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A B S T R A C T

This study addresses the influence of the Sommerfeld effect on the behaviour of vibrocompacting machines
driven by unbalanced electric motors. Based on a simplified model with 4 degrees of freedom previously
published by the authors, we investigate the dynamics of quasistatic vibrocompaction processes, i.e. those
in which the compaction is achieved through a sufficiently slow increase in the input power of the electric
motors. The main novel contribution of the paper is the characterization of the evolution of the system state
through a quasistatic torque curve, which is analytically derived. This curve provides the maximum compaction
that can be quasistatically achieved and the amount of motor torque required to reach a desired compaction
level, while also revealing the specific way in which the Sommerfeld effect takes place in the system under
study. The analytical results are used to give a clear physical interpretation to the numerical results previously
published by the authors. Good agreement is found between numerical and analytical results.
1. Introduction

The need to compact granular materials is often encountered in
different engineering fields, such as geotechnics [1], aerospace engi-
neering [2] and manufacturing [3–5]. Vibrating machines constitute
an efficient and widely used means to meet this objective, by pro-
ducing a denser packing of the material grains [6,7]. We also note
that the propagation of nonlinear elastic waves in granular materials
has received considerable scientific attention in the last years [8–10].
Specifically, this work has been motivated by the authors’ interest in the
manufacturing of quartz agglomerates, one of whose most crucial stages
is the vibrocompaction of a quartz-resin mixture by using unbalanced
electric motors, together with a vacuum system [11,12].

The present paper can be seen as an extension of a previous work
published by the authors, where a nonlinear model for the vibro-
compaction of quartz agglomerates was presented and justified [13].
This model was numerically investigated in [13] by conducting rep-
resentative simulations that allowed assessing the effect of different
machine parameters on the final result of the compaction process. It is
worth noting that relevant nonlinear behaviour was observed in these
simulation results resembling the typical features of the well-known
Sommerfeld effect, which occurs due to reciprocal interaction between
a vibrating system and its energy source [14]. However, the physical
interpretation of these phenomena was not straightforward due to the
increased complexity of the model with respect to those generally used
to investigate the Sommerfeld effect. This article intends to provide sig-
nificant insight into the vibrocompaction dynamics through a detailed
analytical investigation of the model.
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It is worth stressing the high interest of this type of research from
an industry perspective. The ability to better understand and predict
the behaviour of vibrocompacting machines would allow to optimize
their design and to properly tune their parameters for each specific
scenario. On the other hand, the originality of this work is attested
by the fact that no previous investigation on the Sommerfeld effect in
vibrocompaction systems is available in the literature, to the best of the
authors’ knowledge.

This introduction is divided into two subsections. In the first one,
a description of the industrial vibrocompaction process of interest is
presented. The second subsection provides a summary and literature
review on the Sommerfeld effect.

1.1. The vibrocompaction of quartz agglomerates

Quartz agglomerates are very frequently used as an artificial stone
for countertops in kitchens and bathrooms [15,16]. The production of
a slab of this material includes the mixing of the quartz grains with
a polyester resin, the vacuum vibrocompaction of the mixture, the
polimerization of the resin in a kiln and the machining of the slab
after cooling [17]. It should be stressed that the compaction step is
crucial for the result of the manufacturing process, since it avoids the
presence of pores on the surface of the final countertop. These pores
tend to accumulate dirt and are particularly difficult to clean. In fact,
the detection of a pore of sufficient size during the quality control of
the process implies the rejection of the slab.
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In order to better understand the nature of the compaction, note
that the mixture is initially composed of three different phases: solid
(the quartz grains), liquid (the resin) and gas (air). The air is present
in two ways: as bubbles within the resin and as gaps among the quartz
grains that the resin has not been able to fill. The aim of the compaction
is to evacuate this air, considerably reducing the thickness of the slab.

The vibrocompaction process takes place as follows. First, a heavy
piston on which the unbalanced motors are mounted descends onto
the mould containing the material to be compacted. The piston, which
has the dimensions of the slab, exerts initially a static pressure on the
mixture due to its own weight and to an external air pressure applied
on it. Then, the air pressure inside the mould is reduced by means of a
vacuum system. Finally, the electric motors are switched on, producing
the vibration needed to complete the compaction. During this dynamic
process, separations and impacts can occur between the piston and the
mixture, and also between the mixture and the mould [18].

It is easy to note the high complexity of the physics involved in this
process, with the final result of the compaction depending on a large
number of factors: granulometry of the quartz, rheological properties
of the resin, amount of unbalance, available power of the electric
motors, weight of the piston, etc [19,20]. Notice also that there are
several sources of nonlinearity in the vibrocompacting system, the most
relevant of them being:

• The constitutive behaviour of the mixture. The mechanics of
granular materials is a very complex subject that has received
wide attention in the scientific literature [21–24]. Clearly, any
model that intends to represent the mechanical response of a
quartz-resin mixture being compacted needs to be nonlinear, in
order to account for irreversible deformation. In fact, a material
model based on first principles would need to include the motion
of the bubbles through the mixture, the friction between quartz
particles, the interaction between quartz and resin, etc [25]. Thor-
ough investigations on the behaviour of three-phase mixtures,
granular media and porous materials can be found elsewhere [26–
30]. As a powerful alternative to models based on first principles,
it is often useful to resort to phenomenological models that can
capture the global behaviour of the material, as has been done
in [13].

• The possibility of having separations and impacts at the mixture-
piston and mixture-mould contacts.

• The dynamic interaction itself between the machine vibration and
the rotation of the motors. This particular nonlinearity is usually
referred to as the Sommerfeld effect, and is briefly described in the
next subsection.

.2. The Sommerfeld effect

In the analysis of forced vibrations, it is customary to implicitly
ssume that the external excitation is a known function of time. This
s generally known as the assumption of ideal excitation. However,
ince the experimental work of Sommerfeld in 1904 [31], it is known
hat some kinds of behaviour found in mechanical systems cannot
e explained upon the ideality hypothesis. In other words, there are
ituations in which the excitation has to be considered as nonideal,

meaning that it is influenced by the motion of the system [32].
Sommerfeld’s findings were based on a setup consisting in an unbal-

anced electric motor mounted on an elastic support. During the tests,
the motor input power was gradually increased/decreased, making the
rotor speed pass through the system’s resonance frequency in both
directions [33]. The results of a numerical simulation of Sommerfeld’s
test are displayed in Fig. 1. The points on the graph represent the ob-
tained stationary states when the motor input power is varied linearly
with time in small equal steps (after each step, the motor control is
kept constant until a stable motion is attained). The figure shows the
2

interesting phenomenon that certain range of rotor speeds cannot be
Fig. 1. Numerical simulation of Sommerfeld’s experiment. The motor input power is
varied linearly with time in small equal steps. After each step, the motor control is
kept constant until the system reaches a stationary state. These points of stable motion
are represented on the graph. The natural frequency of the vibrating system is denoted
as 𝜔𝑛.

Fig. 2. Graphical explanation for the Sommerfeld Effect according to Kononenko [34].
Curves 𝐿𝑚𝑖 (𝑖 = 1, 2, 3) represent the motor characteristics at different time instants,
while 𝐿𝑣 corresponds to the torque on the rotor due to vibration. Jump phenomena
occur from point 𝐵 to 𝐶 for increasing input power and from point 𝐷 to 𝐸 for
decreasing input power.

reached. The reason is that, at some point in the process, the system
experiences a sudden jump, both in rotor speed and oscillation ampli-
tude (note that the jump is different for increasing and decreasing input
power). This is the essence of what is usually called the Sommerfeld
effect.

Years later, Kononenko used averaging techniques to obtain the
stationary motions of Sommerfeld’s system as the intersections be-
tween two functions: the torque–speed curve of the motor, 𝐿𝑚, and
a curve representing the torque on the rotor due to vibration, 𝐿𝑣 (see
Fig. 2) [34]. Assuming that the motor is controlled by displacing its
torque–speed curve parallel to itself, Fig. 2 shows how Kononenko’s
representation accounts for Sommerfeld’s experimental results: the
state of the system experiences a jump phenomenon when tangency
point 𝐵 or 𝐷 is reached for increasing or decreasing input power,
respectively [34–37].

It is interesting to note that the previous description assumes that
all solutions between points 𝐴 and 𝐵, and between 𝐶 and 𝐷, are stable.
However, it was proved in [38,39] that some of the solutions between
𝐶 and 𝐷 can actually be unstable under certain conditions. This means
that the jump phenomenon for decreasing input power can occur before
predicted in Fig. 2.
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After the works of Sommerfeld and Kononenko, substantial research
effort has been devoted to the study of vibrating systems excited by
nonideal power sources, and the particular dynamics that they can
exhibit. Sghaier et al. addressed the coupling of bending and torsional
vibrations of rotors under nonideal excitation [40]. Varanis et al. [41]
used the continuous wavelet transform to study the Sommerfeld ef-
fect on an oscillator with fractional damping. Avanço et al. applied
bifurcation analysis to control the appearance of chaotic behaviour on
a nonideally driven electromechanical pendulum [42]. Palacios Félix
et al. demonstrated that nonideal systems can be used for energy
harvesting purposes [43]. The mitigation of nonideally excited oscil-
lations by linear vibration absorbers was addressed by Piccirillo [44].
Drozdetskaya et al. investigated the case of an elastically supported
electric motor with two coaxial unbalances [45]. Bharti et al. coined
the term Sommerfeld effect of second kind [46], referring to a variant
f the classical Sommerfeld effect associated with the instability of
he rotor whirl, and presented a numerical study of the phenomenon.

methodology to mitigate the Sommerfeld effect by properly tuning
he external damping of the system was described by Jha and Das-
upta [47]. Kong et al. analysed the particular problem of a simply
upported beam excited by two nonideal unbalanced motors [48]. They
lso focused on the self-synchronization between both motors during
he beam oscillation. The wavelet synchrosqueezed transform was used
y Varanis et al. to investigate the dynamics of nonideally excited
ystems [49]. Bharti et al. performed a numerical investigation on the
ppearance of the Sommerfeld effect in the torsional vibrations of a
ouble-Cardan joint driveline [50].

Although most analytical works on nonideally excited oscillations
sed averaging techniques to simplify the equations of motion [33,35,
8,51], the method of direct separation of motions, first introduced by

Blekhman [52], has also proved to be a powerful analytical tool for the
study of nonideal systems [53,54].

In terms of experimental works, it is worth mentioning some recent
investigations by Varanis et al. where different setups—a cantilever
beam, a portal frame, a shear-building structure—are used for ex-
perimental validation of theoretical results [55,56]. Also relevant are
the investigation of the nonideal behaviour of electrodynamic shakers
in [57] and the experimental demonstration offered by Kossoski et al.
on the mitigation of the Sommerfeld effect by means of shape memory
alloys [58]. For a more detailed literature review, the interested reader
is referred to [59,60].

As is clear from the above lines, the Sommerfeld effect is a relevant
nonlinear phenomenon that can significantly affect the behaviour of
such varied engineering systems as beams, pendulums, energy har-
vesting devices, rotors, Cardan joints, portal frames or shape memory
alloys. However, to the best of the authors’ knowledge, there are no pre-
vious works in the literature addressing the impact of the Sommerfeld
effect on vibrocompacting machines.

In this work, the dynamics of vibrocompacting machines driven by
unbalanced electric motors will be analysed using a simplified analyti-
cal model. This will provide a good understanding of the appearance of
the Sommerfeld effect in the system and a useful physical interpretation
to the numerical results previously published by the authors [13].

The paper is structured as follows. Section 2 presents a simplified
mathematical model for vibrocompaction that can be treated analyt-
ically. Section 3 makes use of this model to study the appearance
of the Sommerfeld effect in quasistatic vibrocompaction processes. In
Section 4, the obtained analytical results are used to provide a clear
physical interpretation to the numerical results previously published
by the authors. The good agreement between analytical and numerical
results also serves as a validation of the presented analytical devel-
opments. Finally, Section 5 puts forth the main conclusions of the
3

study.
2. Simplified model and torque–speed curves

The present investigation is based on a 4-degree-of-freedom (4-
DOF) vibrocompaction model previously published by the authors [13],
which is briefly described in Appendix A. Our analysis also builds upon
some classical results on the response of linear systems to the non-
ideal excitation provided by unbalanced motors, which are summarized
in Appendix B.

Regarding the reasons for choosing a 4-DOF model, some comments
are pertinent. It is clear that modelling the dynamics of a vibrocom-
paction machine driven by an unbalanced motor requires at least 2
DOFs: one for the rotation of the motor and one for the displacement
of the piston on which the motor is mounted. However, if the model
is intended to consider separations and impacts at the top and at
the bottom of the mixture being compacted, two additional DOFs are
needed (one for each of the contacts). Hence, 4 is the minimum number
of DOFs that allows modelling the system of interest allowing for sep-
arations. Of course, more complex and realistic models could be built
with additional DOFs. For example, more DOFs could be included to
model several vibration modes of the mixture. The philosophy behind
this work is to start the analysis of the vibrocompacting system with
a low-dimension tractable model that facilitates the interpretation of
results. Future steps in this line of research will include considering
additional DOFs for more accurate predictions.

Even though the 4-DOF vibrocompaction model is, of course, very
simplified with respect to real vibrocompacting machines, it is still too
complex for an analytical treatment of the equations of motion. Sec-
tion 2.1 shows that, under reasonable assumptions, the 4-DOF model
can be reduced to a more tractable 2-DOF model. Furthermore, it is
shown that the results presented in Appendix B can be applied to the
2-DOF vibrocompaction model. Particularly useful is the possibility
to obtain the stationary motions of the machine as the intersections
between the motor torque curve and the vibration torque curve, as
described in Appendix B. Section 2.2 addresses the main particularity
of the vibration torque curves for the vibrocompaction system: since
the mixture stiffness is not fixed, but increases as the compaction
progresses, the system will exhibit a family of infinite curves, one for
each possible value of the mixture stiffness.

2.1. Simplified model

In order to simplify the model summarized in Appendix A, consider
the following assumptions:

• The motion of interest occurs without separations between mix-
ture and piston nor between mixture and mould. This implies
𝑦𝑡 = 𝑦𝑝, 𝑦𝑏 = 0 in Eq. (A.1), which means that the number of DOFs
is reduced to 2 (𝑦𝑝, 𝑦𝑡 and 𝑦𝑏 represent the vertical positions of
the piston, the top surface of the mixture and the bottom surface
of the mixture, respectively).

• Since the simplified model will be used to investigate the sta-
tionary motions of the machine, it is reasonable to assume also
that the nonlinear spring representing the mixture (see Fig. A.1)
is only subjected to elastic deformation. The reason is that, once
the system has reached a stationary state of motion, there is no
further compaction and the spring force, 𝐹𝑚, follows a straight
line in the force–displacement graph, such as segment 𝐴𝐵 in
Fig. A.2, with certain stiffness 𝑘𝑖 ∈ [𝑘0, 𝑘𝑓 ]. Parameters 𝑘0 and 𝑘𝑓
represent the stiffness of the uncompacted and fully compacted
mixture, respectively (see Appendix A for more details).

With these two assumptions, system (A.1) can be written as

𝑚𝑥̈ + 𝑏𝑥̇ + 𝑘𝑖𝑥 = 𝑚1𝑟(𝜙̇2 cos𝜙 + 𝜙̈ sin𝜙)

𝐼𝜙̈ = 𝐿𝑚(𝜙̇) + 𝑚1𝑟 sin𝜙(𝑥̈ + 𝑔)
(1)

where 𝑚 = 𝑚𝑝 + 𝑚𝑚∕3 + 𝑚1 and 𝐼 = 𝐼0 + 𝑚1𝑟2. Parameter 𝑚𝑝 stands for

the mass of the piston and the motor, 𝑚𝑚 is the mass of the mixture, 𝑚1
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is the unbalanced mass, 𝐼0 is the rotor inertia, 𝑟 is the eccentricity of
the unbalance, 𝑏 is the damping coefficient, 𝑔 is the gravity constant,
𝑥 represents the displacement of the piston with respect to its static
equilibrium position, 𝜙 represents the angular position of the rotor and
an overdot represents differentiation with respect to time.

𝐿𝑚(𝜙̇) is the driving torque provided by the motor, which is assumed
to be a linear function of the rotor speed:

𝐿𝑚(𝜙̇) = 𝐶 +𝐷𝜙̇, (2)

We note that the derivation of system (1) simply requires performing
the substitutions 𝑦𝑡 = 𝑦𝑝, 𝑦𝑏 = 0, 𝑦̇𝑝 = 𝑥̇, 𝑦̈𝑝 = 𝑥̈ and 𝐹𝑚 + 𝑚𝑔 = 𝑘𝑖𝑥 on
ystem (A.1). Then, adding up the first two equations in system (A.1)
rovides the first equation in system (1), while the fourth equation in
ystem (A.1) becomes the second equation in system (1).

The gravity term in Eq. (1) can be shown to have no significant
ffect for the purposes of this investigation. The reason is that the
tationary motions of the system will be obtained using the method
f direct separation of motions, proposed by Blekhman [52]. This
pproach, which has some similarities with classical averaging tech-
iques [61], includes the averaging of the equations of motion in order
o find the mean values of rotor speed and vibrating amplitude. Since
he gravity term, 𝑚1𝑟𝑔 sin𝜙, becomes zero when averaged over angle
, it does not affect the mean stationary rotor speed or oscillation
mplitude (see [52,62] for details). Hence, Eq. (1) can be rewritten as

𝑥̈ + 𝑏𝑥̇ + 𝑘𝑖𝑥 = 𝑚1𝑟(𝜙̇2 cos𝜙 + 𝜙̈ sin𝜙)

𝐼𝜙̈ = 𝐿𝑚(𝜙̇) + 𝑚1𝑟𝑥̈ sin𝜙
(3)

ote that system (3) is exactly the same as system (B.1), which al-
ows applying the general results presented in Appendix B to the
ibrocompaction model. In the remainder of the paper, we will refer
o systems (A.1) and (3) as the full model and the simplified model,
espectively.

.2. Torque–speed curves for variable stiffness

An important outcome of the presented simplification is the fact
hat the torque–speed curves described in Appendix B can be used
o represent the stationary motions of the compacting machine. As a
elevant particularity of the simplified vibrocompaction model, note
hat the stiffness 𝑘𝑖 is not a fixed parameter, but can take different
alues between 𝑘0 and 𝑘𝑓 , depending on the degree of compaction
chieved (Fig. A.2). Then, instead of a single curve for the vibration
orque, there will be a family of curves, one of them for each possible
alue of the mixture stiffness.

Although, in principle, the system can exhibit any stiffness between
0 and 𝑘𝑓 , the range of possible values for this parameter is actually
arrower during the vibrocompaction. The reason lies in the fact that
here is already some static compaction before the motor is switched
n, due to the weight of the masses located above the spring—mainly
he weight of the piston. Using 𝑘𝑠𝑡 to denote the spring stiffness after
he static compaction, it is clear that, during the dynamic compaction
rocess, the stiffness can take values 𝑘𝑖 ∈ [𝑘𝑠𝑡, 𝑘𝑓 ].

The vibration torque curves for the vibrocompacting machine can
be obtained by using Eq. (B.6), which is rewritten here for the case of
variable stiffness:

𝐿𝑣(𝑘𝑖, 𝛺0) ≡ 𝑘𝑖𝜉𝑖
(𝑚1𝑟
𝑚

)2

(

𝛺0
𝜔𝑛𝑖

)5

[

(

𝛺0
𝜔𝑛𝑖

)2
− 1

]2
+
[

2𝜉𝑖
𝛺0
𝜔𝑛𝑖

]2
for 𝑘𝑖 ∈ [𝑘𝑠𝑡, 𝑘𝑓 ],

(4)

ith 𝜔𝑛𝑖 =
√

𝑘𝑖∕𝑚 and 𝜉𝑖 = 𝑏∕(2𝑚𝜔𝑛𝑖). A careful analysis of Eq. (4)
reveals that the resonance peak of the curve grows approximately in
proportion to 𝑘3∕2𝑖 , while the resonance frequency 𝜔𝑛 is proportional
to 𝑘1∕2. This is reflected in Fig. 3, where several vibration torque
4

𝑖

Fig. 3. Torque–speed curves for the vibrocompaction process. 𝐿𝑚 represents the motor
characteristic, while curves 𝐿𝑣(𝑘𝑖) represent the vibration torque, given in Eq. (4), for
different possible values of the stiffness of the mixture (this stiffness increases as the
mixture gets compacted). The possible stationary motions are marked with dots.

curves are plotted for growing values of the spring stiffness. Note in
this figure, as will generally be the case for the rest of the article,
that the dependence of 𝐿𝑣 and 𝐿𝑚 on 𝛺0 is not explicitly written, for
convenience in the notation.

The collection of curves in Fig. 3 is a representative set of the whole
family of curves for 𝑘𝑖 ∈ [𝑘𝑠𝑡, 𝑘𝑓 ]. If the torque–speed curve of the
motor is depicted on the same plot, the possible stationary motions of
the machine are graphically obtained as the intersections between the
motor curve and each one of the vibration curves.

As shown in Fig. 3, there are many feasible stationary motions for
the system. In fact, the amount of possibilities is infinite if all the
curves for continuously increasing stiffness are considered. The next
section will address the problem of finding, analytically, which of these
infinite possible solutions is actually exhibited by the machine during
a compaction process.

3. Analytical investigation of the Sommerfeld effect in a qua-
sistatic vibrocompaction process

This section is intended to analyse a particular type of vibrocom-
paction process, where the control settings of the motor are very
slowly varied. Then, it is first convenient to say a word about the
motor control. An electric motor of any kind is controlled by means
of one or more input magnitudes (current, voltage, frequency. . . ). For
example, the speed of a 3-phase induction motor is usually controlled
by modifying the amplitude and frequency of the stator voltage through
a variable frequency drive. For each setting of the motor control, the
motor characteristic is fixed. In the presented model, where the motor
curve is assumed to be given by a straight line, the motor control would
allow changing parameters 𝐶 and 𝐷 (see Eq. (2)).

Suppose that the effect of the chosen control method consists in dis-
placing the motor characteristic parallel to itself, i.e. changing param-
eter 𝐶 while keeping a fixed slope 𝐷. As mentioned in Section 1.2, this
is actually the case in the simplest control approach for an induction
motor, known as the V/f control [63].

Now, consider a situation where the motor characteristic is very
slowly displaced upwards, occupying at different time instants the posi-
tions 𝐿𝑚1, 𝐿𝑚2, 𝐿𝑚3... as represented in Fig. 4. This change in the motor
control is assumed to occur quasistatically, in the sense that it does not
produce any transient effects in the machine, but only a succession of
stationary states. Let us focus on one particular time instant of the pro-
cess, say the one at which the motor curve is given by 𝐿𝑚2. As observed
in Fig. 4, several stationary solutions are possible in principle. Note
that there are actually infinite potential stationary motions for 𝐿𝑚2,
since the mixture stiffness, 𝑘𝑖, varies in a continuous manner. However,
for clarity of exposition, we will consider only 3 stiffness values and,
therefore, 3 possible stationary solutions for 𝐿𝑚2 (marked with squares
in Fig. 4). The question that will be addressed in this section is the
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Fig. 4. Torque–speed curves along a generic quasistatic compaction process. 𝐿𝑚𝑖 (𝑖 =
1, 2, 3) represent the motor characteristic at successive time instants, while 𝐿𝑣(𝑘𝑖) (𝑖 =
1, 2, 3) are the vibration torque curves for increasing mixture stiffness. The squares
mark the possible stationary motions for 𝐿𝑚2. The yellow dots represent the quasistatic
stationary motion for each considered stiffness value.

following: which of the 3 mentioned solutions is actually reached by the
system during the quasistatic compaction process? In other words, how
can we analytically predict which of the possible stationary motions, for
each specific position of the motor characteristic, is actually exhibited
by the machine during the quasistatic process?

Before entering the core of the discussion, an additional considera-
tion is relevant. We assume that the evolution of the state of the system
during the quasistatic compaction is of the same type as in the classical
Sommerfeld’s test, described in Section 1.2 and represented in Fig. 1:
the amplitude of the oscillations grows monotonically until reaching
a point where a jump phenomenon occurs, making the vibration am-
plitude decrease abruptly. This assumption will be confirmed by the
results presented in Section 4.

This Section is divided in two subsections. In the first one, we
develop the concept of quasistatic torque curve and present a method
to calculate it. This curve provides the succession of stationary states
of the machine during the quasistatic process. The second subsec-
tion investigates the maximum compaction that can be quasistatically
achieved and presents the specific way in which the Sommerfeld effect
occurs in the vibrocompaction system under study.

3.1. The quasistatic torque curve

In a quasistatic compaction process, the system is initially at rest,
under the static load produced by the weight of all its elements. In the
force–displacement graph of Fig. 5, this initial point is marked with a
triangle (see Appendix A for details on this constitutive law). Then, the
motor is switched on and its input power is slowly increased, producing
a gradual increment in the mixture stiffness as it gets compacted. Fig. 5
represents the stationary oscillation for the 3 stiffness values considered
in Fig. 4. The motion is depicted as a straight segment, with slope
𝑘1, 𝑘2 or 𝑘3, delimited by the maximum and minimum displacements
reached during the system vibration (circular markers in the figure).
Note the important feature that, according to Fig. 5, the minimum
displacement reached by the spring during the stationary vibration for
stiffness 𝑘𝑖 coincides with the tangency point between the parabola and
the elastic line corresponding to stiffness 𝑘𝑖. This requires some detailed
justification.

For each specific stiffness value, the stationary vibration necessarily
takes place around the position of static equilibrium of the system,
as highlighted in Fig. 5 with square markers (the static equilibrium
position can always be obtained as the intersection between the elastic
line of interest and the horizontal line given by 𝐹𝑚 = −𝑚𝑔). Then,
parameter 𝐴∗(𝑘 ) is defined as the displacement between the static
5

𝑖 s
Fig. 5. Quasistatic compaction represented on the force–displacement graph of the
nonlinear spring that models the mixture behaviour. 𝑘𝑖 (𝑖 = 1, 2, 3), represents 3
increasing stiffness values of the mixture. 𝐴∗(𝑘𝑖) represents the quasistatic oscillation
mplitude for each considered stiffness. 𝐹𝑚𝑖 represents the maximum compressive force
xperienced by the spring during the quasistatic oscillation for each considered stiffness.
he term 𝑚𝑔 represents the weight of all the masses in the model located above the
pring. The static equilibrium position for each considered stiffness is marked with
quare. The initial state of the system, before the motor is switched on, is marked with
triangle.

quilibrium position and the tangent point of the elastic line with the
arabola for stiffness 𝑘𝑖 (see Fig. 5):

∗(𝑘𝑖) ≡
−𝑚𝑔 − 𝐹𝑚𝑖

𝑘𝑖
(5)

where 𝐹𝑚𝑖 represents the value of 𝐹𝑚 at which the parabolic curve of
the spring exhibits a slope 𝑘𝑖.

Let us now justify that, for stiffness 𝑘𝑖, the stationary oscillation
amplitude is given by 𝐴∗(𝑘𝑖). First, it is clear that this oscillation
mplitude cannot be greater than 𝐴∗(𝑘𝑖), because that would imply
ollowing some length of the parabolic path, with the subsequent in-
rease in the spring stiffness. On the other hand, a stationary oscillation
mplitude lower than 𝐴∗(𝑘𝑖), for stiffness 𝑘𝑖, would require a decrease
n oscillation amplitude over time. This is, however, not possible under
he hypotheses of this study, since we assume the vibration amplitude
o grow monotonically until experiencing a jump phenomenon (as was
ut forth previously in this section). Hence, if we focus on the portion
f the process previous to the jump, a reduction in oscillation amplitude
annot take place.

We have shown that the stationary oscillation amplitude for stiffness
𝑖 cannot be greater nor lower than 𝐴∗(𝑘𝑖), if the attention is restricted
o the fraction of the compaction before the jump phenomenon. The
bvious conclusion is that the spring stiffness grows continuously with
he amplitude of the oscillation being given, for each instantaneous 𝑘𝑖,
y 𝐴∗(𝑘𝑖). Since the oscillation amplitude for each 𝑘𝑖 is known, the
otor speed 𝛺∗

0(𝑘𝑖) can also be computed by using Eq. (B.4), which is
ewritten here for convenience:

∗(𝑘𝑖) =

𝑚1
𝑚 𝑟

(

𝛺∗
0 (𝑘𝑖)
𝜔𝑛𝑖

)2

√

√

√

√

[

(

𝛺∗
0 (𝑘𝑖)
𝜔𝑛𝑖

)2
− 1

]2

+
[

2𝜉𝑖
𝛺∗
0 (𝑘𝑖)
𝜔𝑛𝑖

]2
, (6)

where 𝜔𝑛𝑖 =
√

𝑘𝑖∕𝑚 and 𝜉𝑖 = 𝑏∕(2𝑚𝜔𝑛𝑖). Notice that there may be two
ossible rotor speeds for the same vibration amplitude, as observed
n Fig. B.2(a). Then, care should be taken to choose the pre-resonant
olution, which is the one of interest for the process under analysis (see
ig. 4).

The conclusion from all the above considerations is that, when the

ystem reaches stiffness 𝑘𝑖 through the quasistatic procedure being
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Fig. 6. Quasistatic torque curve, 𝛤 (𝛺0), representing the complete sequence of motions
along the quasistatic compaction. Each point of the curve is associated with a different
value of the mixture stiffness (the stiffness increases upwards along the curve). 𝐿𝑚𝑖(𝛺0)
represents a motor characteristic that would allow reaching stiffness 𝑘𝑖, corresponding
to the intersection point between 𝐿𝑚𝑖(𝛺0) and 𝛤 (𝛺0).

described, it will do so with rotor speed 𝛺∗
0(𝑘𝑖), which can be computed

using Eqs. (5) and (6). Then, going back to Fig. 4, we can represent
the stationary solution corresponding to each considered stiffness value
(yellow dots in the graph). Recall now that we were trying to find
which of the 3 possible stationary solutions for the motor curve 𝐿𝑚2,
marked with squares in Fig. 4, is actually reached by the machine
during a quasistatic compaction process. By comparing these 3 square
markers with the 3 yellow dots in Fig. 4, the answer becomes clear.
The stationary motion of the system, when the motor curve is 𝐿𝑚2, is
the one corresponding to stiffness 𝑘2. This is the only stiffness value
whose corresponding vibration torque curve 𝐿𝑣(𝑘𝑖) intersects 𝐿𝑚2 at
speed 𝛺∗

0(𝑘𝑖).
Going one step further, very relevant information can be extracted

by focusing on the sequence of yellow dots in Fig. 4: a new curve 𝛤 (𝛺0)
can be constructed by plotting the quasistatic stationary solutions for
the different stiffness values, representing the complete sequence of
motions followed by the machine during the quasistatic compaction. In
what follows, this new curve, 𝛤 (𝛺0), will be denoted as the quasistatic
torque curve of the system.

The proposed procedure to compute the quasistatic torque curve is
as follows:

• Select a set of increasing, equally spaced, stiffness values 𝑘𝑖 (𝑖 =
1, 2,… , 𝑁) with 𝑘1 = 𝑘𝑠𝑡 and 𝑘𝑁 = 𝑘𝑓 .

• Obtain, for each stiffness 𝑘𝑖, the corresponding quasistatic rotor
speed 𝛺∗

0(𝑘𝑖), by using relations (5) and (6).
• Obtain, for each pair of values {𝑘𝑖, 𝛺∗

0(𝑘𝑖)}, the quasistatic torque
as 𝛤 (𝛺∗

0(𝑘𝑖)) = 𝐿𝑣(𝑘𝑖, 𝛺∗
0(𝑘𝑖)) by using Eq. (4).

• Represent the points given by (𝛺∗
0(𝑘𝑖), 𝛤 (𝛺

∗
0(𝑘𝑖))) on a torque–

speed graph and connect the points using straight lines or splines.

This gives rise to a graph such as shown in Fig. 6.
It should be stressed that the quasistatic torque curve gives very

relevant information from a practical perspective. Each point of the
curve corresponds to a particular stiffness and, therefore, to a par-
ticular degree of compaction. Then, the curve reveals the required
driving torque to achieve the desired degree of compaction through a
quasistatic process. For instance, reaching stiffness 𝑘𝑖 in Fig. 6 would
require a motor characteristic such as 𝐿𝑚𝑖(𝛺0).

3.2. Maximum quasistatic compaction and Sommerfeld effect

It is interesting to analyse the end points of the quasistatic torque
curve because, as will be seen, they provide very meaningful infor-
mation about the possibilities of compaction. First, it is clear that,
for stiffness 𝑘𝑠𝑡, the stationary solution is given by 𝛺0 = 0, 𝐿𝑣 =
6

0, corresponding to the initial state of the machine, with the motor
Fig. 7. Quasistatic compaction represented on a torque–speed graph. The collection
of black curves represent the vibration torque curves for a set of increasing stiffness
values, from 𝑘𝑠𝑡 to 𝑘𝑓 . The yellow dots represent the quasistatic stationary motion for
ach considered stiffness. The orange curve represents the quasistatic torque curve,
(𝛺0).

a) Case 𝑘max = 𝑘𝑓
b) Case 𝑘max < 𝑘𝑓 .

t rest. Thus, curve 𝛤 (𝛺0) starts at (0, 0). In order to investigate the
inal point of the quasistatic torque curve, consider the torque–speed
raphs in Fig. 7. Note that, in this figure, the quasistatic torque curve
s represented together with the collection of vibration torque curves
or a set of 10 equally spaced stiffness values between 𝑘𝑠𝑡 and 𝑘𝑓 . In

principle, we should expect the quasistatic torque curve to end at the
point associated with the stiffness of the totally compacted mixture,
𝑘𝑓 (this is the situation represented in Fig. 7(a)). However, another
possibility also exists. Consider the case shown in Fig. 7(b), where
it can be observed that the quasistatic point associated with stiffness
𝑘8 is already close to the maximum of the corresponding vibration
torque curve. For 𝑘9 and 𝑘𝑓 , no quasistatic point is marked because its
corresponding vibration amplitude 𝐴∗(𝑘𝑖) (obtained through Eq. (5)),
turns out to be greater than that of the resonance peak. Then, when
𝛺∗

0(𝑘𝑖) is tried to be computed through relation (6), no solution is found.
In physical terms, it can be said that, for stiffness 𝑘9 or 𝑘𝑓 to be reached
through a quasistatic process, the system would need to stationarily
oscillate with greater amplitude than that of the resonance peak, which
is not possible. Then, for the situation depicted in Fig. 7(b), the end
point of the quasistatic torque curve is given by certain stiffness 𝑘max ∈
(𝑘8, 𝑘9) such that the corresponding quasistatic vibration amplitude,
𝐴∗(𝑘max) coincides with that of the resonance peak.

Generalizing the above considerations, we can define parameter
𝑘max as the maximum stiffness between 𝑘𝑠𝑡 and 𝑘𝑓 such that the system
of Eqs. (5), (6) has a solution. This critical value 𝑘max has a very
meaningful interpretation: it is the maximum stiffness that can be
achieved through a quasistatic compaction process. Observe that, since
the motor parameters do not appear in Eqs. (5) and (6), 𝑘max has the
significant feature of being completely independent of the available
power of the electric motors.

Clearly, two situations are possible: if 𝑘max = 𝑘𝑓 , the quasistatic
torque curve is qualitatively as represented in Fig. 7(a) and a complete
compaction can be quasistatically achieved. Conversely, if 𝑘 < 𝑘 ,
max 𝑓
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Fig. 8. Sommerfeld effect in a quasistatic vibrocompaction process. As the motor
characteristic is displaced from 𝐿𝑚1 to 𝐿𝑚2, the evolution of the state of the system is
given by the black arrows. When tangency point 𝐵 is reached, the system experiences
a jump towards the post-resonant point 𝐶.
(a) Case 𝑘max = 𝑘𝑓
(b) Case 𝑘max < 𝑘𝑓 .

the quasistatic torque curve is qualitatively as shown in Fig. 7(b)
and the mixture cannot be totally compacted through a quasistatic
procedure.

The definition of 𝑘max can be directly extended to the level of
compaction achieved, 𝛾, defined in Eq. (A.6):

𝛾max =
𝑘max − 𝑘0
𝑘𝑓 − 𝑘0

. (7)

At this point, we already have all the required tools to describe
how the Sommerfeld effect occurs in the vibrocompacting system un-
der study. Consider a quasistatic compaction process in which the
motor characteristic is displaced well beyond the point at which the
mixture reaches stiffness 𝑘max. As represented in Fig. 8, the system
initially follows the quasistatic torque curve as the mixture stiffness
gradually increases. After stiffness 𝑘max is reached, the state of the
system necessarily evolves on the vibration torque curve 𝐿𝑣(𝑘max)—as
has been justified in the above paragraphs, the stiffness cannot keep
increasing—until reaching the point at which the motor characteristic
is tangent to 𝐿𝑣(𝑘max) (point 𝐵 in Fig. 8). Past this point, no more
stationary solutions are found near the resonance peak, which makes
the system jump towards the only remaining stationary solution, cor-
responding to a post-resonant motion with small oscillation amplitudes
(jump from point 𝐵 to point 𝐶 in Fig. 8). This is precisely the jump phe-
nomenon observed by Sommerfeld in 1904 [31], and one of the most
well-known effects of nonideal excitations, as described in Section 1.2.

It should be noted that the portion of the process between reaching
stiffness 𝑘max and finding the jump phenomenon, which is clearly
observable for 𝑘max = 𝑘𝑓 (see path from 𝐴′ to 𝐵 in Fig. 8(a)), is almost
nonexistent for 𝑘max < 𝑘𝑓 (see Fig. 8(b)). The reason is that, when
𝑘max < 𝑘𝑓 , the quasistatic point corresponding to 𝑘max coincides with
7

the maximum of the amplitude–frequency curve, which is very close to
the maximum of curve 𝐿𝑣(𝑘max) and, consequently, also very close to
the tangency point (point 𝐵 in Fig. 8).

By comparing Fig. 8 to Fig. 2 in the introduction of the paper, the
peculiar way in which the Sommerfeld effect takes place in the vibro-
compaction system becomes apparent. For a vibrating system with fixed
stiffness, such as the one studied by Sommerfeld and Kononenko [31,
34], the state of the system evolves on the vibration torque curve
until encountering a jump, as represented in Fig. 2. However, in the
vibrocompaction system under study, part of this evolution does not
take place on a vibration torque curve, but on the quasistatic torque
curve of the system, as shown in Fig. 8. This is due to the fact that,
during this portion of the process, the stiffness of the vibrating system
is not fixed, but gradually increases as the mixture gets compacted.

Let us summarize the main conclusions of this section. The concept
of quasistatic torque curve has been presented, together with a procedure
for its computation. This curve characterizes the evolution of the
state of the vibrocompaction system along a quasistatic compaction
process. It also provides the amount of motor torque required to reach
a desired compaction level, together with the maximum compaction
that can be quasistatically attained. This maximum value was found to
be independent of the available power of the electric motors. Finally,
the quasistatic torque curve reveals the specific manner in which the
Sommerfeld effect takes place in the vibrocompacting machine.

After the analysis of the quasistatic compaction presented in this
section, it is reasonable to wonder what the differences are when the
process is not quasistatic. This would be the case, for instance, if the
motor was switched on with the driving torque curve being directly in
its final position, or if the control settings of the motor were abruptly
modified. In these situations there can be significant transient effects
influencing the evolution of the system state and, therefore, affecting
the level of compaction achieved. Some of these transient effects will
be discussed in the next section.

4. Results and discussion

As was commented in the Introduction, this paper builds upon a
previous publication of the authors [13], where the model presented
in Appendix A was described in detail, justified and investigated by
means of various simulations.

The research presented in [13] was based on a numerical approach
to the problem: the equations of motion (A.1) were numerically in-
tegrated for different sets of parameters values and the results were
discussed and analysed. The present section intends to complement
these simulations with useful analytical insight into the model. Sec-
tion 4.1 summarizes the numerical results that were obtained in [13]. In
Section 4.2, a clear physical interpretation for these results is provided,
based on the developments of Sections 2 and 3. Analytical predictions
are also verified by comparing them to the numerical results.

4.1. Summary of previous numerical results

The simulations presented in [13] were conducted by numerically
solving system (A.1) for 𝑡 ∈ [0, 𝑡𝑓 ]. The total time 𝑡𝑓 includes three
different stages (𝑡𝑓 = 𝑡1 + 𝑡2 + 𝑡3):

• Stage 1: 𝑡 ∈ [0, 𝑡1]. Parameter 𝐶 of the motor control is linearly
increased from 𝐶0 to 𝐶𝑓 , while keeping slope 𝐷 constant (see
Eq. (2)). Note that this can correspond to the quasistatic process
described in Section 3, as long as 𝑡1 is long enough. The motor
characteristic at the beginning and at the end of this phase are
denoted as 𝐿𝑚0 and 𝐿𝑚𝑓 , respectively.

• Stage 2: 𝑡 ∈ [𝑡1, 𝑡1 + 𝑡2]. Parameter 𝐶 is kept constant (𝐶 =
𝐶𝑓 ). During this phase, the vibrocompacting machine reaches a
stationary motion.

• Stage 3: 𝑡 ∈ [𝑡1 + 𝑡2, 𝑡𝑓 ]. The system returns to rest after the motor
is switched off at 𝑡 = 𝑡 + 𝑡 .
1 2
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Table 1
Parameter values that remain constant through the
different simulations: 𝑚𝑚 stands for the mass of the
mixture, 𝑚𝑝 is the mass of the piston and the motor, 𝑟
is the eccentricity of the unbalance, 𝑏 is the damping
coefficient, 𝑑𝑓 and 𝐹𝑓 represent, respectively, the
spring deformation and spring force corresponding to
a complete compaction, 𝑅𝑘 is the ratio between the
minimum and maximum values for the spring stiffness
and 𝑡2 and 𝑡3 represent the time length of the second
and third stages of the simulation, respectively.
𝑚𝑚 (kg) 240
𝑚𝑝 (kg) 1500
𝑟 (m) 0.1
𝑏 (Ns∕m) 4 ⋅ 103

𝑑𝑓 (m) −0.1
𝐹𝑓 (N) −105

𝑅𝑘 0.1
𝑡2 (s) 15
𝑡3 (s) 15

It is useful to define a new parameter, 𝜔𝑛𝑝, as the natural frequency
exhibited by the system during stage 2. It can be calculated as

𝜔𝑛𝑝 =

√

𝑘𝑝
𝑚𝑝 + 𝑚𝑚∕3 + 𝑚1

, (8)

here 𝑘𝑝 denotes the stiffness exhibited by the nonlinear spring during
he stationary vibration attained at stage 2.

Five different simulations are considered. Some of the system pa-
ameters are the same for the 5 cases, and their values are displayed in
able 1. The parameters that vary among the different simulations are
hown in Table 2, together with the result of each simulation quantified
hrough the final level of compaction 𝛾𝑠 (see definition in Eq. (A.6),
ubscript s stands for simulation).

The obtained results are graphically represented in Fig. 9 for Cases
–4 and in Fig. 10 for Case 5, which is the only one in which separations
nd impacts occur between piston and mixture.

.2. Discussion and comparison with analytical results

In this subsection, we use the developments of Sections 2 and 3
o interpret the presented numerical results. In particular, it will be
hown how the quasistatic torque curve, 𝛤 (𝛺0), constitutes a useful
ool to understand and quantify the behaviour of the vibrocompacting
achine.

Note that, among the varying parameters in Table 2, the only one
hat affects the vibration torque curves of the system, 𝐿𝑣(𝑘𝑖), is the
nbalanced mass 𝑚1, as can be observed in Eq. (B.6). Since 𝑚1 is the
ame for Cases 1–4 and takes a different value for Case 5 (see Table 2),
here will be one set of vibration torque curves for Cases 1–4 and a
ifferent set of curves for Case 5. These curves are computed through
elation (B.6) for 20 equally spaced stiffness values from 𝑘𝑠𝑡 to 𝑘𝑓 and
re represented in Fig. 11 together with the motor characteristics for
he different simulations.

Once the vibration torque curves are obtained, the procedure de-
cribed in Section 3 can be followed to compute the quasistatic station-
ry motion corresponding to each considered stiffness value (yellow
ots in Fig. 11). By connecting these points, the quasistatic torque
urve, 𝛤 (𝛺0), is obtained (orange line in Fig. 11). Finally, we can
se Eq. (7) to calculate parameter 𝛾max, defined as the maximum
ompaction level that can be reached quasistatically:
Cases 1–4
max = 48.2%

𝛾Case 5
max = 71.8%

(9)

Based on these representations and computations, the global be-
aviour of the system can be described as follows. If the motor charac-
eristic passes through the end point of the quasistatic torque curve,
8

hen the mixture will reach the compaction level given in Eq. (9),
s long as the motor control is sufficiently slow. This will happen as
he system experiences an increasingly growing vibration amplitude
ollowed by a jump phenomenon towards a post-resonant state of
otion. On the other hand, if the motor characteristic does not reach

he end point of the quasistatic torque curve, the final compaction
evel of the mixture will be lower than given in Eq. (9). The level of
ompaction achieved can be computed by introducing the maximum
tiffness exhibited by the nonlinear spring into relation (A.6). This
tiffness can in turn be obtained as the stiffness corresponding to
he intersection point between curves 𝐿𝑚𝑓 (𝛺0) and 𝛤 (𝛺0) (see square
arkers in Fig. 11). The application of the described procedure to the

ive considered simulations yield the analytical predictions presented
n Table 3.

It is interesting to note that a comparison between Case 1 and Cases
–4 provides useful insight into the effect of parameters 𝐶 and 𝐷, which

define the motor characteristic, on the system behaviour. As Fig. 11(a)
shows, the motor characteristic passes through the end point of the
quasistatic torque curve in Case 1, but not in Cases 2–4. Therefore, the
analytical prediction is that the mixture attains its maximum quasistatic
compaction in Case 1, but not in Cases 2–4 (see Table 3). Likewise, the
system experiences a jump towards a post-resonant motion in Case 1
(see Fig. 9(a) and (b)), but not in Case 2 (see Fig. 9(c) and (d)) or
Case 4 (see Fig. 9(g) and (h)). The numerical results for Case 3 do
display the jump (see Fig. 9(e) and Fig. 9(f)), but in this scenario the
analytical prediction does not apply because the motor control is not
quasistatic (the ramp-up time, 𝑡1, has been reduced to zero, as shown
in Table 2). The effect of parameters 𝐶 and 𝐷 on the system dynamics
will be discussed in more detail in the next paragraphs, by separately
analysing each of the simulation scenarios.

For Case 1, it is clear from Fig. 11 that the motor characteristic 𝐿𝑚𝑓
passes over the end point of the quasistatic torque curve. Hence, we
should expect the system to exhibit a gradually increasing vibration
amplitude followed by a jump phenomenon towards a post-resonant
motion with smaller amplitude. Note that this is precisely the behaviour
found in the simulation results plotted in Fig. 9(a) and Fig. 9(b).

Regarding the analytical prediction for the level of compaction
achieved in Case 1, a comparison between Tables 2 and 3 shows some
difference with respect to the numerical result. This indicates that the
process may not have been slow enough to be considered as quasistatic.
To validate this hypothesis, the simulation was repeated after increas-
ing parameter 𝑡1 to 50 s. This produced a level of compaction 𝛾𝑠 = 48.0%,
which is significantly closer to the analytical value given in Table 3.
This supports the idea that, the slower the displacement of the motor
characteristic, the more similar the process is to the ideal quasistatic
case.

Case 2 constitutes a compacting process where the motor charac-
teristic does not pass through the end point of the quasistatic torque
curve. This means that we should expect an increasing vibration am-
plitude during stage 1 (without any jump phenomena), followed by a
stabilization during stage 2 into a stationary oscillation with the rotor
speed being slightly below the system resonance frequency. This is in
accurate agreement with the numerical results depicted in Fig. 9(c) and
Fig. 9(d). Note also the precise accordance between the analytical and
numerical evaluations of the final compaction level (compare Tables 2
and 3 for Case 2).

Case 3 has the same parameter values as Case 2 except for time
𝑡1, which is now set to 0 (see Table 2). This means that there is no
motor control: the motor characteristic is set to its final position from
the beginning of the process. Thus, the simulation cannot be considered
as quasistatic, which is why no analytical prediction is given in Table 3
for this case.

In any case, it is interesting to compare the numerical results of
Cases 2 and 3, in order to assess the effect that a reduction of the ramp-
up time can have on the machine behaviour. As clearly shown in Fig. 9,

two different types of behaviour arise in these two simulations. While
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Table 2
Parameter values that vary among the different simulations: 𝑚1 is the unbalanced mass, 𝐼0 is the rotor inertia, 𝑡1 is the time length of the first
simulation stage, 𝐷 is the slope of the motor characteristic and 𝐶0 and 𝐶𝑓 represent the initial and final values for the motor stall torque. The
final compaction level 𝛾𝑠 obtained in each case is also shown.

Case 1 Case 2 Case 3 Case 4 Case 5

Variable Parameters

𝑚1 (kg) 20 20 20 20 40
𝐼0 (kgm2) 0.84 0.84 0.84 2.52 0.84
𝑡1 (s) 10 15 0 0 15
𝐷 (Nm∕s) −5 −1.5 −1.5 −1.5 −2.3
𝐶0 (Nm) 20 22 22 22 40
𝐶𝑓 (Nm) 140 43 43 43 80

Numerical Results 𝛾𝑠 46.5% 47.4% 44.6% 47.4% 60.3%
Fig. 9. Simulation results from numerical integration of system (A.1). Graphs on the left represent the displacement of the piston, while graphs on the right represent the rotor
speed. From top to bottom, the results correspond to Cases 1, 2, 3 and 4. The dashed line represents the natural frequency of the system during the stationary oscillation, 𝜔𝑛𝑝, as
efined in Eq. (8).
9
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1
c
c
q
c

Fig. 10. Simulation results corresponding to Case 5, obtained by numerical integration of system (A.1). (a) Vertical displacement of the piston and the top surface of the mixture
(separations and impacts are observed between 10 s and 30 s approx.). (b) Rotor speed. The dashed line represents the natural frequency of the system during the stationary
oscillation, 𝜔𝑛𝑝, as defined in Eq. (8). (c) Close-up view of the piston and mixture displacements, showing clearly the separations and impacts.
Fig. 11. Torque–speed curves for (a) Cases 1–4 and (b) Case 5. The black straight lines
represent the motor characteristic at the beginning (𝐿𝑚0) and at the end (𝐿𝑚𝑓 ) of stage
. The collection of black curves with a peak represent a group of vibration torque
urves, 𝐿𝑣(𝑘𝑖), for different equally spaced stiffness values (the leftmost and rightmost
urves corresponds to stiffness 𝑘𝑠𝑡 and 𝑘𝑓 , respectively). The yellow dots mark the
uasistatic stationary motion for each of the considered stiffness values. The orange
urve represents the quasistatic torque curve, 𝛤 (𝛺0). The intersection between 𝛤 (𝛺0)

and the motor characteristic 𝐿𝑚𝑓 , if it exists, is marked with a square.
10
Table 3
Analytically predicted compaction level, 𝛾𝑎, for the 5 cases under study. No result is
given for Case 3 because it cannot be considered as quasistatic.

Case 1 Case 2 Case 3 Case 4 Case 5

𝛾𝑎 48.2% 47.3% – 47.3% 58.9%

in Case 2 the system stabilizes into a stationary motion slightly below
resonance, in Case 3 the system passes through resonance and stabilizes
into a stationary motion with lower vibration amplitude. Note also in
Table 2 that Case 3 yields a lower compaction level.

The explanation for the fact that the system passes through reso-
nance in Case 3 might be in the difference between the characteristic
time of the rotor speed and the vibration amplitude. If the rotor speed
is a much faster variable than the vibration amplitude, then it can be
expected that the rotor speed will reach the resonance region while
the vibration amplitude is still relatively small. In this situation, the
system might be attracted towards a post-resonant stationary motion
with relatively small vibration amplitude, as displayed in Fig. 9(e) and
Fig. 9(f). Case 4 is intended to validate the above explanation.

In Case 4, all parameters are as in Case 3, except for an increased ro-
tor inertia (see Table 2). Interestingly, the results presented in Fig. 9(g)
and Fig. 9(h) show that the system does not pass through resonance
in Case 4. In fact, the machine is found to stabilize into the same
stationary oscillation as in Case 2 (see Fig. 9) and reaches the same
compaction level as in Case 2 (see Table 2).

What is peculiar about Case 4 is that the system exhibits the kind
of quasistatic evolution discussed in Section 3, even though there is no
motor control. In other words, a large rotor inertia can play the same
role as a gentle displacement of the motor characteristic. This in turn
confirms the explanation that was put forth for the passage through res-
onance in Case 3: a larger rotor inertia clearly slows down the increase
of the rotor speed from zero up to the resonance frequency, which can
provide sufficient time for the rise of the vibration amplitude, allowing
the system dynamics to be attracted towards a near-resonant state.
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Case 5 is relevant because the unbalanced mass 𝑚1 is doubled
with respect to all other cases, as shown in Table 2. This has a clear
consequence in terms of the vibration torque curves of the system:
when the unbalanced mass is doubled, the vibration torque curves are
scaled up by a factor of 4 (compare Fig. 11(b) with Fig. 11(a)). This
relation can be plainly seen in Eq. (B.6), which shows that the vibration
torque, 𝐿𝑣, is proportional to 𝑚2

1.
The analytical prediction for Case 5 is as follows: Fig. 11 shows

hat the motor characteristic does not reach the end point of the
uasistatic torque curve. Hence, we should expect a monotonic increase
n rotor speed and vibration amplitude until the system stabilizes into a
tationary motion slightly below resonance. This matches the numerical
ehaviour represented in Fig. 10, with the particularity that separations
nd impacts between piston and mixture are found in the simulation
esults. It is clear that a higher unbalanced mass increases the ampli-
ude of the exciting force on the piston, which in turn facilitates the
ppearance of separations and impacts at the contact surfaces.

By comparing the analytical and numerical compaction levels for
ase 5 (see Tables 2 and 3), the accuracy of the analytical prediction is

ound to be lower than in previous cases. This can be easily explained
y the fact that the analytical procedure developed in Section 3 is
ased on the simplified vibrocompaction model, which assumes no
eparations between mixture and piston nor between mixture and
ould. Then, it is reasonable to expect the accuracy of analytical results

o decrease when separations and impacts do take place during the
rocess. In spite of this, note that the analytical results are still fairly
lose to the numerical ones in the present case. Hence, the torque–speed
urves may be useful even for scenarios where impacts are produced,
eeping in mind that the analytical predictions will not be as accurate
s in a case of continuous contact.

It is also interesting to consider how the overall dynamics of the
ystem changes around resonance due to the presence of separations
nd impacts. One observable effect is the reduction in rotor speed, as
hown in Fig. 10(b) between 𝑡 ≈ 12 s and 𝑡 ≈ 17 s. The reason is that the
iston oscillates with a larger amplitude than it would if separations
ere not allowed. This in turn produces a larger resisting torque on

he motor due to vibration and, therefore, a lower average rotor speed.
n addition, it is worth noting that the numerical level of compaction
urns out to be greater than it would be in the absence of impacts,
hich can be observed by comparing Tables 2 and 3 for Case 5. This

s consistent with the physical intuition that impacts are favourable to
he compaction process, since they produce high peaks of compressive
orce on the mixture.

Finally, a brief discussion on the role of nonlinearity in the pre-
ented developments is pertinent. One of the sources of nonlinearity
n the full model given by Eq. (A.1) is the possibility of having separa-
ions and impacts between the different contacting surfaces. While this
onlinearity is taken into account in the presented numerical results
see Fig. 10), it is not considered in our analytical predictions, since
hese are based upon an assumption of continuous contact. On the
ther hand, the nonlinearity associated with the hardening constitutive
aw for the mixture is included in both the numerical and analytical
pproaches (see Fig. 11, where the vibration torque curve changes as
he mixture gets compacted). Another source of nonlinearity in our
nalysis is the nonideal interaction between the electric motor and the
ibrating system, which is responsible for the presence of the Som-
erfeld effect. This nonlinearity is included both in the numerical and

nalytical results. The analytical treatment of the nonideal excitation
s based on Blekhman’s direct separation of motions approach, which
s summarized in Appendix B. Additional sources of nonlinearity that
ould be included in further developments are the friction between
uartz particles in the mixture or the motion of air bubbles through the
esin. Explicitly modelling these effects would amount to proposing a
ore complex constitutive law than the one used here.

Regarding future work on the problem addressed in this article,
e plan to conduct some experimental tests to validate the presented
11

nalytical and numerical results.
5. Summary and conclusions

A simplified 4-DOF model previously published by the authors is
used in this article to analytically investigate the influence of the
Sommerfeld effect on vibrocompaction processes driven by unbalanced
electric motors. The model includes a nonideal interaction between
motor and vibrating system and a nonlinear constitutive law for the
mixture being compacted, which accounts for irreversible deformation
and hardening due to compaction.

The main novel contribution of the paper is the development of the
concept of quasistatic torque curve and its calculation. This curve charac-
terizes the evolution of the system state during a quasistatic compaction
process (i.e. one controlled by a sufficiently slow increase of the motors
input power) and predicts the appearance of the Sommerfeld effect in
the vibrocompacting machine.

Another relevant feature of the quasistatic torque curve is that it
provides the amount of motor torque required to reach a desired level
of compaction, together with the maximum compaction that can be
quasistatically reached. This maximum compaction was found to be
independent of the available power of the electric motors.

The obtained analytical results were used to give a clear physical
interpretation to the numerical results previously published by the
authors using the same model. Good agreement was found between
numerical and analytical results. In this regard, it should be mentioned
that the accuracy of the analytical results decreases with the presence
of separations and impacts between mixture and piston and between
mixture and mould, since the quasistatic torque curve is built upon
the assumption of continuous contact. However, even in a compaction
process with severe impacts, the analytical predictions proved to be
reasonably close to the corresponding numerical results.
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Fig. A.1. 4-DOF model of the vibrocompaction system. The 4 degrees of freedom are 𝜙
(angular position of the rotor), 𝑦𝑝 (vertical position of the piston), 𝑦𝑡 (vertical position
of the top surface of the mixture) and 𝑦𝑏 (vertical position of the bottom surface of the
mixture). The spring labelled as 𝐹𝑚 has a nonlinear behaviour that models compaction
itself.

Appendix A. Brief description of the vibrocompaction model

The vibrocompaction model that was presented and justified in [13]
is summarized here. As can be observed in Fig. A.1, the quartz-resin
mixture is represented in the model by a couple of masses attached
to each other through a linear damper and a nonlinear spring, which
models compaction itself by allowing for permanent deformation under
compression. Then, the distance between the masses represents the
thickness of the mixture slab. The mould is modelled as a rigid base,
while the piston with the unbalanced motors is represented by a
mass with a single unbalanced motor. The mixture is in contact—with
separations and impacts allowed—with the mould at the bottom and
the piston at the top. The vacuum system and the external air pressure
on the piston are not included in the model.

As represented in Fig. A.1, the model has 4 DOFs: 𝑦𝑏, 𝑦𝑡, 𝑦𝑝 and
𝜙, which correspond, respectively, to position of the bottom surface of
the mixture, position of the top surface of the mixture, position of the
piston and rotation of the motor.

The parameters in Fig. A.1 are as follows: 𝑚𝑚 stands for the mass of
the mixture, 𝑚1 is the unbalanced mass, 𝑚𝑝 is the mass of the piston and
the motor, 𝑟 is the eccentricity of the unbalance, 𝐼0 is the rotor inertia,
𝑏 is the damping coefficient, 𝐹𝑚 is the force produced by the nonlinear
spring and 𝑔 is the gravity constant. The fact that the mixture mass is
distributed as shown in Fig. A.1—two thirds at the bottom, one third
at the top—is justified in [13].

The equations of motion of the system can be shown to be

(𝑚𝑝 + 𝑚1)𝑦̈𝑝 = 𝑚1𝑟(𝜙̇2 cos𝜙 + 𝜙̈ sin𝜙) + 𝐹𝑐𝑡(𝑦𝑡, 𝑦̇𝑡, 𝑦𝑝, 𝑦̇𝑝) − (𝑚𝑝 + 𝑚1)𝑔
𝑚𝑚
3
𝑦̈𝑡 + 𝐹𝑚 + 𝑏(𝑦̇𝑡 − 𝑦̇𝑏) = −𝐹𝑐𝑡(𝑦𝑡, 𝑦̇𝑡, 𝑦𝑝, 𝑦̇𝑝) −

𝑚𝑚
3
𝑔

2𝑚𝑚
3
𝑦̈𝑏 − 𝐹𝑚 − 𝑏(𝑦̇𝑡 − 𝑦̇𝑏) = 𝐹𝑐𝑏(𝑦𝑏, 𝑦̇𝑏) −

2𝑚𝑚
3
𝑔

𝐼𝜙̈ = 𝐿𝑚(𝜙̇) + 𝑚1𝑟 sin𝜙(𝑦̈𝑝 + 𝑔)

(A.1)

where 𝐼 = 𝐼0 +𝑚1𝑟2, 𝐿𝑚(𝜙̇) is the driving torque and 𝐹𝑐𝑏, 𝐹𝑐𝑡 represent
he normal contact force between mixture and mould and between
ixture and piston, respectively. A Hunt and Crossley model is chosen

or these contacts (see [13] for details):
𝐹𝑐𝑡 = 𝑘𝑐 (𝑦𝑡 − 𝑦𝑝) + 𝑏𝑐 (𝑦𝑡 − 𝑦𝑝)(𝑦̇𝑡 − 𝑦̇𝑝) if 𝑦𝑡 > 𝑦𝑝

𝐹𝑐𝑡 = 0 if 𝑦𝑡 ≤ 𝑦𝑝

}

(A.2)
{

𝐹𝑐𝑏 = −𝑘𝑐𝑦𝑏 + 𝑏𝑐𝑦𝑏𝑦̇𝑏 if 𝑦𝑏 < 0
}

(A.3)
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𝐹𝑐𝑏 = 0 if 𝑦𝑏 ≥ 0
Fig. A.2. Constitutive law for the nonlinear spring (spring force 𝐹𝑚 vs axial deforma-
tion 𝛥𝐿). The material follows a parabolic hardening line as it gets compacted and a
tangent straight line during relaxation. Point 𝐶(𝑑𝑓 , 𝐹𝑓 ) defines the complete compaction,

hich occurs once the mixture has reached its maximum stiffness 𝑘𝑓 .

Fig. B.1. Schematic representation of the considered mechanical system: an unbalanced
motor with known torque–speed curve connected to a fixed frame through a linear
spring and a linear damper. The system has 2 degrees of freedom: linear displacement
𝑥 and rotation 𝜙.

The driving torque of the motor is assumed to be a linear function
of the rotor speed:

𝐿𝑚(𝜙̇) = 𝐶 +𝐷𝜙̇, (A.4)

with 𝐷 < 0. Expression (A.4) represents the torque–speed curve of the
motor, or motor characteristic.

Regarding the behaviour of the nonlinear spring, a phenomenolog-
ical model is used in agreement with the two main observed features
of compaction:

• When a compressive force is applied on the material, it deforms
in a nonlinear hardening manner.

• If the compressive load is released, some of the deformation
remains (irreversible deformation due to compaction) while the
rest is recovered (elastic deformation).

The proposed constitutive model is represented in Fig. A.2, which
shows the relation between the spring force, 𝐹𝑚, and the spring de-
formation, 𝛥𝐿, defined as

𝛥𝐿 ≡ 𝑦𝑡 − 𝑦𝑏 − 𝐿0 (A.5)

where 𝐿0 is the undeformed length of the spring.
The behaviour is as follows. Starting from the undeformed position

𝑂, a compressive force makes the spring follow a parabolic hardening
path, with an initial tangent stiffness 𝑘0. Suppose that, at an intermedi-
ate state of compaction 𝐴, the compression force reduces until reaching
an unloaded state. The spring follows the straight line 𝐴𝐵, which is
tangent to the parabolic curve at point 𝐴. Note that, at this stage,
the spring stiffness has already increased with respect to the initial
value 𝑘0. Note also that, at point 𝐵, some plastic deformation remains,
corresponding to the level of compaction achieved, while the elastic
part of the deformation has been recovered.

If a compressive load is applied again, the material deforms along
the elastic path 𝐵𝐴, followed by the hardening parabolic line. The
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Fig. B.2. Response curves of a linear system under the nonideal excitation of an unbalanced motor. (a) Amplitude of the stationary vibration versus average rotor speed (Eq. (B.4)).
(b) Torque–speed curves for a typical case with three intersection points. 𝐿𝑚 and 𝐿𝑣 represent the motor torque (Eq. (A.4)) and the torque due to vibration (Eq. (B.6)), respectively.
The intersections, marked with circles, give the possible values of the average stationary rotor speed, 𝛺0.
w
{

T

𝐴

a
r

t

𝐿

t

𝐿

complete compaction is defined by point 𝐶(𝑑𝑓 , 𝐹𝑓 ), where the tangent
nonlinear stiffness is 𝑘𝑓 . Whenever point 𝐶 is reached, the mixture
becomes totally compacted, and any subsequent loading would only
produce elastic deformations with stiffness 𝑘𝑓 . Note that the spring
behaviour is completely defined by specifying 𝐹𝑓 , 𝑑𝑓 and 𝑅𝑘 ≡ 𝑘0∕𝑘𝑓 .

Finally, it is useful to characterize the quality of a particular vi-
brocompaction process by the level of compaction achieved, defined
as

𝛾 =
𝑘𝑝 − 𝑘0
𝑘𝑓 − 𝑘0

(A.6)

where 𝑘𝑝 is the spring stiffness once the dynamic compaction process
is finished. Thus, 𝛾 = 0 corresponds to a totally uncompacted mixture,
while 𝛾 = 1 represents a case of complete compaction.

The presented constitutive model is in qualitative agreement with
the experimental results reported in [64,65]. On the other hand, it is
clear that many other types of curves could be proposed to model the
hardening line, instead of a parabola. Some models in the literature
use exponential [66] or inverse-logarithmic laws [67], as described by
Kiesgen et al. [68]. Some work should be done in the future comparing
experimental results on the compression of quartz-resin mixtures with
different types of curves, in order to see which one provides better
fitting.

Appendix B. Stationary response of a linear system to the nonideal
excitation of an unbalanced motor

This appendix summarizes previous results on the response of linear
systems to nonideal excitations that are useful for the analysis of vibro-
compaction. The presented results are based on Blekhman’s approach
of direct separation of motions [52]. For a detailed derivation of these
solutions, see [52] or Chapter 7 in [62].

Consider the system depicted in Fig. B.1, where variable 𝑥 stands for
he linear motion, 𝜙 is the angle of the rotor, 𝑚1 is the unbalanced mass
ith eccentricity 𝑟, 𝑚0 is the rest of the vibrating mass, 𝐼0 is the rotor

nertia (without including the unbalance), 𝑏 is the viscous damping
oefficient and 𝑘 is the spring stiffness. The equations of motion for
his 2-DOF system can be shown to be [37]

𝑥̈ + 𝑏𝑥̇ + 𝑘𝑥 = 𝑚1𝑟(𝜙̇2 cos𝜙 + 𝜙̈ sin𝜙)

𝐼𝜙̈ = 𝐿𝑚(𝜙̇) + 𝑚1𝑟𝑥̈ sin𝜙
(B.1)

ith 𝑚 = 𝑚0+𝑚1 and 𝐼 = 𝐼0+𝑚1𝑟2. Function 𝐿𝑚(𝜙̇) is the driving torque
roduced by the motor, given by Eq. (A.4).

It should be stressed that, although the vibrating structure is lin-
ar (elastic and viscous forces are proportional to displacement and
elocity), the application of a nonideal excitation makes the combined
ibrating structure + motor system nonlinear, as clearly seen in Eq. (B.1).

Under the condition of small unbalance (𝑚1 ≪ 𝑚, 𝑚1𝑟2 ≪ 𝐼), the
tationary motions of the system can be written as [52]
̇ (𝑡) = 𝛺0 +𝛺1(𝑡) (B.2)
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𝑥(𝑡) ≈ 𝐴 cos (𝛺0𝑡 + 𝜓),
here 𝛺1(𝑡) is a periodic function of time with zero average satisfying

𝛺1(𝑡)≪ 𝛺0
𝛺̇1(𝑡)≪ 𝛺2

0

}

∀𝑡. (B.3)

he oscillation amplitude is given by

=

𝑚1
𝑚 𝑟

(

𝛺0
𝜔𝑛

)2

√

[

(

𝛺0
𝜔𝑛

)2
− 1

]2
+
[

2𝜉 𝛺0
𝜔𝑛

]2
(B.4)

where 𝜔𝑛 =
√

𝑘∕𝑚 and 𝜉 = 𝑏∕(2𝑚𝜔𝑛). Eq. (B.4), which corresponds to
very well-known result from linear vibration theory, is graphically

epresented in Fig. B.2(a).
The average rotor speed 𝛺0 can be found as the intersection be-

ween two curves:

𝑚(𝛺0) = 𝐿𝑣(𝛺0), (B.5)

where function 𝐿𝑚(𝛺0) is given at Eq. (A.4) and function 𝐿𝑣(𝛺0) has
he expression [52]

𝑣(𝛺0) ≡ 𝑘𝜉
(𝑚1𝑟
𝑚

)2

(

𝛺0
𝜔𝑛

)5

[

(

𝛺0
𝜔𝑛

)2
− 1

]2
+
[

2𝜉 𝛺0
𝜔𝑛

]2
. (B.6)

The physical meaning of Eq. (B.5) is very relevant: the average station-
ary rotor speed is such that the driving torque delivered by the motor
(𝐿𝑚) is equal to the resisting torque on the rotor due to vibration (𝐿𝑣).
This is graphically represented in Fig. B.2(b) for a typical situation with
three possible stationary motions.
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