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This paper deals with the Dynamically Second-preferred p-center Problem (DSpP). In this problem, cus- 

tomers’ preferences and subsets of sites that each customer is willing to accept as service centers are 

taken into account. It is assumed that centers can fail and, thus, the decision maker is risk-averse and 

makes his decision taking into account not only the most favourite centers of the customers but also 

the worst case situation whenever they evaluate their preferred second opportunity. Specifically, the new 

problem aims at choosing at most p centers so that each demand point can visit at least two acceptable 

centers and the maximum sum of distances from any demand point to any of its preferred centers plus 

the distance from any of the preferred centers to any of the centers the user prefers once he is there is 

minimized. The problem is NP-hard as an extension of the p-next center problem. The paper presents 

three different mixed-integer linear programming formulations that are valid for the problem. Each for- 

mulation uses different space of variables giving rise to some strengthening using valid inequalities and 

variable fixing criteria that can be applied when valid upper bounds are available. Exact methods are 

limited so that a heuristic algorithm is also developed to provide good quality solution for large size in- 

stances. Finally, an extensive computational experience has been performed to assess the usefulness of 

the formulations to solve DSpP using standard MIP solvers. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 
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. Introduction 

Location science is a very active discipline within Operations 

esearch ( Laporte, Nickel, & Saldanha da Gama, 2019 ). It studies 

he optimal location of facilities in order to provide service to a set 

f demand points under different assumptions. When these prob- 

ems are defined on discrete settings (the set of potential facility 

ocations is discrete) we talk about discrete location. 

There are several classical discrete location problems. Among 

hem, the p-center problem (pCP) aims at selecting p out of n lo- 

ations where to install centers so that the maximum distance be- 

ween a user and its closest center is minimized ( Daskin, 20 0 0;

lloumi, Labbé, & Pochet, 2004; Kariv & Hakimi, 1979; Mladenovic, 

abbé, & Hansen, 2003 ). This type of objective function, focused on 

he worst case, has been useful to locate emergency facilities and 

lso as a means of identifying equitable solutions when locating 

ssential services. But, even if the services to be located are not 
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ssential services, this type of objective function ensures the loca- 

ion of a service center close to any customer, which will improve 

he customers’ perception of the firm. 

In the recent years, several extensions of the pCP and other 

lassical models have been studied to incorporate issues that are 

resent in real life. This includes, for instance, considering facility 

apacities, facility failures or user preferences. 

To the best of our knowledge, the extension of the pCP where 

acilities have limited capacities (Capacitated p-Center Problem - 

pCP) was first considered in Jaeger & Goldberg (1994) . In this 

aper, the authors considered a tree underlying network and as- 

umed that capacities were stated in terms of the number of cus- 

omers each center can serve. For this problem, they proposed 

 polynomial time algorithm. Other works considering this type 

f capacities are ( Cornejo Acosta, García Díaz, Menchaca-Méndez, 

 Menchaca-Méndez, 2020 ) and ( Khuller & Sussmann, 20 0 0 ). For

he case with general capacities, exact algorithms are proposed in 

lbareda-Sambola, Díaz, & Fernández (2010) , Kramer, Iori, & Vi- 

al (2020) , Özsoy & Pinar (2006) , while heuristic methods can 

e found, for instance, in Quevedo-Orozco & Ríos-Mercado (2015) , 

caparra, Pallotino, & Scutellà (2004) . 
under the CC BY-NC-ND license 

https://doi.org/10.1016/j.ejor.2022.09.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.09.019&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:yhinojos@us.es
https://doi.org/10.1016/j.ejor.2022.09.019
http://creativecommons.org/licenses/by-nc-nd/4.0/


Y. Hinojosa, A. Marín and J. Puerto European Journal of Operational Research 307 (2023) 33–47 

i

s

p

c

S

K

(

c

f

c

t

t

p

a

v

s

w

p

a

c

s

(

(

v

d

i

a

m

c

e

e

m

p

a

c

n

i

a

f

c

S

w

i

c

V

t

l

o

c

a

w

&

a

o

a

M

s

n

i

h

a

D

u

b

A

b

s

o

M

c

a

f

C

w

t

s

D

c

m

p

(

t

i

d

v

t

e

m

t

a

t

T

e

t

i

f

p

t

(

t

U

a

m

m

b

w

d

O

i

a

t

s

c

T

t

o

p

t

i

v

o

l

h

s

Facility reliability ( Herrera, Kalcsics, & Nickel, 2007 ) is another 

ssue that has attracted the attention of many researchers since the 

eminal paper ( Drezner, 1987 ). There, a simple heuristic was pro- 

osed for the pCP with unreliable facilities. More recent extensions 

onsider alternative issues such as unknown failures ( Albareda- 

ambola, Hinojosa, & Puerto, 2015b ), failure correlations ( Berman, 

rass, & Menezes, 2013 ), and demand distribution among facilities 

 Brimberg, Maier, & Schöbel, 2021 ). 

In Albareda-Sambola, Hinojosa, Marín, & Puerto (2015a) the so- 

alled next p-center problem was introduced and several exact 

ormulations were analyzed. In this problem it is assumed that 

enters can fail and then, the decision maker locates the facili- 

ies taking into account not only the closest center of each cus- 

omer, but also a close second one. The computational results re- 

orted in that paper showed the limitations of exact methods, 

nd so ( López-Sánchez, Sánchez-Oro, & Hernández-Díaz, 2019 ) pro- 

ided some GRASP and VNS heuristics for this problem. The re- 

ults in Albareda-Sambola et al. (2015a) have been applied to a 

ell-known problem in software defined networks: the controller 

lacement problem (see e.g. Das, Sridharan, & Gurusamy, 2019 for 

 recent survey on this matter). Given a network, this problem 

onsists in determining the optimal location of controllers and as- 

ignment of the switches to the controllers. The proposal by Killi 

2018) ; Killi & Rao (2016, 2017) , related to Albareda-Sambola et al. 

2015a) , consists in developing a location strategy that plans in ad- 

ance for failures considering second closest controllers, improving 

isconnections and drastic increase in latency. 

In any realistic situation, the appropriate evaluation of the qual- 

ty of a candidate solution requires an accurate modeling of the 

ctual system behavior. This includes capturing correctly how de- 

ands are satisfied. In some contexts, the service provider has the 

apacity to decide which of the located facilities gives service to 

ach demand point. However, depending on the considered service, 

ach customer makes his own decision on this respect. This has 

otivated the inclusion of customers’ preferences in some location 

roblems. The first work where these preferences were taken into 

ccount is Hanjoul & Peeters (1987) , where the Simple Plant Lo- 

ation problem with Order (SPLO) is introduced. In the SPLO, the 

umber of facilities is not defined beforehand, and a fixed cost is 

ncurred for setting each facility. Moreover, customers’ preferences 

re known in advance, and each customer is assumed to be served 

rom its most preferred facility among those that have been lo- 

ated. The work presents a simple heuristic for this problem. The 

PLO was tackled later by means of mathematical programming 

ith different formulations and the study of valid inequalities, for 

nstance, in Cánovas, García, Labbé, & Marín (2007) , Hansen, Ko- 

hetov, & Mladenovi ́c (2004) , Vasilyev, Klimentova, & Boccia (2013) , 

asil’ev, Klimentova, & Kochetov (2009) . Even more focus on cus- 

omers’ preferences is placed in the minimum-envy location prob- 

em ( Espejo, Marín, Puerto, & Rodríguez-Chía, 2009 ), where a set 

f facilities is sought yielding an equitable customer allocation ac- 

ording to these preferences. 

More recent location works involving customer preferences 

re essentially focused on providing heuristics. For the problem 

ith fixed costs and uncapacitated facilities, Mari ́c, Stanimirovi ́c, 

 Milenkovi ́c (2012) proposes a heuristic that combines a reduced 

nd a basic Variable Neighborhood Search and shows that it 

utperforms other heuristics such as Particle Swarm Optimization 

nd Simulated Annealing. The same methods are improved in 

ari ́c, Stanimirovi ́c, Milenkovi ́c, & Djeni ́c (2015) to tackle large 

cale instances. Heuristics for similar problems involving a fixed 

umber of facilities are also considered in the literature. For 

nstance, Casas-Ramírez & Camacho-Vallejo (2017) proposes a 

euristic based on Scatter Search for the p-median problem where 

ssignments are made according to customer preferences, and 

íaz, Luna, Camacho-Vallejo, & Casas-Ramírez (2017) explores the 
34 
se of GRASP and Tabu Search for a problem where a fixed num- 

er of facilities is to be set in a context with existing competitors. 

gain, customers patronize facilities according to their preferences, 

ut only customers having a facility at a given distance can be 

erved. 

Preferences have also been considered in combination with 

ther issues. For instance, Casas-Ramírez, Camacho-Vallejo, & 

artínez-Salazar (2018) addresses a problem with fixed costs and 

apacitated facilities. In this bilevel problem, customer assignments 

re made according to their preferences but taking into account 

acility capacities. The paper proposes a heuristic based on the 

ross Entropy method. A closely related field is that of pricing 

ith preferences, where pairs product-price can be seen as loca- 

ions and users have preferences on products and a given budget, 

ee for instance ( Calvete, Domínguez, Galé, Labbé, & Marín, 2019; 

omínguez, Labbé, & Marín, 2021; 2022 ). 

In the current paper facility reliability in combination with 

ustomers’ preferences has been considered, elaborating upon the 

odel in Albareda-Sambola et al. (2015a) . Here, we consider a new 

roblem called the Dynamically Second-preferred p-center Problem 

DSpP) where each customer has a subset of sites that is willing 

o accept as service centers and customers’ preferences are taken 

nto account. One can understand this problem as a hierarchical 

ecision-making process where the planner (leader) sets the ser- 

ice centers considering the worst case customers’ behavior and 

hen, the customers (followers) choose according with their pref- 

rences, the most preferred open center and in case of failure the 

ost preferred one from that new location. Since centers can fail, 

he decision maker assumes a risk-averse attitude so that he evalu- 

tes an alternative by the worst case situation, with respect to dis- 

ances, among the most preferred open centers for the customers. 

herefore, this problem aims at choosing at most p centers so that 

ach demand point can visit at least two acceptable centers and 

he maximum sum of distances from any demand point to any of 

ts preferred centers (among the chosen ones) plus the distance 

rom any of the preferred centers to any of the centers the user 

refers once he is there is minimized. 

One can find applications of this problem in situations where 

he decision of placing the service centers and trips are supported 

paid) by a planner (leader) but once these centers are located the 

rips to visit the centers are chosen by the customers (followers). 

sing this model the planner assumes a conservative (risk-averse) 

ttitude and tries to hedge against misbehavior of customers that 

ay choose the longest trips to maximize their preferences. This 

odel has direct applications, for instance in cash machines and in 

ike-sharing systems. In this last situation, the dealership company 

ishes to offer service in a given area (usually a city) and thus, it 

ecides on where to place the dock stations in the strategic level. 

nce the dock stations are in operation, the users pick the bikes 

n a dock station and return them in different ones, where upon 

rrival, it might not have empty slots. This situation leads the user 

o move to his/her most preferred station from his/her current po- 

ition. All these operations imply to the dealership company extra 

osts because it has to relocate the bikes in their original stations. 

his is the reason why the dealership company wants to minimize 

he maximum sum of distances of any pair of most preferred pairs 

f sequential dock stations. 

The contributions of our paper are the following. First of all, we 

resent three different mixed-integer linear programming formula- 

ions for the problem. We strengthen the formulations using valid 

nequalities and variable fixing criteria (that can be applied when 

alid upper bounds are available). A heuristic algorithm is devel- 

ped to obtain valid upper bounds and to provide good quality so- 

utions for large size instances. Finally, a computational experience 

as been performed to compare their utility to solve DSpP using 

tandard solvers for MIP. 
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The rest of the paper is organized as follows. Section 2 states 

he problem, sets the notation and gives an example clarifying the 

etails of feasible solutions of the problems. Section 3 presents a 

rst formulation with 3-indexed variables which is the most in- 

uitive at the price of losing efficiency as will be shown in our 

omputational experiments. Section 4 introduces a straight for- 

ulation for (DSpP) which makes use of only one index vari- 

bles. Section 5 develops another valid formulation based on ra- 

ius variables similar to those already used in García, Labbé, & 

arín (2011) , Marín, Nickel, Puerto, & Velten (2009) , Marín, Nickel, 

 Velten (2010) . The most efficient of our three formulations can 

andle medium size instances with up to 150 customers. Due to 

he difficulty of solving instances of larger sizes, we develop in 

ection 6 a heuristic procedure providing good quality solutions of 

DSpP). These solutions can be also used to feed the exact meth- 

ds improving their performance by means of the preprocessing 

escribed in Section 7 . We present in the Section 8 the compu- 

ational results. The paper ends with a section devoted to conclu- 

ions and future research. 

. Problem statement 

Let A = { 1 , . . . , n } be a given set of sites where users are sit-

ated and which is also the set of candidate sites for locating 

he centers. For each pair (i, j) , i, j ∈ A , let d i j ≥ 0 be the distance

travel time, cost) from i to j and for each triplet (i, �, j) , i, �, j ∈ A ,

et d i� j ≥ 0 be the length of the two-leg path i → � → j, that is,

 i� j = d i� + d � j . 

Each user i ∈ A has a subset of sites A i ⊆ A that is willing to ac-

ept as service centers. The sites in A i are ranked by the customer, 

nd we use j 1 < 

i 
i 

j 2 (resp. j 1 > 

i 
i 

j 2 , j 1 = 

i 
i 

j 2 , j 1 ≤i 
i 

j 2 , j 1 ≥i 
i 

j 2 ) to de-

ote that i prefers center j 1 more than (resp. less than, the same 

s, more or the same, less or the same) he prefers center j 2 . User

 will try to visit one of his preferred installed service centers but, 

fter arriving at it, it could be closed due to a failure and then cus-

omer i can change his list of preferences once he has moved to the 

ailed center. Then we use j 1 < 

� 
i 

j 2 (resp. j 1 > 

� 
i 

j 2 , j 1 = 

� 
i 

j 2 , j 1 ≤� 
i 

j 2 ,

j 1 ≥� 
i 

j 2 ) to denote that i , after noticing that center � failed, prefers

enter j 1 more than (resp. less than, the same as, more or the 

ame, less or the same) he prefers center j 2 , for all j 1 , j 2 , � ∈ A i . 

We assume that “≤� 
i 
” defines a weak order on the set A i for 

ach i ∈ A , � ∈ A i . Furthermore, = 

� 
i 

is an equivalence relation which

efines a partition A 

� 
i 

= { A 

� 
i 
(1) , . . . , A 

� 
i 
(n � 

i 
) } of the set A i such that

i) j 1 , j 2 ∈ A 

� 
i 
(t) if j 1 = 

� 
i 

j 2 and (ii) j 1 ∈ A 

� 
i 
(t) , j 2 ∈ A 

� 
i 
(t ′ ) with t < t ′ 

hen j 1 < 

� 
i 

j 2 . Then, for a given user i and center � , < 

� 
i 

defines a

otal order on the set of the equivalence classes A 

� 
i 

. 

Additionally, let p be the number of centers which can be in- 

talled among the n possibilities. 

The problem, named the Dynamically Second-preferred p-center 

roblem (DSpP), is to choose at most p elements of A so as each el-

ment can visit at least two acceptable centers and the maximum 

um of distances from any element in A to any of its preferred 

enters (among the chosen ones) plus the distance from any of the 

referred centers to any of the centers the user prefers once he is 

here is minimized. Note that we assume that the user can visit 

ny of the most preferred centers and, in case of failure, any of the 

ost preferred centers from his position, and the objective is to 

inimize the maximum of the distances travelled by the users. 

We formalize the problem as 

 ( DSpP ) := min 

Q⊂A 
| Q|≤p 

max 
i ∈ A 

{ max 
� ∈ arg min A i ∩ Q 

{ d i� + max 
j∈ arg min � A i ∩ Q 

{ d � j }}} 

here ”arg min“ is the set of elements of A i ∩ Q most preferred by 

 , and “arg min 

� ” is the set of elements of A i ∩ Q most preferred by

 when i is at position � . 
35 
xample 2.1. Consider six locations (users and candidate centers) 

,...,6 on the real line sited at 0, 1, 2, 5, 8 and 11, respectively (see

igure 1A), p = 4 and Euclidean distances between the points. As- 

ume that when any user i is in a given position, he first prefers his

wn position, secondly the closest site at the right and the closest 

ite at the left (indifferently, and independently of the distance), 

hen the second closest sites and so on. Also assume that user 1 

ejects location 3 (sited at 2) and user 4 rejects location 1 (sited at 

). With the introduced notation we have A = { 1 , 2 , 3 , 4 , 5 , 6 } , 

d i j ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 1 2 5 8 11 

1 0 1 4 7 10 

2 1 0 3 6 9 

5 4 3 0 3 6 

8 7 6 3 0 3 

11 10 9 6 3 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

nd, for instance, A 4 = { 2 , 3 , 4 , 5 , 6 } , n 3 
4 

= 4 and A 

3 
4 

= { A 

3 
4 
(1) =

 3 } , A 

3 
4 
(2) = { 2 , 4 } , A 

3 
4 
(3) = { 5 } , A 

4 
4 (4) = { 6 }} . 

A feasible solution to problem DSpP is to locate centers 1, 3, 5, 

 sited at 0, 2, 8 and 11 respectively. We see in Figure 1B-1G the

outes that users 1 − 6 could choose. Black-filled nodes are sites 

hat the user rejects and dashed lines represent maximum paths 

raveled by the users. For instance, user 4 sited at 5 (Figure 1E) 

ould choose the point at the left, center 3 located at 2 and, in case

f failure, he would go to center 5 located at 8 (he does not want

o use center 1 located at 0). But he could also choose the point 

t the right, center 5 located at 8 and, in case of failure, he would

o to center 6 located at 11. The maximum distance that could be 

raveled by this user is 9 (from point 4 to center 3 and then from

enter 3 to center 5). In fact, this is the maximum distance that 

ny user could travel and the objective value of this feasible solu- 

ion. 

In order to summarize the information about the preferences of 

he users, we will use an n × n matrix for every user. Every row 

f this matrix refers to a site where the customer could be, ei- 

her at the beginning or after noticing that the first choice failed. 

olumns are also associated with sites. A column with a given en- 

ry is preferred to columns with greater numbers, and is equally 

referred to columns with the same number (see e.g., the matrix 

n Example 2.2 ). A sign “-” in an entry means that the user is not

illing to use that site. 

xample 2.2. Consider the situation described in Example 2.1 and 

ser 4 located at 5. A matrix of preferences that is compatible with 

he given example is 
 

 

 

 

 

 

− − − − − −
− 1 2 3 4 5 

− 2 1 2 3 4 

− 3 2 1 2 3 

− 4 3 2 1 2 

− 5 4 3 2 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

Now, we slightly modify the preferences of this example to 

how that, contrary to what is usual in location problems, open- 

ng more centers does not imply smaller objective values. Con- 

ider again Example 2.1 but reverse the preferences (assume that 

reater numbers mean more preferred sites). Table 1 reports the 

ptimal solutions for different values of p (assuming that the de- 

ision maker is forced to open exactly p centers). Columns 2 to 

 refer to the number of centers forced to be open. Second row 

tates the opened centers in each optimal solution, whereas rows 

 to 8 state the first and second centers for each user that give the

aximum total distance. For instance, row 4 refers to the second 

ser and in the second column (5,4) means that when exactly two 

enters are opened, the route of maximum length that user 2 will 

hoose is the one from the position of user 2 to center 5 and then
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Table 1 

Optimal solution of Example 2.2 . 

p 2 3 4 5 6 

Centers 4,5 1,2,3 1,2,3,4 1,2,3,4,5 1,2,3,4,5,6 

User 1 (5,4) (2,1) (4,1) (5,1) (6,1) 

User 2 (5,4) (1,3) (4,1) (5,1) (6,1) 

User 3 (5,4) (1,3) (1,4) (5,1) (6,1) 

User 4 (5,4) (2,3) (2,4) (2,5) (6,2) 

User 5 (4,5) (1,3) (1,4) (1,5) (1,6) 

User 6 (4,5) (1,3) (1,4) (1,5) (1,6) 

Optimal value 11 13 16 19 22 

t

w
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a
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w
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s

o center 4. Notice that the optimal value of the instance increases 

ith the number of opened centers (see last row in Table 1 ). 

. Three-indexed formulation 

Two-stage location problems (see e.g. Landete & Marín, 2009 ), 

mong others, have been formulated by means of binary variables 

ssociated with the possible routes from each origin through the 

lants/hubs to the final destination. In our case, a route is given 

y three elements: site i , first center � and second center j. Thus

e introduce binary variables x i� j to indicate whether the first and 

econd centers of user i giving the path of maximum length are � 

nd j, respectively. Note that these variables are only defined for 

 � = j and � ≤i 
i 

j, since the remaining indices represent paths that 

annot be used in any feasible solution. For each i ∈ A we denote

y I i this set of indices, i.e., I i = { (�, j) : � ∈ A i , j ∈ A i , j � = �, � ≤i 
i 

j} . 
With these variables, plus the standard variables in location 

nalysis 

y i = 

{
1 if a center is located at site i, 
0 otherwise, 

∀ i ∈ A,

lus a continuous variable z for the objective function, the problem 

s formulated as follows. 

T) min z 

s.t. 
∑ 

i ∈ A 
y i ≤ p (1) 

∑ 

(�, j) ∈ I i 
x i� j = 1 ∀ i ∈ A, (2) 

∑ 

j :(�, j ) ∈ I i 
x i� j + 

∑ 

j:( j,� ) ∈ I i 
x i j� ≤ y � ∀ i ∈ A, � ∈ A i , (3) 

y � + 

∑ 

(h, j) ∈ I i : h � = �, 
�< h 

i 
j or �< i 

i 
h 

x ih j ≤ 1 ∀ i ∈ A, � ∈ A i , (4) 

y j + 

∑ 

(�, j ′ ) ∈ I i : � � = j, 
( j< � 

i 
j ′ ) or (( j= � 

i 
j ′ ) ∧ (d 

� j ′ <d � j )) 

x i� j ′ ≤ 1 ∀ i ∈ A, j ∈ A i , (5) 

y � + y j + 

∑ 

(� ′ , j ′ ) ∈ I i : � ′ = i 
i 
�, 

d 
i� ′ j ′ <d i� j 

x i� ′ j ′ ≤ 2 + 

∑ 

h ∈ A i : 
(h � = � ) ∧ (h< � 

i 
j) 

y h 

∀ i ∈ A, (�, j) ∈ I i 
(6) 

z ≥
∑ 

(�, j) ∈ I i 
d i� j x i� j ∀ i ∈ A, (7) 

x i� j ∈ { 0 , 1 } ∀ i, (�, j) ∈ I i . (8) 

y i ∈ { 0 , 1 } ∀ i ∈ A. (9) 
36 
Constraint (1) states that at most p centers are open. Con- 

traints (2) force each site to be assigned a two-leg trip that is 

onsistent with the preference relationship, and (3) ensures that 

hose paths go through two sites where centers have been set for- 

idding the use of non-opened centers. To ensure the preferences 

f users are satisfied, constraints (4) forbid, when center sited at 

 is open, assigning user i to a center that is less preferred than

ite � as first or second center. Constraints (5) and (6) enforce the 

orrect computation of the objective function. On the one hand, 

5) forbids second centers less preferred than j for i from � when- 

ver j is open and state that in case there exist two second centers, 

j and j ′ , with the same preference for i from � then i must choose

he furthest one (to ensure the worst case behavior of the objec- 

ive function in case of ties). On the other hand, (6) forbid paths of 

he form i → � ′ → j ′ , whenever centers � and j are set, � ′ is equally

referred to � for i , none of the centers most preferred than j for

 once in � is open and the length d i� ′ j ′ of the path i → � ′ → j ′ is 

ess than the length d i� j of the path i → � → j. 

Finally, constraints (7) determine the length of the longest path 

nd constraints (8) and (9) define the domain of the decision vari- 

bles. 

Note that if constraints (8) are relaxed to 0 ≤ x i� j ≤ 1 variables 

ill still take integer values in some optimal solution to the prob- 

em. Indeed, if there exists an optimal solution of the problem 

ith two different fractional variables 0 < x i� j < 1 and 0 < x i� ′ j ′ <
 , constraints (3) force y � = y j = y � ′ = y j ′ = 1 . Then, by constraints

4), (5) and (6) , centers � , � ′ , j and j ′ must satisfy ( � = 

i 
i 
� ′ , j = 

� ′ 
i 

j ′ 
nd j = 

� 
i 

j ′ ), ( d � j = d � j ′ and d � ′ j = d � ′ j ′ ) and ( d i� j = d i� ′ j ′ ) respec-

ively. Under these conditions, it is clear that taking x i� j = 1 and 

 i� ′ j ′ = 0 or vice versa gives an alternative optimal solution of the 

roblem. 

A stronger version of Constraints (6) can be used to improve 

ormulation (T): 

 � + y j + 

∑ 

(� ′ , j ′ ) ∈ I i : 
(� ′ = i 

i 
� ) ∧ (d 

i� ′ j ′ <d i� j ) or 

�< i 
i 
� ′ or 

(� � = � ′ ) ∧ (� ′ � = j) ∧ (� = i 
i 
� ′ ) ∧ ( j< � 

′ 
i 

j ′ )) or 

(� = i 
i 
� ′ ) ∧ (�< � ′ 

i 
j ′ ) ∧ ( j ′ � = � ′ ) ∧ (� � = � ′ ) ∧ ( j � = j ′ ) 

x i� ′ j ′ ≤ 2 + 

∑ 

h ∈ A i : 
(h � = � ) ∧ (h< � 

i 
j) 

y h 

∀ i ∈ A, (�, j) ∈ I i . (10) 

In addition to the forbidden paths in (6) , constraints (10) forbid 

aths of the form i → � ′ → j ′ with � ′ less preferred to � for i , or � ′ 
qually preferred to � for i but j ′ less preferred to j for i from � ′ ,
r � ′ equally preferred to � for i but j ′ less preferred to � for i from

 

′ . 

. Straight formulation 

The following formulation aims at representing directly the ob- 

ective function using only location variables. To this end, we will 

se again the set of location variables previously defined: 

y i = 

{
1 if a center is located at site i, 
0 otherwise, 

∀ i ∈ A,

lus a continuous variable z for the objective value. Using these 

ariables our problem can be formulated as follows. 

S) min z (11) 

.t. (1) , (9) ∑ 

s ∈ A i 
y s ≥ 2 ∀ i ∈ A, (12) 

z ≥ d i� j (y � + y j − 1 −
∑ 

s ∈ A i : s< i 
i 
� 

y s −
∑ 

s :(�,s ) ∈ I i ∧ (s< � 
i 

j) 

y s ) 

∀ i ∈ A, (�, j) ∈ I i . (13) 
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Constraints (12) guarantee that each customer will be able to 

ttend at least two centers. The objective function to be mini- 

ized in (11) is bounded from below in constraints (13) . Namely, 

13) makes z to take a value greater than or equal to d i� j if all y s 
ariables with s in the set 

 s ∈ A i : s < 

i 
i � } ∪ { s : (�, s ) ∈ I i , s < 

� 
i j} 

ake value 0. The reason is the following. In the case that y s = 1 for

ome s in the previous set, user i will never choose the route from

 to � and then j because s is preferred by i either as first center or

s second center. However, if the route through center s is longer 

han or equal to the route through � and j, the bound still applies.

There are two cases in which we can assure that the length of 

he route through s is large enough: (i) if s goes after � in the route

nd d �s ≥ d � j and (ii) if s is the first stop in the route and d is plus

he minimum length to be added after visiting s is greater than or 

qual to d i� j . Therefore, we can modify constraints (13) to obtain 

 ≥ d i� j (y � + y j − 1 −
∑ 

s ∈ A i : s< i 
i 
� 

d is + θis <d i� j 

y s −
∑ 

s :(�,s ) ∈ I i ∧ 
(s< � 

i 
j) ∧ (d �s <d � j ) 

y s ) ∀ i ∈ A, (�, j) ∈ I i 

(14)

here for any i ∈ A and s ∈ A i , θis represents the minimum length

rom center s to any of the centers that user i prefers once he is in

enter s , that is, 

is := min 

t ∈ A i , t � = s : 
t≤s 

i 
r ∀ r ∈ A i , r � = s 

{ d st } . (15) 

inally, we note in passing that the variable z is free although by 

13) it always assumes non-negative values. 

. Radius formulation 

We develop now a third formulation for the problem, the so- 

alled radius formulation. This kind of formulations for discrete 

ocation problems were first used in Cornuéjols, Nemhauser, & 

olsey (1980) , Elloumi et al. (2004) , and more recently exploited 

.g. in García et al. (2011) , Marín et al. (2009 , 2010) . 

To this end, some previous operations with the data are needed. 

e sort the values d i� j ∀ i ∈ A , (�, j) ∈ I i in increasing order and ig-

oring ties. Let 

= (�1 , �2 , . . . , �g ) 

enote the strictly increasing vector and let G be the set { 1 , . . . , g} .
xample 5.1. Using the same data as in Example 2.1 , we get the

atrices (d i� j ) for each user i = 1 , 2 , 3 , 4 , 5 , 6 respectively, where

ach row of these matrices refers to the first visited center, � , and

ach column refers to the second visited center, j, 
 

 

 

 

 

 

− 1 − 5 8 11 

− − − 5 8 11 

− − − − − −
− − − − 8 11 

− − − − − 11 

− − − − − −

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

− − 3 6 9 12 

1 − 1 4 7 10 

3 − − 4 7 10 

− − − − 7 10 

− − − − − 10 

− − − − − −

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

− − − − 10 13 

2 − − 5 8 11 

2 1 − 3 6 9 

8 7 − − 6 9 

14 − − − − 9 

− − − − − −

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

− − − − − −
− − − − − 14 

− 4 − − 9 12 

− 5 3 − 3 6 

− 10 9 − − 6 

− 16 − − − −

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

− − − − − −
8 − − − − −
8 7 − − − −
8 7 6 − − −
8 7 6 3 − 9 

14 13 12 9 − −

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

− − − − − −
11 − − − − −
11 10 − − − −
11 10 9 − − −
11 10 9 6 − −
11 10 9 6 3 −

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

nd where ’–’ means that the entry does not satisfy the condi- 

ions given above. Then � = (1 , 2 , . . . , 13 , 14 , 16) , g = 15 and G =
 1 , . . . , 15 } . 
37 
For this third formulation we will use the same y -variables as 

efore, plus binary variables 

 k = 

{ 

1 if the distance that could be travelled 

by some user is at least �k , 
0 otherwise, 

∀ k ∈ G.

Using these variables the radius formulation of our problem is 

R) min �1 z 1 + 

g ∑ 

k =2 

(�k − �k −1 ) z k (16) 

s.t. (1) , (9) , (12) 

z k ≤ z k −1 ∀ k = 2 , . . . , g (17) 

z k + 

∑ 

s ∈ A i : 
s< i 

i 
� 

y s + 

∑ 

s :(�,s ) ∈ I i 
∧ (s< � 

i 
j) 

y s ≥ y � + y j − 1 ∀ i ∈ A, (�, j) ∈ I i , 

∀ k ∈ G : �k = d i� j . (18) 

Here the objective function (16) measures the maximum dis- 

ance needed by a user if he goes first to his closest center and 

hen to the next closest center, ties broken arbitrarily. The y - 

ariables in the left hand side of (18) correspond with centers that 

ither are preferred by i before � or will be chosen as the second 

enter in the route after � instead of j. If no site in those con-

itions exists, then z k will take value 1 provided that � and j are 

pen. Since by (9) the y -variables are binary we do not have to im-

ose any condition on the z k -variables. Constraints (17) guarantee 

hat if the distance traveled by some user is at least �k , then this

ser has traveled a distance greater than �k −1 . These constraints 

re necessary because constraints (18) are not sufficient to guaran- 

ee this fact as we can see in the following example. 

xample 5.2. Consider again the data of Example 2.1 . Without 

onstraints (17) , one optimal solution to (R) for p = 4 is to locate

enters 3, 4, 5 and 6 (sited in 2, 5, 8 and 11, respectively), and its

ptimal value is 3. Nevertheless, the correct optimal value of (R) 

or p = 4 is 6 (an optimal solution is given in Fig. 2 ) and, more-

ver, the cost of locating centers 3, 4, 5 and 6 is 8 (see Fig. 3 ). The

eason for this error is the following. 

When k = 7 with �7 = 7 , six different possible combinations of 

alues (i, �, j) satisfy �k = d i� j (see Example 2.1 ), namely (2,3,5), 

2,4,5), (3,4,2), (5,3,2), (5,4,2), (5,5,2). The corresponding con- 

traints (18) with right hand side 1 are 

 7 + 

∑ 

s :(s< 2 2 3) ∨ 
[(3 ,s ) ∈ I 2 ∧ (s< 3 2 5)] 

y s ≥ y 3 + y 5 − 1 ≡ z 7 + y 2 + y 4 ≥ y 3 + y 5 − 1 

z 7 + 

∑ 

s :(s< 2 2 4) ∨ 
[(4 ,s ) ∈ I 2 ∧ (s< 4 2 5)] 

y s ≥ y 4 + y 5 − 1 ≡ z 7 + y 2 + y 3 + y 1 ≥ y 4 + y 5 − 1 

z 7 + 

∑ 

s :(s< 3 3 4) ∨ 
[(4 ,s ) ∈ I 3 ∧ (s< 4 3 2)] 

y s ≥ y 4 + y 2 − 1 ≡ z 7 + y 3 + y 5 ≥ y 4 + y 2 − 1 

z 7 + 

∑ 

s :(s< 5 5 3) ∨ 
[(3 ,s ) ∈ I 5 ∧ (s< 3 5 2)] 

y s ≥ y 3 + y 2 − 1 ≡ z 7 + y 4 + y 5 + y 6 ≥ y 3 + y 2 − 1 

z 7 + 

∑ 

s :(s< 5 5 4) ∨ 
[(4 ,s ) ∈ I 5 ∧ (s< 4 5 2) 

y s ≥ y 4 + y 2 − 1 ≡ z 7 + y 5 + y 3 ≥ y 4 + y 2 − 1 

z 7 + 

∑ 

s :(s< 5 5 5) ∨ 
[(5 ,s ) ∈ I 5 ∧ (s< 5 5 2)] 

y s ≥ y 5 + y 2 − 1 ≡ z 7 + y 3 + y 4 + y 6 ≥ y 5 + y 2 − 1 
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Fig. 1. Example of possible travels of users. 

Fig. 2. Optimal solution to Example 2.1 ( Fig. 1 ) for p = 4 . 
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Fig. 3. Solution to Example 2.1 ( Fig. 1 ) corresponding to sites 3-4-5-6. 
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which do not force z 7 to take any value since there is always a

ariable taking value 1 in the left hand side. A similar effect is 

roduced when k = 1 , 2, 5 and 6, and then the objective function

alue is �8 + �4 − �7 − �2 = 3 , reducing in 3 units the objective 

alue of the solution. 
38 
In what follows, we develop an improvement to be applied to 

onstraints (18) in formulation (R). 

Consider a triplet (i, �, j) with (�, j) ∈ I i . Consider also the value

f k such that �k = d i� j . Constraint (18) for these values makes z k 
o take value 1 except when some y s variable with s in the union

f sets 

 s ∈ A i : s < 

i 
i � } ∪ { s : (�, s ) ∈ I i , s < 

� 
i j} 

akes value 1. To improve this constraint, we can reduce the first 

et of indices in this union to this other set 

 1 := { s ∈ A i : s < 

i 
i �, { t ∈ A i : s < 

i 
i t, d ist < �k } � = ∅} , 

n which any center s , preferred by i before � such that d ist ≥ �k 

or all t preferred by i after s , is excluded. Similarly, the second set 

an be reduced to this one 

 2 := { s : (�, s ) ∈ I i , s < 

� 
i j, d i�s < �k } , 

n which any center s , chosen as the second center in the route, 

ore preferred by i once i is in � than j verifying d ils ≥ �k , is ex-

luded. The resulting constraints (to be used instead of (18) ) are 

 k + 

∑ 

s ∈ S 1 ∪ S 2 
y s ≥ y � + y j − 1 ∀ i ∈ A, (�, j) ∈ I i , ∀ k ∈ G : �k = d i� j . 

(19) 

Additionally, the following set of valid inequalities can be added 

o (R). 

 k + 

∑ 

s ∈ A i : s< i 
i 
�, 

d is + θis < �k 

y s ≥ y � ∀ i ∈ A, � ∈ A i , ∀ k : d i� + θi� = �k , (20)

here θi� is calculated as in expression (15) . 

. Heuristic procedure 

In this section we propose a heuristic approach to obtain an 

pper bound of the optimal value of DSpP. In order to present it, 

e assume the following notation. 
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Algorithm 2: Reducing the size of set C. 

input : 
• C: Set of open centers. 
• z̄ = z(C) : Current value of the objective function. 

for c ∈ C do 

Compute z(C \ { c} ) 
if z(C\{ c} ) < z̄ then 

z̄ = z(C\{ c} ) 
c̄ = c 

output : C = C\{ ̄c } , c̄ and ̄z 

Algorithm 3: Trying to improve the objective value. 

input : 
• C: Set of open centers. 
• i max (C) and i 2 max (C) . 
• z̄ = z i max (C) (C) : Current objective value. 
• p: maximum number of open centers. 

Compute the index k̄ such that 

�i max (C) 

k̄ 
≤ z i 2 max (C) (C) < �i max (C) 

k̄ +1 
. 

for r = k̄ to r = 1 do 

Select (�, j) ∈ P i max (C) 
r and take C = C ∪ { �, j} 

while |C| > p do 

C, c a , z a = Reducing the size of C 
while |C| > 2 do 

C, c b , z b = Reducing the size of C 
if z b < z a then 

z a = z b 

else 
C = C ∪ { c b } 
break (while) 

if z a < z̄ then 

z̄ = z a 
break (for). 

output : C and z̄ 
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For any fixed user i ∈ A we sort the values d i� j , ∀ (�, j) ∈ I i , in in-

reasing order ignoring ties. Let �i = (�i 
1 
, �i 

2 
, . . . , �i 

g i 
) denote the 

trictly increasing vector and let P i 
k 

be the set of pairs giving the 

alue �i 
k 
, that is, P i 

k 
= { (�, j) ∈ I i : d i� j = �i 

k 
} . 

A pseudocode of this heuristic is shown in the forthcoming 

lgorithm 4 , that is based on three main steps: 

1. Constructing an initial set of open centers, C, verifying that for 

each user i ∈ A , set C contains at least two different centers, 

�, j ∈ A i . 

2. Reducing the size of set C. 

3. Trying to improve the objective value. 

To construct the initial set C we select for each user i ∈ A a value
i 
k i 

and we proceed as shown in Algorithm 1 . The choice of the 

Algorithm 1: Constructing an initial set of open centers C. 

input : 
• C = ∅ : Set of open centers 
• For each i ∈ A : �i 

k i 
and P i 

k i 
. 

Sort in decreasing order �i 
k i 

. Let �i r 
k i r 

be the rth sorted value 

and i r the index of the corresponding user. 

for r = 1 to r = n do 

if there exists a pair (�, j) ∈ P i r 
k i r 

such that � ≤i r 
i r 

� ′ ∀ � ′ ∈ C 

then 

C = C 
⋃ { � } 

if j ≤� 
i r 

j ′ ∀ j ′ ∈ C then 

C = C 
⋃ { j} 

else 

if | A i r 

⋂ 

C| < 2 then 

C = C 
⋃ { � } for some � ∈ A i r such that (�, j) ∈ P i r 

k i r 
. 

output : C. 

alue �i 
k i 

for each i ∈ A can be done in different ways. For instance,

nce a reference index k is fixed, we can take for each i ∈ A its cor-

esponding k -index value, �i 
k 
, or we can compute �max 

k 
= max i �

i 
k 

nd consider k i for each i ∈ A as the index s of value �i 
s verifying

hat �i 
s ≤ �max 

k 
< �i 

s +1 
. 

Given a set of open centers C let z i (C) = max { d i� j : (�, j) ∈
 i , �, j ∈ C, � ≤i 

i 
� ′ ∀ � ′ ∈ C, j ≤� 

i 
j ′ ∀ j ′ ∈ C} be the distance traveled

y the user i ∈ A . If there exists a user i ∈ A such that the set

does not contain two centers �, j ∈ A i then z i (C) = ∞ . And let

(C) = max i z i (C) be the objective value given the set of open cen-

ers C. To reduce the size of a given set C we proceed as shown in

lgorithm 2 . 

Finally, to improve (whenever this is possible) the objective value 

e proceed as shown in Algorithm 3 . Given a set of open cen-

ers C, let i max (C) ∈ arg max i ∈ A z i (C) denote a user index that gives

he maximum (worst) distance to be traveled and let i 2 max (C) ∈ 

rg max i ∈ A \{ i max (C) } z i (C) denote a user index that gives the second 

orst distance. 

The heuristic algorithm for the DSpP is described below 

 Algorithm 4 ). As mentioned above it consists of a while loop that 

odifies (augmenting or reducing) the set of open centers trying 

o improve the objective value. 
39 
. Preprocessing 

Let z UB be the value of the objective function given by 

lgorithm 4 . The following valid inequalities can be added to the 

hree formulations, for all �, j ∈ A such that for some i ∈ A , (�, j) ∈
 i , � ≤i 

i 
� ′ for all � ′ ∈ A i , j ≤� 

i 
j ′ for all j ′ ∈ A i verifying that (�, j ′ ) ∈ I i ,

nd z UB < d i� j : 

 � + y j ≤ 1 . 

dditionally, in formulation (T) we can fix to zero the correspond- 

ng variables x i� j and x i j� . 

On the other hand, if there exists a customer i and a center 

 ∈ A i , � ≤i 
i 

s ∀ s ∈ A i such that 

 UB < d i� + min 

j � = �, j∈ A i 
j≤� 

i 
t ∀ t � = � ∈ A i 

d � j 

hen one can fix y � = 0 in the three formulations. 

Regarding the formulation (R), if �k > z UB , then we can fix vari- 

ble z k to zero. Note also that �max 
1 

= max i �
i 
1 

gives a lower bound 

f the optimal value and then, we can fix to one all the variables

 k such that �k ≤ �max 
1 

. 

Similarly, in the formulation (T), if d i� j > z UB we can fix to zero 

ariable x i� j . 
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Algorithm 4: Heuristic. 

input : 
• C = ∅ : Set of open centers 
• For each i ∈ A : �i 

k i 
and P i 

k i 
. 

• z̄ = ∞ : Current value of the objective function. 
• p: maximum number of open centers. 

C= Constructing an initial set of open centers . 

if |C| ≤ p then 

Compute z̄ = z(C) 

else 

while |C| > p do 

C, c a , z a = Reducing the size of C 
while |C| > 2 do 

C, c b , z b = Reducing the size of C 
if z b < z a then 

z a = z b 

else 
C = C ∪ { c b } 
break (while) 

z̄ = z a 

C, z = Trying to improve the objective function value . while z < z̄ 

do 

z̄ = z 

C, z = Trying to improve the objective function value . 

output : C and z̄ . 
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. Computational tests 

In this section we report on the results of a series of computa- 

ional tests to assess the usefulness of the formulations discussed 

n previous sections to solve the DSpP with standard software, and 

o compare their performances. All experiments were carried out 

ith the Gurobi 9.1.1 optimizer, under a Windows 10 environment 

n an Intel(R) Core(TM) i7-6700K CPU @ 4.00 GHz 4.01 GHz proces- 

or and 32 GB of RAM. Default values were used for all parameters 

f Gurobi. A CPU time limit of 3600 seconds was set. 

To carry out the experiment we generate instances in the fol- 

owing way. Sites in the set A are points randomly placed in a 

quare of size 100 × 100 . Distances (d i j ) are rounded Euclidean 

istances between these points. Each site accepts to be assigned to 

ach other site with probability 0.8. In order to determine the pref- 

rences with respect to the accepted sites, we consider two cases: 

1. Random instances . In this case we generate integer num- 

bers P (i, �, j) ∼ �� n 3 � U(0 , 1) � so that j 1 < 

� 
i 

j 2 when P (i, �, j 1 ) <

P (i, �, j 2 ) and j 1 = 

� 
i 

j 2 when P (i, �, j 1 ) = P (i, �, j 2 ) . 

2. Euclidean instances . In order to have a positive correlation be- 

tween distances and preferences, we initially obtain the values 

of P (i, �, j) sorting in increasing order the distances from a site 

� to all sites j, removing the sites � and j rejected by i , and as-

signing, for each i and � , numbers 1 , 2 . . . in the given order. Af-

terwards, we slightly perturbate these values (at the same time 

creating ties in the preference list) by either adding 3 units to 

a value with a probability of 0.4 or subtracting 5 units with 

probability of 0.24. Negative numbers are finally replaced with 

number 1. 

Note that we checked also some instances with different prob- 

bility distributions that gave rise to similar computational results. 

The study is organized in two phases, each presented in one 

ubsection. A last subsection is devoted to discussing the number 

f open centers and the possibility of distributing them in an al- 

ernative way. 
40 
.1. Preliminary results 

In this phase n ranges in { 25 , 50 , 75 } , whereas p varies in ei-

her { 5 , 10 } (when n = 25 ) or { 5 , 10 , 20 } (when n ∈ { 50 , 75 } ). The

erformance of each of the three formulations is tested with and 

ithout preprocessing (Prepr ∈ { Yes, No } ) and with and without 

ispensation of the initial solution provided by Algorithm 4 to 

he solver (InitSol ∈ { Yes, No } ). Moreover Improv ∈ { Yes, No } with

he meaning depending on the formulation. Specifically, Improv = 

es means (i) constraints (10) are added to formulation (T), (ii) 

onstraints (14) are added to formulation (S) and (iii) constraints 

19) and (20) are added to formulation (R). We solve five instances 

or each type (random, Euclidean), each dimension (n, p) , each for- 

ulation and each combination of Prepr, InitSol and Improv, total- 

zing 1920 instances. 

The results of the preliminary study are summarized in Figs. 4 , 

 and 6 for the random instances and in Figs. 7 , 8 and 9 for the Eu-

lidean instances. All instances have been solved up to optimality 

ithin the time limit except some instances of the three-indexed 

ormulation with n = 50 and n = 75 , where, either the time limit

as exceeded or a feasible solution was not found within the time 

imit or the flag “Out of memory” was the output of the solver. 

hese figures show the average CPU time required to solve the in- 

tances. Clearly, the best formulations are (S) and (R) in all con- 

gurations of parameters. For Random instances, it seems that the 

est combination is Prepr = Yes, Improv = Yes and InitSol = Yes. 

or Eucliean instances, there are two configurations with similar 

ehaviour, namely (i) Prepr = Yes, Improv = Yes, InitSol = Yes 

nd, (ii) Prepr = No, Improv = Yes and InitSol = No. We will asses

he performance of these combinations on the second phase of our 

omputational study devoted to larger sized instances. 

.2. Advanced results 

The aforementioned best solution methods are com- 

ared in a second phase, using larger instances with 

 ∈ { 100 , 125 , 150 , 175 , 200 } and p ∈ { 5 , 10 , 20 } . As before, we

onsider five instances for each dimension (n, p) . We solve a total 

f 450 instances. 

Tables 2 and 3 show the results obtained by using formulations 

S) and (R) with preprocessing, initial solution and valid inequali- 

ies, for random and Euclidean instances, respectively. On the other 

and, the results for Euclidean instances using formulations (S) and 

R) only with valid inequalities are given in Table 4 . In these tables

he information contained in each row refers to average values of 

 instances. 

These tables are organized in two different blocks of columns: 

ap and CPU Time. The block named “Gap” contains three blocks 

f two columns, each block reporting different types of gaps. “UB- 

ap” is the (average) percentage gap computed using the objec- 

ive values of the best solution obtained by the corresponding for- 

ulation, say v̄ , and the feasible solution found using the heuris- 

ic, say v̄ H . Specifically, “UBGap” is computed as [ ̄v H − v̄ ] / ̄v × 100 . 

MIPGap” is the (average) percentage MIP gap returned by Gurobi 

hen solving the problem with each formulation and “RootGap” is 

he (average) percentage gap between the best solution obtained 

y the corresponding formulation and the solution obtained in the 

oot node. 

The second big block, named “CPU Time”, is organized in 

our blocks, the first one of one column and the other three 

f two columns. “HTime” stands for the CPU time spent when 

olving the heuristic, “ETime” is the CPU time needed when 

olving the problem using the different formulations, being 

TotalTime”= “HTime”+“ETime” the total time required for solving 

he problem when preprocessing or initial solution are used. Note 

hat when neither preprocessing nor initial solution are used, To- 
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Fig. 4. Comparing the CPU time for random instances varying Improv ∈ { Y ES, NO } . 

Fig. 5. Comparing the CPU time for random instances varying Prepr ∈ { Y ES, NO } . 
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Fig. 6. Comparing the CPU time for random instances varying Init Sol ∈ { Y ES, NO } . 

Fig. 7. Comparing the CPU time for Euclidean instances varying Improv ∈ { Y ES, NO } . 
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Fig. 8. Comparing the CPU time for Euclidean instances varying Prepr ∈ { Y ES, NO } . 

Fig. 9. Comparing the CPU time for Euclidean instances varying Init Sol ∈ { Y ES, NO } . 
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alTime and ETime coincide and we only report on one of them. 

inally, “RootTime” stands for the CPU time required to solve the 

oot node of the branching tree. 

One can observe in Table 2 (MIPGap) that instances with sizes 

p to n = 150 have been solved up to optimality within the time

imit with both formulations. Nevertheless, (R) performs better in 

erms of CPU time required to solve the instances. For n = 175 , (R)
43 
erforms better for p = 5 regarding both, Gap and CPU time, but 

he other way around for p = 10 , 20 . For larger sizes ( n = 200 ) only

R) can solve instances, always for p = 5 . 

Table 3 compares the results obtained on Euclidean instances 

ith all the potential improvements. These instances are harder to 

olve and one can observe that formulation (R) clearly outperforms 

S). Formulation (S) already fails to solve up to optimality some 
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Table 2 

Computational results on the random instances with Prepr = Yes, Improv = Yes and InitSol = Yes. 

Gap CPU Time 

UBGap MIPGap RootGap Htime ETime TotalTime RootTime 

n p (S) (R) (S) (R) (S) (R) (S) (R) (S) (R) (S) (R) 

100 5 4.10 4.10 0.00 0.00 41.82 0.00 22.95 130.12 15.60 153.07 38.55 76.11 12.25 

10 50.58 50.58 0.00 0.00 26.20 1.52 11.57 202.13 104.14 213.70 115.71 166.47 103.18 

20 82.82 82.82 0.00 0.00 27.63 1.55 23.73 225.05 171.69 248.78 195.42 214.33 170.36 

125 5 6.26 6.26 0.00 0.00 76.34 2.94 59.83 460.36 26.86 520.19 86.69 428.95 26.47 

10 39.83 39.83 0.00 0.00 30.31 3.93 24.30 573.29 306.23 597.58 330.53 545.08 301.10 

20 94.49 94.49 0.00 0.00 45.58 2.51 69.31 665.41 511.36 734.72 580.66 595.99 503.85 

150 5 11.33 11.33 0.00 0.00 63.42 3.88 120.43 1168.44 202.35 1288.87 322.78 1084.07 193.60 

10 52.00 52.00 0.00 0.00 45.17 5.62 46.23 1291.57 809.96 1337.80 856.19 1269.09 793.69 

20 74.38 74.38 0.00 0.00 61.46 3.16 116.57 1333.08 1263.82 1449.65 1380.39 1277.48 1246.64 

175 5 4.61 7.23 16.14 0.00 54.32 2.02 177.53 2299.54 104.13 2477.07 281.66 1723.23 74.56 

10 44.33 13.91 0.00 51.41 31.64 0.96 86.15 2601.35 2893.36 2687.49 2979.51 2451.79 731.75 

20 95.65 0.00 0.00 89.54 15.64 0.00 184.58 2586.86 3602.70 2771.44 3787.28 2463.41 0.60 

200 5 ∗∗ 7.85 ∗∗ 0.00 ∗∗ 1.21 267.20 ∗∗ 298.06 ∗∗ 565.26 ∗∗ 239.84 

10 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 91.58 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

20 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 276.34 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

Table 3 

Computational results on the Euclidean instances with Prepr = Yes, Improv = Yes and InitSol = Yes. 

Gap CPU Time 

UBGap MIPGap RootGap Htime ETime TotalTime RootTime 

n p (S) (R) (S) (R) (S) (R) (S) (R) (S) (R) (S) (R) 

100 5 19.62 19.62 0.00 0.00 45.27 2.69 101.92 342.69 55.41 444.61 157.32 342.06 55.06 

10 42.98 42.98 0.00 0.00 45.84 3.24 285.58 409.98 149.75 695.57 435.34 341.12 146.88 

20 50.14 50.14 0.00 0.00 45.52 2.77 552.15 436.28 177.51 988.43 729.66 306.24 174.98 

125 5 25.29 25.29 0.00 0.00 22.51 3.39 190.95 1042.27 162.08 1233.21 353.03 1027.96 154.88 

10 52.80 52.80 0.00 0.00 59.14 2.22 395.28 1244.62 391.47 1639.90 786.76 1046.51 386.70 

20 57.06 57.06 0.00 0.00 44.90 2.34 1465.82 1317.31 462.77 2783.13 1928.59 1096.71 453.67 

150 5 45.20 45.20 16.00 0.00 36.12 2.31 522.43 2540.69 861.88 3063.12 1384.31 2073.03 844.39 

10 56.10 57.42 16.15 0.00 61.27 2.08 1369.36 2878.73 1194.58 4248.09 2563.95 2435.76 1180.91 

20 64.37 64.37 0.00 0.00 60.07 0.54 5744.96 2353.36 1383.44 8098.31 7128.40 2013.68 1344.12 

175 5 ∗∗ 14.14 ∗∗ 34.94 ∗∗ 1.75 633.90 ∗∗ 2100.75 ∗∗ 2734.65 ∗∗ 656.36 

10 ∗∗ 19.21 ∗∗ 52.10 ∗∗ 0.53 1886.49 ∗∗ 2910.53 ∗∗ 4797.02 ∗∗ 739.10 

20 ∗∗ 26.12 ∗∗ 34.84 ∗∗ 0.50 5035.77 ∗∗ 2620.58 ∗∗ 7656.34 ∗∗ 1156.86 

200 5 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 1096.10 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

10 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 2720.41 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

20 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 9687.48 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

Table 4 

Computational results on the Euclidean instances with Prepr = No, Improv = Yes and InitSol = No. 

Gap CPU Time 

UBGap MIPGap RootGap ETime RootTime 

n p (S) (R) (S) (R) (S) (R) (S) (R) (S) (R) 

100 5 19.62 19.62 0.00 0.00 100.00 3.22 473.18 234.00 411.70 222.03 

10 42.98 42.98 0.00 0.00 100.00 0.50 431.41 229.68 355.44 225.12 

20 50.14 50.14 0.00 0.00 80.00 1.51 425.64 240.08 329.38 235.61 

125 5 25.29 25.29 0.00 0.00 82.67 5.18 1778.02 583.56 1669.41 569.42 

10 52.80 52.80 0.00 0.00 56.41 2.46 1583.90 518.24 1219.16 507.42 

20 57.06 57.06 0.00 0.00 80.00 2.46 1705.12 513.37 1144.81 502.52 

150 5 45.20 -0.65 20.00 60.00 47.95 0.52 3011.20 3048.64 2569.10 880.98 

10 57.42 30.28 40.00 40.00 60.00 0.54 2793.46 2908.53 2106.14 1451.82 

20 64.37 16.27 60.00 60.00 80.00 0.27 2966.03 3033.80 1790.85 865.90 

175 5 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

10 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

20 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

200 5 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

10 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

20 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗
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nstances for n = 150 . For larger sizes, (S) does not solve the in-

tances and (R) is able to provide solutions, at least for n = 175 ,

lthough not certifying optimality. 

Table 4 reports the same comparison with a different config- 

ration of parameters. One can observe that its performance is 

orse than the one obtained with the previous configuration. Even 
44
he instances with n = 150 could not be solved up to optimality 

ow. 

From our experiments one can conclude that the radius for- 

ulation (R) outperforms the other ones and that using it with 

he preprocessing and the initial solution provided by the heuris- 

ic procedure proposed in Section 6 together with the improve- 
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Table 5 

Number of centers actually opened. 

random instances Euclidean instances 

n n 

p 25 50 75 100 125 150 25 50 75 100 125 150 

5 3.6 4.6 4.8 5 4.8 4.8 4.8 5 5 5 5 5 

10 3.6 4.8 5.2 5 5.2 5.2 5.4 6 5.4 7 6.6 5.5 

20 - 4.8 5.2 5 5.2 5.2 - 6 5.4 7 6.6 5.5 
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Table 6 

Number of centers actually opened assuming that up to two of service facilities 

can be placed at the same location. 

random instances Euclidean instances 

n n 

p 25 50 75 100 125 150 25 50 75 100 125 150 

5 4.4 4 4.2 5 4.8 5 4.2 4.4 4.2 4.6 5 4.6 

T 10 5.6 6.4 8.4 7.6 7.2 7 6.8 8.2 7.8 8.8 8.2 6.4 

20 - 6.4 8.4 7.6 7.2 7 - 8.2 7.8 8.8 8.2 6.4 

5 2.4 2.2 2.2 4 3.6 4 2.4 2.6 2.2 3.2 4 3.4 

D 10 3 3.4 4.2 3.8 3.6 4 3.4 4.4 4 4.4 4.2 3.2 

20 - 3.4 4.2 3.8 3.6 4 - 4.4 4 4.4 4.2 3.2 
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ents obtained incorporating constraints (19) and (20) , instances 

ith up to n = 175 customers can be solved. The maximum total 

ime spent on solving the heuristic plus the radius formulation is 

ne hour of CPU time for the random instances and around two 

ours for larger Euclidean instances. 

.3. An alternative way of distributing centers 

In Table 5 we show the average number of centers that are ac- 

ually open for each combination of parameters (n, p) where op- 

imality is proven considering the random and the Euclidean in- 

tances. As mentioned in Example 2.2 we can see that in this prob- 

em, contrary to what is usual in location problems, opening more 

enters does not imply smaller objective values and that the num- 

er of opened centers does not reach the maximum number p in 

ost of the instances for p = 10 and p = 20 . Indeed, for the in-

tances considered in this work, it seems that it suffices consider- 

ng values up to p = 10 . 

This observation led us to consider an alternative distribution 

f centers that may locate up to two centers per point. In this way

ne can model the possibility of installing more available centers 

up to p), giving service with the second center located at the same 

lace that the first, unavailable, center. Examples of this policy can 

e found, for instance, when installing cash machines in the bank 

ffices, bikes in bike-sharing dock stations and many other cases. 

o cope with this situation we double the size of candidate sites 

or locating centers and we assume that the favorite site of a cus- 

omer when he is in the first, preferred open center, is a center 

ocated at the same point. Then, we slightly modify the formula- 

ions as follows. 

Let A = { 1 , . . . , n } be the set of sites for users and let A 

′ =
 1 , . . . , n, n + 1 , . . . , 2 n } be the set of candidate sites for locating

enters, being site n + j the replica of site j. In the different for-

ulations we distinguish between these two index sets and we 

pdate variables and parameters accordingly, 

• we consider A 

′ 
i 
= A i 

⋃ { n + j : j ∈ A i } ⊆ A 

′ as the subset of sites

that user i ∈ A is willing to accept as service centers; 
• we suppose variables x i� ′ j ′ defined for i ∈ A , (� ′ , j ′ ) ∈ I ′ 

i 
where,

I ′ 
i 
= { (� ′ , j ′ ) : � ′ ∈ A 

′ 
i 
, j ′ ∈ A 

′ 
i 
, j ′ � = � ′ , � ′ ≤i 

i 
j ′ } for all i ∈ A ; 

• variables y i are defined for i ∈ A 

′ ; 
• distances are duplicated in the natural way, that is, d i� ′ j ′ = d i� j 

for i ∈ A, � ∈ A, j ∈ A and � ′ ∈ A 

′ , j ′ ∈ A 

′ , such that � ′ ∈ { �, n +
� } , j ′ ∈ { j, n + j} ; 
Table 7 

Percentage of improvement on the objective function value wh

tion. 

Random instances 

n 

p 25 50 75 100 125 150 

5 25.10 15.51 11.78 8.18 4.60 6.50 

10 25.10 19.61 23.33 15.45 15.68 15.97 

20 - 19.61 23.33 15.45 15.68 16.35 

45 
• preferences verify that (i) the level of preference of i for j ′ 
when i is at � ′ is the same as the level of preference of i

for j when i is at � for j ′ ∈ { j, n + j} and � ′ ∈ { �, n + � } , (ii)

j ′ 
1 

∈ { j, n + j} is the favorite site of i when i is at j ′ 
2 

∈ { n + j, j} . 
Using these modifications, we obtain the results given in 

ables 6 and 7 . In Table 6 block named “T” stands for the total

umber of actual open centers and the block named “D” repre- 

ents the number of different locations for the open centers, that 

s to say, two centers sited at the same point count 2 in block “T”

ut 1 in block “D”. 

Note that, for p = 10 , 20 , each average of block “D” is approxi-

ately equal to half of the corresponding average of block “T”, that 

s to say, in almost all the cases either a site is not used or it is

sed to install two centers. This is natural, since once the user has 

isited a center, his favorite one and the one with the minimum 

istance (so the best one for the objective function) is the cen- 

er placed at the same site. As a result, the number of total open 

enters may increase, with respect to the number of open centers 

f Table 5 , to reach an even number. Although a similar behav- 

or can be observed in the case p = 5 , since here there is an odd

umber of available centers, not always the twin centers can be lo- 

ated. The aforementioned phenomenon of equal optimal solutions 

or the cases p = 10 and p = 20 is also present here. More open

enters bring more options to the users that carry larger distances 

n the objective function. The trade-off between freedom for the 

sers and total distance for the decision maker fixes the number 

f open centers in a value that will not change when p increases. 

Another fact that merits attention is that in the case p = 5 there

s a total number of open centers ( Table 6 , block “T”) less than the

umber of open centers when only one can be installed ( Table 5 ).

gain, this is probably due to the fact that 5 is an odd number. 

ometimes it is better for the objective value to install 2 + 2 cen-

ers in two sites than locating 2 + 2 + 1 in three sites. 

These phenomena can be observed in Fig. 10 where the solution 

btained when solving one of the generated instances for n = 25 

nd p = 5 is depicted. In this figure, blue points stand for the user

nd potential center sites, red points represent open center sites, 

reen point is the user that gives us the value of the objective 

unction and lines symbolize the path followed by this user to the 

rst most preferred open center (black line) and from this one to 
en two different centers can be placed at the same loca- 

Euclidean instances 

n 

25 50 75 100 125 150 

22.80 15.60 7.01 7.13 2.03 5.82 

29.62 18.86 15.06 17.66 12.63 14.22 

- 18.86 15.06 17.66 12.63 14.22 
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Fig. 10. Solution for an instance with n = 25 and p = 5 (or p = 10 ) when locating two different centers in the same site is not allowed (left) and when it is allowed (right) . 
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he most preferred open center for the user when he is in the first 

enter (red line). In the left figure locating two different centers 

n the same site is not allowed. In this case, the optimal solution 

s obtained when five centers are open (centers sited at location 

, 11, 21, 22 and 24). The maximum sum of the distance from any

ser to any of its preferred open centers plus the distance from 

his center to any of the open centers the user prefers once he is 

here is obtained when user sited at 13 goes to center sited at 11

the most preferred center of the five open centers) and, in case of 

ailure, he goes from this position to center sited at 22 (the most 

referred center of the remaining four when he is at position 11) 

nd its value is 85 distance units (d.u.). 

In the right figure we assume that two centers can be located 

t the same position. In this last case the optimal number of open 

enters is a total of four (two centers sited at location 11 and two 

enters at location 22). The maximum sum of the distance from 

ny user to any of its preferred open centers plus the distance from 

his center to any of the open centers the user prefers once he is 

here is obtained when user sited at 8 goes to center sited at 22 

one of the most preferred center of the four open centers) and, in 

ase of failure, he uses the second center located at the same po- 

ition and its value is 67 d.u. Here, we can observe that if we open

 fifth center in any other position the value of the objective func- 

ion increases. For instance, suppose that a center sited in position 

4 is open. In this case, the value of the objective function would 

e 71, since user sited at 8 has the same preference for center at 

osition 24 than for centers sited at position 22 and then, he can 

o first to the only center sited at 24 (at a distance of 67 d.u.) and,

n case of failure, he goes from position 24 to center sited a 22 (at

 distance of 4 d.u. from position 24). 

In both cases (only one or two centers can be opened at the 

ame location), the optimal solution obtained for p = 10 is the 

ame as for p = 5 . When only one center can be opened at the

ame location opening more than five centers is not optimal be- 

ause the preferences of the users. For instance, suppose that we 

lso open center sited at 3 then, the value of the objective func- 

ion would be 89. This value is reached because user 8 first goes 

o center sited at 5 (at a distance of 72 d.u.) which is the most

referred open center for user 8 and, in case of failure, he goes to 

enter sited at 3 (at a distance of 17 d.u. from position 5) which is

he most preferred open center for user 8 when he is at location 

. A similar situation happens when any other center or group of 

enters are added to the list of open centers. In the case that two 

enters are allowed to open in the same location, the optimal solu- 

ion obtained for p = 5 is also optimal for p = 10 but, in this case,

here is another alternative optimal solution opening a total of 10 

enters (two centers sited at locations 11, two at location 22, two 

t site 24, two at site 12 and two centers located at site 6). 

Finally, Table 7 shows the average improvements (in percent- 

ge) on the objective function value of the alternate way of dis- 
46 
ributing the centers with respect to the objective function value of 

he original one. We can observe that allowing two different cen- 

ers to be located in the same site gives rise to a benefit that, in

he solved instances, ranges from 2% for n = 125 and p = 5 to close

o 30% for n = 25 and p = 10 . 

. Conclusions 

This paper introduces the Dynamically Second-preferred p- 

enter Problem. This is a new problem that extends the p-next 

enter problem in Albareda-Sambola et al. (2015a) considering a 

orse case situation, customers’ preferences and subsets of ac- 

epted service centers for each customer. The DSpP aims at choos- 

ng at most p centers so that each demand point can visit at least 

wo acceptable centers and the maximum sum of distances from 

ny demand point to any of its preferred centers plus the distance 

rom any of the preferred centers to any of the centers the user 

refers once he is there is minimized. This new model responds to 

hose situations where the decision of placing the service centers 

nd trips are supported by a planner but once these centers are 

ocated the trips to visit the centers are chosen by the customers. 

sing this model the planner assumes a risk-averse attitude and 

ries to hedge against misbehavior of customers that may choose 

he longest trips to maximize their revenue. 

We have presented three different formulations based on differ- 

nt spaces of variables: (i) Three-indexed formulation, (ii) Straight 

ormulation, and (iii) Radius formulation. Each one exhibits inter- 

sting features that make it worth to be considered and evaluated. 

rom our experiments we conclude that the Radius formulation (R) 

utperforms the other two formulations allowing to solve to opti- 

ality instances with up to n = 175 customers. Going beyond this 

ize requires further analysis looking for strengthening of the cur- 

ent formulations or new ones in other spaces of variables, and 

erhaps, the use of better heuristic algorithms that provide good 

olutions in short CPU times. Both subjects, although very interest- 

ng, are beyond the scope of this paper and may be the topic of a

ollow up paper. 
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