
ORIGINAL ARTICLE

Prototype generation method using a growing self-organizing map
applied to the banking sector

Sara Ruiz-Moreno1 • Amparo Núñez-Reyes1 • Adrián Garcı́a-Cantalapiedra2 • Fernando Pavón2

Received: 4 April 2022 / Accepted: 24 April 2023 / Published online: 12 May 2023
� The Author(s) 2023

Abstract
In fields like security risk analysis, Fast Moving Consumer Goods, Internet of Things, or the banking sector, it is necessary

to deal with large datasets containing a great list of variables. In these situations, the analysis becomes intricate and

computationally expensive, so data reduction techniques play an important role. Prototype generation methods provide a

reduced dataset with the same properties as the original. GSOMs (growing self-organizing maps) reduce the data size

without the need for prefixing the number of neurons needed to represent the input space. To the best of the authors’

knowledge, this is the first time that the GSOM is applied for reduction and generation of prototypes, posing an advantage

over their predecessors, the SOMs (self-organizing maps), which do not have the automatic growth feature. This work

addresses the use of a GSOM to reduce the number of prototypes to use in a 1-NN (1 nearest neighbor) classifier. The

proposed methodology is applied to an income dataset for testing and a large bank dataset that contain classifications into

two different groups. The 1-NN classifier is used to obtain predictions using the nodes of the GSOM as prototypes. This

article demonstrates that GSOMs save a significant amount of time in obtaining nearly the same validation results as SOMs

by comparing the classifications obtained in the bank dataset. The results show data reductions of more than 99%, and

accuracies greater than 80% for the income dataset and 74% for the bank dataset.

Keywords Growing self-organizing map � Data reduction techniques � Prototype generation � k-NN � Banking

1 Introduction

Nowadays, the development of new technologies and

computing systems gives humans the ability to collect large

amounts of data. The more data we have on a system, the

better representation we obtain of it, and this will give us

greater capacity to extract information and describe it [1].

The problem arises when, in real-world applications, the

amount of data needed is too large. For instance, in banking

applications, where there are millions of clients, with many

different behaviors and operations, the computational

resources needed are unaffordable [2]. In this paper, the

results for a bank with more than 2 million customers will

be presented.

One of the most thrilling problems in the banking sector

is the classification of customers to detect unusual behav-

iors. The k-nearest neighbors (k-NN) technique is widely

used for recognition tasks. It consists of obtaining a rep-

resentative dataset formed by prototypes for which the

classes are known. When new data are fed to the algorithm,

the class corresponding to its k nearest neighbors is

assigned within the prototype space. It is one of the most

useful algorithms in data mining, but it has the drawbacks

of high storage requirements, low efficiency, and low noise

tolerance, especially in the case of 1-NN, since it gives

importance to all data [3]. One way to improve the

& Sara Ruiz-Moreno

srmoreno@us.es

Amparo Núñez-Reyes

anreyes@us.es

Adrián Garcı́a-Cantalapiedra

adrian.garcia@gamco.es

Fernando Pavón

fernando.pavon@gamco.es

1 Department of Systems and Automatic Control Engineering,

Escuela Técnica Superior de Ingenierı́a, University of

Seville, Camino de los Descubrimientos, 41092 Seville,

Spain

2 GAMCO S.L., Alcalá 20, 28014 Madrid, Spain

123

Neural Computing and Applications (2023) 35:17579–17597
https://doi.org/10.1007/s00521-023-08630-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-7632-8211
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08630-w&domain=pdf
https://doi.org/10.1007/s00521-023-08630-w

performance of the k-NN classifier is to use data reduction

techniques, more specifically, prototype reduction, which

can be achieved by either prototype selection or generation.

Prototype selection consists of choosing some repre-

sentative instances from the dataset to use them as proto-

types. The objective is to obtain a training set of smaller

size than the original one, but with the same characteristics,

achieving similar or higher classification accuracy for new

data [3]. On the other hand, prototype generation consists

of creating new training data that represent the previous

one with the same objective as prototype selection.

The self-organizing map, also called Kohonen map after

the first person who described it as a neural network, is an

unsupervised method that organizes data and also provides

a low-dimensional representation employing competitive

learning [4–7]. This algorithm consists of a non-linear,

ordered, and smooth assignation of high-dimensional input

data to a low-dimensional matrix–typically 2D—by

assigning weights to each node of its topology. Since a

SOM organizes the data in groups, it allows for a better

understanding of the input space and is very useful in

applications like data mining or pattern recognition.

A SOM can be understood in two different ways: consid-

ering the output as the low-dimensional map gives a

dimensional reduction and can be used as a clustering

technique; considering the output as the weights gives a

data reduction in which each weight conforms a new pro-

totype. A drawback of the SOMs is that the number of

neurons must be pre-specified before the training phase. A

low number of nodes leads to general information and a

relatively straightforward explanation of the data, whereas

more nodes allow for more detailed information. The

growing self-organizing map (GSOM) addresses this issue

by creating new neurons during the training process so that

it can adapt its structure [8]. This, along with a high

reduction in training times [9], is a great advantage over the

SOM. This work addresses the problem of data reduction

for k-NN using a GSOM.

The main contribution of this work is the implementa-

tion of a GSOM for prototype generation in large datasets.

To the best of the authors’ knowledge, this is a novel

approach for prototype generation that has not been pre-

viously published. The main objective of the work is to

reduce the number of instances in large datasets without

compromising the accuracy. Moreover, a real dataset with

350000 clients was used. The GSOM is applied over the

Census Income dataset and a bank dataset to obtain a

representative space of the data used afterward in a 1-NN

classification problem. This way, it is easier to distinguish

patterns of behavior in clients and make predictions. The

advantages of this method are the decrease in time needed

to apply the 1-NN algorithm and the use of a machine

learning technique that allows a visual understanding of the

problem. To enhance the adaptation of the network, we

have added the use of several iterations of the algorithm in

each of its phases. This aspect is pre-selected.

This document organizes as follows. Section two pro-

vides a literature review and discusses some related work.

In section three, the proposed methodology is defined and

the techniques are described, as well as the evaluation and

visualization metrics. The experimental setup is outlined in

section four, showing the results obtained for two different

datasets. Next, a discussion is provided in section five and,

finally, section six extracts some conclusions from the

work.

2 Literature overview

2.1 k-nearest neighbors

The k-NN classifier is an algorithm that assigns a class to

an input vector based on the classes of the k nearest pro-

totypes in the input space. It is a well-known technique

used in many different applications. For example,

Konieczny and Stojek [10] use a k-NN classifier to classify

the wear condition of a pump, Santos Ruiz et al. [11] apply

the k-NN algorithm to locate leaks in water distribution

networks and Tharwat et al. [12] classify human activities

with information from smart devices.

Despite their wide use and ease of application, k-NN

classifiers have low efficiency, low noise tolerance, and

high data storage requirements. To overcome these prob-

lems, there are different approaches [13]. Some of them are

based on modifying the parameters and equations of the

k-NN, for example, by selecting the optimal value of k [14]

or doing it adaptively [15], combining with genetic algo-

rithms in the selection of neighbors [16], designing dis-

tance functions [17] or using frameworks prepared for big

data applications [18]. Other techniques include reducing

the number of prototypes, either by prototype selection or

by prototype generation.

2.2 Prototype reduction

There are many approaches to prototype selection. Rosero-

Montalvo et al. [19] present an analysis of neighborhood

criterion using the condensed neighbor algorithm to elim-

inate redundant data. The work by Suyal and Singh [20]

approaches the problem of prototype selection by using

multi-label k-NN. Gurumoorthy et al. [21] propose a

framework for prototype selection based on optimal

transport and compare it with other methods evaluating it

with a 1-NN classifier on several datasets. The study by

Kasemtaweechok and Suwannik [22] proposes a technique

17580 Neural Computing and Applications (2023) 35:17579–17597

123

based on geometric median and compares it with different

methods that show high accuracy with low times.

Prototype generation, on the other hand, also has various

applications in literature. Triguero et al. [23] classify and

compare different types of prototype generation algorithms

applied to k-NN classifiers. Ougiaroglou et al. [24] use an

algorithm based on reduction through homogeneous clus-

tering for multilabel k-NN classification. Elkano et al. [25]

propose the use of a new distributed MapReduce method

called CHI-PG for big data classification problems. Few

works in the literature address the problem of prototype

reduction by using a SOM. For instance, Lechevallier and

Ciampi [26] integrate a SOM with other clustering methods

and apply it to nutritional data and, with regard to financial

applications, Sarlin and Peltonen [27] use a SOM for data

and dimensionality reduction to monitor vulnerabilities and

map the state of financial stability.

2.3 Self-organizing maps

The SOM and all its variations have great potential in

applications where it is necessary to analyze great amounts

of data, and it becomes extremely expensive computa-

tionally. For that reason, it can be used in many prepro-

cessing tasks in areas such as data mining: data and

dimensionality reduction, master and multiple curves

approximation, clustering, and classification. Self-orga-

nizing maps have also been widely used in cybersecurity

since ten years after the appearance of the algorithm [28].

Ichimura et al. [29] use a SOM and automatically defined

groups to obtain the distribution of spam email and clas-

sification that would serve to adjust email filtering. Sarkar

et al. [30] use a k-means algorithm combined with SOM to

extract patterns in accidents at work. Christyawan et al.

[31] propose the use of a type of GSOM with a clustering

reference vector for an intrusion detection system. Since

the 1990 s, SOMs have been used in financial applications

[32]. Regarding performance analysis, Shanmuganathan

[33] states that the SOM is a useful tool to examine the

returns and measures implemented in financial sectors.

Concerning financial crisis monitoring, López Iturriaga and

Pastor Sanz [34] use neural networks based on SOMs to

compare macroeconomic imbalances in European coun-

tries. In these fields, SOMs allow a visual representation of

the data and their relationship, which leads to a better

understanding of its triggering factors. Barman and

Chowdhury [35] use a SOM and a minimum spanning tree

for customer segmentation. In the field of fraud detection,

Quah and Sriganesh [36] analyze the behavior of credit

card customers in real time to find hidden patterns without

the need for previous information, and Balasupramanian

et al. [37] propose a fraud detection and prevention method

that uses a SOM to detect patterns. Ganegedara and

Alahakoon [38] address the use of parallel GSOM and

propose a method to reduce redundant neurons. Studies like

the work by Kuo et al. [39] prove that GSOMs perform

computationally better than SOMs, in this case, combined

with bee colony optimization.

3 Techniques applied

The outline of this work is presented in figure 1. The first

step is to train the neural network with a three-phase pro-

cess [9] over a training set of data. After that, different

error measures are calculated, as well as the U-matrix,

which allows a visual explanation of the relationships

between neurons. Finally, we use the GSOM as prototypes

for a one-neighbor k-NN in order to classify the clients and

assess the neural network’s capacity to represent the input

space.

3.1 GSOM

This subsection aims to describe the GSOM and the met-

rics used in this paper to evaluate it. The general idea of a

self-organizing map consists of a network with a given

topology that adapts the weights of its nodes as it receives

input data without losing topological properties. A neigh-

borhood accomplishes the adaptation of the weights to the

net so that the arrival of new data during the training

process will lead to a major adaptation in those neurons

whose weights are closer to these data. A two-classes

Fig. 1 General schema of the work, with the data reduction stage

marked in green and the classification stage marked in yellow

Neural Computing and Applications (2023) 35:17579–17597 17581

123

dataset with 700 vectors is used for exemplification pur-

poses, obtaining a GSOM with 88 nodes.

The growing self-organizing map includes the possibil-

ity of automatically modifying the size of the network,

which allows the use of the number of neurons necessary

for each application without the need for it to be fixed

beforehand.

The GSOM training process is as follows [9]. Initially,

there is a small net, generally composed of four nodes or

neurons, each with a weight vector of the same size as the

input data that will fit in the input space. In SOMs and

GSOMs, as new data arrive, the neuron with the greatest

activation–this is generally calculated as the lowest

Euclidean distance between the weights and the input data–

will be elected as the winner (best matching unit or BMU),

as shown in Fig. 2. With a decreasing learning rate, this

weight vector will be modified to resemble the input data.

This learning rate can be linear, potential, or inverse time.

Similarly, the nearest nodes to the BMU weights will adapt

too by a space-time neighborhood function–the most

common is the Gaussian function. The adaptation is usually

expressed as:

wjðk þ 1Þ ¼ wjðkÞ þ LRðkÞ�ðkÞ vðkÞ � wjðkÞ
� �

ð1Þ

where k denotes the current learning epoch, j is the node,

LR(k) is the learning rate, �ðkÞ is the neighborhood, and

v(k) represents each element of the input data. This learn-

ing procedure leads to an ordered topological mapping of

the represented input data.

The learning rate LR is calculated from the following

equation, where a and R are parameters that must be pre-

selected and n(k) is the number of nodes.

LRðkÞ ¼ LRðk � 1Þ � a � 1� R

nðkÞ

� �
ð2Þ

In a GSOM [40], it is required to keep track of the accumu-

lated error so thatwhen a given threshold is reached, it will be

necessary to expand the number of nodes. The growth of the

mapGT is controlled by the spread factor SF as given by the

following equation, where D is the dimension of the data.

GT ¼ �D � lnðSFÞ ð3Þ

As the network receives new data, the maximum error of

the nodes is calculated. If it reaches GT, new nodes will be

added around the winner. When a node not belonging to

the frontier is selected for growing, the error of its neigh-

bors increases by the distribution factor FD, as in Eq. 5,

with the computation of the BMU given by Eq. 4.

BMUðkÞ ¼ argmin
j

jjvðkÞ � wjðkÞjj; j ¼ 1; :::; nðkÞ ð4Þ

E ¼
GT=2 if node is BMU

Eð1þ FDÞ if node is neighbor of BMU

�

ð5Þ

The neighborhood function is given by Eq. 6, where dt is

the topological distance between each neuron j and the

winner BMU, and r represents the selection of neighbors

and decreases each epoch a given value Dr.

� ¼ eðkÞ�
dt ðj;BMUðkÞÞ

2r2 ð6Þ

For a major control over the neighborhood, we added the

possibility of selecting the value of r with a certain number

of iterations. The decrease Dr is generally selected

directly, but this is not as intuitive when it comes to

parameter tuning. This work will fix it through the number

of iterations in each phase of the algorithm so that the

increment will be equal to an initial value of r minus a

minimum value divided by the number of total iterations N.

Dr ¼ rini � rmin
N

ð7Þ

This process is accomplished in three phases: initialization,

growing and smooth. The last one consists of refining the

weights of the nodes once the net has reached its definite

size. This is detailed in algorithm 1 [9].

Several tests with different network topologies (squared

and hexagonal) have been conducted. In squared networks,

a neuron can have up to four neighbors, while the number

of neighbors may reach six in the hexagonal topologies.

Thus, when new nodes are added to the net, the growth will

be more intense in the case of hexagonal topologies.Fig. 2 Scheme of the training process of a SOM. For each input

vector, the BMU is selected and the SOM weights are adapted

17582 Neural Computing and Applications (2023) 35:17579–17597

123

3.1.1 U-matrix

The U-matrix (Unified Distance Matrix) is a bidimensional

representation of the neurons in the input space to visualize

the distances between them. The mean distance between

the weight vector and its neighbors is calculated for each

neuron, and a color is associated. The nodes whose colors

correspond to lower values will have more similar weights

[41].

The self-organizing maps allow a bidimensional repre-

sentation of the data space that will be able to be visualized

through the U-matrix. This work employs a GSOM rep-

resentation with a U-matrix intending to facilitate its

comprehension and favor the following analysis process.

3.1.2 Evaluation

Three tools have been employed to compare the perfor-

mance of the various networks obtained: standard devia-

tion, quantification error, and simplicity. The first one

(stdNodes, in Eq. 8) collects the mean standard deviation of

the distances between the input data and the associated

BMUs. The quantification error or heterogeneity (quantE,

in Eq. 9) provides a measure of the adjustment of neurons

to training vectors using the mean of the distances to the

corresponding winning node [42]. Simplicity [43], in

Eq. 10, is the accumulated neighborhood distance. It

measures the network expansion and collects the sum of

the distance between the BMUs and their neighbors. Also,

the percentage of prototype reduction will be computed.

stdNodes ¼ 1

nðNÞ
XnðNÞ

j¼1

sXðjÞðjjwjðNÞ � vðNÞjjÞ ð8Þ

with s the standard deviation and XðjÞ ¼ fx : j ¼ BMUðxÞg

quantE ¼ 1

Np

XNp

i¼1

jjvðiÞ � wBMUðvðiÞÞjj ð9Þ

simplicity ¼
X

i:XðiÞ6¼;

X

j:j neighbor of i

jjwi � wjjj ð10Þ

Neural Computing and Applications (2023) 35:17579–17597 17583

123

3.1.3 Illustrative examples

GSOM alone can be used for classification and generation

of new neurons presenting the initial topology. To validate

the proposed methodology and visually check the adapta-

tion of the net, two preliminary experiments are presented.

The GSOM features shown in the examples (ring and letter

G) will be exploited as a prototype generation method for a

k-NN classifier in the results section.

The use of the U-matrix for classification is exemplified

in Figs. 3 and 4. They show, respectively, the weight

vectors and U-matrix of a GSOM applied to a 700 vectors

dataset with two features (x,y) in which two classes (z-axis)

are distinguished. Neurons with blue tones are associated

with minor distances to neighboring nodes, and reddish

tones associate with major distances. The U-matrix allows

one to visually distinguish both classes, since orange neu-

rons constitute a frontier between them.

The second example was conducted on a set of tridi-

mensional data distributed in the space and forming a fig-

ure. The dataset is conformed by points randomly scattered

building a letter G. It has been divided into three subsets

(s1, s2 and s3) that contain 1000, 10000 and 20000 data,

respectively. The variables are x, y and z. This example

shows the advantages of GSOMs since they can generate

the number of nodes necessary to adapt to datasets of

different sizes without the need to know it beforehand. Not

necessarily a set with more data must be represented with a

larger map.

Table 1 shows the parameters used for training the dif-

ferent GSOMs. Id is the GSOM identifier (which starts

with the subset identifier x, meaning 1, 2 or 3), type is the

shape of the net (GRID means squared network and HEX

means hexagonal network), LRg
ini is the initial learning rate

in the growth phase and LRs
ini is the initial learning rate in

the smooth phase. In all cases, it has been used an initial

network of four nodes, a spread factor SF ¼ 0:5, a distri-

bution factor FD ¼ 0:1, a value of R ¼ 3:8, [9], and initial

and final r values of 1 y 0.1, respectively. Some of the

GSOMs have been trained setting Dr and others fixing the

number of iterations in each phase.

The final numbers of neurons and error measures are

collected in Table 2, where Neurons indicate the final size

of the GSOM (which is the result of the data reduction) and

Reduction is the reduction rate = (1 - number of samples in

the reduced set /number of samples in the original set)�
100. Figure 5 shows the weight vectors of the GSOMs

s1 2, s2 2 and s3 2 in the input space. The results show

similar adaptations of the GSOMs independently of the

number of inputs, and the reduction increases with the size

of the input dataset. The values of quantE, stdNodes and

simplicity differ, as they depend on the amount of input

data, but the variation between subsets is low. More

detailed visualizations of the adaptability of growing self-

organizing networks are made by [44].

3.2 k-NN

Finally, the k-nearest neighbor algorithm for classification

[45] is used, which assigns a class for each input vector

based on the class of the k closest prototypes in the space.

Initially, a set of labeled prototypes is required. These are

vectors that represent the data the best as possible to obtain

good classifications. A set of prototypes could be a real

dataset, but this will carry a great computational cost. It is

essential to use a helpful dataset, given that poorly bal-

anced sets will falsify predictions. If the real data and the

prototypes contain a very different proportion of positives,

the assignments will not be correct. The weight vectors of

the GSOM will be used as prototypes for the classifier.

3.2.1 Evaluation

To measure the performance of the binary classifier [45],

three different ratios that take into account the number of

true positives (TP), true negatives (TN), false positives

(FP) and false negatives (FN) are used:

• Average accuracy (ACC): the hit rate.

ACC ¼ TPþ TN

TPþ TN þ FPþ FN
ð11Þ

• Sensitivity (SEN) or recall: the rate of properly detected

defaults.

SEN ¼ TP

TPþ FN
ð12Þ

Fig. 3 Ring with two classes, where the red and green dots

differentiate both of them

17584 Neural Computing and Applications (2023) 35:17579–17597

123

• False Positive rate (FPR): the rate or improperly

detected defaults.

FPR ¼ FP

FPþ TN
ð13Þ

• Balanced accuracy (BA): the mean between the sensi-

tivity and the true negative rate, which is 1 - FPR.

BA ¼ 1� 1

2

TP

TPþ FN
þ TN

TN þ FP

� �
ð14Þ

• Precision (PRE): the rate of true positives over all

predicted as positive classes.

PRE ¼ TP

TPþ FP
ð15Þ

• F1-score (F1): the harmonic mean of precision and

sensitivity.

F1 ¼ 2
PRE � SEN
PRE þ SEN

ð16Þ

Fig. 4 U-matrix of a GSOM

applied to the dataset with ring

shape

Table 1 Training parameters for each letter G GSOM, where sx
indicates subsets 1, 2 or 3

Id Type LRg
ini LRs

ini a Drg Drs

sx_1 GRID 0.3 0.5 1 0.1 0.05

sx_2 GRID 0.5 0.3 1 0.1 0.05

sx_3 GRID 0.5 0.5 0.7 0.1 0.05

sx_4 HEX 0.5 0.5 1 0.1 0.05

Id Type LRs
ini LRs

ini a Growth

it

Smooth

it

sx_5 GRID 0.5 0.5 1 50 100

sx_6 GRID 0.5 0.5 1 10 100

sx_7 GRID 0.5 0.5 1 50 50

sx_8 GRID 0.5 0.5 1 100 100

Table 2 Results obtained for each GSOM of the letter G

Id quantE stdNodes simplicity Neurons Reduction (%)

s1_1 0.226 0.083 291.085 128 87.200

s1_2 0.353 0.118 131.097 46 95.400

s1_3 0.274 0.091 207.833 123 87.700

s1_4 0.329 0.113 271.289 57 94.300

s1_5 0.420 0.158 105.066 42 95.800

s1_6 0.376 0.128 117.729 49 95.100

s1_7 0.342 0.113 156.099 49 95.100

s1_8 0.397 0.137 114.764 44 95.600

s2_1 0.229 0.078 790.437 207 97.930

s2_2 0.332 0.108 188.857 63 99.370

s2_3 0.229 0.072 303.373 193 98.070

s2_4 0.332 0.110 519.052 77 99.230

s2_5 0.343 0.105 163.300 59 99.410

s2_6 0.341 0.108 154.000 57 99.430

s2_7 0.333 0.105 157.527 61 99.390

s2_8 0.336 0.104 170.616 60 99.400

s3_1 0.217 0.072 1134.208 251 98.745

s3_2 0.332 0.107 215.894 64 99.680

s3_3 0.213 0.067 334.224 243 98.785

s3_4 0.327 0.109 588.972 80 99.600

s3_5 0.323 0.100 168.357 66 99.670

s3_6 0.314 0.097 188.892 71 99.645

s3_7 0.314 0.097 190.444 70 99.650

s3_8 0.320 0.099 175.056 80 99.600

Neural Computing and Applications (2023) 35:17579–17597 17585

123

• Cohen’s Kappa: a measure of the agreement between

the actual and predicted classes that compensates for

the effect of randomness.

j ¼Po � Pe

1� Pe
;where

Po ¼
TPþ TN

TPþ TN þ FPþ FN

Pe ¼
ðTPþ FPÞ � ðTPþ FNÞ
ðTPþ TN þ FPþ FNÞ2

þ ðTN þ FNÞ � ðTN þ FPÞ
ðTPþ TN þ FPþ FNÞ2

8
>><

>>:

ð17Þ

4 Application results

This section shows the different tests carried out in two

datasets to observe the adaptation of the GSOMs to the

input space. These datasets correspond to an annual income

register and bank records. A 1-NN classifier has been

applied to obtain predictions using the GSOMs as proto-

types. All neural networks have been trained using Intel�
Xeon� CPU E3-1220 v6 at 3.00GHz and 48 GB DDR3.

4.1 Census income results

In this work, different experiments were carried out using

the Census Income dataset, also known as the Adult data-

set, from the UCI Machine Learning Repository [46]. Its

use is intended for the classification between two types of

incomes to predict whether a given person makes more

than $50000 a year based on attributes such as age, sex,

education, marital status, etc. It contains 48842 instances of

multivariable data with 14 attributes with categorical and

integer variables. The last variable corresponds to the

output of the dataset, which represents the classification,

meaning 1 a positive value and 0 otherwise. These data are

divided into two sets. After a preprocessing step by joining

the data and eliminating incomplete instances, a dataset of

45222 instances is obtained. As the original data are

unbalanced, a balanced subset of 22416 instances with 50%

of each class is created. Both were divided into training

sets of 80% (36177 instances for the unbalanced data and

17933 for the balanced data) and a test set of 20% (9045

unbalanced instances and 4483 balanced). As a baseline,

the case without data reduction in the unbalanced dataset is

used. The results on the test set are as follows: accuracy of

79.67%, sensitivity of 58.95%, false positive ratio of

13.56%, F1-score of 58.83% and Cohen’s Kappa of

45.33%.

4.1.1 GSOM and k-NN performance

Many experiments have been conducted on this dataset

modifying the training parameters and the network topol-

ogy, defined by the size–It is automatically obtained from

the GSOM. Table 3 contains the parameters of the different

Fig. 5 Weight vectors of the GSOMs applied to the three different subsets of the letter G

Table 3 Training parameters for each GSOM applied to Census

Income dataset

Id Type LRg
ini LRs

ini a Growth it. Smooth it

1,11 GRID 0.5 0.1 1 10 20

2,12 GRID 0.5 0.5 1 50 100

3,13 GRID 0.5 0.5 1 10 100

4,14 GRID 0.5 0.5 1 10 50

5,15 GRID 0.3 0.1 1 10 20

6,16 GRID 0.5 0.5 0.9 10 20

7,17 HEX 0.5 0.1 1 10 20

8,18 HEX 0.5 0.5 1 50 100

9,19 HEX 0.5 0.5 1 10 100

10,20 HEX 0.5 0.5 0.9 10 20

17586 Neural Computing and Applications (2023) 35:17579–17597

123

GSOMs applied to the Census Income dataset, either the

unbalanced data (GSOMs 1 to 10) and the balanced data

(GSOMs 11 to 20). The same parameters have been used

for each type of dataset to compare the results. Id is the

GSOM identifier and LRg
ini and LRs

ini are the initial learning

rates in growth and smooth phases. In every GSOM, it has

been employed a spread factor SF ¼ 0:5, a factor of dis-

tribution FD ¼ 0:1, a value of R ¼ 3:8, [9], and initial and

final r values of 1 and 0.1, respectively.

Before training the GSOMs, several SOMs have been

trained to compare them with the GSOMs and validate the

method. Each SOM was trained with 75 iteration steps, and

a hexagonal topology. Four grid sizes were tested: 10 nodes

� 10 nodes, 15 nodes � 15 nodes, 20 nodes � 20 nodes

and 25 nodes � 25 nodes. The error measures are gathered

in Tables 4 and 5. The time to train each model was

recorded in the ‘‘Tr. time’’ column. As the SOM maps the

space obtaining non-binary variables, the output was

binarized, assigning to each neuron the mode output of the

training vectors for which it is the BMU. Both datasets

produce similar measures, although the training times are

significantly lower using the balanced dataset.

The error measures and training times for each GSOM

are listed in Table 6 for the unbalanced data and 7 for the

balanced data. As well as with the SOMs, the training times

are lower with the balanced dataset, and the rest of the

measures are of the same order. However, the values of

simplicity vary significantly from one experiment to other.

In general, for models of the same size, GSOMs require

much less training time than SOMs.

The accuracy, sensitivity, and false positives rates cal-

culated after applying the 1-NN classifier are listed in

Tables 8 and 9 for the SOMs, and 10 and 11 for the

GSOMs. The models with the unbalanced dataset have

slightly higher accuracy, but lower sensitivity compared to

the ones with the balanced dataset. Moreover, the increase

in sensitivity is more significant with GSOMs.

The results from both the unbalanced and balanced data

have values of quantE, stdNodes, and reduction that are

similar, indicating that the networks are equally adapted to

the input data and near the BMUs. Nevertheless, the sim-

ilarity values are lower for the balanced data, indicating

that the models are less spread out. Although the reduction

is similar in most cases, as shown in Fig. 6, the balanced

dataset was smaller, so it provides GSOMs with fewer

nodes, obtaining better training times. With unbalanced

data, the accuracy is higher than with the balanced data, but

the false positive rate is higher too, and the sensitivity is

lower. Compared to the baseline accuracies, better results

are obtained: with accuracies in the test subset over 80%

for GSOMs 6, 7, 10 and 14. Figure 7 gathers the mean

reductions, accuracies, balanced accuracies, F1-scores,

Cohen’s Kappa values and inverse of training times for the

five best experiments in the test set. This graph allows

associating the best models with larger areas covered by

their corresponding polygon, which highlights the superior

performance of the GSOMs on the balanced dataset com-

pared to the other models.

To obtain a better understanding of the results, the

U-matrix and an output map of GSOM 16 have been

plotted in Fig. 8. The U-matrix helps to distinguish the

zones where the neurons are more similar, displaying

clustering capabilities, while the output map prints a color

associated to the classification value (or output) of each

neuron. Given that the GSOM is adapted, its values need to

be binarized, considering that values closer to 1 correspond

to positive classifications. Bluer neurons in the U-matrix

relate to homogeneous zones in the output map and red

colors in the U-matrix correspond to zones with more color

variety in the output map. With GSOM 16, a reasonably

expanded network is obtained, and it is possible to distin-

guish clearly two great areas in the U-matrix, implying that

there are two types of people in the dataset. By further

analysis, even three or four groups could be identified.

4.2 Bank data results

Different GSOMs have been implemented in GAMCO’s

ARM (Advanced Risk Management) solutions using bank

clients datasets. Starting from an initial network of four

nodes, the GSOMs have been trained to sample the data.

The aim is to obtain a small set of prototypes for a 1-NN

classifier. It also provides a low-dimensional representation

of them that allows faster analysis and easier comprehen-

sion at a human level. The weight vectors of the GSOM are

clusters that constitute a new dataset themselves. They can

be subsequently combined with further analysis and clas-

sification algorithms such as k-NN. The dataset used is too

large, so it is not feasible to apply a k-NN classifier without

Table 4 Training results for

each SOM with the unbalanced

CI dataset

Id QuantE stdNodes Simplicity Neurons Reduction (%) Tr. time (h)

1 2.224 0.483 801 100 99.723 65.559

2 1.971 0.353 1800 225 99.378 126.575

3 1.790 0.326 3452 400 98.943 225.649

4 1.657 0.303 4842 625 98.272 408.930

Neural Computing and Applications (2023) 35:17579–17597 17587

123

Table 5 Training results for

each SOM with the balanced CI

dataset

Id QuantE stdNodes Simplicity Neurons Reduction (%) Tr. time (h)

1 2.195 0.429 854 100 99.442 33.709

2 1.943 0.359 4658 225 99.745 72.040

3 1.777 0.327 3396 400 97.769 106.432

4 1.650 0.278 5924 625 96.515 179.303

Table 6 Training results for

each GSOM applied to the

Census Income Dataset with

unbalanced training set

Id quantE stdNodes Simplicity Neurons Reduction (%) Tr. time (s)

1 1.618 0.581 2068 208 99.425 30.223

2 1.573 0.561 3644 279 99.229 180.601

3 1.628 0.589 2169 197 99.455 110.301

4 1.732 0.599 3382 200 99.447 59.810

5 1.281 0.463 6373 751 97.924 88.449

6 1.530 0.556 2546 271 99.250 37.257

7 1.605 0.582 3596 229 99.367 32.423

8 1.556 0.541 8635 368 98.983 212.803

9 1.611 0.576 5268 262 99.276 136.627

10 1.530 0.558 4128 292 99.123 40.465

Table 7 Training results for

each GSOM applied to the

Census Income dataset with

balanced straining set

Id quantE stdNodes Simplicity Neurons Reduction (%) Tr. time (s)

11 2.027 0.630 1669 91 99.493 9.545

12 1.712 0.584 882 94 99.476 46.171

13 1.716 0.591 841 88 99.509 33.607

14 1.713 0.592 1008 96 99.465 19.587

15 1.314 0.460 3506 421 97.652 25.229

16 1.590 0.558 1216 142 99.208 11.766

17 1.720 0.588 1617 103 99.426 10.166

18 1.671 0.570 1830 121 99.325 52.758

19 1.684 0.586 1700 111 99.381 38.806

20 1.537 0.540 2764 195 98.913 14.318

Table 8 Results obtained for

each SOM?1-NN applied to

Census Income dataset with

unbalanced data, expressed in %

Train Test

Id ACC SEN FPR F1 j ACC SEN FPR F1 j

1 81.1 46.7 7.6 54.9 43.5 80.4 46.5 7.97 54.7 42.7

2 80.6 47.1 8.3 54.7 42.8 80.9 47.3 8.38 54.5 42.7

3 81.2 52.7 9.45 58.1 46.2 80.9 50.6 9.13 56.7 44.7

4 81.5 53.5 9.33 58.8 47.1 81 53.4 9.72 58.6 46.4

Table 9 Results obtained for

each SOM?1-NN applied to

Census Income dataset with

balanced data, expressed in %

Train Test

Id ACC SEN FPR F1 j ACC SEN FPR F1 j

1 75.1 76.9 26.6 75.6 50.3 74.8 76.5 27 75.2 49.6

2 76.8 77.2 23.6 76.9 53.7 76.7 77.1 23.7 77 53.5

3 76.6 77 23.8 76.7 53.2 76.6 76.9 23.7 76.5 53.2

4 78.5 79.9 22.9 78.8 56.9 78.4 78.8 21.9 78.5 56.9

17588 Neural Computing and Applications (2023) 35:17579–17597

123

first applying a prototype reduction method. Therefore, a

comparison between SOM?k-NN and GSOM?k-NN has

been performed.

The dataset corresponds to different anonymous clients

of a bank, and the objective is to determine well in advance

when a customer is going to default. The total client

portfolio is made up of around 2 million clients, and their

data is obtained from four different sources: customers,

Table 10 Results obtained for

each GSOM?1-NN applied to

Census Income dataset with

unbalanced data, expressed in %

Train Test

Id ACC SEN FPR F1 j ACC SEN FPR F1 j

1 80.9 57.8 11.5 60.1 47.5 79.6 56.1 12.8 57.4 44.0

2 80.4 62.6 13.7 61.3 48.2 79.4 60.7 14.5 59.1 45.3

3 80.4 60.7 13.1 60.6 47.5 78.9 58.0 14.3 57.4 43.4

4 78.9 64.3 16.3 60.3 46.0 78.2 62.2 16.7 58.3 43.6

5 82.6 61.8 10.5 63.8 52.4 79.7 56.1 12.6 57.5 44.2

6 81.4 62.2 12.2 62.5 50.2 80.6 61.3 13.1 60.8 47.9

7 81.5 60.4 11.6 61.8 49.6 80.4 59.2 12.7 59.7 46.7

8 78.8 60.9 15.2 58.8 44.6 77.7 58.0 16.0 56.0 41.0

9 80.3 62.0 13.7 61.0 47.9 79.7 60.9 14.2 59.5 46.0

10 81.5 55.4 9.8 59.9 48.0 80.1 51.3 10.6 55.8 43.1

Table 11 Results obtained for

each GSOM?1-NN applied to

the Census Income dataset with

balanced data, expressed in %

Train Test

Id ACC SEN FPR F1 j ACC SEN FPR F1 j

11 77.7 86.8 31.4 79.5 55.4 78.6 87.6 30.7 78.3 52.7

12 78.2 82.6 26.2 79.1 56.4 79.2 82.7 24.5 80.1 58.3

13 78.6 83.9 26.7 79.7 57.2 79.0 83.1 25.1 80.1 58.0

14 78.4 82.1 25.3 79.2 56.8 80.4 83.7 23.0 81.2 60.7

15 80.1 81.2 21.1 80.3 60.1 79.3 79.5 21.0 79.5 58.5

16 79.2 82.3 23.9 79.8 58.4 79.5 81.4 22.5 80.1 59.0

17 77.9 82.6 26.9 78.9 55.7 79.6 83.8 24.8 80.6 59.1

18 77.8 80.7 25.1 78.4 55.6 78.3 80.0 23.4 78.9 56.6

19 78.0 82.1 26.0 78.9 56.1 77.8 81.0 25.5 78.7 55.5

20 79.3 82.4 23.9 79.9 58.6 79.4 82.2 23.4 80.2 58.9

Fig. 6 Accuracy against data reduction percentage for the GSOMs of

the Census Income dataset

Fig. 7 Mean reductions, accuracies, balanced accuracies, F1-scores,

Cohen’s Kappa values and inverse of training times for the Census

Income dataset

Neural Computing and Applications (2023) 35:17579–17597 17589

123

bank transactions, contracts, and defaults. There are

approximately 2.5 billion transactions and 500 million

hires. Three-year historical data were used to build the

training data, looking for examples of customer defaults

and payment cases with different previous histories.

Table 12 shows a summary of the type of data used.

To obtain the dataset, every month, more than 7 million

bank customers were processed and more than 1.6 million

customers were evaluated by the models. The steps to

verify to obtain the customers to be evaluated by the model

are as follows:

1. Customers associated with any loan contract (asset).

2. The customer must be the holder of at least one

contract of both assets and deposits.

3. Any loan contract was still in vigor.

4. With a contract that did not have a grace period on the

date of evaluation of the client’s risk by the model.

5. With no incidences in the credit payments (they are

healthy clients).

6. They have some movement in their bank accounts.

On the other hand, for the training of the models, sets of

input/output vectors had to be created, each vector corre-

sponding to the features of a customer. These feature

vectors are divided into three sets of input/output vectors:

training, validation, and test. For this purpose, we worked

primarily with the following information sources or

datasets:

• Customers: 7 million records.

• Transactions: more than 2.9 billion transactions.

• Contracts: more than 6.5 million loan contracts and 494

million contracts for other products.

• Incidents: more than 14.3 million defaults.

A very important and costly step is the labeling of the

vectors corresponding to a client and a date, that is to say,

to mark if that client will default or not at a given time from

a date. For example, customers on day d will be labeled as

unpaid, if on d þ 180 they will have a default of more than

30 days on any of their receivables. These vectors will be

used to create models that detect defaults of more than 30

days and 180 days before a given date. In the sets of input

and output vectors, great care was taken to include cus-

tomers with the following characteristics, thus achieving to

have feature vectors of the different typologies of cus-

tomers in terms of defaults on a specific historical date, in

which the feature vector is labeled:

• Customers with no defaults

• Customers who have defaults prior to the date on which

it is labeled, but no subsequent defaults.

• Customers who have defaults after the date on which it

is labeled.

Fig. 8 U-matrix and Output visualizations of the GSOM_CI 16

Table 12 Brief description of the data used in ARM

Source Variables

Customers Age, ZIP code, segmentations, civil status, gender, housing type, patrimonial value, economic sector, country, country of birth,

level of studies, number of children

Transactions Monthly averages, debits and credits, balances, product categories, number of transactions

Hiring Quantity of products, types, products without ownership, customer seniority

Loans Number and type of loans, amounts contracted in consumer loans and mortages, interests

Defaults Time with default, last default, maximum default, defaults on consumer loans and mortages

17590 Neural Computing and Applications (2023) 35:17579–17597

123

• Customers who have defaults on the date being labeled

(in the example above: 180 days after the date being

labeled are at least 30 days late on any of their loans).

• Customers who have not defaulted, but who have had

and will have defaults (beyond the 180 days that serves

as an example).

Finally, a balanced dataset was built (same number of

payments as of defaults) with more than 350,000 clients

and is divided into a training set of 284259 clients (75%), a

validation set of 56852 (15%) clients and a test set of

37900 clients (10%). The vectors contain 125 features of

the individuals and their bank records. One of the variables

corresponds to the output, which indicates if the client has

committed default.

4.2.1 GSOM and k-NN performance

Table 13 contains the parameters used for training the

different GSOMs implemented. The GSOM is expected to

obtain similar results to those achieved with a SOM in a

much shorter time. To verify it, several SOMs have been

trained with different topologies. Tables 14 and 16 collect

the results of best SOMs obtained for four different

topologies (squared of 20 nodes � 20 nodes for SOM 1,

hexagonal of 23 nodes � 23 nodes for SOM 2, hexagonal

of 25 nodes � 25 nodes for SOM 3 and hexagonal of 27

nodes � 27 nodes for SOM 4). Each of the selected SOMs

was trained using 75 iteration steps, which were necessary

to obtain good results. The training times are around 3 and

4 h, and the accuracies in the test set are all over 70%.

Only one of the false positive rates is lower than 20%.

The error measures described in Sect. 3 have been cal-

culated, as well as the definite number of neurons and the

training duration in hours for each one of the GSOMs

implemented. The results are gathered in Table 15. The

most significant reductions are in GSOMs 1, 3 and 4, which

had only 10 growth iterations, a squared topology and an

initial growth learning rate of 0.5. The GSOM with a lower

initial growth learning rate obtains the lowest stdNodes and

QuantE values, and also one of the lowest simplicities. It

should be mentioned that GSOM 1 is comparable to SOM

1, GSOM 7 to SOM 2, SGOM 9 to SOM 3 and GSOM 10

to SOM 4, with higher simplicities and much shorter

training times.

After applying 1-NN to the GSOMs to classify the cli-

ents in default (positive output) versus payment (negative

output), the number of true and false positives and nega-

tives have been obtained. Those numbers serve to obtain

the previously mentioned performance ratios: Accuracy

(hit rate), Sensitivity (correctly detected defaults) and False

Positive rate (improperly detected defaults). These have

been calculated and presented in Table 17. The accuracies

in the test set are above 70% in most GSOMs, with 74.7%

in the case of GSOM 5. The false positives only exceed

20% in GSOMs 1 and 6.

The obtained accuracies are represented over the

reduction percentages of all GSOMs in Fig. 9. The highest

accuracy is associated with a low reduction percentage,

although the highest reduction also obtains a high accuracy

in the test subset.

The average results of the best five experiments of each

type are collected in Fig. 10, including mean reductions,

accuracies, balanced accuracies, F1-scores, Cohen’s Kappa

values, and inverse of training times. The mean Kappa

values, F1-scores, balanced accuracies, and reductions are

similar between the SOMs and the GSOMs, however, the

GSOMs tend to provide slightly higher accuracies and take

much less training time.

Figure 11-left shows the adaptation of the GSOM 3

(with squared topology) to the input space in different

features chosen randomly–feature 4 is related to the cus-

tomer client, feature 8 refers to monthly charges, feature 21

relates to payments and feature 30 takes account of daily

balances. The data output is the class, which indicates if the

client has committed payment (0) or default (1). After a

discretization process, the arrangement of the GSOM is

shown in Fig. 12-left. For a better visualization of the

performance using a GSOM of different topology, the

weight vectors of the GSOM 9 and their adaptation to the

input space are represented in Figs. 11-right and 12-right.

This map has a hexagonal topology and has been trained

using the same parameters as for the GSOM 3. As previ-

ously mentioned, hexagonal topologies have faster growth.

The expansion of the GSOM can be perceived, as well as

its adaptation to the training data, providing more proto-

types in the zones with higher data density. At first sight,

there is not a huge difference in the adaptability of the two

topologies used.

Table 13 Training parameters for each GSOM with the bank dataset

Id Type LRg
ini LRs

ini a Growth it. Smooth it

1 GRID 0.5 0.1 1 10 20

2 GRID 0.5 0.5 1 50 100

3 GRID 0.5 0.5 1 10 100

4 GRID 0.5 0.5 1 10 50

5 GRID 0.3 0.1 1 10 20

6 GRID 0.5 0.5 0.9 10 20

7 HEX 0.5 0.1 1 10 20

8 HEX 0.5 0.5 1 50 100

9 HEX 0.5 0.5 1 10 100

10 HEX 0.5 0.5 0.9 10 20

Neural Computing and Applications (2023) 35:17579–17597 17591

123

As well as for the Census Income case, the U-matrices

and output maps have been represented in Figs. 13 and 14

to obtain a visual explanation of the mapping made by the

GSOMs and the subsequent classifications carried out by

Table 16 Performance of each SOM?1-NN, expressed in % with the bank dataset

Train Validation Test

Id ACC SEN FPR F1 j ACC SEN FPR F1 j ACC SEN FPR F1 j

1 74.5 67.2 19.3 70.8 48.2 74.2 67.1 19.7 70.5 47.8 74.0 66.9 20.0 70.3 47.2

2 75.0 69.3 20.1 71.8 49.4 74.3 68.7 21.0 71.1 48.0 74.3 68.8 21.0 71.1 48.0

3 71.7 59.8 18.2 66.1 42.2 71.7 59.6 18.1 66.0 42.2 71.2 59.6 18.9 65.5 41.2

4 75.7 69.3 18.9 72.4 50.7 74.7 68.2 19.6 71.3 48.8 74.6 68.5 20.1 71.3 48.7

Table 14 Training results for

each SOM with the bank dataset
Id QuantE stdNodes Simplicity Neurons Reduction (%) Tr. time (h)

1 6.075 4.912 26952 400 99.859 3.254

2 5.979 3.690 35410 529 99.814 3.780

3 7.862 3.535 2543 625 99.780 4.334

4 5.885 3.015 35310 729 99.744 3.408

Table 15 Training results for

each GSOM with the bank

dataset

Id QuantE stdNodes Simplicity Neurons Reduction (%) Tr. time (h)

1 6.168 5.200 36947 439 99.846 0.751

2 6.520 3.446 100082 507 99.822 4.144

3 6.535 3.637 90178 439 99.846 2.931

4 6.936 3.714 107209 439 99.846 1.568

5 5.883 2.780 48758 998 99.649 1.917

6 6.287 4.249 60855 511 99.820 0.840

7 6.128 4.812 53224 503 99.823 0.869

8 6.572 3.142 179350 936 99.671 5.118

9 6.560 3.458 160374 564 99.802 3.741

10 5.949 3.659 60376 766 99.731 1.372

Table 17 Performance of each GSOM?1-NN, expressed in % with the bank dataset

Train Validation Test

Id ACC SEN FPR F1 j ACC SEN FPR F1 j ACC SEN FPR F1 j

1 73.8 66.6 20.1 70.0 46.8 73.6 66.1 20.0 69.7 46.4 73.7 66.3 20.1 69.6 46.3

2 72.3 61.1 18.2 67.0 43.5 72.2 60.9 18.2 71.3 43.3 72.2 61.0 18.2 66.8 43.3

3 71.5 58.3 17.3 65.3 41.7 71.6 58.4 17.1 65.4 41.9 71.5 58.4 17.2 65.1 41.5

4 69.9 56.4 18.6 63.3 38.5 68.9 56.3 18.6 63.2 38.3 69.9 56.4 18.6 63.0 38.1

5 74.9 67.3 18.7 71.1 49.0 74.5 67.0 19.0 70.7 48.3 74.7 67.1 18.9 70.7 48.4

6 72.7 64.1 20.0 68.3 44.5 72.7 64.1 19.9 68.4 44.6 72.7 64.1 20.0 68.0 44.2

7 73.6 63.8 18.0 69.0 46.3 73.3 63.3 18.2 68.6 45.7 73.5 63.6 18.1 68.6 45.8

8 71.4 60.7 19.4 66.1 41.8 71.3 60.4 19.4 65.9 41.5 71.4 60.5 19.4 66.0 41.6

9 71.3 55.8 15.5 64.2 41.1 71.4 55.7 15.2 64.2 41.3 71.4 55.8 15.4 63.9 40.9

10 74.5 67.4 19.4 70.9 48.3 74.0 66.7 19.7 70.3 47.4 74.3 67.0 19.6 70.3 47.5

17592 Neural Computing and Applications (2023) 35:17579–17597

123

the 1-NN classifiers. Higher values in the U-matrix relate to

more variability in the output map. Two main groups can

be distinguished for GSOM 3, whereas in GSOM 9 the

visual explanation is not straightforward.

The GSOMs have lower training times than the SOMs

and, although the accuracies are lower in most cases, the

false positive rates are lower too, giving similar balanced

accuracies. Better evaluations are related to a combination

of high sensitivity and low false positive rate, instead of

only taking into account the accuracy. For comparing

better the results, the sensitivity (SEN) and false positive

rate (FPR) of the GSOMs and SOMs in the test subset are

represented in Fig. 15. The points with the highest SEN are

given by SOMs, while the points with the lowest FPR are

given by GSOMs. However, in the central area of the

graph, there are points with high SEN and FPR below 20%

that correspond to GSOMs.

5 Discussion

This section aims to provide a brief discussion of the

results obtained. Some observations are extracted:

• The Census Income dataset was used to create balanced

and unbalanced sets. The unbalanced set showed better

accuracy and false positive rate, but lower sensitivity.

Balancing the data prevented a significant decrease in

detecting true positives, improving training times,

Kappa values, F1-scores, and balanced accuracies.

• The results reveal that the GSOMs reduce the training

data size in more than a 99% with a low loss of

information by mapping the input space.

• A spatial adaptation of the data is observable. In the

illustrative example, it is possible to recognize perfectly

a 3-dimensional letter G, and in the bank dataset, the

weight vectors are capable of adapting to the input

space with more neurons in the zones with a major

density.

• The use GSOMs allows the creation of a group of

prototypes that can be used with algorithms like 1-NN,

obtaining accuracies of more than 70% with false

positives lower than 20% in a banking application and

saving a great computational time.

The resulting number of nodes in each one of the GSOMs

indicates that it is possible to represent the different data-

sets with no need for the complete growth of the maps.

With more neurons, it is expected that the standard devi-

ation will be lower, as there will be more neurons, but this

will not necessarily lead to much better results. For

example, GSOM 8 of the bank dataset contains 936 neu-

rons, almost twice GSOM 7, but the quantification error

remains stable and training time is quintupled. The results

also highlight the need for a suitable parametrization, as

too low initial learning rates in the growing phase lead to

an overgrow of the map, a great difference between

growing and smoothing iterations reduce the sensitivity

and a lower a increases the false positive rate.

The U-matrix representation offers the possibility of

separating clients into different groups, which serves as a

preliminary step to customer classification and analysis,

and its potential is strengthened when combined with tools

as the output map. This feature is noticeable in the Census

Income dataset. However, due to the great number of

features in the bank dataset and the unknown correlation

between them, the clusters obtained with the U-matrix are

not easy to extrapolate, which highlights the difficulty of

Fig. 9 Accuracy against data reduction percentage for the GSOMs of

the bank dataset

Fig. 10 Mean reductions, accuracies, balanced accuracies, F1-scores,

Cohen’s Kappa values and inverse of training times of each

experiment for the bank dataset

Neural Computing and Applications (2023) 35:17579–17597 17593

123

Fig. 11 Representation of features 21 and 30 with the bank dataset

Fig. 12 Representation of features 4, 8 and the class with the bank dataset

Fig. 13 U-matrix and Output visualizations of the GSOM 3 with the bank dataset

17594 Neural Computing and Applications (2023) 35:17579–17597

123

finding patterns between data when it diverges from a

theoretical distribution.

6 Conclusions

This work addresses the application of a GSOM with 1-NN

to different datasets to address the problem of prototype

generation for a binary classifier. First, the Census Income

dataset is used for an academic application of the method

and then, a real application is carried out on an actual

dataset from a bank. Specifically, in the case of banking

data, the number of clients and the challenge of selecting a

low number of features for tasks as classification lead to the

need for reducing its size. This work addresses the problem

of classifying the clients into two categories using a 1-NN

classifier and, for training the classifiers, the use of proto-

types obtained from a GSOM is proposed.

The proposed methodology divides the data into train-

ing, validation and test subsets and trains different GSOMs

to represent the training set. Then, the weight vectors of the

GSOMs are used as prototypes for a 1-NN classifier that

makes predictions on new data. In the case of the Census

Income dataset, two types of experiments were conducted,

using either balanced and unbalanced data. Different SOMs

and GSOMs were used for comparison purposes for the

bank dataset.

The application to Census Income (a smaller dataset

where it is possible to apply the 1-NN classifier without

any data reduction method) has been carried out to

demonstrate that the proposed method is effective since the

classification performances are maintained or even

improved from 1-NN to GSOM?1-NN, with very high

reduction rates. This application gives us guarantees of the

good performance of the proposed method. In the appli-

cation to the banking sector, where very large datasets are

used, it is not possible to apply k-NN without data reduc-

tion, so a comparison is made between SOM?k-NN and

GSOM?k-NN.

The results obtained demonstrate that the use of a

GSOM in data with a great number of vectors and variables

achieves a small size representation that facilitates further

classification tasks, with reductions of more than 99% in

the training data. The GSOMs obtain similar results to the

SOMs with even higher accuracy in some experiments

(accuracies over 70% and false positive rates under 20%)

and much lower training times (from more than 3 or 4 h to

even less than 1 h in some cases).

When dealing with large datasets, not only the reduction

of the size is of great interest. A dimensionality reduction

with correct feature selection can also be crucial in the

performance and cost of the classification process. A

complete improvement in computational cost will come

from a combination of data and dimensionality reduction

techniques. This issue is part of future lines of develop-

ment. Another aspect to analyze as future work is the

normality of the data and its deviations, e.g., the work by

Mantalos et al. [47].

Fig. 14 U-matrix and Output visualizations of the GSOM 9 with the bank dataset

Fig. 15 Sensitivity versus False positive rate for all SOMs and

GSOMs with the training subset of the bank dataset. The numbers in

the graphic represent the accuracy

Neural Computing and Applications (2023) 35:17579–17597 17595

123

Acknowledgements This work has been made possible by the pro-

jects SEKAS. Self-growing learning Knowledge Architecture for

Security, supported by FEDER / Ministry of Science, Innovation and

Universities, State Research Agency/Project [RTC-2017-6178-8]; and

Model Predictive Control based on Machine Learning in Big Data

Applications [PI-1914/24/2019 and PI-2030/24/2020].

Author Contributions All authors contributed to the study conception

and design. Material preparation, data collection and investigation

were performed by R-M and G-C. Supervision was performed by N-R

and resources were provided by Pavón. The first draft of the manu-

script was written by R-M and all authors commented on previous

versions of the manuscript. All authors read and approved the final

manuscript.

Funding Funding for open access publishing: Universidad de Sevilla/

CBUA.

Availability of data and materials The Census Income dataset ana-

lyzed during the current study is available in [46]. The rest of the data

that support the findings of this study are property of GAMCO, SL.

and restrictions apply to the availability of these data, which were

used under licence for the current study, and so are not publicly

available.

Code availability Restrictions apply to the availability of the codes.

Declarations

Conflict of interest The authors declare that there are not conflicts of

interest.

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publication The authors consent to the submission of this

article.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Zinner S, Ivanenko V, Tynchenko V, Volegzhanin P, Stashkevich

A (2021). Using machine learning methods in problems with

large amounts of data. https://doi.org/10.47813/dnit-mip3/2021-

2899-181-187

2. Mohammad SM (2019) Cloud computing in it and how it’s going

to help United States specifically. Int J Comput Trends Technol

(IJCTT) https://doi.org/10.14445/22312803/IJCTT-V67I10P118

3. Garcia S, Derrac J, Cano J, Herrera F (2012) Prototype selection

for nearest neighbor classification: taxonomy and empirical

study. IEEE Trans Pattern Anal Mach Intell 34(3):417–435.

https://doi.org/10.1109/TPAMI.2011.142

4. Kohonen T (1982) Self-organized formation of topologically

correct feature maps. Biol Cybern 43:59–69. https://doi.org/10.

1007/BF00337288

5. Kohonen T (1990) The self-organizing map. Proc IEEE

78:1464–1480. https://doi.org/10.1109/5.58325

6. Kohonen T (1995) The self-organizing maps. Springer, Berlin/

Heidelberg, Germany

7. Vesanto J (1999) SOM-based data visualization methods. Intell

Data Anal 3:111–126. https://doi.org/10.3233/IDA-1999-3203

8. Alahakoon D, Halgamuge SK, Srinivasan B (1998) A self-

growing cluster development approach to data mining. In:

SMC’98 Conference Proceedings 1998 IEEE international con-

ference on systematics man, and cybernatics (Cat.

No.98CH36218), vol. 3, pp. 2901–29063. https://doi.org/10.1109/

ICSMC.1998.725103

9. Alahakoon D, Halgamuge SK, Srinivasan B (2000) Dynamic

self-organizing maps with controlled growth for knowledge dis-

covery. IEEE Trans Neural Netw 11(3):601–614. https://doi.org/

10.1109/72.846732

10. Konieczny J, Stojek J (2021) Use of the k-nearest neighbour

classifier in wear condition classification of a positive displace-

ment pump. Sensors. https://doi.org/10.3390/s21186247

11. Santos Ruiz Idl, López Estrada FR, Puig Cayuela V, Blesa

Izquierdo J, Javadiha M (2019) Localización de fugas en redes de

distribución de agua mediante k-nn con distancia cosenoidal. In:

CNCA-Congreso Nacional de Control Automático, pp. 370–375

12. Tharwat A, Mahdi H, Elhoseny M, Hassanien AE (2018) Rec-

ognizing human activity in mobile crowdsensing environment

using optimized K-NN algorithm. Expert Syst Appl 107:32–44.

https://doi.org/10.1016/j.eswa.2018.04.017

13. Triguero I, Garcı́a-Gil D, Maillo J, Luengo J, Garcı́a S, Herrera F

(2019) Transforming big data into smart data: an insight on the

use of the k-nearest neighbors algorithm to obtain quality data.

Wiley Interdiscip Rev Data Min Knowl Discov 9(2):1289

14. Ghosh AK (2006) On optimum choice of k in nearest neighbor

classification. Comput Stat Data Anal 50(11):3113–3123. https://

doi.org/10.1016/j.csda.2005.06.007

15. Ghosh AK (2007) On nearest neighbor classification using

adaptive choice of k. J Comput Graph Stat 16(2):482–502. https://

doi.org/10.1198/106186007X208380

16. Suguna N, Thanushkodi K (2010) An improved k-nearest

neighbor classification using genetic algorithm. Int J Comput Sci

7(2):18–21

17. Hsu C-M, Chen M-S (2008) On the design and applicability of

distance functions in high-dimensional data space. IEEE Trans

Knowl Data Eng 21(4):523–536. https://doi.org/10.1109/TKDE.

2008.178

18. Maillo J, Ramı́rez S, Triguero I, Herrera F (2017) KNN-is: an

iterative spark-based design of the k-nearest neighbors classifier

for big data. Knowl Based Syst 117:3–15. https://doi.org/10.

1016/j.knosys.2016.06.012

19. Rosero-Montalvo PD, Umaquinga-Criollo AC, Flores S, Suarez

L, Pijal J, Ponce-Guevara KL, Nejer D, Guzman A, Lugo D,

Moncayo K (2017) Neighborhood criterion analysis for prototype

selection applied in wsn data. In: 2017 international conference

on information systems and computer science (INCISCOS),

pp. 128–132. https://doi.org/10.1109/INCISCOS.2017.47. IEEE

20. Suyal H, Singh A (2021) Improving multi-label classification in

prototype selection scenario. Comput Intell Healthc Inform.

https://doi.org/10.1002/9781119818717.ch6

21. Gurumoorthy KS, Jawanpuria P, Mishra B (2021) Spot: a

framework for selection of prototypes using optimal transport.

17596 Neural Computing and Applications (2023) 35:17579–17597

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.47813/dnit-mip3/2021-2899-181-187
https://doi.org/10.47813/dnit-mip3/2021-2899-181-187
https://doi.org/10.14445/22312803/IJCTT-V67I10P118
https://doi.org/10.1109/TPAMI.2011.142
https://doi.org/10.1007/BF00337288
https://doi.org/10.1007/BF00337288
https://doi.org/10.1109/5.58325
https://doi.org/10.3233/IDA-1999-3203
https://doi.org/10.1109/ICSMC.1998.725103
https://doi.org/10.1109/ICSMC.1998.725103
https://doi.org/10.1109/72.846732
https://doi.org/10.1109/72.846732
https://doi.org/10.3390/s21186247
https://doi.org/10.1016/j.eswa.2018.04.017
https://doi.org/10.1016/j.csda.2005.06.007
https://doi.org/10.1016/j.csda.2005.06.007
https://doi.org/10.1198/106186007X208380
https://doi.org/10.1198/106186007X208380
https://doi.org/10.1109/TKDE.2008.178
https://doi.org/10.1109/TKDE.2008.178
https://doi.org/10.1016/j.knosys.2016.06.012
https://doi.org/10.1016/j.knosys.2016.06.012
https://doi.org/10.1109/INCISCOS.2017.47
https://doi.org/10.1002/9781119818717.ch6

arXiv preprint arXiv:2103.10159. https://doi.org/10.1007/978-3-

030-86514-6_33

22. Kasemtaweechok C, Suwannik W (2019) Adaptive geometric

median prototype selection method for k-nearest neighbors

classification. Intell Data Anal 23(4):855–876. https://doi.org/10.

3233/IDA-184190

23. Triguero I, Derrac J, Garcia S, Herrera F (2011) A taxonomy and

experimental study on prototype generation for nearest neighbor

classification. IEEE Trans Syst Man Cybern Part C (Appl Rev)

42(1):86–100. https://doi.org/10.1109/TSMCC.2010.2103939

24. Ougiaroglou S, Filippakis P, Evangelidis G (2021) Prototype

generation for multi-label nearest neighbours classification. In:

international conference on hybrid artificial intelligence systems,

pp. 172–183. https://doi.org/10.1007/978-3-030-86271-8_15

25. Elkano M, Galar M, Sanz J, Bustince H (2018) Chi-pg: a fast

prototype generation algorithm for big data classification prob-

lems. Neurocomputing 287:22–33. https://doi.org/10.1016/j.neu

com.2018.01.056

26. Lechevallier Y, Ciampi A (2007) Multilevel clustering for large

databases, pp. 263–274. https://doi.org/10.1007/978-0-8176-

4542-7_17

27. Sarlin P, Peltonen TA (2011) Mapping the state of financial

stability. BOFIT discussion papers https://doi.org/10.1016/j.

intfin.2013.05.002

28. Fox KL, Henning RR, Reed JH, Simonian R (1990) A neural

network approach towards intrusion detection. In: Proceedings of

the 13th national computer security conference, pp. 125–134.

https://www.bibsonomy.org/bibtex/20f1a2a115ba200e7cd

be77cc0c8b80ad/schaul

29. Ichimura T, Hara A, Kurosawa Y (2007) A classification method

for spam e-mail by self-organizing map and automatically

defined groups. In: 2007 IEEE international conference on sys-

tems, man and cybernatics, pp. 2044–2049. https://doi.org/10.

1109/ICSMC.2007.4413626

30. Sarkar S, Ejaz N, Maiti J (2018) Application of hybrid clustering

technique for pattern extraction of accident at work: a case study

of a steel industry. In: 2018 4th international conference on recent

advance in information technology (RAIT), pp. 1–6. https://doi.

org/10.1109/RAIT.2018.8389052. IEEE

31. Christyawan TY, Supianto AA, Mahmudy WF (2019) Anomaly-

based intrusion detector system using restricted growing self

organizing map. Indones J Electr Eng Comput Sci 13(3):919–926

32. Deboeck G, Kohonen T (2013) Visual explorations in finance:

with self-organizing maps. Springer, London. https://doi.org/10.

1007/978-1-4471-3913-3

33. Shanmuganathan M (2018) Visualized financial performance

analysis: self-organizing maps (MS)

34. López Iturriaga FJ, Pastor Sanz I (2013) Self-organizing maps as

a tool to compare financial macroeconomic imbalances: the

European, Spanish and German case. Span Rev Financ Econ

11(2):69–84. https://doi.org/10.1016/j.srfe.2013.07.001

35. Barman D, Chowdhury N (2019) A novel approach for the cus-

tomer segmentation using clustering through self-organizing map.

Int J Bus Anal (IJBAN) 6(2):23–45

36. Quah JTS, Sriganesh M (2008) Real-time credit card fraud

detection using computational intelligence. Expert Syst Appl

35(4):1721–1732. https://doi.org/10.1016/j.eswa.2007.08.093

37. Balasupramanian N, Ephrem BG, Al-Barwani IS (2017) User

pattern based online fraud detection and prevention using big data

analytics and self organizing maps. In: 2017 international con-

ference on intelligent computing, instrumentation and control

technologies (ICICICT), pp. 691–694. https://doi.org/10.1109/

ICICICT1.2017.8342647. IEEE

38. Ganegedara H, Alahakoon D (2012) Redundancy reduction in

self-organising map merging for scalable data clustering. In: The

2012 international joint conference on neural networks (IJCNN),

pp. 1–8. https://doi.org/10.1109/IJCNN.2012.6252722

39. Kuo R-J, Rizki M, Zulvia FE, Khasanah A (2018) Integration of

growing self-organizing map and bee colony optimization algo-

rithm for part clustering. Comput Ind Eng 120:251–265. https://

doi.org/10.1016/j.cie.2018.04.044

40. Ahmad N, Alahakoon D, Chau R (2010) Cluster identification

and separation in the growing self-organizing map: application in

protein sequence classification. Neural Comput Appl

19:531–542. https://doi.org/10.1007/s00521-009-0300-0

41. Ultsch A (2003) U*matrix: a tool to visualize clusters in high

dimensional data

42. Uriarte EA, Martı́n FD (2005) Topology preservation in SOM. Int

J Appl Math Comput Sci 1(1):19–22

43. Decker R, Monien K (2003) Market basket analysis with neural

gas networks and self-organising maps. J Target Meas Anal Mark

11(4):373–386. https://doi.org/10.1057/palgrave.jt.5740092

44. Piastra M (2009) A growing self-organizing network for recon-

structing curves and surfaces. In: 2009 international joint con-

ference on neural networks, pp. 2533–2540. https://doi.org/10.

1109/IJCNN.2009.5178709. IEEE

45. Zhang Z (2016) Introduction to machine learning: k-nearest

neighbors. Ann Transl Med https://doi.org/10.21037/atm.2016.

03.37

46. Dua D, Graff C (2017) UCI machine learning repository. http://

archive.ics.uci.edu/ml

47. Mantalos P, Karagrigoriou A, Střelec L, Jordanova P, Hermann P,

Kiselák J, Hudák J, Stehlı́k M (2020) On improved volatility

modelling by fitting skewness in arch models. J Appl Stat

47(6):1031–1063. https://doi.org/10.1080/02664763.2019.

1671323

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2023) 35:17579–17597 17597

123

http://arxiv.org/abs/2103.10159
https://doi.org/10.1007/978-3-030-86514-6_33
https://doi.org/10.1007/978-3-030-86514-6_33
https://doi.org/10.3233/IDA-184190
https://doi.org/10.3233/IDA-184190
https://doi.org/10.1109/TSMCC.2010.2103939
https://doi.org/10.1007/978-3-030-86271-8_15
https://doi.org/10.1016/j.neucom.2018.01.056
https://doi.org/10.1016/j.neucom.2018.01.056
https://doi.org/10.1007/978-0-8176-4542-7_17
https://doi.org/10.1007/978-0-8176-4542-7_17
https://doi.org/10.1016/j.intfin.2013.05.002
https://doi.org/10.1016/j.intfin.2013.05.002
https://www.bibsonomy.org/bibtex/20f1a2a115ba200e7cdbe77cc0c8b80ad/schaul
https://www.bibsonomy.org/bibtex/20f1a2a115ba200e7cdbe77cc0c8b80ad/schaul
https://doi.org/10.1109/ICSMC.2007.4413626
https://doi.org/10.1109/ICSMC.2007.4413626
https://doi.org/10.1109/RAIT.2018.8389052
https://doi.org/10.1109/RAIT.2018.8389052
https://doi.org/10.1007/978-1-4471-3913-3
https://doi.org/10.1007/978-1-4471-3913-3
https://doi.org/10.1016/j.srfe.2013.07.001
https://doi.org/10.1016/j.eswa.2007.08.093
https://doi.org/10.1109/ICICICT1.2017.8342647
https://doi.org/10.1109/ICICICT1.2017.8342647
https://doi.org/10.1109/IJCNN.2012.6252722
https://doi.org/10.1016/j.cie.2018.04.044
https://doi.org/10.1016/j.cie.2018.04.044
https://doi.org/10.1007/s00521-009-0300-0
https://doi.org/10.1057/palgrave.jt.5740092
https://doi.org/10.1109/IJCNN.2009.5178709
https://doi.org/10.1109/IJCNN.2009.5178709
https://doi.org/10.21037/atm.2016.03.37
https://doi.org/10.21037/atm.2016.03.37
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1080/02664763.2019.1671323
https://doi.org/10.1080/02664763.2019.1671323

	Prototype generation method using a growing self-organizing map applied to the banking sector
	Abstract
	Introduction
	Literature overview
	k-nearest neighbors
	Prototype reduction
	Self-organizing maps

	Techniques applied
	GSOM
	U-matrix
	Evaluation
	Illustrative examples

	k-NN
	Evaluation

	Application results
	Census income results
	GSOM and k-NN performance

	Bank data results
	GSOM and k-NN performance

	Discussion
	Conclusions
	Author Contributions
	Code availability
	References

