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Abstract
Background  Psychopathological research is moving from a specific approach towards transdiagnosis through the 
analysis of processes that appear transversally to multiple pathologies. A phenomenon disrupted in several disorders 
is prepulse inhibition (PPI) of the startle response, in which startle to an intense sensory stimulus, or pulse, is reduced 
if a weak stimulus, or prepulse, is previously presented.

Objective and methods  The present systematic review analyzed the role of PPI deficit as a possible transdiagnostic 
process for four main groups of neuropsychiatric disorders: (1) trauma-, stress-, and anxiety-related disorders (2) 
mood-related disorders, (3) neurocognitive disorders, and (4) other disorders such as obsessive-compulsive, tic-
related, and substance use disorders. We used Web of Science, PubMed and PsycInfo databases to search for 
experimental case-control articles that were analyzed both qualitatively and based on their potential risk of bias. 
A total of 64 studies were included in this systematic review. Protocol was submitted prospectively to PROSPERO 
04/30/2022 (CRD42022322031).

Results and conclusion  The results showed a general PPI deficit in the diagnostic groups mentioned, with 
associated deficits in the dopaminergic neurotransmission system, several areas implied such as the medial prefrontal 
cortex or the amygdala, and related variables such as cognitive deficits and anxiety symptoms. It can be concluded 
that the PPI deficit appears across most of the neuropsychiatric disorders examined, and it could be considered as a 
relevant measure in translational research for the early detection of such disorders.
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Introduction
The transdiagnostic model in psychopathology goes 
beyond the existing diagnostic categories, proposing a 
more representative classification system [1, 2]. Its origin 
lies in the existence of psychopathological processes that 
operate as common mechanisms in several disorders [3, 
4]. This model contributes to the understanding of psy-
chopathological comorbidity, and allows the generaliza-
tion of knowledge between disorders [2]. It is also more 
efficient from an applied perspective since it enables the 
development of new treatments focused on common fac-
tors between disorders rather than specific interventions 
(e.g., Sakiris and Berle [5]).

Within the framework of this model, the National 
Institute of Mental Health (NIMH) created the Research 
Domain Criteria (RDoC) to shift the focus from diagno-
ses based on particular symptoms to the identification of 
common mechanisms from a cross-sectional perspective 
[6–8], thus allowing research into dimensional psycho-
pathological classification systems [9, 10]. From these 
approaches derive some standards for transdiagnostic 
research [2] such as (1) assessing psychopathological pro-
cesses in groups of patients with different disorders [11]; 
(2) evaluating and integrating knowledge from differ-
ent levels of analysis [12]; and (3) dimensional proposals 
should specify the relationship between diagnosis-spe-
cific and transdiagnostic deficits [13].

Research on common mechanisms to multiple disor-
ders has increased in recent years. Thus, processes such 
as psychological inflexibility [14], insomnia [15], intol-
erance of uncertainty [16], hypervigilance [17], perfec-
tionism [18], rumination [19], and dissociation [20] have 
been proposed as transdiagnostic factors. Among them, 
cognitive deficits in the domains of selective attention 
and information filtering have gained much attention as 
a common factor in many different disorders [21, 22]. 
More specifically, sensory gating deficits such as P50 
component suppression [23, 24] and sensorimotor defi-
cits as the pre-pulse inhibition of the startle response [25] 
appear in a wide range of neuropsychiatric disorders [26]. 
In this review, we will focus on the second paradigm.

The startle response is a reflex behaviorally expressed 
as the contraction of certain muscles in response to the 
presentation of an intense and unexpected stimulus [25]. 
Such response prepares the organism to face poten-
tially dangerous situations [27, 28]. In spite it is a reflex 
response, its intensity changes under different circum-
stances, such as, for example, habituation induced by 
repeated presentations of the startle-inducing stimulus 
(e.g., Pilz and Schnitzler [29]), or pre-pulse inhibition 
(e.g., Hoffman and Searle [30]; Graham [31]).

Pre-pulse Inhibition (PPI) is expressed as a decrease of 
the startle response to an intense stimulus (pulse) when 
it is preceded by a stimulus of lower intensity (prepulse) 

[30, 32]. The magnitude of PPI and startle response is 
usually assessed in humans by registering the electro-
myographic response of the orbicularis oculi muscle [33], 
using an experimental task in which two auditory tones 
(prepulse, and pulse) are presented with an inter-stimu-
lus interval ranging from 30 to 500 milliseconds [34].

This measure has been proposed as an operational 
index of sensorimotor gating [35–38] since it inte-
grates information from both sensory stimuli and motor 
responses [21]. Graham [31] proposed that two auto-
matic processes are active when the weak stimulus (pre-
pulse) precedes the intense one (pulse): One intended to 
process the prepulse, and the second one inhibiting pulse 
processing [39]. This hypothesis has received physiologi-
cal support, since attention to a stimulus activates a brain 
inhibitory mechanism that blocks attention for an inter-
val ranging between 30 and 500 ms [40].

From a neurobiological level, PPI involves the dopami-
nergic system, as well as the serotonergic, GABAergic, 
and glutamatergic systems of cortical and subcortical 
structures [41]. Specifically, an increase in dopaminergic 
activity reduces PPI [42, 43]. Similarly, the corticostriatal-
pallidopontine circuit plays a crucial role in PPI due to 
efferent connections from different areas (prefrontal cor-
tex, thalamus, hippocampus, amygdala, striatum, accum-
bens, and pallidum nuclei) to the pedunculopontine 
nucleus [44–46].

PPI has been suggested as a translational research tool 
[47, 48], since its deficit has been verified in different 
neuropsychiatric disorders with common neurobiologi-
cal correlates [49, 50], and by the presence of affective 
components such as anxiety and stress [51, 52]. Specifi-
cally, the group where the most potent evidence of a PPI 
deficit is found is in schizophrenia spectrum disorders, 
where this deficit has been proposed as a biomarker [53, 
54] and an endophenotype [55–57] of psychosis. This has 
been corroborated in a recent meta-analysis and in a sys-
tematic review, which found a widespread deficit of PPI 
in individuals within the schizophrenia spectrum [58], 
but not in their first-degree relatives [59], respectively.

On the other hand, PPI deficits have also been consis-
tently found in psychopathological conditions close to 
the spectrum, such as patients with schizotypal person-
ality disorder [60, 61]. Regarding the autism spectrum, 
a recent meta-analysis has revealed that the majority 
of patients with one of the spectrum disorders exhibit 
impaired PPI compared to controls, although this differ-
ence is more pronounced in children/adolescents than in 
adults [62]. Less consistency is found in other neurode-
velopmental disorders [63], where the PPI deficit appears 
to be mediated by medication [64], as well as whether the 
PPI protocol instructed to attend to the pulses or not [65, 
66].
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Regarding the group of disorders related to trauma, 
stress, and anxiety, there is less consistency in the litera-
ture about a possible common deficit in sensorimotor 
gating. According to the fifth version of the Diagnos-
tic and Statistical Manual of Mental Disorders (DSM-
5) (American Psychiatric Association [67]), the main 
trauma- and stressor-related disorders are Post-Trau-
matic Stress Disorder (PTSD) and acute stress disorder, 
while anxiety disorders are mainly social anxiety disorder, 
panic disorder, and generalized anxiety disorder. With 
respect to PPI deficit, some contradictory results have 
been reported for panic disorder, PTSD, and social anxi-
ety disorder [52, 68].

Discrepancies in PPI deficits have also been found in 
mood disorders, with bipolar disorder and major depres-
sive disorder receiving more attention [68]. The depres-
sive, bipolar, and related disorders group (DSM-5) is 
represented principally by major depressive disorder, 
persistent depressive disorder, bipolar disorder, bipolar 
disorder type II, and cyclothymic disorder [67].

Similarly, research on neurocognitive disorders has 
revealed some apparently contradictory results. This 
group mainly comprises Alzheimer’s, Parkinson’s, and 
Huntington’s disease, traumatic brain injury, stroke, HIV 
infection, and Lewy bodies [67]. Specifically, studies on 
PPI have been conducted in patients with Alzheimer’s, 
Parkinson’s, and Huntington’s diseases [21, 69]. In par-
ticular, a PPI deficit has been proposed as a biological 
marker for the differential diagnosis of mild cognitive 
impairment and Alzheimer’s disease [70]. In Parkinson’s 
and Huntington’s disease, evidence is scarce, although it 
also points to a possible PPI disruption [57].

Other disorders that have been associated with PPI def-
icits are highly varied. For example, in the case of obses-
sive-compulsive disorder (OCD), the deficit in patients 

varies depending on methodological differences among 
studies [68], as differences with controls or normal PPI 
ratios are found depending on the psychopharmacologi-
cal status of the patients [71, 72]. However, it appears that 
the deficit in OCD is mediated by the prior presence of 
tics among patients [71], which makes sense consider-
ing the clear sensorimotor gating deficit in Gilles de la 
Tourette syndrome [34, 73, 74].

In addition to these disorders, considering that PPI 
represents an essential paradigm in the field of psycho-
pharmacology [21, 36], it is relevant to discuss substance 
use disorders. Within this field, PPI has been primarily 
studied in relation to two substances: cannabis and stim-
ulants. The results in this group of disorders seem to be 
contradictory, with an apparent deficit of PPI in the case 
of cannabis use but an improvement in this index with 
the use of stimulants [68]. However, these results need 
to be analyzed in detail, as they depend on multiple vari-
ables such as the chronicity of use, the stage of the dis-
order (e.g., abuse vs. relapse), or the paradigm used [68]. 
Additionally, substance misuse disorders present a high 
rate of comorbidity with the previously mentioned disor-
ders (e.g., Alsuhaibani et al., 2021 [75]).

Based on available data on the mentioned groups of 
disorders, and in spite of the discrepancies mentioned 
above, we can anticipate that a PPI deficit can be consid-
ered a common process among multiple neuropsychiatric 
disorders. However, to the best of our knowledge, there 
are no studies on PPI using a transdiagnostic approach. 
Therefore, this review aims to systematically analyze the 
transdiagnostic status of PPI deficit in trauma-, stress-, 
and anxiety-related, mood-related, neurocognitive and 
other disorders such as obsessive-compulsive, tic-related, 
and substance use disorders.

Method
Search strategy and eligibility criteria
This systematic review was performed following the 
standards of the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) statement 
[76] (PRISMA checklist is presented in Table S1 in the 
Online Resource). The protocol was registered in the 
International Prospective Register of Systematic Reviews 
(PROSPERO) on April 30th, 2022 (registration number: 
CRD42022322031). To identify relevant documents, an 
initial search was conducted on February 1st, 2022, in 
three bibliographic electronic databases: PubMed, Psy-
cInfo, and Web of Science (WoS). This comprehensive 
search was updated on the last day of each month from 
February 1st (2022), to identify new studies published 
from inception to the present. The last search was con-
ducted on May 31st, 2023.

The search strategy (see Table  1) included three 
main query fields: PPI; (AND) the target groups of 

Table 1  Search strategy
Query Field Search term
#1 Title/

Abstract/ 
Keywords

“Prepulse inhibition” OR “Pre-pulse inhibition”

#2 Title/
Abstract/ 
Keywords

“Posttraumatic stress disorder” OR PTSD OR 
Anxiety OR Stress OR “Panic disorder” OR 
Alzheimer OR Huntington OR Parkinson OR 
Depression OR “Major depressive disorder” OR 
“Bipolar disorder” OR “Obsessive compulsive 
disorder” OR OCD OR “Gilles de la Tourette 
syndrome” OR “Tourette syndrome” OR GTS OR 
“Substance-related disorders” OR Addiction 
OR “Drug use*” OR “Cannabis use*” OR “Co-
caine use*” OR “MDMA use*” OR “Alcohol use*”

#3 Title “Animal model” OR Mice OR Mouse OR Rat OR 
Rats OR Fish OR Fishes OR Rodent OR Rodents 
OR Monkey OR Monkeys

#4 N/A (#1 AND #2) NOT #3
Note: Abbreviations: N/A, not applicable
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neuropsychiatric disorders (trauma, stress and anxiety-
related, mood-related, neurocognitive and other dis-
orders, such as obsessive-compulsive, tic-related, and 
substance use disorders); and (NOT) animal models. 
Therefore, we searched for studies that evaluated PPI 
in human populations diagnosed with any of the target 
disorders.

The neuropsychiatric disorder groups included in the 
search strategy were chosen instead of others where a PPI 
deficit has been more or less consistently observed, such 
as the spectrum of schizophrenia disorders, autism spec-
trum disorders, and neurodevelopmental disorders. This 
is because recent meta-analyses and systematic reviews 
have been published on the deficit in sensorimotor gating 
in the schizophrenia spectrum (San-Martin et al., 2020 
[58]), high-risk mental states (Li et al., 2020 [59]), autism 
spectrum (Cheng et al., 2018 [62]), and neurodevelop-
mental disorders (Schulz et al., 2023 [63]). Following the 
PRISMA guidelines, as well as the good practices associ-
ated with conducting reviews, the duplication of reviews 
on a topic for which there are already previous and recent 
reviews should be avoided (e.g., Higgins and Green, 2011 
[77]; Petticrew, 2015 [78]). Therefore, these mentioned 
disorder groups, for which systematic and integrative 
searches already exist, were not included in this review.

A primary literature mapping was performed using the 
terms “prepulse inhibition” and “neuropsychiatric dis-
orders” in PubMed and PsycInfo databases allowing the 
selection of inclusion and exclusion criteria (see Table S2 
in the Online Resource for full criteria). To be included 
in the review, studies had to meet the following inclusion 
criteria: sample of any age diagnosed with or meeting the 
diagnostic criteria for one of the target disorders, as well 
as studies where participants were exposed to an experi-
mental induction of these conditions; intervention con-
sisted of an assessment of startle response and PPI using 
an experimental task; control groups included undiag-
nosed participants as well as persons not exposed to an 
experimental induction; and finally, the studies reported 
startle response and PPI data. Studies written in English 
or Spanish, meeting these criteria, and reporting experi-
mental case-control designs were included.

As for exclusion criteria, studies were excluded if they 
were written in a language different from English or 
Spanish, did not assess PPI or startle response, partici-
pants did not correspond to any of the groups of disor-
ders selected for the analysis, they were only focused on 
animal models, did not have a control group, or did not 
report an experimental case-control design.

Study selection
The study selection was performed by independent peer 
review, with a third independent reviewer resolving dis-
agreements. It was carried out in two stages: first, reading 

the title, abstract, and keywords of the identified records 
(inter-rater reliability was acceptable, with an 83.49% of 
agreement). Second, two independent reviewers read 
the selected records. Again, the inter-rater reliability was 
acceptable (74.72% agreement), with a third reviewer 
resolving the disagreements. Additionally, a snowballing 
approach was implemented to map eligible articles that 
had not appeared in the search engines. This process was 
performed at two levels: searching among the reference 
lists of systematic reviews and meta-analyses identified in 
the screening, and among the primary references of the 
records included after this process.

Data extraction
A data extraction form was designed and can be found 
in Table S3 in the Online Resource. The main character-
istics of the records were extracted through independent 
peer review. From each record, we obtained bibliographic 
data, group characteristics (mean age, sex, and total 
number of participants), objectives, experimental design, 
method to register the startle response and PPI, results, 
and conclusions. Mendeley (version 1.19.8), Parsifal (par-
sif.al), and Excel (version 16.43) were used to manage the 
references and records.

Assessment of risk of bias
Study quality and risk of bias of the records were inde-
pendently peer-reviewed using the Newcastle-Ottawa 
Scale (NOS) for case-control studies [79], with a third 
independent reviewer resolving disagreements. This 
scale assesses the categories of selection, comparability, 
and exposure, with star-shaped scores ranging from 0 to 
9, with higher scores indicating a lower risk of bias [80]. 
Following the PRISMA guidelines [76] and the Cochrane 
Handbook for Systematic Reviews and Meta-analysis 
[77], studies will not be excluded from the systematic 
analysis of results unless they are scored with a very high 
risk of bias (e.g., a score of 0–3 stars on the NOS scale). 
This premise is followed because, as Petticrew reported 
(2015 [78]), even “weaker” studies in terms of evidence 
can provide valuable information for the context of a sys-
tematic and integrative review of the scientific literature.

Results
Study selection and characteristics
Among the records identified in the preliminary search, 
an upward trend has been observed in the number of 
records published from 1986 to the present. A decadal 
view (see Fig.  1 – left side) shows the temporal evolu-
tion of the number of publications. Figure 1 (right side) 
depicts the most frequently used keywords.

The systematic search initially identified a total num-
ber of 1.869 records. After removing duplicates, 1.368 
records were screened through the reading of titles, 
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abstracts and keywords. A total of 1.203 studies were 
excluded for different reasons, mainly because they 
focused on animal models, did not evaluate PPI, or 
were systematic reviews and/or meta-analyses. Thus, 
165 studies were selected for full-text retrieval and sub-
sequent eligibility assessment. Of these, 60 records met 

the inclusion criteria. Four studies that were identified 
through the snowballing approach were also included, 
reaching 64 studies. Figure 2 shows a detailed flowchart 
of the process and the causes of exclusion.

Fig. 2  PRISMA flowchart. Notes: (1) PPI: prepulse inhibition; n: number of records; OS: object of study; OCD: obsessive-compulsive disorder; (2) From Page 
et al. [76]. Distributed under the terms of the Creative Commons Attribution License

 

Fig. 1  Evolution (left side) and word cloud of the most used keywords in the identified records (right side). Note: The time evolution graph is divided by 
sections in the decades: 1980–1989; 1990–1999; 2000–2009; 2010–2019. The 2020s decade corresponds to the years 2020-23
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General data description
A summary of the main sociodemographic data extracted 
from the studies is presented in Table  2. The overall 
mean sample size was 109.72 participants (SD = 209.06), 
with a smaller sample size in the patient groups than in 
the controls (Mean = 36.69, SD = 47.1, and Mean = 56.03, 
SD = 151.19, respectively). The mean age of the patients 
was 35.28 years (SD = 14.04), and 34.14 (SD = 13.42) 
for the control groups. As for the gender, there were, 
on average, fewer women than men in both the control 
(43.73%, and 56.27%, respectively), and patient groups 
(44.42%, and 55.58%, respectively).

The psychopathological scales more used were the 
structured clinical interviews of the DSM-III (9.4%) and 
DSM-IV (40.6%), and the diagnostic criteria of the Inter-
national Classification of Diseases (10.9%). Other psy-
chometric scales used were the Yale-Brown Obsessive 
Compulsive Scale (12.5%), the Clinician-Administered 
PTSD Scale (7.8%), the Yale Global Tic Severity Scale 
(4.7%), and the State-Trait Anxiety Test (3.1%). In half 
of the studies, it was reported the use of psychopharma-
cology in the pathological sample (53.1%, 34/64), being 
antidepressants (20.3%) and anxiolytics (6.2%) the most 
common.

Nineteen studies included patients diagnosed with 
trauma-, stress- and anxiety-related disorders (29.7%), 
sixteen included mood disorders (25%), seven evalu-
ated patients with neurocognitive disorders (10.9%), and 
twenty-two included other disorders (obsessive-compul-
sive, tic-related and substance-use disorders) (34.4%). 
All studies had a case-control design evaluating startle 
response and PPI, including participants with some psy-
chopathology (98.44%), while the control groups were 
composed of healthy subjects. In three studies [81–83], 
participants were exposed to an experimental induction 
of emotions, but the control group did not receive such 
induction.

Experimental conditions
The experimental conditions are summarized in Table 2. 
Most of the studies used more than one interstimulus 
interval between the prepulse and pulse (60.9%, 39/64), 
with 120 ms (81.2%), 60 ms (51.6%), and 30 ms (26.6%) 
being the most common intervals. The overall mean 
pulse intensity was 109.59 dB (SD = 7.23; range 90–118), 
with a mean duration of 40.5 ms (SD = 6.93; range 20–50). 
The mean prepulse duration was 27.1 ms (SD = 18.61; 
range 5-150), with a mean intensity of 78.54 dB 
(SD = 6.91; range 65–90). All experiments registered the 
electromyographic response of the orbicularis oculi mus-
cle as the measure of the startle response. Three of the 
studies recorded it bilaterally [101, 120, 125], while the 
remaining studies recorded it on the right (57.8%, 37/64) 
or left orbicularis muscle (23.4%, 15/64). All studies used 

an acoustic sensory modality, with five studies using also 
tactile stimuli [84, 89, 124, 129, 131].

Trauma-, stress-, and anxiety-related disorders
The summary of the main findings from the studies on 
trauma-, stress-, and anxiety-related disorders appears in 
Table 3. The studies included PTSD (n = 11, 57.9%), panic 
disorder (n = 2, 10.5%), trait anxiety (n = 2, 10.5%), anxious 
vulnerability (n = 2, 10.5%), and generalized anxiety disor-
der (n = 1, 5.3%) patients. One study exposed subjects to 
an experimental induction of stress (5.3%).

Regarding startle response intensity, most studies 
found a higher magnitude of startle response for the 
patients than the control group (52.6%), whereas fewer 
studies reported a lower magnitude (15.8%). Five stud-
ies did not find differences between groups [85, 88, 96, 
113, 122] and one study did not report data on startle 
magnitude [101]. More specifically, an increased startle 
response appeared for PTSD [81, 82, 103, 105, 109, 116] 
and for anxious vulnerability patients [86, 104].

PPI results were more consistent, with 15 of the 19 
studies in this group reporting disrupted PPI in the path-
ological group compared to the control group (78.9%). 
The studies without differences in PPI only included 
patients with PTSD [82, 96, 103, 116].

Mood disorders
A detailed analysis of all the variables for each study 
included in this group of disorders is presented in 
Table  4. The studies included bipolar disorder (n = 12, 
75%), major depressive disorder (n = 4, 25%), and dysthy-
mia (n = 1, 6.25%).

Regarding startle response intensity, most studies did 
not find differences between the groups (n = 11, 68.75%), 
two studies found a reduced magnitude between patients 
as compared with controls [99, 102], and another one 
reported an increased magnitude for bipolar disor-
der patients [96]. By other hand, three studies reported 
longer latencies of the startle response in the groups of 
patients [99, 110, 119].

Nine studies (56.25%) revealed reduced PPI in patients 
compared to the control group. Specifically, 7 of 12 stud-
ies with bipolar disorder patients informed of a PPI def-
icit [87, 100, 102, 110, 117, 118, 121]. Of the remaining 
studies, four records did not find any differences between 
the groups [93, 94, 99, 119], and one study reported 
reduced PPI in women from the control group compared 
to bipolar patients [102].

The results from studies with major depressive disorder 
patients were quite contradictory. Thus, two of the stud-
ies found disrupted PPI for major depressive disorder 
patients when compared with control group participants 
[112, 114], and another two studies did not find differ-
ences between groups [91, 97].
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Study N total (% 
female)

Mean age (SD) Diagnosis ISI (ms) Startle stimuli / Prepulse 
stimuli

Swerdlow et al. [84] 44 (32%) 45 (2.9) HD 30, 60, 120 116dB (40ms) / 85dB (20ms)

Grillon et al. [85] 48 (0%) 41.3 (5) PTSD 120 98-103dB (40ms) / 70dB (30ms)

Grillon et al. [86] 66 (53%) 13.6 (NR) Anxious 
sensitivity

120, 4000 106dB (40ms) / 70dB (30ms)

Grillon et al. [81] 65 (0%) 44.2 (4) PTSD 120 93-103dB (40ms) / 70dB (30ms)

Grillon et al. [82] 52 (0%) 48 (3.7) PTSD 120 103dB (40ms) / 70dB (30ms)

Perry et al. [87] 48 (38%) 34.6 (11.7) BD 30, 60, 120 115dB (40ms) / 86dB (20ms)

Ludewig et al. [88] 41 (49%) 35.9 (10) PD 30, 60, 120, 240 115dB (40ms) / 86dB (20ms)

Muñoz et al. [89] 32 (NR) 47.4 (10.4) HD 50, 70, 100, 150  A: 90dB / 80dB; T: 3xU / 1.5xU

Hejl et al. [90] 97 (59%) 72.6 (5.3) AD, MCI 30, 60, 120 115dB (40ms) / 85dB (40ms)

Perry et al. [91] 46 (52%) 34 (9.3) MDD 30, 60, 120 118dB (40ms) / 72-86dB (20ms)

Perriol et al. [92] 40 (NR) 73.3 (NR) PD, AD 60, 120, 3000 115dB (40ms) / 80dB (40ms)

Rich et al. [93] 29 (55%) 12.9 (2.5) BD 60, 120 104dB (50ms) / 70dB (50ms)

Barrett et al. [94] 43 (49%) 44.3 (13.2) BD 60, 120 111dB (40ms) / 75-85dB (40ms)

Ludewig et al. [95] 42 (50%) 34.5 (10) PD 30, 60, 120, 240 115dB (40ms) / 86dB (20ms)

Lipschitz et al. [96] 51 (100%) 16.5 (2.8) PTSD 120, 2000 104dB (40ms) / 72dB (40ms)

Quednow et al. [97] 38 (42%) 35.2 (10.8) MDD, Dysthymia 140 116dB (40ms) / 86dB (20ms)

Ueki et al. [98] 70 (69%) 70.2 (8.6) AD, MCI 50 115dB (50ms) / 85dB (30ms)

Carroll et al. [99] 67 (51%) 34.5 (8.2) BD 120 95dB (50ms) / 65dB (50ms)

Giakoumaki et al. [100] 57 (NR) 32 (7.2) BD 60, 120 115dB (40ms) / 85dB (20ms)

Duley et al. [101] 38 (61%) 21.2 (0.4) Trait anxiety 30, 60, 120 102dB (40ms) / 70dB (40ms)

Gogos et al. [102] 61 (51%) 41.7 (11.3) BD 60, 120 115dB (40ms) / 74-86dB (20ms)

Holstein et al. [103] 51 (76%) 38.7 (2.2) PTSD 60, 120, 2000 115dB (40ms) / 86dB (20ms)

McMillan et al. [104] 50 (76%) 22.9 (5.8) Anxious 
sensitivity

120 105dB (50ms) / 70dB (25ms)

Vrana et al. [105] 100 (50%) 42 (10.8) PTSD 60, 120, 240 100dB (50ms) / 70dB (20ms)

Zoetmulder et al. [106] 82 (49%) 59.7 (9.1) PD 30, 60, 120, 300 115dB (40ms) / 75-85dB (20ms)

Ivleva et al. [107] 214 (56%) 34.3 (11.7) BD 120, 4500 116dB (40ms) / 80dB (20ms)

Comasco et al. [108] 204 (100%) 30.4 (4.9) Trait anxiety 100 115dB (40ms) / 72-86dB (20ms)

Vrana et al. [109] 95 (53%) 42 (10.8) PTSD 60, 120, 240 100dB (50ms) / 70dB (20ms)

Sánchez-Morla et al. [110] 102 (56%) 40.9 (10.5) BD 60, 120 118dB (40ms) / 80dB (20ms)

Pineles et al. [111] 47 (100%) 31.9 (9.2) PTSD 120 100dB (50ms) / 70dB (20ms)

De la Casa et al. [83] 22 (64%) 21 (NR) Stress induction 40, 60, 80 95dB (20ms) / 75dB (50ms)

Comasco et al. [112] 170 (100%) 30.9 (4.8) Postpartum MDD 100 115dB (40ms) / 72-86dB (20ms)

Echiverri-Cohen et al. [113] 67 (67%) 32.7 (13.4) PTSD 30, 60, 120 105dB (50ms) / 75dB (25ms)

Matsuo et al. [114] 471 (53%) 39.9 (11.7) MDD 60, 120 115dB (40ms) / 86-90dB (20ms)

Millian-Morell et al. [115] 87 (48%) 70.3 (11.9) PD 60, 120, 1000 115dB (40ms) / 85dB (20ms)

Meteran et al. [116] 45 (47%) 45.9 (13.1) PTSD 60, 120 115dB (20ms) / 76-85dB (20ms)

Bo et al. [117] 63 (40%) 26.3 (6.7) BD 120 100dB (40ms) / 65dB (150ms)

Matsuo et al. [118] 338 (59%) 40.4 (11.1) BD 60, 120 115dB (NR) / 86-90dB (NR)

Massa et al. [119] 1143 (59%) 38.6 (14) BD 120 116dB (40ms) / 90dB (20ms)

Storozheva et al. [120] 240 (47%) 33.2 (1.2) GAD 60, 120, 2500 110dB (40ms) / 85dB (20ms)

San-Martin et al. [121] 44 (39%) 26.6 (7.7) BD 30, 60, 120 115dB (40ms) / 85dB (20ms)

Acheson et al. [122] 1228 (0%) 22.2 (2.87) PTSD 30, 60, 120 114dB (40ms) / 86dB (20ms)

Swerdlow et al. [123] 24 (46%) 36.3 (5.5) OCD 100 116dB (40ms) / 72-86dB (20ms)

Castellanos et al. [124] 21 (0%) 10.8 (2) GTS 30, 60, 90, 120, 250 9.0mA (NR) / 6.0mA (NR)

Swerdlow et al. [125] 24 (33%) 12 (NR) GTS 120 105dB (40ms) / 86dB (20ms)

Hoenig et al. [126] 60 (50%) 31.5 (1.7) OCD 120 116dB (40ms) / 72-86dB (20ms)

de Leeuw et al. [127] 50 (72%) 32.4 (9.7) OCD 120 113dB (30ms) / 74-86dB (30ms)

Ahmari et al. [128] 44 (45%) 31 (9) OCD 120 116dB (40ms) / 74-86dB (20ms)

Buse et al. [129] 44 (0%) 13.7 (1.8) GTS 140 40psi (40ms) / 6psi (20ms)

Kohl et al. [130] 24 (44%) 39.7 (11.6) OCD 60, 120, 200 110dB (20ms) / 80dB (20ms)

Zebardast et al. [131] 33 (52%) 30.4 (9.3) GTS 120 80psi (40ms) / 7psi (20ms)

Table 2  Sociodemographic data and experimental conditions of included studies
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Neurocognitive disorders
This group of studies included patients with Parkinson’s 
(n = 3, 42.8%), Alzheimer’s (n = 3, 42.8%) and Huntington’s 
(n = 2, 28.6%) diseases. Two additional studies included 
patients with mild cognitive impairment. A detailed 
analysis of all the variables for each study included in this 
group of disorders is depicted in Table 5.

Regarding startle response, 3 studies (42.8%) reported 
longer latencies for the patients, and 3 (42.8%) did not 
find differences between groups. As for PPI results, 
71.4% of the studies reported reduced PPI in the group 
of patients compared to the control group, and only one 
study did not find any differences [90]. Studies including 
patients with movement disorders showed the most con-
sistent results. Specifically, all studies including patients 
with Huntington’s disease found reduced PPI [84, 89], 
with a greater deficit in patients with chorea [89]. Con-
sistency was also high for Parkinson’s disease patients, 
showing a generalized PPI deficit [92, 106], except for one 
study by Millian-Morell et al. [115] which reported an 
increase in PPI.

Regarding Alzheimer’s type dementia, two studies 
found reduced PPI [92, 98], and one study did not find 
significant differences [90]. Patients with mild cognitive 
impairment either did not differ from [90] or showed 
increased PPI compared to controls [98].

Other Disorders  Obsessive-compulsive, tic-related and 
substance-use disorders.
In this group of disorders, patients with obsessive-com-
pulsive disorder (n = 7, 31.8%), Gilles de la Tourette syn-
drome (n = 4, 18.2%), and substance use disorders (n = 11, 
50%) were included. Specifically, the included addictive 
disorders referred to the use of cannabis (n = 5), cocaine 

(n = 4), and ecstasy (n = 2). A comprehensive analysis of all 
variables analyzed in relation to these studies can be seen 
in Table 6. Next, an analysis of the startle response and 
prepulse inhibition will be conducted separately for each 
group.

Regarding obsessive-compulsive disorder, the majority 
of the reviewed studies did not find differences between 
the groups in terms of the startle response (57.1%), with 
some of them not reporting results (42.9%). Regarding 
PPI, 71.4% of the reviewed studies found that patients 
with obsessive-compulsive disorder exhibited a PPI defi-
cit compared to controls [123, 126, 128, 130, 133], while 
two other studies did not find differences [127, 132].

In Gilles de la Tourette syndrome, no study found dif-
ferences between groups when analyzing the startle 
response, although the majority reported a PPI deficit 
among patients (75%) [124, 125, 129], with a single study 
not finding differences in this measure [131].

With regard to the results from studies with substance 
use disorders patients, almost none of the studies found 
differences between patients and controls in the star-
tle response (72.2%), except for one study that found a 
lower magnitude among patients using cocaine [134], 
and two studies that did not report data on this measure 
[142, 144]. Regarding PPI in patients using cannabis, all 
reviewed studies observed lower prepulse inhibition 
than subjects in the control group [137–139, 141, 142]. 
Conversely, in studies evaluating patients using cocaine, 
a generally higher PPI was found among patients com-
pared to controls [134, 140, 143, 144]. Similarly, one of 
the reviewed studies analyzing ecstasy found the same 
trend [135] while another did not find any differences 
[136].

Study N total (% 
female)

Mean age (SD) Diagnosis ISI (ms) Startle stimuli / Prepulse 
stimuli

Pittenger et al. [132] 24 (66,7%) 30.9 (2.5) OCD 120 102dB (50ms) / 85dB (5ms)

Steinman et al. [133] 110 (50%) 28.2 (6.2) OCD 120 116dB (40ms) / 74-86dB (20ms)

Efferen et al. [134] 24 (0%) 42.4 (2.9) CUD 100 115dB (40ms) / 75-85dB (20ms)

Quednow et al. [135] 50 (0%) 24.4 (5.1) EUD, CnUD 120 116dB (40ms) / 72-86dB (40ms)

Heekeren et al. [136] 43 (21%) 26.3 (3.6) EUD 100 115dB (20ms) / 82dB (20ms)

Kedzior et al. [137] 28 (20%) 31.5 (8) CnUD 20, 40, 80, 100, 200 100dB (50ms) / 70dB (20ms)

Kedzior et al. [138] 36 (17%) 32.2 (7.5) CnUD 20, 40, 80, 100, 200 100dB (50ms) / 70dB (20ms)

Mathias et al. [139] 78 (24%) 16.1 (0.9) CnUD 120 105dB (50ms) / 70-85dB (50ms)

Preller et al. [140] 159 (27%) 31.6 (9.1) CUD 30, 60, 120, 240 115dB (40ms) / 86dB (20ms)

Winton-Brown et al. [141] 47 (55%) 22.7 (3.7) CnUD 30, 60, 120, 1000 114dB (40ms) / 85dB (20ms)

Morales-Muñoz et al. [142] 43 (37%) 26.5 (2.6) CnUD 30, 60, 120 100dB (40ms) / 30dB (30ms)

Gil-Miravet et al. [143] 74 (0%) 42.3 (8.5) CUD 30, 60, 120 105dB (40ms) / 85dB (20ms)

Echevarria et al. [144] 44 (0%) 40.7 (10) CUD 30, 60, 120 105dB (40ms) / 85dB (20ms)
Note: Abbreviations: AD, Alzheimer’s disease; BD, bipolar disorder; dB, decibels; CnUD, cannabis-use disorder; CUD, cocaine-use disorder; EUD, ecstasy-use disorder; 
GAD, general anxiety disorder; GTS, Gilles de la Tourette syndrome; HD, Huntington’s disease; ISI, interstimulus interval; mA, milliamperes; MCI, mild cognitive 
impairment; MDD, major depressive disorder; ms, milliseconds; N, number of participants; NR, not reported; OCD, obsessive compulsive disorder; PD, panic disorder; 
PD, Parkinson’s disease; psi, pounds per square inch; PTSD, post-traumatic stress disorder; SD, standard deviation

Table 2  (continued) 
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Assessment of risk of bias
The results of the methodological quality analysis per-
formed using the Newcastle-Ottawa Scale to assess the 
risk of bias of the studies included in the review are sum-
marized in Table 7. In general, most of the studies had a 
low risk of methodological bias. The overall mean qual-
ity was 7.12 stars (SD = 0.97; range 5–9). Specifically, in 
the category of study selection, most of them presented 
a good definition of the cases, as well as representative 
samples of the population. The comparability analysis 
showed that most of the studies controlled for sex and 
age. Finally, the results of the level of exposure of the 
participants to the evaluation methods and the experi-
mental paradigm revealed a moderate risk of bias, mainly 
due to the fact that many studies did not specify the 

non-response rate or the method of ascertainment for 
cases and controls. As none of the studies included in the 
review obtained a very high risk of bias score (NOS score 
of 0–3 stars), none of them were excluded from the quali-
tative analysis of the review.

Discussion
In this systematic review, we have reviewed and summa-
rized all the available scientific evidence on PPI evalua-
tion in neuropsychiatric disorders from a transdiagnostic 
perspective. More specifically, our main objective was to 
verify the potential role of PPI deficit as a transdiagnostic 
process in four groups of pathologies: (a) trauma-, stress- 
and anxiety-related; (b) mood-related; (c) neurocognitive; 

Table 3  Summary of studies on PPI deficit that compared trauma-, stress-, and anxiety-related disorders patients to matched controls
Study Startle response (SR) Prepulse inhibition (PPI) Neurobiology proposed Cognition proposed
Storozheva et al. [120] GAD > Control: ↓ SR mg.

↑ SR lat.
GAD > Control: ↓ %PPI (ISI 60ms) GAD > Control: ↑ LH RT ↓ SR

↓ PFC RT ↓ PPI
Misinterpretation of contex-
tual cues RT ↓ PPI

Grillon et al. [85] No differences PTSD > Control: ↓ %PPI NR Affective flattening, avoidance 
& re-experiencing RT ↓ PPI

Grillon et al. [81] S1: No differences
S2: PTSD > Control: ↑ SR

PTSD > Control: ↓ %PPI ↑ Activity of the NST & hip-
pocampus RT ↓ PPI

Re-experiencing RT ↑ SR mg.

Grillon et al. [82] PTSD > Control: ↑ SR mg. No differences ↑ Activity of the NST & hip-
pocampus RT ↑ SR mg.

Re-experiencing & avoidance 
RT ↑ SR mg.

Lipschitz et al. [96] No differences No differences NR NR

Holstein et al. [103] PTSD > Control: ↑ SR mg. No differences NR NR

Vrana et al. [105] PTSD > Control: ↓ SR lat.
↑ SR mg.

PTSD > Control: ↓ %PPI (ISI 60 
and 120ms)

NR Hypervigilance RT SR ↓ lat. & 
↑ mg.

Vrana et al. [109] PTSD > Control: ↑ SR mg. PTSD > Control: ↓ %PPI PFC deficit RT ↓ PPI ↑ Abstinence & planning RT 
↑ PPI

Pineles et al. [111] PTSD > Control: ↓ SR mg. PTSD > Control: ↓ %PPI NR Re-experiencing & avoidance 
RT ↓ PPI

Echiverri-Cohen et al. 
[113]

No differences PTSD > Control: ↓ %PPI (ISI 30 
and 60ms)

NR Re-experiencing & avoidance 
RT ↓ PPI

Meteran et al. [116] PTSD > Control: ↑ SR mg. No differences PFC deficit RT ↑ SR Hallucinations & other psy-
chotic symptoms RT ↑ SR

Acheson et al. [122] No differences PTSD > Control: ↓ %PPI (ISI 30 
and 60ms)

PFC, hippocampus & amyg-
dala deficit RT ↓ PPI

Stress RT ↓ PPI

De la Casa et al. [83] Stress > Control: ↓ SR mg. Stress > Control: ↓ %PPI (ISI 60 
and 80ms)

↑ Dopaminergic activity RT 
stress induction RT ↓ PPI

NR

Duley et al. [101] NR TA > Control: ↓ %PPI NR Exercise modulates PPI deficit 
in anxiety

Comasco et al. [108] PW > Control: ↑ SR mg. PW > Control: ↓ %PPI
PW + TA > PW: ↓ %PPI
PW + TA + SSRI > PW + TA: ↓ %PPI

↑ Estrogens & catecholamin-
ergic genotype RT ↓ PPI

Attention & executive deficits 
RT ↓ PPI

Grillon et al. [86] AS > Control: ↑ SR mg. AS > Control: ↓ %PPI NR NR

McMillan et al. [104] AS > Control: ↑ SR mg. AS > Control: ↓ %PPI NR Difficulty disengaging atten-
tion RT ↓ PPI

Ludewig et al. [88] No differences PD > Control: ↓ %PPI
PD + A > PD-A: ↓ %PPI

NR Trait anxiety RT ↓ PPI

Ludewig et al. [95] PDnM > Control: ↑ SR mg. PDnM > Control: ↓ %PPI
PDnM > PDM: ↓ %PPI (240ms)

↑ Dopaminergic & amygdala 
activity RT ↓ PPI

Deficit in interpreting somatic 
symptoms RT ↑ SR

Note: Abbreviations: ↑, increase or hyperactivation of; ↓, deficit or hypoactivation of; AS, anxious sensitivity; GAD, general anxiety disorder; ISI, interstimulus interval; 
Lat., latency; Mg., magnitude; ms, milliseconds; NR, not reported; NST, nucleus of the stria terminalis; PD, panic disorder; PD + A/-A, panic disorders patients with or 
without anxiety; PDM/nM, medicated or unmedicated panic disorder patients; PFC, prefrontal cortex; PTSD, post-traumatic stress disorder; PW, pregnant women; 
PW + TA, pregnant women with trait anxiety; PW + TA + SSRI, pregnant women with trait anxiety medicated with selective serotonin reuptake inhibitors; RH, left 
hemisphere; RT, related to; S1/2, first and second sessions; PPI, prepulse inhibition; SR, startle response; TA, trait anxiety
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and d) other disorders. Considering the heterogeneity 
found in the revision between the different neuropsychi-
atric disorders, we will independently discuss the results 
for each group.

Regarding trauma, stress, and anxiety-related dis-
orders, an increased startle response was reported in 
the group of patients for half of the studies reviewed 
(52.6%). On the other hand, the PPI deficit appeared in 
the patients group compared to their respective controls, 
except for some studies with PTSD patients (4/11). Spe-
cifically, reduced PPI appeared for panic disorder [88, 
95], generalized anxiety disorder [120], anxious vulner-
ability [86, 104], trait anxiety [101, 108], and in non-path-
ological samples submitted to stress induction [83]. This 
high consistency is congruent with the fact that some 
factors that have been associated with a decrease in PPI, 
such as insomnia [145], or affective factors [51], plays a 
central role in these disorders [146].

In the mood disorders group, although no differences 
were found in the magnitude of the startle response in 
68% of the studies, a reduction in PPI was reported for 
half of the reviewed reports. More specifically, in the case 
of bipolar disorder studies, a reduction in PPI has been 
obtained in nine of twelve studies. These data can be 
linked to some core factors in bipolar disorders, such as 
the presence of negative emotions or demotivation [147], 

which have also been related to a PPI reduction [148]. 
However, four studies didn’t find any differences between 
groups [93, 94, 99, 119], and another study reported 
reduced PPI in control women when compared with 
women diagnosed with bipolar disorder [102].

Regarding the studies that evaluated subjects with 
major depressive disorder, there was less consistency, 
since two studies reported a reduced PPI for major 
depressive disorder patients [96, 98] while another two 
studies did not report differences in PPI magnitude for 
patients with depression but without psychotic symp-
tomatology [91, 97]. Similarly, those studies that reported 
reduced PPI included bipolar patients with psychotic 
symptoms [87, 121]. These findings support the idea that 
PPI could be modulated by active symptomatology [70].

Concerning the group of neurocognitive disorders, a 
general reduction in PPI magnitude was reported. Spe-
cifically, PPI was reduced for patients with Hunting-
ton’s, Parkinson’s, and Alzheimer’s diseases, with less 
consistency in the data corresponding to mild cognitive 
impairment patients. A possible explanation for such 
differences comes from the fact that PPI is gradually 
disrupted as the disease progresses, as is the case with 
other markers [149]. Therefore, PPI disruption can play 
a possible role as a biological marker in the differential 
diagnosis between the early and later stages of the disease 

Table 4  Summary of studies on PPI deficit that compared mood-related disorders patients to matched controls
Study Startle response (SR) Prepulse inhibition (PPI) Neurobiology proposed Cognition proposed
Perry et al. [91] No differences No differences (tendency: 

MDD > Control: ↓%PPI)
CSPP deficit RT ↓ PPI NR

Quednow et al. [97] No differences No differences NR Suicide attempt no RT PPI

Comasco et al. [112] MDD > Control: ↑ SR 
mg.

MDD > Control: ↓ %PPI Genetic risk RT ↓ PPI Depression & insomnia RT 
↓ PPI

Matsuo et al. [114] No differences MDD♂>Control♂: ↓ %PPI Sexual dimorphism RT PPI Depression RT ↓ PPI

Perry et al. [87] No differences BD > Control: ↓ %PPI CSPP deficit RT ↓ PPI Cognitive fragmentation 
RT ↓ PPI

Rich et al. [93] No differences No differences NR ADHD symptoms no RT PPI

Barrett et al. [94] No differences No differences NR NR

Carroll et al. [99] BD > Control: SR ↓mg. 
↑lat.

No differences NR Depression RT ↑ SR

Giakoumaki et al. [100] No differences BD > grBD > Control: ↓ %PPI Genetic risk & PFC deficit 
RT ↓ PPI

↓ Inhibitory control RT ↓ PPI

Gogos et al. [102] BD♂>Control♂: ↓ SR 
mg.

BD♂>Control♂: ↓%PPI (60ms)
BD♀>Control♀: ↑%PPI (120ms)

Increase in 5-HT receptors
RT ↑ PPI (♀)

↑ ISI (120ms) mobilizes 
attentional resources

Ivleva et al. [107] No differences No differences NR NR

Sánchez-Morla et al. [110] BD > Control: ↑ SR lat. BD > Control: ↓ %PPI (ISI 60 and 
120ms)

Amygdala déficit RT ↓ PPI ↓ Social cognition RT ↓ PPI

Bo et al. [117] No differences BD > Control: ↓ %PPI PFC deficit RT ↓ PPI ↓ Inhibitory control RT ↓ PPI

Matsuo et al. [118] No differences BD♂>Control♂: ↓ %PPI NR Depression RT ↓ PPI

Massa et al. [119] BD > Control: ↑ SR lat. No differences Genetic risk RT ↓ PPI ↓ Memory, executive func-
tion & SIP RT ↓ SR

San-Martin et al. [121] No differences BD > Control: ↓%PPI (ISI 60ms) NR NR
Note: Abbreviations: ↑, increase or hyperactivation of; ↓, deficit or hypoactivation of; BD, bipolar disorder; CSPP, corticostriatal-pallidopontine limbic circuit; ISI, 
interstimulus interval; Lat., latency; MDD, major depressive disorder; Mg., magnitude; ms, milliseconds; NR, not reported; PFC, prefrontal cortex; PPI, prepulse 
inhibition; RT, related to; SIP, speed of information processing; SR, startle response
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[70]. Given that in this group of disorders it appears a 
progressive neurodegeneration of those areas controlling 
PPI, such as the hippocampus or medial prefrontal cortex 
[150, 151], the results carry weight.

Regarding the other reviewed disorders, there were 
no differences between patients and controls in star-
tle response. However, differences were observed in 
terms of PPI. Thus, in obsessive-compulsive disorder 
(OCD), a deficit in PPI was reported in the majority of 
the reviewed studies (71.4%), both in medicated patients 
[123, 126] and unmedicated patients [128]. Further-
more, it was found that a greater deficit in PPI correlated 
with a history of tics [128] and with a higher severity of 

obsessive-compulsive symptoms [123, 126, 128, 130]. 
These findings are consistent with the results found in 
studies evaluating Gilles de la Tourette syndrome, where 
a widespread deficit in PPI is also present [124, 125, 129]. 
Considering that both disorders are related at the symp-
tomatic level, it makes sense the hypothesis that the defi-
cit in sensorimotor gating is functionally connected to 
the inability to inhibit repetitive thoughts and behaviors 
[68, 133].

Further inconsistencies are found in the group of sub-
stance use disorders. In the case of cannabis, a deficit in 
PPI is present in patients in almost all of the reviewed 
studies when compared to the control group, with the 
exception of one study in which patients had abstained 
from cannabis use for at least three days prior to PPI 
assessment [135]. This is consistent with some studies 
that have found experimentally decreased PPI with the 
administration of cannabinoid receptor agonists [152–
154]. In other conditions, such as stimulant substance 
users, paradoxical effects have been observed among 
patients, who show elevated PPI levels despite cognitive 
deficits [140]. Regarding studies involving ecstasy users, 
one study found higher PPI among patients [135], while 
another study found no differences [136]. It has been 
hypothesized that this increase in PPI associated with 
stimulant drug use may be linked to changes in 5-HT 
receptors [135].

Regarding cocaine use, all the reviewed studies found 
higher PPI among patients compared to the control 
group. The fact that cocaine users have an increased PPI 
index may be supported at a physiological level. It has 
been emphasized that this increase could reflect altered 
catecholamine signaling, suggesting that the PPI altera-
tion may be substance-induced [140]. From a dopami-
nergic perspective, cocaine is known to block dopamine 
(DA) reuptake pumps, leading to increased levels of free 
DA [155, 156]. This increase in DA has been associated 
with a continuous increase in the alerting response [157, 
158]. However, most studies evaluate patients during 
abstinence, where a deficit in DA production has been 
observed due to tolerance, leading to a decrease in startle 
response and an increase in PPI among these patients 
[159, 160]. This increased PPI would lead to enhanced 
pre-attentional automatic processes that result in greater 
sensitivity to rewards, further focusing on the pleasurable 
stimuli associated with the drug [144].

Overall, forty-two studies of the sixty-four reviewed 
(65.62%) found reduced PPI in patients compared to con-
trols. The absence of differences in the remaining stud-
ies can be partially explained by the large proportion of 
patients under psychopharmacological medication at the 
time of experimental data collection, that tend to normal-
ize PPI [65, 161, 162]. Additionally, two studies that used 
pediatric samples found no differences [93, 96], which 

Table 5  Summary of studies on PPI deficit that compared 
neurocognitive disorders patients to matched controls
Study Startle re-

sponse (SR)
Prepulse inhi-
bition (PPI)

Neurobiolo-
gy proposed

Cognition 
proposed

Perriol 
et al. 
[92]

NR PD > AD > Con-
trol: ↓ %PPI (ISI 
120ms)

Subcortical-
thalamo-cor-
tical system 
dysfunction 
RT ↓ PPI

Exogenous 
care RT PPI 
modulation 
(ISI 120ms)

Zoet-
mulder 
et al. 
[106]

No differences PD > Control: ↓ 
%PPI (ISI 60 and 
120ms)

Striatal 
dysfunction 
RT ↓ PPI

NR

Millian-
Morell 
et al. 
[115]

No differences 
(tendency: 
PD > Control: ↑ 
SR lat.)

PD > Control: 
↑ %PPI (ISI 
120ms)

Deficits in 
basal ganglia, 
PFC & do-
paminergic 
network RT 
↑ PPI

Motor 
coordina-
tion deficit 
RT ↑ PPI

Hejl et 
al. [90]

No differences No differences The cholin-
ergic system 
would have 
a weak 
relationship 
with PPI

NR

Ueki et 
al. [98]

No differences MCI > Control: 
↑ %PPI
AD > Control: ↓ 
%PPI

Deficits in 
entorhinal 
cortex in 
early stages 
of AD RT ↓ 
PPI

Cognitive-
behavioral 
dementia 
symptoms 
RT ↓ PPI

Swerd-
low et 
al. [84]

HD > Control: ↑ 
SR lat.

HD > Control: ↓ 
%PPI

Deficits 
in GABA 
efferent 
circuit from 
striatum-pale 
RT ↓ PPI

Inhibitory 
& executive 
deficits 
RT ↑ SR 
latency

Muñoz 
et al. 
[89]

HD > Control: ↑ 
SR lat.

HD > Control: ↓ 
%PPI
HD + cm > HD: 
↓ %PPI

Glutamater-
gic dysfunc-
tion RT ↓ PPI

NR

Note: Abbreviations: ↑, increasement or hyperactivation of; ↓, deficit 
or hypoactivation of; BD, bipolar disorder; AD, Alzheimer’s disease; HD, 
Huntington’s disease; HD + cm: Huntinton’s disease patients with choreic 
movements; ISI, interstimulus interval; Lat., latency; MCI, mild cognitive 
impairment; ms, milliseconds; NR, not reported; PD, Parkinson’s disease; PFC, 
prefrontal cortex; PPI, prepulse inhibition; RT, related to; SR, startle response
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may be due to the high rate of psychostimulant medical-
ization at these ages [163]. Furthermore, as mentioned 
previously, it should be noted that the paradoxical effects 
of stimulant substance use lead to higher PPI levels in 
patients compared to controls in certain studies. Finally, 
it should be noted that other factors such as insomnia 
[164], motivation [148], and affective processes [51] have 
not been controlled in the reviewed studies, and could be 
affecting to PPI magnitude.

In the same vein, differences in experimental param-
eters can affect the results. Thus, for instance, the higher 
differences appeared when using an inter-stimulus 

interval between the prepulse and the pulse of 60 ms 
[105, 113, 120], and 120 ms [91, 92, 102, 110, 115]. With 
lower values the occurrence of PPI could be hindered 
[165], while higher values induce a prepulse facilitation 
effect [166].

Regarding the potential neurobiological factors related 
to PPI disruption, the studies reviewed generally point 
to deficits in the medial prefrontal cortex [100, 109, 116, 
117, 122], the corticostriatal-pallidopontine limbic circuit 
[87, 91, 92, 123, 129, 128], the basal ganglia [84, 106, 115, 
129–132], the amygdala [95, 110, 122], the nucleus of the 
stria terminalis, and the hippocampus [81, 82, 122]. These 

Table 6  Summary of studies on PPI deficit that compared obsessive-compulsive, Tourette and substance-use disorders patients to 
matched controls
Study Startle re-

sponse (SR)
Prepulse inhibition (PPI) Neurobiology proposed Cognition proposed

Swerdlow et al. [123] No differences OCD > Control: ↓ %PPI CSPP deficit RT ↓ PPI Obsessive & compulsive 
(O-C) symptoms RT ↓ PPI

Hoenig et al. [126] No differences OCD > Control: ↓ %PPI CSPP deficit RT ↓ PPI O-C symptoms RT ↓ PPI

de Leeuw et al. [127] NR No differences NR NR

Ahmari et al. [128] No differences OCD > Control: ↓ %PPI CSPP abnormalities RT ↓ PPI O-C symptoms RT ↓ PPI
History of tics RT ↓ PPI

Kohl et al. [130] NR OCD > Control: ↓ %PPI (ISI 
60, 120 and 200ms)

NAcc deficit RT ↓ PPI O-C symptoms’ severity 
RT ↓ PPI

Pittenger et al. [132] NR No differences 5HT1b receptor availability in basal ganglia & 
thalamus RT ↑ PPI

NR

Steinman et al. [133] No differences OCD♀>Control♀: ↓%PPI NR NR

Castellanos et al. [124] No differences GTS > Control: ↓ %PPI Pallidal structures deficit RT ↓ PPI Sensory experiences RT 
↓ PPI

Swerdlow et al. [125] No differences GTS > Control: ↓ %PPI NR NR

Buse et al. [129] No differences GTS > Control: ↓ %PPI Deficit in middle & postcentral gyrus, precuneus, 
cingulate cortex & caudate nucleus RT ↓ PPI

Tic severity RT ↓ PPI

Zebardast et al. [131] No differences No differences Deficit in caudate nucleus, frontal cortex, anterior 
insula, cingulate cortex & middle gyrus RT ↓ PPI

NR

Efferen et al. [134] CUD > Control: ↓ 
SR mg.

CUD > Control: ↑ %PPI 
(Prepulse intensity 75dB)

↓ Dopaminergic activity RT ↓ SR mg. & ↑ PPI NR

Preller et al. [140] No differences CUD > Control: ↑ %PPI (ISI 
120ms)

Alterations in catecholamine neurotransmission 
RT ↑ PPI

NR

Gil-Miravet et al. [143] No differences CUD > Control: ↑ %PPI (ISI 
30ms)

D1 & D2 receptor expression RT differences in PPI NR

Echevarria et al. [144] NR CUD > Control: ↑ %PPI (ISI 
30ms)

NR Psychopathic traits RT 
↑ PPI

Heekeren et al. [136] No differences No differences NR NR

Quednow et al. [135] No differences EUD > Control: ↑ %PPI Sensitivity/density of 5-HT2 and/or 5-HT1 RT ↑ PPI NR

Kedzior et al. [137] No differences CnUD > Control: ↓ %PPI NR Attentional dysfunction 
RT ↓ PPI

Kedzior et al. [138] No differences CnUD > Control: ↓ %PPI NR Attentional dysfunction 
RT ↓ PPI

Mathias et al. [139] No differences CnUD > Control: ↓ %PPI RT ↓ PPI Deficits in sustained 
attention RT ↓ PPI

Winton-Brown et al. 
[141]

No differences CnUD > Control: ↓ %PPI NR NR

Morales-Muñoz et al. 
[142]

NR CnUD > Control: ↓ %PPI (ISI 
30ms)

↑ Dopaminergic activity RT ↓ PPI NR

Note: Abbreviations: ↑, increasement or hyperactivation of; ↓, deficit or hypoactivation of; CSPP, corticostriatal-pallidopontine limbic circuit; GTS, Gilles de la 
Tourette syndrome; ISI, interstimulus interval; Lat., latency; ms, milliseconds; NAcc, nucleus accumbens; NR, not reported; OCD, obsessive-compulsive disorder; PD, 
Parkinson’s disease; PFC, prefrontal cortex; PPI, prepulse inhibition; RT, related to; SR, startle response
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areas had previously been related to PPI in both animals 
and humans [41, 44–46]. Additionally, changes in neuro-
transmission such as hyperactivation of the dopaminer-
gic system [95, 83, 115, 134, 142, 143] and dysfunction 
of the glutamatergic, GABAergic, and catecholaminergic 
systems have also been associated with PPI disruption 
[84, 89, 90, 135, 140].

The reviewed studies have proposed different poten-
tial cognitive factors associated with PPI deficit such as 
re-experiencing and experiential avoidance [85, 111, 
113], obsessive-compulsive symptoms severity [123, 126, 
128, 130], inability to disengage attention [104], hyper-
vigilance [105], and cognitive deficits related to atten-
tion, inhibitory control, planning, verbal memory, or the 
speed of information processing [84, 100, 108, 117, 119, 
137–139]. In fact, experiential avoidance is an important 
vulnerability factor for anxiety and stress [167–169], that 
have also been related to PPI disruption [70, 122].

The connection between cognitive performance and 
PPI disruption has not been fully elucidated. Some 
studies find an association between PPI levels and per-
formance in tasks assessing sustained attention, work-
ing memory, and executive function [170]. In this line, 
Geyer [26] proposed that PPI deficit could lead to or be 
predictive of severe deficits in cognitive function. Thus, 
classical studies proposed that a disruption in PPI would 
indicate impaired inhibitory filtering, such that irrelevant 
stimuli could not be correctly filtered, causing a sensory 
overload, and subsequent failures of higher cognitive 
functions [56, 171]. However, this classical hypothesis, 
and therefore the correlative relationship between PPI 
and cognitive performance, has not been demonstrated, 
with inconsistent results in a multitude of recent studies 
that do not find clear neither strong associations between 
these variables [58, 110, 172, 173].

In addition to the disorders included in this review, 
deficits in PPI consistently appear in other pathologies 
such as schizophrenia spectrum disorders [58], autism 
spectrum [62], neurodevelopmental disorders [63], and 
schizotypal personality disorder [60, 61]. These disorders 
share affective components [174, 175], such as stress. 
This factor has been related to sensorimotor gating defi-
cits through changes on dopaminergic activity. Thus, a 
higher level of stress produces an increase in dopami-
nergic activity [176, 177], which has also been associ-
ated with PPI disruption [43, 49]. Moreover, this deficit 
in prepulse inhibition could represent a general inability 
to suppress irrelevant processes [37], such as intrusive 
thoughts and repetitive behaviors, which are typical and 
shared elements among these disorders [21, 68].

Through specific analysis, the group of disorders where 
this deficit in PPI is most evident is within the schizo-
phrenia spectrum disorders [58], as well as in condi-
tions closely related to the spectrum, such as schizotypal 

personality disorder [60, 61]. In schizophrenia, PPI has 
been proposed as a key paradigm for studying the dis-
ease, understanding this deficit as an idiosyncratic char-
acteristic of the disorder, while also being proposed as an 
endophenotype [55–57] and a biomarker [53, 54]. How-
ever, when studying individuals at genetic risk for schizo-
phrenia as first-degree relatives, it has been found intact 
PPI [59]. It is believed that these contradictory findings 
in the deficit of sensorimotor gating in the prodromal 
stages of schizophrenia may be due to methodological 
differences between studies, as PPI would have relevant 
genetic components and it has been proposed as an 
endogenous phenotype in pedigree studies [59].

Regarding autism spectrum disorders, a clear decrease 
in PPI appears to be evident among children and adoles-
cents with these disorders compared to controls. How-
ever, the consistency in adults within this spectrum is 
lower [62]. This difference could be attributed to the fact 
that it has been demonstrated that PPI for stimulus inter-
vals of 60ms and 120ms increases progressively from 3 
years to reach the adult levels from 9 to 10 years of age 
[178], which would result in a more pronounced deficit 
among younger individuals within the autism spectrum 
compared to adults, as they may experience a delay or 
disorganization in PPI maturation [62].

Finally, in neurodevelopmental disorders, a divergent 
deficit in PPI emerges when comparing patients to con-
trols across various disorders [63], such as enuresis and 
childhood-onset fluency disorder [63, 68]. However, in 
individuals diagnosed with attention-deficit/hyperactiv-
ity disorder (ADHD), the deficit in sensorimotor gating 
is less evident [63]. The fact that this deficit is not as pro-
nounced in ADHD may be attributed to the high rate of 
medicalization with psychostimulants in this disorder 
[163], which influence the PPI index, normalizing it [65]. 
As a result, no differences may be observed when com-
paring these patients to control groups.

The PPI deficit has been found in most of the eighteen 
psychopathological conditions that comprise the four 
groups of neuropsychiatric disorders included in this 
review. This result is in line with the wide variety of neu-
ropsychiatric disorders in which a sensorimotor gating 
deficit has been reported in the scientific literature [21, 
26, 68], that goes beyond diagnostic boundaries and sup-
ports its value as a possible transdiagnostic process [179], 
and as a translational research measure suitable for clini-
cal practice [47]. Given the evidence that sensory gating 
measures, such as P50 suppression, have also been found 
to be altered in a wide range of psychopathological con-
ditions [24, 180–183], it is not surprising that PPI deficit 
can be proposed as a transdiagnostic mechanism.

From an applied perspective, PPI represents a mea-
sure of the integrity of the central nervous system, being 
a neurobiological operational measure that could reflect 
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the functioning of the dopaminergic system [49, 52]. 
Considering the transdiagnostic nature of the deficit, 
and that it could be considered as an index of suscepti-
bility or psychopathological risk, in the future, when 
the representativeness of the studies is greater and the 
studies include samples of patients at different stages of 
the disorders, it could be employed as a marker of state-
trait disease. Therefore, PPI could become a screening 
measure that would facilitate the referral of patients to 
specialized mental health services, in the same way as 
processes such as the delay discounting [184, 185], or the 
N-400 component [186].

Regarding the research domain, PPI could be used as an 
index of nervous system integrity in clinical trials of new 
psychotropic drugs, as well as in the study of advanced 
neuromodulation therapies such as deep brain stimula-
tion, as has already been done successfully in rodents’ 
[187, 188] and humans’ studies [130, 189, 190]. Addition-
ally, it could be used as a measure to assess therapeutic 
changes in evidence-based psychological therapies, as 
has been done with other paradigms such as the P3 com-
ponent in electroencephalography (e.g., Harris and Hall 
[191]; Vázquez-Marrufo et al. [192]) or several functional 
MRI techniques in brain injury rehabilitation (e.g., Rios-
Lago et al. [193]; Muñoz-Cespedes et al. [194]).

Limitations and future perspectives
A limitation of this systematic review is that it included 
studies covering a wide range of psychopathologies with 
heterogeneous experimental parameters and designs. 
Due to this heterogeneity, and considering that many 
studies did not report effect sizes nor allow accessibil-
ity to the original datasets, we were unable to conduct 
a quantitative synthesis of the reviewed literature that 
would provide stronger evidence on the transdiagnostic 
status of PPI deficit. It should also be noted that none of 
the studies reviewed included control for several factors 
that affect PPI magnitude, such as insomnia or affective 
factors (e.g., stress, motivation, etc.).

In the reviewed studies, an effort has been made to 
integrate the research and applied fields regarding the 
deficit in PPI. This aligns with the Research Domain Cri-
teria (RDoC), which is interested in the underlying mech-
anisms of mental disorders by linking cognitive, neural, 
and behavioral levels of analysis [7, 8]. In this review, the 
standards of the RDoC framework have been followed 
by analyzing PPI in different psychopathology groups 
and attempting to integrate these levels, proposing that 
the PPI deficit could be a transdiagnostic deficit. How-
ever, many studies reviewed did not report conclusions 
at neurobiological or cognitive levels. Hence, it would be 
interesting for future studies using this methodological 
framework to conduct in-depth and multisystem analy-
ses of PPI to empirically verify its transdiagnostic nature 

in mental disorders, thus confirming its utility in trans-
lational research, as has been done with other variables 
such as aggression proneness [195].

Regarding the usefulness of PPI as a measure for neu-
ropsychiatric disorders, it should be noted that while PPI 
deficits have been found in several disorders, it can also 
be normal in some individuals with these disorders and 
reduced in some healthy individuals. Additionally, PPI is 
not a stable trait and can be influenced by external fac-
tors such as stress, medication, and sleep. Therefore, PPI 
does not provide additional information on diagnosis or 
clinical course beyond what can be determined through a 
standard psychiatric interview or neurological examina-
tion [196], but in conjunction with other tools and in a 
controlled experimental environment, PPI can be valu-
able in explaining changes and imbalances in clinical 
conditions [68].

Finally, it is needed to study the different processes 
that modulate startle response and/or PPI in order to 
get a better understanding of such measures, as well as 
to develop future interventions targeting modulatory 
factors. Thus, it would be important to include in future 
studies processes such as stress, goal-directed attention 
or motivation. Moreover, since other reported transdiag-
nostic processes such as intolerance of uncertainty seem 
to be a mechanism that maintains psychopathology [16, 
197], it would be interesting to study a potential role of 
the PPI deficit in the genesis and/or maintenance of neu-
ropsychiatric disorders moving from cross-sectional 
research through longitudinal designs in order to study 
the course of the disorders.

Conclusion
In summary, this systematic review represents an integra-
tion of the different levels of analysis of a psychopatho-
logical process, such as the deficit in the PPI of the startle 
response. The results have revealed a moderate degree 
of consistency on PPI deficit in the groups of disorders 
related to trauma-, stress- and anxiety-related, mood-
related, neurocognitive and other disorders such as 
obsessive-compulsive, tic-related, and substance use dis-
orders, as well as an approach from the transdiagnostic 
methodology to the study of this phenomenon. The evi-
dence described will allow progress in the understanding 
of the PPI deficit as a relevant phenomenon in psychopa-
thology, as well as its use as a translational mechanism, 
thus allowing early detection and intervention in neuro-
psychiatric disorders.
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