual
quation in (28) presents an implicit dependence on the mesh velocity u̇M. This means that a full linearization of
he fluid residual would need to include the derivatives with respect to the mesh deformation, i.e., the so-called
hape derivatives. However, it is a common practice to disengage the mesh motion from the coupled FSI problem
y assuming a small influence of the fluid-mesh variation. This approach is known as quasi-direct coupling [60–62].

By adopting a quasi-direct approach, the formulation of the coupled FSI problem starts by collecting the
ndividual residual contributions coming from the fluid conserving equations (28), the structure equations (41) and
he interface equations (48), in a semi-discrete residual with the form:

r (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

rF
m

(
v̇F, vF, pF, λF)

rF
c

(
v̇F, vF, pF

)
rS
(
üS, uS, λS)

rF
I

(
vF, u̇I

)
rS

I

(
uS, uI

)
rI
(
λF, λS)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r̂F
m

(
v̇F, vF, pF

)
+ BFλF

rF
c

(
v̇F, vF, pF

)
r̂S
(
üS, uS

)
+ BSλS

BFTvF
− LFu̇I

BSTuS
− LSuI

−LFT
λF

− LST
λS

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= 0 (59)

where z =
(
v̇F, pF, üS, λF, λS, üI

)
is the global vector with the problem unknowns.

Next step is to discretize in the time the residual (59) by using the generalized α-method described in Section 8.
This way, the time collocation equations are given by:

r (zn+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r̂F
m

(
v̇F

n+αm
, vF

n+α f
, pF

n+1

)
+ BFλF

n+1

rF
c

(
v̇F

n+αm
, vF

n+α f
, pF

n+1

)
r̂S
(

üS
n+αm

, uS
n+α f

)
+ BSλS

n+1

BFTvF
n+1 − LFu̇I

n+1

BSTuS
n+1 − LSuI

n+1
FT F ST S

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= 0 (60)
−L λn+1 − L λn+1
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satisfying dynamic equilibrium and compatibility of the three systems at the interface. Inertia forces are evaluated
at intermediate step (n + αm), internal/external forces at a different middle step (n + α f ), while the constraints are
fulfilled at the end of the time-step (n + 1).

The system of simultaneous equations (60) is nonlinear, in general, and can be solved using Newton–Raphson
method. Let subscript (i) now denote the Newton method iteration step and zi the solution estimate in the i th
iteration step. At the beginning of the iteration loop, a first guess z0 is required, which can usually be chosen as the
solution at previous time step tn , i.e., z0 = zn . Then, a linearization of the residual is used to find the next solution
estimate zi+1 = zi + ∆zi by solving the linear system:

J (zi ) ∆zi = −r (zi ) (61)

where the full Jacobian matrix defined as:

J (z) =
∂r
∂z

(62)

and the iteration process is repeated until the norm of the residual falls below a certain epsilon ∥r (zi+1)∥ < ε.
In our case, the Jacobian of system (61) is constructed by collecting contributions from the partial derivatives of

he different residuals; corresponding to the fluid momentum conservation (31), the fluid incompressibility constraint
36), the structure dynamic equilibrium (43) and the linear interface constraints (48), ordered in the linear system:⎡⎢⎢⎢⎢⎢⎢⎢⎣

JF
mm JF

mc 0 BF 0 0
JF

cm JF
cc 0 0 0 0

0 0 JS 0 BS 0
BFT 0 0 0 0 −LF

0 0 BST 0 0 −LS

0 0 0 −LFT
−LST 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∆v̇F

∆pF

∆üS

λF

λS

∆üI

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
= −

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r̂F
m

rF
c

r̂S

0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(63)

here the contributions from the fluid subsystem are given by the expressions:

JF
mm = αmMF

+ α f δvCF, JF
mc = GF (64)

JF
cm = αmTF

+ α f δvDF, JF
cc = SF (65)

nd for the structure:

JS
= αmMS

+ α f δuKS, (66)

ith some secondary terms, related with the stabilization residuals, that have been discarded.
Strictly speaking, the solution scheme should be considered a quasi-direct Newton method because the position

f the fluid ALE mesh should be updated between iterations. The different steps of a monolithic solution algorithm
re described in Algorithm 1.

Algorithm 1: Monolithic quasi-direct FSI solver with LLMs

Assume that the solution process has progressed until time level n. Apply Newton–Raphson
predictor–corrector method for the new solution at time n + 1 using the following steps.

Step 1: Predictor step. At this stage, given the solution at time level tn , we predict the solution at time
level tn+1 using previous information:

⎧⎪⎨⎪⎩
v̇F

0 =
(γ−1)

γ
v̇F

n

vF
0 = vF

n

pF
0 = pF

n

⎧⎪⎨⎪⎩
üS

0 =
(γ−1)

γ
üS

n

u̇S
0 = u̇S

n

uS
0 = uS

p + δu üS
0

⎧⎪⎨⎪⎩
üI

0 =
(γ−1)

γ
üI

n

u̇I
0 = u̇I

n

uI
0 = uI

p + δu üI
0
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where the subscript n + 1 represents value at the current iteration. This choice corresponds to the
same velocity predictor, meaning that the initial guess for the fluid velocity at time level tn+1 is the
velocity from time level tn .

Step 2: Multicorrector step. At this stage, we iterate on the solution until the residual equations are satisfied.
For this, we repeat the following steps for i = 0, 1, . . . , imax , where i is the iteration counter and imax

is the maximum number of nonlinear iterations specified for the current time step.

Step 3: Evaluate at the intermediate time levels:

{
v̇F

n+αm
= v̇F

n + αm
(
v̇F

i − v̇F
n

)
vF

n+α f
= vF

n + α f
(
vF

i − vF
n

) {
üS

n+αm
= üS

n + αm
(
üS

i − üS
n

)
uS

n+α f
= uS

n + α f
(
uS

i − uS
n

)
Step 4: Use the intermediate values to assemble the linear system of equations (63) corresponding to the

linearization with respect to the nodal unknowns:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

JF
mm JF

mc 0 BF 0 0
JF

cm JF
cc 0 0 0 0

0 0 JS 0 BS 0
BFT 0 0 0 0 −LF

0 0 BST 0 0 −LS

0 0 0 −LFT
−LST 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∆v̇F
i

∆pF
i

∆üM
i

λF
i

λS
i

∆üI
i

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
= −

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r̂F
m

rF
c

r̂S

0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
Step 5: Update the solution:

⎧⎪⎨⎪⎩
v̇F

i+1 = v̇F
i + ∆v̇F

i

vF
i+1 = vF

i + δv∆v̇F
i

pF
i+1 = pF

i + ∆pF
i

⎧⎪⎨⎪⎩
üS

i+1 = üS
i + ∆üS

i

u̇S
i+1 = u̇S

i + δv∆üS
i

uS
i+1 = uS

i + δu∆üS
i

⎧⎪⎨⎪⎩
üI

i+1 = üI
i + ∆üI

i

u̇I
i+1 = u̇I

i + δv∆üI
i

uI
i+1 = uI

i + δu∆üI
i

Step 6: Calculate new position of the fluid mesh using the interface advance:

[
KM BM

BMT 0

]{uM
i+1

λM
i+1

}
=

{
0

LMuI
i+1

}
Step 7: Evaluate the global residual r (zi+1) and if ∥r (zi+1)∥ > ϵ, increment iteration count i = i + 1 and

return to Step 2 .

The dimension of the linear system appearing in Step 4 makes difficult the application of this monolithic solution
lgorithm to very large problems. Therefore, a partitioned method is preferred. This is the solution approach
iscussed in the next Section.

0. Partitioned FSI solver with LLMs

With the aim of decreasing the computational costs entailed by the monolithic scheme, favoring software
odularity and parallelization, we introduce now the so-called interface driven partitioned scheme. We proceed
implifying system (63) by retaining only the fluid, structure and interface accelerations, together with the Lagrange
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multipliers, to yield the following system:⎡⎢⎢⎢⎢⎢⎣
JF 0 BF 0 0
0 JS 0 BS 0

BFT 0 0 0 −LF

0 BST 0 0 −LS

0 0 −LFT
−LST 0

⎤⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∆v̇F

∆üS

λF

λS

∆üI

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = −

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r̂F

m

r̂S

0
0
0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (67)

eliminating the fluid and structure kinematic variables:⎡⎢⎣MF
b
−1 0 LF

0 MS
b
−1 LS

LFT LST 0

⎤⎥⎦
⎧⎨⎩

λF

λS

∆üI

⎫⎬⎭ =

⎧⎨⎩
âF

b

âS
b

0

⎫⎬⎭ (68)

with subsystem equivalent mass-matrices:

MF
b =

[
BFTJF−1BF

]−1
, MS

b =

[
BSTJS−1BS

]−1
(69)

and corresponding boundary residual accelerations:

âF
b = −BFTJF−1r̂F

m, âS
b = −BSTJS−1r̂S (70)

for the fluid and the structure, respectively.
A solution of the AFETI problem (68) provides the unknown interface displacement increments needed to

perform a completely uncoupled NR subiteration solving in parallel the fluid and structure domains. Very efficient
iterative parallel algorithms exist to solve this interface problem exactly, see [63] and references therein, however
only a sufficiently good approximation of its solution is required to continue with the NR iterations. This distinct
aspect of the partitioned algorithm is described next.

10.1. Approximate solution of the interface problem

We can go one step further in (68) by eliminating the localized Lagrange multipliers to finally obtain the dynamic
equations of motion for the interface:[

MF
I + MS

I

]
∆üI

= LFTMF
b âF

b + LSTMS
b âS

b (71)

where the interface equivalent mass-matrices emerge from the fluid and structure side defined as:

MF
I = LFTMF

bLF, MS
I = LSTMS

bLS (72)

that are obtained as projections of the individual system equivalent mass-matrices on the non-matching interface
using the coupling operators. The assembly and solution of the interface system (71) depends significantly on the
number of interface degrees of freedom. Normally, this number is closer to the coarser boundary discretization
allowing to obtain a good computational model of the fluid–structure interaction at relatively low computational
cost.

Remark 2. The interface dynamic equilibrium equation (71) reveals that the interface acceleration increment
is calculated from an equivalent mass-matrix average of the fluid and structure interface residual accelerations
(70). These residuals can be computed independently and in parallel. However, to proceed with the solution and
update of the interface, we also need to calculate the boundary equivalent mass-matrices (69) and these terms are
computationally expensive.

We have seen that the main difficulty for an efficient solution the interface problem lies in the computation
of the boundary equivalent mass-matrices. Nevertheless, according to the interface dynamic equilibrium equation,
these matrices are only needed to calculate the interface acceleration by performing a mass-average of the system

interface accelerations and then continue with the NR iterations. This means that the mass-average part of the serial
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i

Fig. 7. Proposed interface-centered coupled four-field approach for the solution of FSI problems with LLMs. First, fluid and structure
nterface residuals are received by the Interface system to calculate its displacements uI. Then, the interface boundary advances are sent to

the Structure and Dynamic Mesh systems. Finally, the state of the Structure and the Fluid systems are recalculated independently and in
parallel.

computation could be approximated, while the interface accelerations are calculated independently and in parallel.
For the former task, we construct the following approximations of the equivalent boundary mass matrices:

M⊛
b =

[
B⊛TJ⊛−1B⊛

]−1
≈

{
B⊛TJ⊛B⊛ lumped approximation
B⊛TS⊛B⊛ Dirichlet approximation

(73)

with superscript ⊛ indicating either fluid or structure domains and where S⊛ is the Schur complement of the Jacobian
matrix reduced to the interface DOFs. Note that these are the two classical preconditioners used in AFETI methods
for the iterative solution of coupled interface problems. Although the Dirichlet approximation is more accurate, a
computation of the Schur complement of the Jacobian for every NR iteration is very costly. Due to its economy,
the lumped approximation of the equivalent boundary mass-matrix is preferred and adopted in this work.

The proposed partitioned algorithm is schematically represented in Fig. 7 and described in Algorithm 2.

Algorithm 2: Partitioned FSI solver with LLMs

Assume that the solution process has progressed until time level n. Apply Newton–Raphson
predictor–corrector method for the new solution at time n + 1 using the following steps.

Step 1: Predictor step. At this stage, given the solution at time level tn , we predict the solution at time
level tn+1 using previous information:

⎧⎪⎨⎪⎩
v̇F

0 =
(γ−1)

γ
v̇F

n

vF
0 = vF

n

pF
0 = pF

n

⎧⎪⎨⎪⎩
üS

0 =
(γ−1)

γ
üS

n

u̇S
0 = u̇S

n

uS
0 = uS

p + δu üS
n+1

⎧⎪⎨⎪⎩
üI

0 =
(γ−1)

γ
üI

n

u̇I
0 = u̇I

n

uI
0 = uI

p + δu üI
n+1

where the subscript n + 1 represents value at the current iteration. This choice corresponds to the
same velocity predictor, meaning that the initial guess for the fluid velocity at time level tn+1 is the
velocity from time level tn .

Step 2: Multicorrector step. At this stage, we iterate on the solution until the residual equations are satisfied.
For this, we repeat the following steps for i = 0, 1, . . . , imax , where i is the iteration counter and imax

is the maximum number of nonlinear iterations specified for the current time step.

Step 3: Parallel stage. Compute interface residual accelerations.

Step 3.1: Evaluate the iterates at the intermediate time levels:
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i

{
v̇F

n+αm
= v̇F

n + αm
(
v̇F

i − v̇F
n

)
vF

n+α f
= vF

n + α f
(
vF

i − vF
n

) {
üS

n+αm
= üS

n + αm
(
üS

i − üS
n

)
uS

n+α f
= uS

n + α f
(
uS

i − uS
n

)
Step 3.2: Solve in parallel fluid and structure to find the boundary accelerations:

[
JF

mm JF
mc

JF
cm JF

cc

]{
âF

p̂F

}
=

{
−r̂F

m

−rF
c

}
→ âF

b = BFTâF

JSâS
= −r̂S

b → âS
b = BSTâS

Step 4: Serial stage. Solve interface problem to update interface location.

Step 4.1: Solve the interface dynamic equilibrium equation for the interface accelerations update:

[
MF

I + MS
I

]
∆üI

i = LFTMF
b âF

b + LSTMS
b âS

b

Step 4.2: Actualize the position of the interface at time tn+1:

⎧⎪⎨⎪⎩
üI

i+1 = üI
i + ∆üI

i

u̇I
i+1 = u̇I

i + δv∆üI
i

uI
i+1 = uI

i + δu∆üI
i

Step 5: Parallel stage. Update fluid and structure with new interface location.

Step 5.1: Calculate new position of the fluid mesh using the interface advance:

[
KM BM

BMT 0

]{uM
i+1

λM
i+1

}
=

{
0

LMuI
i+1

}
Step 5.2: Solve in parallel the fluid and the structure with the updated interface accelerations:

⎡⎢⎣JF
mm JF

mc BF

JF
cm JF

cc 0

BFT 0 0

⎤⎥⎦
⎧⎪⎨⎪⎩
∆v̇F

i

∆pF
i

λF
i

⎫⎪⎬⎪⎭ =

⎧⎨⎩ −r̂F
m

−rF
c

LF∆üI
i

⎫⎬⎭
[

JS BS

BST 0

]{
∆üS

i
λS

i

}
=

{
−r̂S

LS∆üI
i

}

Step 5.3: Update the tn+1 solution of the fluid and the structure:

⎧⎪⎨⎪⎩
v̇F

i+1 = v̇F
i + ∆v̇F

i

vF
i+1 = vF

i + δv∆v̇F
i

pF
i+1 = pF

i + ∆pF
i

⎧⎪⎨⎪⎩
üS

i+1 = üS
i + ∆üS

i

u̇S
i+1 = u̇S

i + δv∆üS
i

uS
i+1 = uS

i + δu∆üS
i

Step 6: Evaluate the global residual r (zi+1) and if ∥r (zi+1)∥ > ϵ, increment iteration count i = i + 1 and
return to Step 2.

The proposed partitioned is composed of three important stages. In Step 3.2 fluid and structure are solved
ndependently without boundary conditions to find the free interface boundary accelerations. Then, Step 4.1 solves
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Fig. 8. Submerged cylinder. Geometry configuration with dimensions and boundary conditions (left) and finite element mesh used for the
computations with 4996 linear triangular elements and 2548 nodes (right). A very refined mesh is needed around the cylinder to capture
the drag force accurately.

the dynamic interface equation of motion using previously calculated boundary forces coming from the fluid and
the structure. Finally, once it is known the new interface position, Step 5.2 solves separately fluid and structure with
known interface boundary accelerations.

Remark 3. Note that in the proposed partitioned Algorithm 2, the fluid and structure localized Lagrange multipliers
have been eliminated and they do not participate in the solution process. They only appear separately in Step 5.2
as the boundary forces needed to enforce the boundary constraints dictated by the known interface motion

11. Numerical examples

The following examples serve to illustrate the capabilities verify the results of the proposed partitioned
formulation for modeling and simulation of FSI problems. The tests are presented in ascending order of complexity,
including FSI cases of rigid bodies combined with Eulerian and ALE descriptions of the fluid, followed by more
complicated FSI problems with flexible structures.

In the simulations, ALE-VMS formulation is applied for the fluid with triangular finite elements and equal order
for velocity and pressure using the stabilization parameter described in (27). For the fluid mesh updating, artificial
elastic properties EM

e = 1 and νM
= 0.3 have been used as defined in (23) with linear variation of the stiffness based

n the element size. The structure displacements are discretized using four-node quadrilateral finite elements and
he solid material model in the flexible cases is compressible Neo-Hookean (12). Time integration is always made
ith the Generalized-α method using an spectral radius ρ∞ = 0.5 which provides an adequate balance between

ccuracy and robustness.

1.1. Cylinder accelerating on still fluid

This first example is taken from [41] and considers the case of a rigid cylinder of diameter D = 1 m submerged
n still fluid that accelerates under the action of an increasing external force f (t), see Fig. 8(left). The problem is
olved using a reference system moving with the cylinder and adopting an Eulerian description of the fluid motion
round the structure. This means that the fluid mesh is fixed with uM

= 0 and no dynamic mesh solver is required.
or the fluid properties, density ρF

= 1 kg/m3 and viscosity µF
= 0.01 N m/s are considered.

On the structure side, it is assumed that the cylinder has density ρS
= 1 kg/m3, hence its total mass is mS

= ρSV S

S 1π D2 is the volume of the cylinder per unit length. The structure is modeled as a free point mass mS
here V = 4
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s

Fig. 9. Cylinder accelerating on still fluid. Velocity of the cylinder compared with the analytical Morison’s formula computed with added
mass coefficient Ca = 1 and drag coefficient Cd = 1 (left). Contour of velocity magnitudes with fully developed flow around the cylinder
at time t = 20 s (right).

with an applied external force f S and a reaction from the fluid λS. Therefore, the structure residual can be written:

rS(uS, λS) = mSüS
− f S

+ λS
= 0 (74)

where the external force applied on the structure is considered to vary in time according to the law:

f S(t) =

{
0.3 (1 − cos (π t/t1)) for t ≤ t1
0.6 for t > t1

(75)

increasing monotonically up to time t1 = 10 s and then maintained constant until a stationary equilibrium is reached.
Then, the fluid–structure interface is modeled as single point with velocity u̇I

= u̇S that is connected through the
coupling matrix LF

= [0 1 . . . 0 1]T to all the vertical components of the fluid boundary velocities by a group of
localized Lagrange multipliers λF.

A theoretical solution of this problem can be approximated by adopting the Morison semi-empirical equation to
model the fluid reaction acting on the cylinder [64]. The equation of motion is then obtained by equilibrating the
external force with the Morison force to yield the expression:

f S(t) = fi + fa + fd = ρSV SüS
+ ρFCa V SüS

+
1
2ρFCd ASu̇S

|u̇S
| (76)

where fi = ρSV SüS is the cylinder inertia force, fa = ρFCa V SüS is the hydrodynamic mass force with Ca the
added mass coefficient, fd =

1
2ρFCd ASu̇S

|u̇S
| is the drag force with the drag coefficient Cd and AS

= D is the
frontal area per unit length, e.g. the cross-sectional area of the body perpendicular to the flow direction.

The solution of this ODE for constant added mass coefficient Ca = 1 and drag coefficient Cd = 1 is presented
as Morison in Fig. 9(left). It is observed that the velocity gained by the cylinder is approximately u̇S

= 1 m/s when
the external force reaches its maximum at instant t1 and it rapidly decelerates until the constant external force is
equilibrated with the fluid drag force. This equilibrium condition occurs with a final steady velocity of the cylinder
u̇S

=

√
f S(t1)/

( 1
2ρFCd AS

)
= 1.095 m/s corresponding to a Reynolds number Re = 109.5. Note that Morison

olution is only an approximation because the drag coefficient Cd varies with the Reynolds number, an effect that
can be taken into account by including a finite element model for the fluid.

For the finite element solution of the problem, see Fig. 8(right), a square domain of side H/D = 30 is considered
around the cylinder that is discretized using a mesh of 2548 nodes and 4996 stabilized triangular elements with
linear approximation of velocities and pressure. The fluid mesh presents a strong refinement near the cylinder surface
in order to capture correctly the boundary layer and obtain a good approximations of the drag force during the

cylinder acceleration. The maximum–minimum ratio of mesh element sizes is 180 and no slip boundary conditions
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are enforced on the interface. For the external fluid boundaries, zero vertical velocity is assumed on the top and
bottom sides of the fluid domain together with outflow boundary condition on the left side.

The coupled FSI equations are successfully integrated with time-step ∆t = 0.1 s by performing only N = 3 NR
terations per time-step. The structure velocity is compared with Morison in Fig. 9(left) where it is observed that the
btained drag force is perfectly stable. It is also presented in Fig. 9(right) a snapshot at time t = 20 s of the fluid

velocity magnitudes around the cylinder. At this particular instant, with a steady state velocity u̇S
= 1.21 m/s, the

obtained numerical drag coefficient is Cd ≈ 0.82. The numerical solution approximates well the Morison solution
during the cylinder acceleration until this instant. Note that the obtained value of drag coefficient can be influenced
by the finite size of the cavity and also affected by a poor resolution of the wake behind the cylinder at higher
Reynolds.

11.2. Vortex-induced vibrations of an elastically supported cylinder

In this second example, we analyze the stability of the proposed scheme by studying the case of a rigid cylinder
in cross flow. The problem considers a rigid cylinder of diameter D = 0.1 m, attached to an elastic spring of
stiffness kS and immersed in a two-dimensional channel of length L/D = 20 and height H/D = 10 as sketched
in Fig. 10(top). The cylinder is placed in the middle of the channel section with the center located at coordinate
x/D = 5 downstream of the inflow section and allowed to move with one degree of translational freedom in the
vertical direction.

The analytical solution for a fully developed laminar channel flow is used as inflow condition, with a parabolic
elocity profile given by vx (y)/vmax = (y/H )(2−y/H ) with maximum value vmax = 15 m/s and mean v̄x =

2
3vmax .

relatively coarse unstructured mesh of 1470 triangular linear elements and 803 nodes is used to model the fluid, see
ig. 10(bottom). No-slip boundary conditions are enforced at the channel walls and outlet conditions are prescribed
n the right side, allowing vortices to leave the integration domain without significant disturbances. The fluid is
ssumed incompressible with density ρF

= 1 kg/m3 and viscosity µF
= 0.01 N m/s. Based on the mean inflow

elocity, the Reynolds number of the flow is Re = 100.
Experimentally, for fixed cylinders at Reynolds number above 40, small oscillations in the wake induce

symmetry and finally the wake starts shedding vortices into the stream. This situation is termed as onset of
eriodicity and the wake keeps on undulating up to a Reynolds number of 90 when eddies are shed alternately
rom top and bottom sides of the cylinder and a regular pattern of alternately shed clockwise and counterclockwise
ortices form the Von Karman vortex street. In non-dimensional form, the vortex shedding frequency is expressed as
t = ωD/v̄x known as the Strouhal number. The Strouhal number for fixed cylinders shows a slight but continuous
ariation with Reynolds number [65], reaching St = 0.165 for Re = 100 which represents an alternating vortex
etachment with frequency 21 Hz.

Our cylinder with density ρS
= 2 kg/m3 and mass mS

= ρSV S
= 0.0157 kg is attached to a linear spring of

tiffness kS
= 100 N/m and restricted to move in the vertical direction. This means that the in-vacuo natural

requency of the structure is ωS
n = 12.7 Hz. Based on this frequency and in order to obtain a resolution of

bout 15 points per oscillation, a time-step integration ∆t = 1/200 s is selected. Then, the problem is solved
or N = (2, 5, 10) using different number of NR iterations per time-step.

The results presented in Fig. 11(left) show the history of the vertical displacement obtained for the cylinder, where
t is observed that the coupled system behaves as an undamped harmonic oscillator. After a short initial transient of
bout 0.3 s, a stable harmonic oscillation is achieved with a frequency of approximated frequency ωS

= 15.2 Hz so
S/ωS

n = 1.2. It is also shown in Fig. 11(right) the last interface displacement increment performed by the cylinder
fter N = {2, 4, 8} NR iterations of the partitioned solver.

The problem is solved for three different numbers N = {2, 4, 8} of NR iterations and it is observed that the
btained results are very close for the three cases. In Fig. 11(left) it is represented the cylinder displacement history
btained for N = 4, where it is observed that the coupled system behaves as an undamped harmonic oscillator.
fter a short initial transient of 0.3 s it is achieved a stable harmonic oscillation of frequency ωS

= 15.2 Hz which
epresents a numerical Strouhal number St = 0.152 and a forcing frequency ratio ωS/ωS

n = 1.2 over the structure
atural frequency. The increments of interface displacement obtained after N NR iterations are represented with
ime in Fig. 11(right). Approximately, one order of magnitude is reduced per iteration until N = 4 on the interface
isplacement and we are moving the interface at the scale of 10−4. It is noted that the convergence is not quadratic

ecause the interface problem solved in each NR iteration is not exact.

25
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t

Fig. 10. Elastically supported circular cylinder in a cross flow. Geometry configuration and finite element mesh of the fluid with 1470
riangular elements and 803 nodes.

Fig. 11. Flow past an elastically supported cylinder. Vertical displacement history of the cylinder (left) and interface displacement increment
after performed N = {2, 4, 8} NR iterations of the proposed partitioned solver (right).
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Fig. 12. Flow past an elastically supported cylinder for Re = 100. Snapshots with velocity magnitude contours of the cylinder oscillating
due to the development of vortex shedding. Eddies are shed alternately from the laminar separation points on either side of the cylinder
with Strouhal number St = 0.152.

It is well known that at high oscillation amplitudes the vortices coalesce in the wake of the cylinder, in contrast
to low-amplitude cylinder oscillation where the alternating eddies detach and vortex shedding occurs. This is the
effect we can observe in Fig. 12, that shows snapshots at different instants of the cylinder position with contours of
velocity magnitude in the fluid, with the position of the attached eddies and the development of the Von Karman
vortex street. It is remarkable that, with such a crude mesh, the method is able to capture the basic phenomena with
a numerical Strouhal number St = 0.152 very close to the experimental value.

1.3. Channel flow with a flexible wall

In this case we consider a pressure-induced Poiseuille flow inside a two-dimensional channel of section B/H = 2
nd length L/H = 7 with H = 1 m. The duct has bimaterial walls of thickness t/H = 0.1 that are flexible at
oordinates x/H ∈ [0, 5] and rigid elsewhere; see the geometry represented in Fig. 13(top) where only half part of
he problem, which is symmetrical about plane y = 0, is shown.

On the left side of the channel it is considered an entry flow that presents a fully developed parabolic velocity
rofile vx (y)/vmax = 1 − (y/H )2 with maximum velocity value vmax = 1.5 m/s and mean inflow velocity

¯x = 1 m/s. Symmetry boundary condition vy = 0 is applied at plane y = 0 and zero velocity condition is
nforced on the wet walls of the duct, either rigid or flexible zones. A pressure p = 0 is assumed to be acting on
he external side of the wall while, on the right side of the channel, an outflow boundary condition with the same
ressure is applied.
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Fig. 13. Viscous flow through a closed channel with flexible wall section. Symmetry conditions are applied and only half of the channel
section is modeled (top). Part of the boundary contains a thin elastic strip that deforms due to the internal and external pressure difference.
The external pressure is assumed to be zero and the initial flow condition inside the channel corresponds to a laminar parabolic flow profile.

The fluid properties are density ρF
= 1 kg/m3 and viscosity µF

= 0.01 N m/s, hence the Reynolds number of
the flow based on the total section of the duct and the mean inflow velocity is Re = 200. The flexible material
of the wall is assumed to be hyperelastic compressible neo-hookean with density ρS

= 100 kg/m3 and equivalent
elastic properties: Elastic modulus ES

= 30 Pa and Poisson coefficient νS
= 0.3.

In Fig. 13(bottom), it is represented the mesh used for the fluid and the structure. The fluid domain is discretized
with 1470 linear triangular elements and 803 nodes. For the structure, only the flexible part of the wall is modeled.
For that purpose, 20 quadrilateral elements are defined in contact with the fluid and zero displacement boundary
conditions are applied on the connections with the rigid walls. The fluid–structure interface presents non-matching
meshes with two fluid triangles per structural element and its mesh is constructed according to the procedures
described in Section 7.

For this particular example, mortar method will be used to compute the coupling operators as described in
Section 6. The problem is solved with a time-step size ∆t = 0.1 s and performing N = 3 Newton–Raphson
iterations per time-step. It is noted that the solution is mainly governed by the external pressure applied on the
external part of the flexible wall, deciding whether the flexible wall section deforms inwards or outwards. Also the
viscosity of the fluid plays an important role on the system response, where high viscosity results in much greater
damping of structural vibrations. Snapshots of the flow field are shown in Fig. 14 where a progressive deformation
of the flexible wall is observed (see Fig. 15).

The history of vertical displacements at the center and left quarter of the flexible interface are represented in
Fig. 15(left) and compared with results obtained by W. A. Wall [66] that originally proposed this FSI benchmark
problem and solved it using mortar method. Possible added-mass effects on the stability of the partitioned solver
are investigated in Fig. 15(right) by decreasing the structure density. It is with the lowest solid–fluid density ratio
ρS/ρF

= 5 that added-mass effects are expected to play an important role. However, no instabilities or convergence
difficulties are observed.

The internal dynamic pressure of the fluid produces a slow balloon inflation effect, deforming the wall and
recirculating part of the fluid inside the growing bump. In Fig. 16(left) it is represented the history of input and
output mass flows on the duct showing that, although the input flow remains constant by boundary condition, the
output mass temporally decreases due to fluid accumulation inside the bump. This inflation slowly progresses for
almost a minute until it reaches equilibrium.

Fig. 16(right) shows the fluid mass accumulated in the duct, obtained as the time integral of the mass flows
difference. Considering the fluid density, it is deduced that the total channel volume increases in 2.13 m3. Under

this relatively high deformation, the fluid mesh retains a good aspect ratio on its elements.
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Fig. 14. Channel flow with flexible wall. Snapshots of the flow velocity field at different time instants during progressive wall deformation.

Fig. 15. Channel flow with flexible wall. Vertical displacements in the middle and left quarter of the flexible structure (left). Influence of
he structural density on the vertical displacements at the midpoint of the flexible interface (right).

1.4. Flow past a flexible strip attached to a fixed rigid block

This final problem is a classical benchmark of FSI formulations used to demonstrate the ability of the method
o deal with highly flexible structures [19]. It is considered the case of a thin and slender flexible strip attached to
fixed and rigid square immersed in constant flow. The specific geometry and boundary conditions are represented

n Fig. 17(top), where H = 1 m is the characteristic size of the immersed rigid body, l/H = 4 the length of the
exible strip and t/H = 0.06 its thickness. The fluid domain is a closed rectangle of dimensions B/H = 12 and

ength L/H = 19.5 with the rigid obstacle located downstream at a distance x/H = 5. The boundary conditions
n the external boundaries of the fluid are set as: constant inlet velocity vx = 1.5 m/s on the upwind side, outflow
ondition on the downwind side and slip walls vy = 0 on the upper and lower boundaries. No-slip boundary
onditions are assigned along the square body and strip boundaries.

The fluid is considered as incompressible with density ρF
= 1 kg/m3 and viscosity µF

= 0.01 N m/s.
he material of the flexible strip is assumed to follow a non-linear compressible Neo-Hookean constitutive law
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Fig. 16. Channel flow with flexible wall. Time history of the input and output mass-flows in the channel (left) and time integration of the
mass-flow difference (right). Integration of the mass-flow difference gives the mass of fluid recirculated inside the bump of the flexible wall.

characterized by a Poisson’s ratio νS
= 0.3, Young’s modulus ES

= 2000 Pa and density ρS
= 100 kg/m3. Based

on the square side dimension, the Reynolds number of the flow is Re = 150.
For the finite element analysis, first the unstructured mesh shown in Fig. 17(bottom) was generated for the fluid.

The mesh is highly refined near the structure walls, where boundary layers are expected, in order to capture the
vortex shedding accurately. The final mesh of the fluid is composed of 5266 linear triangular elements and 2786
nodes with 180 triangular elements in contact with the strip. After that, the flexible strip was meshed using only
40 quadrilaterals and 82 nodes with only one element through the thickness. An incompatible mesh appears at the
interface with two fluid elements per quadrilateral on each side of the strip. For the treatment of the non-matching
mesh a consistent interface mesh has been constructed.

Then, the problem is integrated in time with step size ∆t = 0.1 s and ultimate spectral radius ρ∞ = 0.5 using
nly N = 3 Newton–Raphson iterations per time step. Even with such relatively crude conditions, the solution
emains perfectly stable and presents a smooth transition of the interface displacements.

The velocity magnitude distributions at several instants during the first oscillations are displayed in Fig. 18. The
btained flow features until time t = 10 s are characteristic of an obstacle in Reynolds number Re = 150, where

the vortices shed from the square block are impinging alternatively on the flexible strip with relative symmetry.
At time t = 15 s, these vortices have forced the strip into an oscillatory motion that, after some seconds, starts
to oscillate violently with large displacements. At time t = 30 s the displacements are of the order 2H at the
ip of the strip where important fluid element deformations are concentrated. An accurate solution of this effect
equires an effective control the fluid mesh deformations during the simulation. A simple linear variation of the
lastic properties of the fluid mesh elements based on their relative size, works well even for relative high interface
otions like the ones shown in this example.

2. Conclusions

An explicit definition of the interface system endowed with its own DOFs and connected to the fluid and structure
ith independent fields of Lagrange multipliers through the LLM method, brings some advantages to the solution
f FSI and coupled problems in general. We summarize our findings in the following comments:

• The LLM method provides specific dynamic equilibrium equations for the interface that can be integrated in

time separately, under the action forces exerted by the different systems coupled to the interface.
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Fig. 17. Geometrical configuration and finite element mesh of a flexible strip attached to a rigid square block affected by a uniform flow.
A mesh of quadrilateral finite elements is used to model the structure (bottom-right) and coupled to a non-matching fluid mesh of linear
triangles.

• Implicit time integration of the interface equations is stable. Different numerical tests using generalized α-
method with classical FSI benchmark problems showed that a small number of iterations is needed to produce
accurate results.

• The interface system is updated implicitly using current states from both the fluid and the structure. This brings
superior stability than classical partitioned methods based on fixed-point iteration schemes.

• A four-field solution approach with structure, dynamic mesh, fluid and interface is made intrinsically parallel
by situating the interface system in the middle as a master process communicating directly with the fluid and
structure modules.

• Treatment of nonmatching meshes between the fluid and the structure is made locally inside the interface
system by defining an interface discretization that is connected using independent fields of Lagrange
multipliers. The coupling of fluid and structure to the interface can be made using mortar or classical-LLM
methods optimized for maximum accuracy.

Selected numerical examples have been used to evaluate the accuracy of the stability of the proposed partitioned
scheme. In conclusion, the described formulation represents a generalization of classical partitioned approaches with
potential applications not only in the modeling of more complex FSI problems but also in other types of coupled

systems.
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A

Fig. 18. Flow-induced vibration of a flexible strip for Reynolds number Re = 150. Snapshots with detail of the structure deformation and
contours of fluid velocity magnitude. Severe deformation of the structure causes intense fluid mesh distortion that requires special treatment.
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J.A. González and K.C. Park Computer Methods in Applied Mechanics and Engineering 414 (2023) 116134
[34] L. Rodríguez, J.A. González, A. Cerrato, Partitioned solution strategies for coupled BEM-FEM acoustic fluid–structure interaction
problems, Comput. Struct. 152 (2015) 45–58, http://dx.doi.org/10.1016/j.compstruc.2015.02.018.

[35] K.C. Park, R. Ohayon, C.A. Felippa, J.A. González Pérez, Partitioned formulation of internal and gravity waves interacting with flexible
structures, Comput. Methods Appl. Mech. Engrg. 199 (2010) 723–733, http://dx.doi.org/10.1016/j.cma.2009.11.005.

[36] J.A. González, K.C. Park, I. Lee, C.A. Felippa, R. Ohayon, Partitioned vibration analysis of internal fluid–structure interaction problems,
Internat. J. Numer. Methods Engrg. 92 (2012) 268–300, http://dx.doi.org/10.1002/nme.4336.
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