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a b s t r a c t

In this paper, we consider the family of planar piecewise linear differential systems
with two zones separated by a straight line without sliding regions, that is, differential
systems whose flow transversally crosses the switching line except for at most one
point. In the research literature, many papers deal with the problem of determining the
maximum number of limit cycles that these differential systems can have. This problem
has been usually approached via large case-by-case analyses which distinguish the many
different possibilities for the spectra of the matrices of the differential systems. Here,
by using a novel integral characterization of Poincaré half-maps, we prove, without
unnecessary distinctions of matrix spectra, that the optimal uniform upper bound for
the number of limit cycles of these differential systems is one. In addition, it is proven
that this limit cycle, if it exists, is hyperbolic and its stability is determined by a simple
condition in terms of the parameters of the system. As a byproduct of our analysis, a
condition for the existence of the limit cycle is also derived.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In this paper, we consider planar discontinuous piecewise linear differential systems with two zones separated by a
traight line. Without loss of generality, these differential systems can be written as

ẋ =

{
ALx + bL, if x1 < 0,
ARx + bR, if x1 > 0,

(1)

where x = (x1, x2)T ∈ R2, AL = (aLij)2×2, AR = (aRij)2×2, bL = (bL1, b
L
2)

T
∈ R2, and bR = (bR1, b

R
2)

T
∈ R2. Notice that

= {(x1, x2) ∈ R2
: x1 = 0} the switching line of system (1). We assume Filippov’s convention (see [1]) for the

efinition of the trajectories of (1).
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Moreover, we are interested in the family of such differential systems which do not have any sliding regions, that is,
or each point in the switching line, except for at most one, the corresponding trajectory crosses it transversally. Such
ystems are sometimes called sewing systems. This can be analytically expressed by

(aL12 x2 + bL1)(a
R
12 x2 + bR1) ⩾ 0 for every x2 ∈ R (2)

and

(aL12 x2 + bL1)(a
R
12 x2 + bR1) = 0 at most at one value of x2 ∈ R. (3)

Notice that, in this paper, the concept of ‘‘sliding region’’ also includes the sometimes called in other papers ‘‘escaping
region’’.

We focus on determining an optimal uniform upper bound for the number of limit cycles of this family of differential
systems. In the study of planar piecewise smooth differential systems, a limit cycle is usually defined as a non-trivial
closed crossing orbit which is isolated from other closed orbits.

In 1991, Lum and Chua [2], assuming the continuity of the differential system (1) conjectured that they have at most
one limit cycle. This conjecture was proven in 1998 by Freire et al. [3]. Their proof was performed by distinguishing
every possible configuration depending on the spectra of the matrices of the differential system. Recently, Carmona
et al. [4] provided a new simple proof for Lum–Chua’s conjecture using a novel integral characterization of Poincaré half-
maps (see [5]). In addition, this limit cycle, if it exists, has been proven to be hyperbolic and its stability was explicitly
determined by an easy condition in terms of the parameters of the system. This novel characterization has proven to be
an effective method to avoid the case-by-case study performed in the former proof and has also been used by the same
authors in [6] to show the existence of a uniform upper bound for the maximum number of limit cycles of general planar
piecewise linear differential systems with two zones separated by a straight line.

Dropping the continuity assumption, Freire et al. [7] studied the limit cycles of the differential system (1) assuming
that each linear differential system has a real or virtual equilibrium of focus type (the concepts of real, boundary or
virtual, referred to an equilibrium of a system corresponding to one of the zones of linearity, just describe if it is located,
respectively, inside, on the boundary or outside this zone). In this paper, the authors qualitatively described the different
phase portraits taking into account the number of real focus equilibria, namely zero, one, or two. For the cases of zero and
one real focus equilibrium, they obtained results on the existence and uniqueness of limit cycles. For the case of two real
focus equilibria, based on extensive numerical simulations, they conjectured that such differential systems have at most
one limit cycle. The case of two virtual foci had already been considered by Llibre et al. [8], who obtained the uniqueness
of limit cycles via a generalized criterium for Liénard differential equations allowing discontinuities. The uniqueness of
limit cycles for the node–node and saddle–saddle cases have been addressed by Huan and Yang in [9,10], respectively.
Medrado and Torregrosa [11] provided the uniqueness of limit cycles assuming the existence of a monodromic singularity
in the switching line. Their proof also distinguishes some configurations depending on the spectra of matrices of the
differential system. Li and Llibre [12] gave a proof of the uniqueness of limit cycles for the focus–saddle case. Recently, Li
et al. [13] provided the uniqueness of limit cycles for the focus–node and focus–focus scenarios, which were the remaining
non-degenerate cases (that is, det(AL) det(AR) ̸= 0). By means of a different approach, Tao Li et al. [14] also provided
the uniqueness of limit cycles for the non-degenerate cases. These last two papers provided a positive answer for the
conjecture stated in [7] for the case of two real focus equilibria. However, taking into account all the previous results, a
positive answer to the uniqueness of limit cycles of planar piecewise linear differential systems without sliding region was
only obtained for the non-degenerate cases. As far as we are concerned in all previous case-by-case studies, the degenerate
cases have not been exhausted. It is worth noting all the effort and time needed, the large number of papers devoted to
different cases, and the specific techniques developed in each one of them to reach the result for the non-degenerate
cases.

In this paper we provide the uniqueness of limit cycles for piecewise linear differential systems without sliding region.
Moreover, this result is proven in a unified way (with a single approach and a common technique) that does not distinguish
cases depending on the spectrum of the matrices. This unified way allows us to establish the hyperbolicity of the limit
cycle and also to determine its stability by a simple condition in terms of the parameters of system (1). These results are
collected in the statement of the main theorem of this paper.

Theorem A. Consider the planar piecewise linear differential system (1). Let TL and TR be the traces of the matrices AL and AR,
respectively. Denote aL = aL12b

L
2 − aL22b

L
1, aR = aR12b

R
2 − aR22b

R
1, and ξ = aRTL − aLTR. If the differential system (1) does not have

sliding region (that is, conditions (2) and (3) hold), then it has at most one limit cycle. This limit cycle, if it exists, is hyperbolic
and ξ ̸= 0. Moreover, it is asymptotically stable (resp. unstable) provided ξ < 0 (resp. ξ > 0).

The proof of Theorem A is a direct consequence of Propositions 1, 12 and 13, as follows: Proposition 1 recalls the
normal form (5) for piecewise linear differential systems given by (1); then, Proposition 12 provides the uniqueness of
hyperbolic limit cycles and characterizes its stability for piecewise linear differential systems without sliding region; lastly,
Proposition 13 concludes that such systems do not admit non-hyperbolic limit cycles.

The main basis of this paper lies in an original integral characterization, presented in [5], of the Poincaré half-maps

for planar linear differential systems associated to a straight line. This novel characterization is introduced in Section 2,
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where some properties of these half-maps, interesting for our study, are collected. As usual, the study of the crossing limit
cycles for a two-zonal piecewise linear differential system is done by means of the analysis of zeros of an appropriate
displacement function given as the difference between the Poincaré half-maps associated to the switching line. Section 3
is devoted to introduce and analyze the displacement function by using the results stated in Section 2. More specifically,
we provide suitable expressions for its first and second derivatives. The local behavior of the displacement function around
monodromic singularities on Σ and, when it is appropriate, at the infinity is established in Section 4. Some results on
the existence of limit cycles are given in Section 5. In particular, Corollary 2 provides an extension to sewing piecewise
linear differential systems of the results about existence of limit cycles for continuous differential systems given in [15]. In
Section 6, we show the uniqueness of hyperbolic limit cycles (see Proposition 12) for piecewise linear differential systems
without sliding regions. Moreover, the stability of this unique limit cycles, if it exists, is determined by a simple condition
in terms of the parameters of the system. Finally, Section 7 is dedicated to showing that the considered differential systems
do not admit degenerate limit cycles (see Proposition 13).

2. Liénard canonical form and Poincaré half-maps

First of all, notice that if aL12 = 0, then the first equation of system (1) for x1 < 0 becomes ẋ1 = aL11x1 + bL1, whose
solutions are all monotonic and prevents the existence of periodic solutions for system (1). With a similar reasoning,
aR12 = 0 also prevents the existence of limit cycles for system (1). Thus, the condition aL12a

R
12 ̸= 0 is necessary for the

existence of periodic solutions of system (1). Under this hypothesis, the non-sliding conditions (2) and (3) are equivalent
to

aL12a
R
12 > 0 and aL12 b

R
1 = aR12 b

L
1. (4)

From now on, we assume that the differential system (1) satisfies condition (4).
A natural first step in the analysis of any parameterized differential system consists in writing it in a suitable normal

form. The following proposition, whose proof appeared in [16] for a more general case, is devoted to it.

Proposition 1. Under assumption (4), the differential system (1) is reduced into the following Liénard canonical form{
ẋ = TLx − y
ẏ = DLx − aL

for x < 0,
{
ẋ = TRx − y
ẏ = DRx − aR

for x > 0, (5)

by a homeomorphism preserving the switching line Σ = {(x, y) ∈ R2
: x = 0}. Furthermore, aL = aL12b

L
2 − aL22b

L
1,

aR = aR12b
R
2 − aR22b

R
1, and TL, TR and DL, DR are, respectively, the traces and determinants of the matrices AL and AR.

As said before, the study of the crossing limit cycles for the differential system (5) is done by means of the analysis
of the zeros of an appropriate displacement function given as the difference between the Poincaré half-maps associated
to the switching line Σ . In what follows we introduce such maps, namely, the Forward Poincaré Half-Map yL : IL ⊂

[0, +∞) −→ (−∞, 0] and the Backward Poincaré Half-Map yR : IR ⊂ [0, +∞) → (−∞, 0], whose graphs are contained
in the fourth quadrant

Θıv := {(y0, y1) ∈ R2
: y0 ⩾ 0, y1 ⩽ 0}.

The forward Poincaré half-map takes a point (0, y0), with y0 ⩾ 0, and maps it to a point (0, yL(y0)) by following the
forward flow of system (5). More specifically, let ϕ(t; y0) = (ϕ1(t; y0), ϕ2(t; y0)) be the orbit of system (5) satisfying
ϕ(0; y0) = (0, y0). If there exists a value τL(y0) > 0 such that ϕ1(τL(y0); y0) = 0 and ϕ1(t; y0) < 0 for every t ∈ (0, τL(y0)),
we define yL(y0) = ϕ2(τL(y0); y0) ⩽ 0 (see Fig. 1(a)). In addition, if for every ε > 0 there exist y0 ∈ (0, ε) and y1 ∈ (−ε, 0)
such that yL(y0) = y1, the left Poincaré half-map can be extended to y0 = 0 with yL(0) = 0, even if the above positive
time τL(0) does not exist (see Fig. 1(b)).

Analogously, the backward Poincaré half-map takes a point (0, y0), with y0 ⩾ 0, and maps it to a point (0, yR(y0)) by
following the backward flow of (5). More specifically, if there exists a value τR(y0) < 0 such that ϕ1(τR(y0); y0) = 0 and
1(t; y0) > 0 for every t ∈ (τR(y0), 0), we define yR(y0) = ϕ2(τR(y0); y0) ⩽ 0. Again, if for every ε > 0 there exist y0 ∈ (0, ε)
nd y1 ∈ (−ε, 0) such that yR(y0) = y1, the right Poincaré half-map can be extended with yR(0) = 0, even if the above
egative time τR(0) does not exist.
In Fig. 3, we illustrate the Poincaré half-maps defined above and their intervals of definition when the left linear system

as a real focus and the right linear system has a real saddle.
In the next Theorems 1 and 2, we will present an integral characterization of the Poincaré half-maps above which was

ntroduced in [5]. For that, we will need the following concept of Cauchy Principal Value:

PV
{∫ y0

y1

f (y)dy
}

:= lim
ε↘0

(∫
−ε

y1

f (y)dy +

∫ y0

ε

f (y)dy
)

,

or y1 < 0 < y0 and f continuous in [y1, y0] \ {0} (see, for instance, [17]). Note that if f is also continuous in 0, then the
auchy Principal Value coincides with the definite integral.
3
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Fig. 1. Definition of the forward Poincaré half-map.

Since the flow of (5) is oriented in anticlockwise direction, the forward Poincaré half-map, yL, is determined by the
ollowing linear differential system{

ẋ = TLx − y,
ẏ = DLx − aL,

(6)

hich matches the left linear system of (5). Accordingly, its definition, its domain IL, and its analyticity are given by
heorem 19, Corollary 21, Corollary 24, and Remark 16 of [5]. In the following theorem, we summarize the mentioned
esults.

heorem 1. Let us consider system (6) and define the polynomial

WL(y) = DLy2 − aLTLy + a2L . (7)

he forward Poincaré half-map yL is well defined if, and only if, aL ⩽ 0 and 4DL − T 2
L > 0, or aL > 0. In this case, its interval

of definition IL := [λL, µL) ⊂ [0, +∞) is non-empty and the following statements hold:

(a) The right endpoint µL of the interval IL is the smallest strictly positive root of the polynomial WL, if it exists. Otherwise,
µL = +∞.

(b) The left endpoint λL of the interval IL is strictly positive if, and only if, aL < 0, 4DL − T 2
L > 0, and TL < 0. In this case,

yL(λL) = 0.
(c) The left endpoint of the interval yL(IL) is the largest strictly negative root of the polynomial WL, if it exists. In the opposite

case, this left endpoint is −∞.
(d) The right endpoint of the interval yL(IL), that is yL(λL), is strictly negative if, and only if, aL < 0, 4DL − T 2

L > 0, and
TL > 0. In this case, λL = 0.

(e) The polynomial WL satisfies WL(0) = a2L > 0 for aL ̸= 0 and WL(0) = 0 for aL = 0. Moreover, WL(y) > 0 for
y ∈ ch(IL ∪ yL(IL)) \ {0}, where ch(·) denotes the convex hull of a set.

(f) The forward Poincaré half-map yL is the unique function yL : IL ⊂ [0, +∞) −→ (−∞, 0] that satisfies

PV
{∫ y0

yL(y0)

−y
WL(y)

dy
}

= qL(aL, TL,DL) for y0 ∈ IL, (8)

where

qL(aL, TL,DL) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if aL > 0,

πTL
DL

√
4DL−T2L

if aL = 0,

2πTL
DL

√
4DL−T2L

if aL < 0.

(9)

(g) The graph of the forward Poincaré half-map, oriented according to increasing y0, is the portion included in the fourth
quadrant Θıv of a particular orbit of the cubic vector field

X (y , y ) = −
(
y W (y ), y W (y )

)
. (10)
L 0 1 1 L 0 0 L 1

4



V. Carmona, F. Fernández-Sánchez and D.D. Novaes Communications in Nonlinear Science and Numerical Simulation 123 (2023) 107257

b

w
T

T

T
o

t

R
T

T

m

Equivalently, the forward Poincaré half-map is a solution of the differential equation

y1WL(y0)dy1 − y0WL(y1)dy0 = 0. (11)

(h) The forward Poincaré half-map yL is analytic in Int(IL). Moreover, yL is analytic in IL if, and only if, λL = 0.

Now, because of the anticlockwise direction of the flow of (5) again, the backward Poincaré half-map, yR, is determined
y the following linear differential system{

ẋ = TRx − y,
ẏ = DRx − aR,

(12)

hich matches the right linear system of (5). Thus, its definition, its domain IR, and its analyticity are obtained from
heorem 1 by means of the change of variables (t, x) ↦→ (−t, −x) and taking (aL,DL, TL) = (−aR,DR, −TR) in system (6).

heorem 2. Let us consider system (12) and define the polynomial

WR(y) = DRy2 − aRTRy + a2R. (13)

he backward Poincaré half-map yR is well defined if, and only if, aR ⩾ 0 and 4DR − T 2
R > 0, or aR < 0. In this case, its interval

f definition IR := [λR, µR) ⊂ [0, +∞) is non-empty and the following statements hold:

(a) The right endpoint µR of its definition interval IR is the smallest strictly positive root of the polynomial WR, if it exists.
Otherwise, µR = +∞.

(b) The left endpoint λR of the interval IR is strictly positive if, and only if, aR > 0, 4DR − T 2
R > 0, and TR > 0. In this case,

yR(λR) = 0.
(c) The left endpoint of the interval yR(IR) is the largest strictly negative root of the polynomial WR, if it exists. In the opposite

case, this left endpoint is −∞.
(d) The right endpoint of the interval yR(IR), that is yR(λR), is strictly negative if, and only if, aR > 0, 4DR − T 2

R > 0, and
TR < 0. In this case, λR = 0.

(e) The polynomial WR satisfies WR(0) = a2R > 0 for aR ̸= 0 and WR(0) = 0 for aR = 0. Moreover, WR(y) > 0 for
y ∈ ch(IR ∪ yR(IR)) \ {0}.

(f) The backward Poincaré half-map yR is the unique function yR : IR ⊂ [0, +∞) −→ (−∞, 0] that satisfies

PV
{∫ y0

yR(y0)

−y
WR(y)

dy
}

= qR(aR, TR,DR) for y0 ∈ IR, (14)

where

qR(aR, TR,DR) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if aR < 0,

−
πTR

DR

√
4DR−T2R

if aR = 0,

−
2πTR

DR

√
4DR−T2R

if aR > 0.

(15)

(g) The graph of the backward Poincaré half-map, oriented according to increasing y0, is the portion included in the fourth
quadrant Θıv of a particular orbit of the cubic vector field

XR(y0, y1) = −
(
y1WR(y0), y0WR(y1)

)
. (16)

Equivalently, the backward Poincaré half-map is a solution of the differential equation

y1WR(y0)dy1 − y0WR(y1)dy0 = 0. (17)

(h) The backward Poincaré half-map yR is analytic in Int(IR). Moreover, yR is analytic in IR if, and only if, λR = 0.

In the next remark, we provide a characterization to easily distinguish, under the generic condition aLTLaRTR ̸= 0, when
he Poincaré half-maps transform 0 to 0. This will be used in the proof of Propositions 8 and 12.

emark 1. Under the condition aLTL ̸= 0, by assuming the existence of yL, it follows from the statements (b) and (d) of
heorem 1 that 0 ∈ IL and yL(0) = 0 if, and only if, aL > 0.
Analogously, under the condition aRTR ̸= 0, by assuming the existence of yR, it follows from the statements (b) and (d) of

heorem 2 that 0 ∈ IR and yR(0) = 0 if, and only if, aR < 0.

Now, we establish some fundamental properties of the Poincaré half-maps which will be useful for the proof of the
ain result. The proofs of these properties can be found in [18].
From (11) and (17), it is straightforward to obtain explicit expressions for the first and second derivatives of y and y .
L R

5
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Proposition 2. The first and second derivatives of the Poincaré half-maps yL and yR are given by

y′

L(y0) =
y0WL(yL(y0))
yL(y0)WL(y0)

for y0 ∈ int(IL),

y′

R(y0) =
y0WR(yR(y0))
yR(y0)WR(y0)

for y0 ∈ int(IR),

y′′

L (y0) = −
a2L

(
y20 − (yL(y0))2

)
WL(yL(y0))

(yL(y0))3 (WL(y0))2
for y0 ∈ int(IL), (18)

nd

y′′

R(y0) = −
a2R

(
y20 − (yR(y0))2

)
WR(yR(y0))

(yR(y0))3 (WR(y0))2
for y0 ∈ int(IR). (19)

Now, we show the first coefficients of the Taylor expansions of the Poincaré half-maps at the origin (see Proposition 3)
and at infinity (see Proposition 4), under suitable conditions. These are the essentials for our study. More coefficients and
other details can be seen in [18].

Proposition 3. Assume that aL ̸= 0 (resp. aR ̸= 0) and 0 ∈ IL (resp. 0 ∈ IR). If yL(0) = 0 (resp. yR(0) = 0), then the Taylor
expansion of yL (resp. yR) around the origin writes as

yL(y0) = −y0 −
2TL
3aL

y20 + O
(
y30

)
(resp. yR(y0) = −y0 −

2TR
3aR

y20 + O
(
y30

)
).

Notice that if 4DL − T 2
L > 0 and 4DR − T 2

R > 0, then, from the statements (a) and (c) of Theorem 1 and the statements
(a) and (c) of Theorem 2, the intervals IL and IR are unbouded and yL(y0) and yR(y0) tend to −∞ as y0 → +∞.

roposition 4. The following statements hold.

(1) If 4DL − T 2
L > 0, then the forward Poincaré half-map yL satisfies

lim
y0→+∞

yL(y0)
y0

= − exp

⎛⎝ πTL√
4DL − T 2

L

⎞⎠ .

(2) If 4DR − T 2
R > 0, then the backward Poincaré half-map yR satisfies

lim
y0→+∞

y0
yR(y0)

= − exp

⎛⎝ πTR√
4DR − T 2

R

⎞⎠ .

We conclude this section with two results that establish the relative position between the graph of the Poincaré half-
aps and the bisector of the fourth quadrant, that is, the half straight line y1 = −y0, y0 ⩾ 0. In Fig. 2, we show the
ossible relative positions between the graph of the Poincaré map yL and the bisector of the fourth quadrant by varying
he trace TL for three illustrative cases. A similar figure could be given for the map yR by varying the trace TR.

roposition 5. The following statements hold.

(a) The forward Poincaré half-map yL satisfies the relationship

sign (y0 + yL(y0)) = −sign(TL) for y0 ∈ IL \ {0}.

In addition, when 0 ∈ IL and yL(0) ̸= 0 or when TL = 0, then the relationship above also holds for y0 = 0.
(b) The backward Poincaré half-map yR satisfies the relationship

sign (y0 + yR(y0)) = sign(TR) for y0 ∈ IR \ {0}.

In addition, when 0 ∈ IR and yR(0) ̸= 0 or when TR = 0, then the relationship above also holds for y0 = 0.

orollary 1. The following statements are true.

(a) If TL = 0 (resp. TR = 0), then the graph of the Poincaré half-map yL (resp. yR) is included in the bisector of the fourth
quadrant.

(b) If TL ̸= 0 (resp. TR ̸= 0), then the graph of the Poincaré half-map yL (resp. yR) does not intersect the bisector of the fourth
quadrant except perhaps at the origin.
6
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Fig. 2. Three illustrative cases of relative positions between the graph of the Poincaré half-map yL and the bisector of the fourth quadrant in terms of
the trace TL . The left figure corresponds to a real focus (that is, negative x-coordinate) with DL = 1, aL = −1/2, and TL ∈ {−1/10, 0, 1/5}; the middle
ne corresponds to a virtual focus (that is, positive x-coordinate) with DL = 1, aL = 1/2, and TL ∈ {−2/5, 0, 1/2}; and the right one corresponds to
real saddle with DL = −1, aL = 6/5, and TL ∈ {−4/5, 0, 1}. The black circles represent the starting point of the graphs of yL while, in the right

igure, the white circles represent the ending point of the graph of yL , whose coordinates are the roots of the polynomial WL(y) = DLy2 − aLTLy+ a2L
rovided in (7) (which also correspond to the y-coordinates of the intersection points between the invariant straight lines of the real saddle with
he switching line Σ). Moreover, in the right figure, the dashed line corresponds to the part of the bisector of the fourth quadrant which is not
idden by the graph of the Poincaré half-map.

Fig. 3. An example to illustrate the displacement function. It corresponds to a piecewise linear system composed by a (left) system with a real focus
and a (right) system with a real saddle.

3. Displacement function: fundamental properties

In this section, as it is usual for the analysis of limit cycles, a displacement function whose zeros correspond to the
eriodic orbits of system (5) will be defined by means of the difference of the Poincaré half-maps. In addition, its lower
rder derivatives will be computed to later provide us with the hyperbolicity and stability of the periodic orbits.
Notice that any limit cycle of the differential system (5) is anticlockwise oriented and transversally crosses the

witching line Σ twice. Indeed, a limit cycle cannot be entirely contained in the closure of a zone of linearity and cannot
ass through the origin which is the unique tangency point of the flow of the differential system (5) in the switching line.
Moreover, from now on till the end of this paper, we assume IL ∩ IR ̸= ∅ because this is a necessary condition for the

xistence of crossing periodic orbits of the differential system (5). Notice that this trivially implies the existence of the
oincaré half-maps and includes the conditions a2L + D2

L ̸= 0 and a2R + D2
R ̸= 0.

The displacement function δ is now defined in the interval I := IL ∩ IR = [λ0, µ0) ̸= ∅ as

δ : I −→ R
y0 ↦−→ δ(y0) = yR(y0) − yL(y0),

(20)

here λ0 = max{λL, λR} and µ0 = min{µL, µR}. In Fig. 3, we illustrate the displacement function for a scenario with a
eal focus and a real saddle.

Notice that a crossing periodic orbit exists and passes through (0, y∗

0), with y∗

0 ∈ int(I), if, and only if, y∗

0 is a zero
of displacement function δ. Such a periodic orbit is a hyperbolic limit cycle provided that δ′(y∗

0) ̸= 0. In this case, it is
attracting (resp. repelling) provided that δ′(y∗

0) < 0 (resp. δ′(y∗

0) > 0). In the next result, a relevant expression for the sign
of this derivative will be deduced from Proposition 2.
7
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Proposition 6. Suppose that y∗

0 ∈ int(I) satisfies δ(y∗

0) = 0. Denote y∗

1 = yR(y∗

0) = yL(y∗

0) < 0 and define

c0 := aRaL (aRTL − aLTR) ,

c1 := aRTRDL − aLTLDR,

c2 := a2LDR − a2RDL.

(21)

hen, the following statements hold:

(a) The derivative of the displacement function δ defined in (20) verifies

sign(δ′(y∗

0)) = sign(F (y∗

0, y
∗

1)), (22)

being

F (y0, y1) = c0 + c1y0y1 + c2(y0 + y1). (23)

(b) Moreover, if δ′(y∗

0) = 0, then the second derivative of δ verifies

sign(δ′′(y∗

0)) = sign
(
TL

(
c2y∗

0 + c0
))

= −sign
(
TR

(
c2y∗

1 + c0
))

. (24)

roof. Let us fix y∗

0 ∈ int(I) with y∗

1 = yR(y∗

0) = yL(y∗

0). From Proposition 2, it is straightforward to get

δ′(y∗

0) = y′

R(y
∗

0) − y′

L(y
∗

0) = C(y∗

0, y
∗

1)F (y
∗

0, y
∗

1),

here C and F are given by

C(y0, y1) =
−y0(y0 − y1)

y1WR(y0)WL(y0)
and

F (y0, y1) =
WL(y1)WR(y0) − WL(y0)WR(y1)

y0 − y1
. (25)

By substituting expressions (7) and (13) of polynomials WL and WR in expression (25), we see that, for y0 ̸= y1,

F (y0, y1) = c0 + c1y0y1 + c2(y0 + y1),

here the coefficients c0, c1, and c2 are given in (21).
Since y∗

0 > 0, y∗

1 < 0, WR(y∗

0) > 0, and WL(y∗

0) > 0 (see the statements (e) from Theorems 1 and 2), then C(y∗

0, y
∗

1) > 0
nd item (a) is proven.
Now, from Eqs. (18) and (19) of Proposition 2, it follows that

δ′′(y∗

0) = y′′

R(y
∗

0) − y′′

L (y
∗

0) =

(
y∗

0

)2
−

(
y∗

1

)2(
y∗

1

)3 [
a2LWL(y∗

1)
WL(y∗

0)2
−

a2RWR(y∗

1)
WR(y∗

0)2

]
. (26)

aking into account equalities (22) and (25), it is clear that δ′(y∗

0) = 0 if, and only if, WL(y∗

1)WR(y∗

0) = WL(y∗

0)WR(y∗

1).
herefore, the assumption δ′(y∗

0) = 0 allows to write the second derivative (26) as

δ′′(y∗

0) =

(
y∗

0

)2
−

(
y∗

1

)2(
y∗

1

)3 WR(y∗

1)WL(y∗

0)(
WL(y∗

0)WR(y∗

0)
)2 [

a2LWR(y∗

0) − a2RWL(y∗

0)
]

=
(
y∗

0 + y∗

1

) y∗

0 − y∗

1(
y∗

1

)3 WR(y∗

1)

WL(y∗

0)
(
WR(y∗

0)
)2 y∗

0

[
c2y∗

0 + c0
]
.

Since y∗

0 > 0, y∗

1 < 0, WR(y∗

1) > 0, WL(y∗

0) > 0, from Proposition 5 we obtain

sign
(
δ′′(y∗

0)
)

= −sign
((
y∗

0 + y∗

1

) (
c2y∗

0 + c0
))

= sign
(
TL

(
c2y∗

0 + c0
))

.

Analogous computations allow to prove the second equality of Eq. (24). Hence, the proof of item (b) is finished. □

Remark 2. Notice that the coefficient c0 given in (21) is the product of three factors. The factors aL and aR are the
onhomogeneous terms of the differential system (5) and

ξ := aRTL − aLTR (27)

as already appeared in Theorem A and, as will be proven, determines the stability of the unique limit cycle, if any.

emark 3. Let us give some comments about the zero set γ = F−1({0}), for the function F given in (23). When c1(c22 −c1c0) =

, the set γ is either the empty set, the whole plane, a straight line, or a pair of secant straight lines. We shall see that these
8
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non-generic cases will not be relevant in our analysis. Therefore, in this Remark, we assume that c1(c22 − c1c0) ̸= 0 and,
onsequently, the set γ is a non-degenerate hyperbola.
The asymptotes of γ are given by y0 = −c2/c1 and y1 = −c2/c1. On the one hand, except for the case c2 = 0 (when

he asymptotes coincide with the coordinate axes), the two intersection points between the hyperbola and the coordinate axes
re (−c0/c2, 0) and (0, −c0/c2). On the other hand, the center of γ , (that is, the intersection point between its asymptotes) is
he point (−c2/c1, −c2/c1). Note that a center like that must lay either on the origin or in the first or third quadrant. Thus,
t most one branch of the hyperbola may intersect the fourth quadrant Θıv, which would then be divided into two connected
omponents.
Regarding the intersection between γ and the bisector of the fourth quadrant, notice that it only occurs when c0c1 ⩾ 0. In

his case, the point of intersection is

(sy0, sy1) =

(√
c0
c1

, −

√
c0
c1

)
. (28)

urthermore, it can be seen that if c0 ̸= 0 then the intersection is transversal, and if c0 = 0 then the point of intersection is
he origin and the intersection is non-transversal.

Finally, it is easy to see that the function y1 = φ(y0), which describes the hyperbola γ as a graph, is increasing when
0c1 − c22 > 0 and decreasing when c0c1 − c22 < 0.

. Stability of monodromic singularities and the infinity

This section will be devoted to presenting some results about stability for monodromic singularities.
In broad terms, the concept of monodromy is related to the rotation of the flow of the differential system. In order to

recisely establish this concept for a point of the phase plane of the differential system (5), it is convenient to distinguish
f it is located in the switching line Σ or not:

A point of the differential system (5) outside the switching line Σ is said to be a monodromic singularity when it is a
focus or a center.
Due to the crossing behavior of the flow of the differential system (5) on Σ , the origin is the unique point of Σ

around which rotation is possible and, moreover, this rotation is a consequence of the half-rotations for the half-planes{
(x, y) ∈ R2

: x ⩽ 0
}
and

{
(x, y) ∈ R2

: x ⩾ 0
}
. A glimpse of the vector field of the differential system (5) allows to assert

that the half-rotation around the origin in the half-plane
{
(x, y) ∈ R2

: x ⩽ 0
}
only occurs when aL = 0 and 4DL−T 2

L > 0
or when aL > 0. Analogously, the half-rotation around the origin in the half-plane

{
(x, y) ∈ R2

: x ⩾ 0
}
only happens

when aR = 0 and 4DR − T 2
R > 0 or when aR < 0. Therefore, the origin is said to be a monodromic singularity if, and only

if, one of the four feasible combinations above holds.

The next result provides the stability of the origin when it is a monodromic singularity of (5) in the case aL > 0 and
R < 0.

roposition 7. Let ξ be defined as in expression (27). Consider the differential system (5) with aL > 0 and aR < 0. Then, the
oincaré half-maps satisfy yR(0) = yL(0) = 0 and the origin is an attracting (resp. repelling) monodromic singularity provided

that ξ > 0 (resp. ξ < 0).

Proof. When aL > 0, from expression (8), it follows that yL(0) = 0. In the same manner, if aR < 0, then yR(0) = 0. Since
L > 0 and aR < 0, the origin is a monodromic singularity. Its stability is obtained by computing the power series of the
isplacement function (20) around y0 = 0. Accordingly, from Proposition 3, we get

δ(y0) =

(
2TL
3aL

−
2TR
3aR

)
y20 + O(y30) =

2ξ
3aLaR

y20 + O(y30). (29)

Therefore, the monodromic singularity is attracting (resp. repelling) provided that ξ > 0 (resp. ξ < 0). □

Remark 4. Taking expression (29) into account we see that, under the hypotheses of Proposition 7, the first Lyapunov coefficient
of the monodromic singularity of (5) at the origin (see, for instance, [15,19]) is given by the expression 2ξ/(3aLaR). Thus, under
suitable assumptions, the parameter ξ can be used, among other things, to generate a limit cycle through a Hopf–like bifurcation.

The next result states that, in the case of a unique monodromic singularity and TLTR < 0, the parameter ξ also provides
its stability, even if it is outside Σ .

Proposition 8. Assume that both (forward and backward) Poincaré half-maps exist. Let c0 and ξ be as given in (21) and
(27), respectively. Consider the differential system (5) with TLTR < 0 and c0 ̸= 0. If the differential system (5) admits a unique
monodromic singularity, then it is attracting (resp. repelling) provided that ξ > 0 (resp. ξ < 0). Moreover, if the displacement
function δ can be defined, then sign(δ(y0)) = −sign(ξ ) for y0 close enough to the left endpoint λ0 of the interval of definition
I of the displacement function δ.
9
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Fig. 4. Illustrative examples of Remark 5 regarding the need of assuming the existence of the Poincaré half-maps for Proposition 8. The values of
the parameters are DL = 1, DR = −1, aL = −7/10, aR = 1, and: (a) TL = 2/10, TR = aRTL/aL = −2/7; (b) TL = −2/10, TR = 2/7. In both cases,
he right Poincaré half-map (corresponding to a virtual saddle) does not exists, ξ vanishes, and the stability of the monodromic equilibrium is thus
rovided by the sign of TL instead of ξ .

roof. If the differential system (5) admits a unique monodromic singularity and it belongs to section Σ , then the
ingularity is the origin. This, together with the hypothesis c0 ̸= 0 means that aL > 0 and aR < 0. The conclusion
regarding the stability of the monodromic singularity follows from Proposition 7. The conclusion regarding the sign of δ
close to λ0 = 0 follows from expression (29).

If the unique monodromic singularity belongs to the half-plane {(x, y) ∈ R2
: x < 0}, then it is a center or a focus,

hich implies that 4DL − T 2
L > 0 and so DL > 0 and aL < 0. On the one hand, c0 ̸= 0 implies aR ̸= 0. On the other

and, since the existence of both Poincaré half-maps is assumed, if aR > 0 then the characterization (14) would imply the
xistence of another monodromic singularity in the half-plane {(x, y) ∈ R2

: x > 0}, which contradicts the hypotheses.
herefore, one has aR < 0 and, from Remark 1, λR = 0 and yR(0) = 0. Moreover, since the condition TLTR < 0 holds then
ign(ξ ) = −sign(TL) ̸= 0. As it is obvious from the linearity, the stability of the singularity is given by sign(TL) and so it is
n attracting (resp. repelling) focus provided that ξ > 0 (resp. ξ < 0).
In order to see that sign(δ(y0)) = −sign(ξ ) for y0 close enough to λ0 = λL we distinguish the following two possible

ases, namely, λL = 0 and λL > 0.
If λL = 0, taking into account that TL ̸= 0, aL < 0, and 4DL − T 2

L > 0, Theorem 1(b) implies that TL > 0. Moreover,
heorem 1(d) provides yL(0) < 0. Thus, δ(λ0) = yR(0) − yL(0) = −yL(0) > 0 and, therefore, sign(δ(λ0)) = sign(TL) =

sign(ξ ). The conclusion in this case follows from the continuity of δ.
If λL > 0, Theorem 1(b) implies that TL < 0 and yL(λL) = 0. Thus, δ(λ0) = yR(λL) − yL(λL) = yR(λR) < 0 and, therefore,

ign(δ(λ0)) = sign(TL) = −sign(ξ ). The conclusion in this case follows again from the continuity of δ.
An analogous reasoning can be done if the monodromic singularity belongs to the half-plane {(x, y) ∈ R2

: x > 0} and
his concludes the proof. □

emark 5. If a monodromic singularity belongs to section Σ then, from its definition, the existence of the Poincaré half-maps
s ensured. Therefore, the assumption of their existence in Proposition 8 is not necessary in this case.

However, this assumption is needed if the monodromic singularity is not located in the switching line Σ . Indeed, consider
or instance the case aL < 0, 4DL − T 2

L > 0, TL ̸= 0, aR > 0, DR < 0 and TR = aRTL/aL. On the one hand, this case provides
= 0 and TLTR < 0. On the other hand, it corresponds to a differential system, for which the backward Poincaré half-map
oes not exist and with a focus equilibrium located in the half-plane {(x, y) ∈ R : x < 0}. Obviously, ξ does not determine the
tability of the focus, which is given by the sign of TL (see Fig. 4).

Furthermore, although we are assuming the existence of the Poincaré half-maps, we stress that the existence of the
isplacement function δ is not necessary for the conclusion of Proposition 8.

Notice that when 4DL − T 2
L > 0 and 4DR − T 2

R > 0 the infinity is monodromic for the piecewise linear differential
ystem (5). Taking the definition (20) of the displacement function δ into account, one can see that it is attracting (resp.
epelling) provided that δ(y0) > 0 (resp. δ(y0) < 0) for y0 > 0 big enough. The following result characterizes the stability
f the infinity when 4DL − T 2

L > 0, 4DR − T 2
R > 0, and TLTR ̸= 0.

roposition 9. Consider the differential system (5) with 4DL − T 2
L > 0, 4DR − T 2

R > 0. Define c∞ := TL
(
T 2
L DR − T 2

RDL
)
. Then,

he infinity is attracting (resp. repelling) provided that either TL > 0 and TR > 0, or TLTR < 0 and c∞ > 0 (resp. either TL < 0
nd TR < 0, or TLTR < 0 and c∞ < 0). Moreover, if TLTR < 0, then sign(δ(y0)) = sign(c∞) for y0 big enough.

roof. Since 4DL − T 2
L > 0 and 4DR − T 2

R > 0, from Proposition 4, it follows that

lim
yL(y0)

= lim
yL(y0)

·
y0

= eπµ,

y0→+∞ yR(y0) y0→+∞ y0 yR(y0)

10
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where

µ =
TL√

4DL − T 2
L

+
TR√

4DR − T 2
R

. (30)

herefore, sign(δ(y0)) = sign(µ) for y0 sufficiently big. In other words, the infinity is attracting (resp. repelling) provided
that µ > 0 (resp. µ < 0).

When TLTR > 0, then sign(TL) = sign(TR) = sign(µ) and the conclusion follows. When TLTR < 0, a direct computation
rovides sign(µ) = sign(c∞) and the proof is finished. □

emark 6. This remark is devoted to providing some useful and interesting relationships among the coefficients c0, c1, c2, and
∞ (provided in Propositions 6 and 9, respectively), which will be used later on.
First, these coefficients satisfy the following equalities

c0

(
DL
DR

)
− c2

(
−aLTL
−aRTR

)
+ c1

(
a2L
a2R

)
= 0 (31)

and

aLaRT 2
L c1 + a2LaR c∞ = TLTRDL c0. (32)

This last equality will appear naturally in the proof of the forthcoming Proposition 12 and this is the reason why we have
preferred using c∞ rather than µ to describe the stability of the infinity in Proposition 9.

Second, the set of polynomial functions {WL,WR}, with WL and WR defined in (7) and (13), is linearly dependent, that is,

rank
(
DL −aLTL a2L
DR −aRTR a2R

)
⩽ 1

if, and only if, c0 = c1 = c2 = 0.
Lastly, the function F defined in (23) can be written as

F (y0, y1) = − det

⎛⎜⎝ 1 −(y0 + y1) y0y1
DL −aLTL a2L
DR −aRTR a2R

⎞⎟⎠ .

. Some results on the existence of limit cycles

In this short section, some results on the existence of limit cycles are given in terms of the parameters of the differential
ystem (5). The first result provides some necessary conditions for the existence of limit cycles, which will be useful in
he proof of Theorem A.

roposition 10. Let us consider the values c0, c1, and c2 given in (21). If the differential system (5) has a limit cycle, then the
following relationships hold:

(a) a2L + a2R ̸= 0.
(b) TLTR < 0.
(c) c20 + (c1c2)2 ̸= 0.

Proof. (a) If aL = aR = 0, then the piecewise linear differential system (5) is homogeneous. Hence, any positive multiple
of an orbit is also an orbit and, consequently, any periodic orbit must be contained in a continuum of periodic orbits.

(b) Assume that a crossing periodic orbit exists, that is, there exists y∗

0 ∈ I such that yL(y∗

0) = yR(y∗

0) = y∗

1. From
roposition 5, one has −sign(TL) = sign(y∗

0 + y∗

1) = sign(TR) and, consequently, TLTR ⩽ 0. Thus, again from Proposition 5
t follows that

sign(y0 + yL(y0)) = −sign(TL) = sign(TR) = sign(y0 + yR(y0)), (33)

or all y0 ∈ int(I). Note that if TLTR = 0, then (33) implies yL(y0) = yR(y0) for all y0 ∈ int(I), which corresponds to a
ontinuum of periodic orbits. Therefore, the inequality TLTR < 0 holds provided the existence of a limit cycle.
(c) Assume that a limit cycle exists and suppose, by reduction to absurdity, that c20 +(c1c2)2 = 0 holds. On the one hand,

he existence of the limit cycle implies the existence of an intersection point between the graphs of Poincaré half-maps
L and yR. On the other hand, from items (a), (b), and expression (31), the equality c20 + (c1c2)2 = 0 is equivalent to
0 = c1 = c2 = 0. Thus, from Remark 6, the set of polynomial functions {WL,WR} is linearly dependent. Consequently,
he cubic vector fields XL and XR, provided in (10) and (16), have the same orbits. As stated in Theorems 1(g) and 2(g), the
raph of Poincaré half-map yL is an orbit of XL and the graph of Poincaré half-map yR is an orbit of XR. Since they coincide
t one point both graphs must be equal. This contradicts the existence of a limit cycle. □
11
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Notice that, by using Green’s formula, one can deduce (as it is done, for example, in [16]) that the existence of a crossing
eriodic orbit for the differential system (5) imposes the inequality TLTR ⩽ 0. However, in the proof of Proposition 10, for
he sake of completeness, we have preferred to use directly the properties of Poincaré half-maps that are obtained from
he integral characterization given in [5] and summarized in Section 2.

Propositions 8 and 9 give the stability, in the monodromic case, of the unique monodromic singularity and of the
nfinity, respectively. Then, a simple combination of both results provides a sufficient condition for the existence of limit
ycles.

orollary 2. Under the assumptions of Propositions 8 and 9, a limit cycle of the differential system (5) exists provided that
ξc∞ > 0.

Proof. Under the assumptions of Propositions 9 and 8, one has that sign(δ(y0)) = sign(c∞) for y0 big enough and
ign(δ(y0)) = −sign(ξ ) for y0 sufficiently close to λ0. Then, the existence of a periodic solution follows from the
intermediate value theorem, which implies the existence of a zero of δ. The fact that this periodic solution is actually
a limit cycle follows from the analyticity of δ, which implies that the zero is isolated. □

As mentioned in the introduction, this corollary is an extension to sewing differential systems of [3, Proposition 15],
where conditions for the existence of limit cycles are given for the continuous case.

6. Uniqueness of hyperbolic limit cycles

This section is devoted to showing that if a hyperbolic limit cycle exists for a piecewise linear differential system (5),
then it is unique and its stability is determined by the sign of ξ defined in (27).

We know that the curve γ = F−1({0}), where F is given in (23), separates the attracting hyperbolic crossing limit
cycles from the repelling ones, as stated in Proposition 6. In addition, from Remark 3, γ divides the fourth quadrant Θıv
into two connected components. Then, in Proposition 12, the uniqueness of the hyperbolic limit cycles will be obtained,
at first under the generic condition c0c1(c22 − c1c0) ̸= 0, by showing that the intersection points between the Poincaré
half-maps which are not located in γ , if any, are all of them included in a single connected component of Θıv \ γ . By
a simple reasoning on the persistence of hyperbolic limit cycles and their stability under small perturbations, the result
is immediately extended for all the cases. The proof of Proposition 12 is based on Proposition 11, which analyzes the
intersection between the graph of each Poincaré half-map with γ in the interior of the fourth quadrant Θıv.

The next result, whose proof follows directly from elementary analysis for functions of one variable, will be of major
importance in the proof of Propositions 11 and 12.

Lemma 1. Let I be an interval and η : I → R be a differentiable function. Assume that sign(η′(u∗)) is distinct from zero and
the same for every u∗

∈ I such that η(u∗) = 0. Then, the function η has at most one zero in I.

Remind that under condition c1(c22 − c1c0) ̸= 0 (see Remark 3) γ is a non-degenerate hyperbola in R2. The next result
affirms that, under this condition, the graph of each Poincaré half-map intersects γ at most once in the interior of the
fourth quadrant Int(Θıv) and the intersection, if it exists, is transversal.

Proposition 11. Consider the values c0, c1, c2 defined in (21) and the set γ defined in Remark 3. Let us assume that
c1(c22 − c1c0) ̸= 0. Then, the graph of each Poincaré half-map intersects γ at most once in the interior of the fourth quadrant
Int(Θıv) and the intersection, if it exists, is transversal.

Proof. Under the hypothesis c1(c22 − c1c0) ̸= 0, from Remark 3, the set γ is a hyperbola and only one of its branches may
intersect the fourth quadrant Θıv. In this case, the portion of γ included in Int(Θıv), which will be denoted by γ̂ , can be
written as a graph y1 = φ(y0), where φ : Iφ → R is a continuous rational function defined in an open interval Iφ that
oes not contain the point and −c2/c1 (the value of the vertical asymptote).
According to Corollary 1, the graph of any Poincaré half-map (yL or yR) is either included in the bisector of the fourth

uadrant or it does not intersect this bisector except perhaps at the origin. In the first case, the intersection between the
raph of the Poincaré half-maps and γ has already been treated in Remark 3 such that it only remains to prove the result
hen the graphs of both Poincaré half-maps do not intersect the bisector of the fourth quadrant for y0 > 0.
In order to analyze the number of intersection points between the graphs of the Poincaré half-maps and γ̂ , we consider

he following difference functions

ηL(y0) = φ(y0) − yL(y0) and ηR(y0) = φ(y0) − yR(y0) (34)

efined on IηL := Int(IL)∩ Iφ and IηR := Int(IR)∩ Iφ , respectively. Hence, the proof of the proposition will follow by showing
hat each one of the functions ηL and ηR has at most one zero and, if it exists, it is simple.

If y∗

0 > 0 is such that ηL(y∗

0) = 0 or ηR(y∗

0) = 0, then

η′

L(y
∗

0) =
1

∗ ∗ ∗

⟨
∇F (y∗

0, φ(y
∗

0)), XL(y∗

0, φ(y
∗

0))
⟩

yL(y0)WL(y0)(c2 + c1y0)
12
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η′

R(y
∗

0) =
1

yR(y∗

0)WR(y∗

0)(c2 + c1y∗

0)

⟨
∇F (y∗

0, φ(y
∗

0)), XR(y∗

0, φ(y
∗

0))
⟩
,

espectively.
Since γ̂ is a portion of a branch of the hyperbola γ , then c2 + c1y0 has constant sign for y0 ∈ Iφ . Also, the existence

f Poincaré half-maps implies that WL(y0) and WR(y0) are strictly positive and yL(y0) and yR(y0) are strictly negative for
0 ∈ Int(IL) and y0 ∈ Int(IR), respectively (see Theorems 1(e) and 2(e)). Therefore, the denominators yL(y0)WL(y0)(c2+c1y0)
nd yR(y0)WR(y0)(c2 + c1y0) have constant signs for y0 ∈ IηL and y0 ∈ IηR , respectively.
In light of Lemma 1, the number of zeros of ηL and ηR will be studied by means of the inner products ⟨∇F (y0, y1),

L(y0, y1)⟩ and ⟨∇F (y0, y1), XR(y0, y1)⟩, for (y0, y1) ∈ γ̂ such that y0 ∈ Int(IL) and y0 ∈ Int(IR), respectively.
The gradient of F is obtained by taking derivatives in expression (25). Moreover, from this same expression, the

quation F (y0, y1) = 0 is equivalent to the relationship WL(y1)WR(y0) = WL(y0)WR(y1), because (y0, y1) is located in
nt(Θıv) and so y0 ̸= y1. Now, by substituting this last relationship into the inner products we get for y0 ∈ IηL

GL(y0) :=
⟨
∇F (y0, y1), XL(y0, y1)

⟩⏐⏐
y1=φ(y0)

= WL(y1)
(
aLTLWR(y0) − aRTRWL(y0)

)⏐⏐
y1=φ(y0)

= WL(φ(y0))(c0 − c1y20)

(35)

nd for y0 ∈ IηR
GR(y0) :=

⟨
∇F (y0, y1), XR(y0, y1)

⟩⏐⏐
y1=φ(y0)

= WR(y1)
(
aLTLWR(y0) − aRTRWL(y0)

)⏐⏐
y1=φ(y0)

= WR(φ(y0))(c0 − c1y20).

(36)

From now on, the argument will be done for ηL. The same reasoning can be done for ηR.
On the one hand, assume that GL does not vanish. Then, sign(η′

L(y
∗

0)) is distinct from zero and coincides for every y∗

0 ∈ IηL
uch that ηL(y∗

0) = 0. Consequently, from Lemma 1 we conclude that ηL has at most one zero which is simple.
On the other hand, assume that GL vanishes. In this case, it vanishes only at y0 = sy0 (given in (28)). Notice that

η

L \ {sy0} = A ∪ B, where A and B are disjoint intervals and the restricted functions ηL|A and ηL|B satisfy the hypotheses
f Lemma 1. Consequently, each of the restricted functions has at most one zero. In addition, ηL(sy0) ̸= 0, otherwise
L(sy0) = φ(sy0) = −sy0 which cannot happen because the graph of yL does not intersect the bisector of the fourth quadrant
or y0 > 0.

The remainder of this proof is devoted to showing that ηL does not have zeros in A and B, simultaneously. In this case,
L will have at most one zero which is simple.
First, it can be seen from Remark 3 that the function Sφ(y0) = φ(y0) + y0, y0 ∈ IηL , satisfies sign(Sφ |A) sign(Sφ |B) < 0,

ecause the intersection between γ̂ and the bisector of the fourth quadrant only occurs at the point (sy0, sy1), provided in
28), and this intersection is transversal.

Now, suppose, by reduction to absurdity, that there exist ya ∈ A and yb ∈ B such that ηL(ya) = ηL(yb) = 0. Consider the
unction SL(y0) = yL(y0) + y0, y0 ∈ ILη . Observe that SL(y0) = Sφ(y0) − ηL(y0). Thus, SL(ya) = Sφ(ya) and SL(yb) = Sφ(yb) and,
herefore, SL(ya)SL(yb) < 0. From Bolzano Theorem, there exists qy0 ∈ IηL such that SL(qy0) = 0, that is, yL(qy0) = −qy0, which
ontradicts the fact that the graph of yL does not intersect the bisector of the fourth quadrant for y0 > 0. It concludes the
roof. □

Now, we present and prove the result of uniqueness and stability for hyperbolic limit cycles.

roposition 12. Let be ξ as given in (27). The differential system (5) admits at most one hyperbolic limit cycle. If this hyperbolic
imit cycle exists, then ξ ̸= 0. Moreover, it is asymptotically stable (resp. unstable) provided that ξ < 0 (resp. ξ > 0).

roof. First of all, notice that it is enough to prove the result under the generic condition

c0c1(c22 − c1c0) ̸= 0 (37)

ecause, due to the persistence under small perturbations of hyperbolic limit cycles and their stability, the proof can be
mmediately extended to the case c0c1(c22 − c1c0) = 0.

The generic condition provided in (37) includes the conditions c1(c22 − c1c0) ̸= 0 and c0 ̸= 0. Recall that the first
ne implies that the zero set of the function F provided in (23), γ = F−1({0}), is a non-degenerate hyperbola in R2

see Remark 3), which separates the attracting hyperbolic crossing limit cycles from the repelling ones, as stated in
roposition 6. In addition, c0 ̸= 0 implies that the hyperbola does not contain the origin.
In order to prove that the differential system (5), under the generic condition (37), has at most one hyperbolic limit

ycle and determine its stability, it is necessary to refine the analysis performed in Proposition 11 about the relative

osition of γ and the curves y1 = yL(y0) and y1 = yR(y0).

13
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Fig. 5. In case (A), any intersection between the Poincaré half-maps and γ occurs from H− to H+ as y0 increases. Since (0, 0) ∈ H+ , the Poincaré
alf-map starting at the origin do not cross γ , which implies the uniqueness of hyperbolic limit cycles. The dashed curve represents the curve γ ;
he arrows represent the vectors fields XL and XR , which are proportional over γ ; and the continuous curve represents the graph of the Poincaré
alf-map starting at the origin which is trapped in H+ .

From Remark 3, it is known that hyperbola γ split the fourth quadrant Θıv into two disjoint connected sets, namely

H± := {(y0, y1) ∈ Θıv : sign(F (y0, y1)) = ±sign(c0)}.

Observe that the connected component H− could be the empty set, but (0, 0) ∈ H+ given that F (0, 0) = c0.
As stated in Theorem 1(g), the graph of the Poincaré half-map yL is the portion included in Θıv of a particular orbit of

the cubic vector field XL provided in (10) that evolves forward as y0 > 0 increases. In a similar way, from Theorem 2(g),
the graph of Poincaré half-map yR is the portion included in Θıv of a particular orbit of the cubic vector field XR provided
in (16) that evolves forward as y0 > 0 increases. Thus, the signs of the functions GL and GR, defined in (35) and (36),
provide the direction of the intersection between the graphs of the Poincaré half-maps and γ .

Since the relative position between γ and the origin (0, 0) is known, it is natural to conclude our proof by distinguishing
the relative positions between the origin and the graphs of the Poincaré half-maps, namely: (A) just one of the graphs
contains the origin, (B) both of them contain the origin, and (C) none of them contain the origin.

From Proposition 10, if the inequality TLTR ⩾ 0 holds, then no limit cycles exist. Accordingly, from now on, it is assumed
that TLTR < 0. Moreover, the generic condition (37) implies that c0 ̸= 0 and then, from (21), aLaR ̸= 0. Therefore, taking
Remark 1 into consideration, case (A) is equivalent to aLaR > 0, case (B) is equivalent to aL > 0 and aR < 0, and case (C)
is equivalent to aL < 0 and aR > 0.
Case (A). This case corresponds to aLaR > 0. Since TLTR < 0, from the second equalities of expressions (35) and (36), one
obtains that sign(GL(y0)) and sign(GR(y0)) are constant for y0 ∈ ILη and y0 ∈ IRη , respectively, and coincide. Here, ILη and IRη
are, respectively, the intervals of definition of the functions ηL and ηR defined in (34). Thus, since 0 belongs to the closure
f one of the intervals, ILη or IRη , from the third equalities of expressions (35) and (36), it follows that

sign(GL(y0)) = sign(c0) ̸= 0 and sign(GR(y0)) = sign(c0) ̸= 0,

or every y0 ∈ ILη and y0 ∈ IRη , respectively.
This means that, if one of the curves y1 = yL(y0) or y1 = yR(y0) intersects γ , then it crosses γ from H− to H+ as y0

ncreases. In this way, the region H+ may be understood as a trapping region for the graphs of the Poincaré half-maps
s y0 increases (that is, once one of the Poincaré half-maps enters in this region, cannot leave it as y0 increases). Since
he origin is a point of H+ and the graph of one of the Poincaré half-maps contains the origin, then this graph is a subset
f H+ (see Fig. 5). Hence, if a point (y∗

0, y
∗

1) corresponds to a limit cycle, it must be contained in H+. From Proposition 6,
ign(δ′(y∗

0)) = sign(F (y∗

0, y
∗

1)) = sign(c0) ̸= 0. Therefore, from Lemma 1, δ has at most one zero which provides the
niqueness of the limit cycles. In addition, since aLaR > 0, the equality sign(c0) = sign(aRTL − aLTR) = sign(ξ ) holds and
he proof is concluded for case (A).
ase (B). In this case, aL > 0 and aR < 0 and so ξc0 < 0. Notice that

• yL(0) = yR(0) = 0 or, equivalently, δ(0) = 0;
• F (0, 0) = c0 and, therefore, (0, 0) ∈ H+;
• and, from (29), sign(δ(y0)) = −sign(ξ ) = sign(c0) for y0 > 0 sufficiently small.

onsequently, there exist ε > 0 such that (y , y (y )), (y , y (y )) ∈ H and sign(δ(y )) = sign(c ) for every y ∈ (0, ε).
0 L 0 0 R 0 + 0 0 0

14
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Fig. 6. In case (B), if the displacement function δ(y0) = yR(y0)−yL(y0) vanishes at ŷ0 , then the Poincaré half-maps must intersect γ . Since such maps
intersect γ at most once, they do not intersect γ for y0 > qy0 , which implies the uniqueness of hyperbolic limit cycles. The dashed curve represents
the curve γ ; the arrows represent the vectors fields XL and XR , which are proportional over γ ; and the continuous curves represent the graphs of
the Poincaré half-maps which are trapped in the colored region for y0 > qy0 .

If the displacement function δ does not vanish for any y0 > 0, then no limit cycles exist. Otherwise, there exists
y0 > ε such that δ(̂y0) = 0 and ξδ(y0) < 0 for any y0 ∈ (0, ŷ0). Consequently, ξδ′ (̂y0) ⩾ 0. From Proposition 6,
sign(F (̂y0, yL(y0))) = sign(δ′ (̂y0)) and, then, taking into account that ξc0 < 0, we have that either sign(F (̂y0, yL (̂y0))) = 0
or sign(F (̂y0, yL (̂y0))) = sign(ξ ) = −sign(c0). Therefore, the point (̂y0, yL (̂y0)) = (̂y0, yR (̂y0)) belongs to H− ∪ γ . This means
that the graphs of both Poincaré half-maps, yL and yR, have intersected γ at the points, let us say (yL0, y

L
1) and (yR0, y

R
1),

respectively. Notice that qy0 := max{yL0, y
R
0} ⩽ ŷ0. Hence, from Proposition 11, the region H− may be understood as a

trapping region for the graphs of the Poincaré half-maps as y0 increases (see Fig. 6). Consequently, if y∗

0 > qy0 is such
that δ(y∗

0) = 0, then sign(δ′(y∗

0)) = −sign(c0). From Lemma 1, δ has at most one zero in I ∩ (qy0, +∞). This implies the
uniqueness of hyperbolic limit cycles, because δ does not have simple zeros for y0 ⩽ qy0. In addition, since aLaR < 0, the
quality sign(c0) = −sign(aRTL − aLTR) = −sign(ξ ) holds and the proof is concluded for case (B).
ase (C). Now, aL < 0 and aR > 0. From (8) and (14), the existence of the Poincaré half-maps implies that 4DL − T 2

L > 0
nd 4DR − T 2

R > 0, so the differential system (5) has exactly two focus equilibrium points and the maps yL(y0) and yR(y0)
end to −∞ as y0 goes to +∞. Moreover, the infinity is monodromic and, since TLTR < 0, from Proposition 9, its stability
s characterized by the sign of value c∞.

Next, it is suitable to consider separately the cases (C1) c0c1 < 0 and (C2) c0c1 > 0, because they show certain analogies
with cases (B) and (A), respectively.
(C1) Suppose that c0c1 < 0. From expression (32) it is immediate that

aL
T 2
L
c∞c0 =

DLTR
aLaRTL

c20 − c1c0,

hich implies that c0c∞ < 0 and so c1c∞ > 0. Therefore, by Proposition 9, the infinity is attracting (resp. repelling) when
c1 > 0 (resp. c1 < 0).

Now, we perform a change of variables to transform the infinity into the origin for the purpose of applying a similar
reasoning to case (B). Let us consider the function

∆(Y0) =

⎧⎨⎩
1

yL(1/Y0)
−

1
yR(1/Y0)

if Y0 ̸= 0 and 1/Y0 ∈ I,

0 if Y0 = 0,

where I is the domain of the displacement function δ provided in (20). Notice that ∆ is a continuous function at Y0 = 0
and its first derivative on the right is

∆′(0+) = lim
Y0↘0

∆(Y0)
Y0

= lim
y0→+∞

y0
yL(y0)

−
y0

yR(y0)
.

From Proposition 4, sign
(
∆′(0+)

)
= sign(µ), where µ is given in (30). In addition, from the proof of Proposition 9, with

TLTR < 0, one has that sign
(
∆′(0+)

)
= sign(µ) = sign(c∞) = sign(c1).

If ∆(Y ∗

0 ) = 0, with Y ∗

0 > 0, then the differential system (5) has a periodic orbit corresponding to (y∗

0, y
∗

1) = (1/Y ∗

0 , 1/Y ∗

1 ),
being Y ∗

1 = 1/yL(1/Y ∗

0 ) = 1/yR(1/Y ∗

0 ) < 0. Moreover, the equality sign(∆′(Y ∗

0 )) = −sign(δ′(y∗

0)) holds and, consequently,
the periodic orbit is a hyperbolic limit cycle provided that ∆′(Y ∗) ̸= 0.
0
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Fig. 7. In case (C2), if the one of the Poincaré half-maps enters the region Ω it cannot leave this region. Since Ω is bounded and, in this case,
he Poincaré half-maps are unbounded, they cannot enter the region Ω . Therefore, such maps do not intersect γ , which implies the uniqueness of
yperbolic limit cycles. The dashed curve represents the curve γ ; the arrows represent the vectors fields XL and XR , which are proportional over γ ;
nd the continuous curve represents one of the graphs of the Poincaré half-maps which is trapped in the colored region.

By applying the change of variables y0 = 1/Y0, y1 = 1/Y1, for Y0 > 0 and Y1 < 0, to function F given in (23), we obtain

F (y0, y1) =
c1 + c0Y0Y1 + c2(Y0 + Y1)

Y0Y1
.

From Proposition 6, since Y ∗

0 Y
∗

1 < 0, then sign(∆′(Y ∗

0 )) = −sign(δ′(y∗

0)) = −sign(F (y∗

0, y
∗

1)) = sign(̃F (Y ∗

0 , Y ∗

1 )), where

F̃ (Y0, Y1) = c1 + c0Y0Y1 + c2(Y0 + Y1).

Now, since ∆(0) = 0, sign
(
∆′

(
0+

))
= sign(c1), and F̃ (0, 0) = c1 ̸= 0, one has

• ∆(0) = 0;
• F̃ (0, 0) = c1;
• and sign(∆(Y0)) = sign(c1) for Y0 > 0 sufficiently small.

Hence, an analogous reasoning to case (B) provides that a hyperbolic limit cycle corresponding to a point (Y ∗

0 , Y ∗

1 ) =

(1/y∗

0, 1/y
∗

1) satisfies sign(∆′(Y ∗

0 )) = −sign(c1), therefore it is unique and asymptotically stable (resp. unstable) provided
that ξ < 0 (resp. ξ > 0), because sign(δ′(y∗

0)) = −sign(∆′(Y ∗

0 )) = sign(c1) = −sign(c0) = sign(ξ ).
(C2) Suppose that c0c1 > 0. Without loss of generality, we can assume that TL > 0 and TR < 0. Indeed, the case TR > 0
and TL < 0 can be reduced to the previous one by the change of variables and time rescaling (t, y) ↦→ (−t, −y).

Since aL < 0 and TL > 0, from (8), it follows that yL(0) < 0. Analogously, since aR > 0 and TR < 0, from (14), it follows
that yR(0) < 0. Thus, according to Corollary 1, the graphs of both Poincaré half-maps must be located below the bisector
of the fourth quadrant.

Now, we will prove that the graphs of the Poincaré half-maps are included in H−. From relationship (31), one obtains
c2
c1

aLTL = −a2L −
c0
c1

DL and
c2
c0

aRTR = −
c1
c0

a2R − DR.

Hence, c1c2 > 0 and c0c2 > 0. As a consequence, from Remark 3, the center of the hyperbola γ is located at the third
uadrant, γ intersects the axis y0 = 0 for the value y1 = −c0/c2 < 0 and the bisector of the fourth quadrant at the point

given in (28). In this way, the curve γ , the axis y0 = 0, and the bisector of the fourth quadrant define a bounded region
Ω ⊂ H+.

From expressions (35) and (36), the orbits of the vector fields XL and XR, as y0 increases, cross γ from H− to H+ only for
< y0 <

√
c0/c1. Accordingly, Ω is a bounded trapping region as y0 increases for the graphs of the Poincaré half-maps.

However, since these graphs are unbounded, they cannot enter Ω and, therefore, they do not intersect γ (see Fig. 7). This
implies that they are included in H− and the conclusion of case (C2) follows by a similar reasoning to case (A).

7. Nonexistence of degenerate limit cycles

From Proposition 12, we have proven that if a hyperbolic limit cycle exists for piecewise linear differential system (5),
then it is unique and its stability is determined by the sign of ξ defined in (27). Hence, in this section, we conclude the
roof of Theorem A by providing the nonexistence of degenerate limit cycles of the differential system (5).
16
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Proposition 13. The differential system (5) does not admit degenerate limit cycles.

Proof. Assume, by contradiction, that there exists a choice of the parameters

(aL, aR, TL, TR,DL,DR) = (a∗

L , a
∗

R, T
∗

L , T ∗

R ,D∗

L ,D
∗

R)

for which the differential system (5) admits a degenerate limit cycle passing through (0, y∗

0) and (0, y∗

1), with y∗

1 < 0 < y∗

0,
hat is δ(y∗

0) = δ′(y∗

0) = 0.
A contradiction will be obtained by showing the existence of a saddle–node bifurcation. That is, we will see that, at y∗

0
nd (a∗

L , a
∗

R, T
∗

L , T ∗

R ,D∗

L ,D
∗

R), the second derivative of the displacement function δ with respect to y0 and the first derivative
ith respect to a parameter are distinct from zero. Consequently, two simple zeros of the displacement function δ will
ifurcate from the degenerate zero y∗

0. These zeros correspond to two hyperbolic limit cycles of (5), which contradicts
roposition 12.
Notice that, from Proposition 10, the inequality

(
a∗

L

)2
+

(
a∗

R

)2
̸= 0 holds. We shall prove the proposition assuming

∗

L ̸= 0. An analogous reasoning can be done for the case a∗

R ̸= 0.
Let c∗

0 and c∗

2 as defined in (21) for the above fixed parameters. Since δ(y∗

0) = δ′(y∗

0) = 0, from Proposition 6, one
btains that

sign(δ′′(y∗

0)) = sign
(
T ∗

L

(
c∗

2y
∗

0 + c∗

0

))
= sign

(
T ∗

R

(
c∗

2y
∗

1 + c∗

0

))
,

nd so sign(δ′′(y∗

0)) ̸= 0. Indeed, y∗

0y
∗

1 < 0 and, from Proposition 10, (c∗

0 )
2
+ (c∗

2 )
2

̸= 0 and T ∗

L T
∗

R ̸= 0.
Now, depending on the sign of a∗

L , we choose either TL or aL as the bifurcation parameter in order to unfold two limit
ycles.
First, suppose that a∗

L > 0. Assume that the parameter TL is taken in a small neighborhood of T ∗

L and that the other
arameters are fixed as aL = a∗

L , aR = a∗

R, TR = T ∗

R , DL = D∗

L , and DR = D∗

R. Notice that the corresponding displacement
unction δ, the Poincaré half-map yL, and the polynomial function WL vary with the parameter TL. Since a∗

L > 0, the
orward Poincaré half-map yL is provided by expression (8) as∫ y0

yL(y0;TL)

−y
WL(y; TL)

dy = 0,

eing WL(y; TL) = D∗

Ly
2
− a∗

LTLy +
(
a∗

L

)2. Therefore,
∂yL
∂TL

(y∗

0; T
∗

L ) = a∗

L
WL(y∗

1; T
∗

L )
y∗

1

∫ y∗0

y∗1

(
y

WL(y; T ∗

L )

)2

dy ̸= 0.

ince the displacement function (20) satisfies

∂δ

∂TL

(
y∗

0; T
∗

L

)
= −

∂yL
∂TL

(
y∗

0, T
∗

L

)
̸= 0,

he proof follows for the case a∗

L > 0.
Finally, suppose that a∗

L < 0. Assume that the parameter aL is taken in a small neighborhood of a∗

L and that the other
arameters are fixed as aR = a∗

R, TL = T ∗

L , TR = T ∗

R , DL = D∗

L , and DR = D∗

R. Notice that the corresponding displacement
unction δ, the Poincaré half-map yL, and the polynomial function WL now vary with the parameter aL. In this case, the
nequality 4D∗

L −
(
T ∗

L

)2
> 0 holds and the expression (8) writes as∫ y0

yL(y0;aL)

−y
WL(y; aL)

dy =
2πT ∗

L

D∗

L

√
4D∗

L −
(
T ∗

L

)2 , (38)

eing WL(y; aL) = D∗

Ly
2
− aLT ∗

L y + a2L . The changes of variable Y = y/aL transforms Eq. (38) into the equation∫ y0/aL

yL(y0;aL)/aL

−Y
WL(Y ; 1)

dY =
2πT ∗

L

D∗

L

√
4D∗

L −
(
T ∗

L

)2 .

hus, it is easy to see that

∂yL
∂aL

(y∗

0; a
∗

L ) =

(
y∗

0 − y∗

1

) (
T ∗

L y
∗

0y
∗

1 − a∗

L

(
y∗

0 + y∗

1

))
y∗

1WL(y∗

0; a
∗

L )
.

Observe that sign(T ∗

L y
∗

0y
∗

1) = −sign(T ∗

L ) and, from Proposition 5, sign
(
−a∗

L

(
y∗

0 + y∗

1

))
= −sign(T ∗

L ). Hence,

sign
(
T ∗y∗y∗

− a∗
(
y∗

+ y∗
))

= −sign
(
T ∗

)
̸= 0,
L 0 1 L 0 1 L
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which implies that
∂δ

∂aL

(
y∗

0; a
∗

L

)
= −

∂yL
∂aL

(
y∗

0; a
∗

L

)
̸= 0.

It concludes this proof. □
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