European Journal of Operational Research 307 (2023) 33-47

UROPEAN OURNAL OF
PERATIONAL ' ESEARCH

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Dynamically second-preferred p-center problem

Check for
updates

Yolanda Hinojosa®"* Alfredo Marin¢, Justo Puerto®¢

A Instituto de Matemadticas, Universidad de Sevilla (IMUS). Edificio Celestino Mutis, Avda. Reina Mercedes s/n, Sevilla 41012, Spain

b Dpto. de Economia Aplicada I, Universidad de Sevilla. Fac. de C. Econémicas y Empresariales, Avda. Ramén y Cajal 1, Sevilla 41018, Spain
¢ Dpto. de Estadistica e Investigacion Operativa, Universidad de Sevilla. Fac. de Matemadticas, Avda. Reina Mercedes s/n, Sevilla 41012, Spain
dDpto. de Estadistica e Investigacién Operativa, Universidad de Murcia. Fac. de Matemdticas, Campus de Espinardo, Murcia 30100, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 14 October 2021

Accepted 20 September 2022
Available online 24 September 2022

This paper deals with the Dynamically Second-preferred p-center Problem (DSpP). In this problem, cus-
tomers’ preferences and subsets of sites that each customer is willing to accept as service centers are
taken into account. It is assumed that centers can fail and, thus, the decision maker is risk-averse and
makes his decision taking into account not only the most favourite centers of the customers but also

Keywords: the worst case situation whenever they evaluate their preferred second opportunity. Specifically, the new
Location problem aims at choosing at most p centers so that each demand point can visit at least two acceptable
p-Center centers and the maximum sum of distances from any demand point to any of its preferred centers plus

Integer programming
p-Next center

the distance from any of the preferred centers to any of the centers the user prefers once he is there is
minimized. The problem is NP-hard as an extension of the p-next center problem. The paper presents
three different mixed-integer linear programming formulations that are valid for the problem. Each for-
mulation uses different space of variables giving rise to some strengthening using valid inequalities and
variable fixing criteria that can be applied when valid upper bounds are available. Exact methods are
limited so that a heuristic algorithm is also developed to provide good quality solution for large size in-
stances. Finally, an extensive computational experience has been performed to assess the usefulness of
the formulations to solve DSpP using standard MIP solvers.

© 2022 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Location science is a very active discipline within Operations
Research (Laporte, Nickel, & Saldanha da Gama, 2019). It studies
the optimal location of facilities in order to provide service to a set
of demand points under different assumptions. When these prob-
lems are defined on discrete settings (the set of potential facility
locations is discrete) we talk about discrete location.

There are several classical discrete location problems. Among
them, the p-center problem (pCP) aims at selecting p out of n lo-
cations where to install centers so that the maximum distance be-
tween a user and its closest center is minimized (Daskin, 2000;
Elloumi, Labbé, & Pochet, 2004; Kariv & Hakimi, 1979; Mladenovic,
Labbé, & Hansen, 2003). This type of objective function, focused on
the worst case, has been useful to locate emergency facilities and
also as a means of identifying equitable solutions when locating
essential services. But, even if the services to be located are not

* Corresponding author.
E-mail address: yhinojos@us.es (Y. Hinojosa).

https://doi.org/10.1016/j.ejor.2022.09.019

essential services, this type of objective function ensures the loca-
tion of a service center close to any customer, which will improve
the customers’ perception of the firm.

In the recent years, several extensions of the pCP and other
classical models have been studied to incorporate issues that are
present in real life. This includes, for instance, considering facility
capacities, facility failures or user preferences.

To the best of our knowledge, the extension of the pCP where
facilities have limited capacities (Capacitated p-Center Problem -
CpCP) was first considered in Jaeger & Goldberg (1994). In this
paper, the authors considered a tree underlying network and as-
sumed that capacities were stated in terms of the number of cus-
tomers each center can serve. For this problem, they proposed
a polynomial time algorithm. Other works considering this type
of capacities are (Cornejo Acosta, Garcia Diaz, Menchaca-Méndez,
& Menchaca-Méndez, 2020) and (Khuller & Sussmann, 2000). For
the case with general capacities, exact algorithms are proposed in
Albareda-Sambola, Diaz, & Fernandez (2010), Kramer, lori, & Vi-
dal (2020), Ozsoy & Pinar (2006), while heuristic methods can
be found, for instance, in Quevedo-Orozco & Rios-Mercado (2015),
Scaparra, Pallotino, & Scutella (2004).

0377-2217/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.ejor.2022.09.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.09.019&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:yhinojos@us.es
https://doi.org/10.1016/j.ejor.2022.09.019
http://creativecommons.org/licenses/by-nc-nd/4.0/

Y. Hinojosa, A. Marin and J. Puerto

Facility reliability (Herrera, Kalcsics, & Nickel, 2007) is another
issue that has attracted the attention of many researchers since the
seminal paper (Drezner, 1987). There, a simple heuristic was pro-
posed for the pCP with unreliable facilities. More recent extensions
consider alternative issues such as unknown failures (Albareda-
Sambola, Hinojosa, & Puerto, 2015b), failure correlations (Berman,
Krass, & Menezes, 2013), and demand distribution among facilities
(Brimberg, Maier, & Schobel, 2021).

In Albareda-Sambola, Hinojosa, Marin, & Puerto (2015a) the so-
called next p-center problem was introduced and several exact
formulations were analyzed. In this problem it is assumed that
centers can fail and then, the decision maker locates the facili-
ties taking into account not only the closest center of each cus-
tomer, but also a close second one. The computational results re-
ported in that paper showed the limitations of exact methods,
and so (Lopez-Sanchez, Sanchez-Oro, & Hernandez-Diaz, 2019) pro-
vided some GRASP and VNS heuristics for this problem. The re-
sults in Albareda-Sambola et al. (2015a) have been applied to a
well-known problem in software defined networks: the controller
placement problem (see e.g. Das, Sridharan, & Gurusamy, 2019 for
a recent survey on this matter). Given a network, this problem
consists in determining the optimal location of controllers and as-
signment of the switches to the controllers. The proposal by Killi
(2018); Killi & Rao (2016, 2017), related to Albareda-Sambola et al.
(2015a), consists in developing a location strategy that plans in ad-
vance for failures considering second closest controllers, improving
disconnections and drastic increase in latency.

In any realistic situation, the appropriate evaluation of the qual-
ity of a candidate solution requires an accurate modeling of the
actual system behavior. This includes capturing correctly how de-
mands are satisfied. In some contexts, the service provider has the
capacity to decide which of the located facilities gives service to
each demand point. However, depending on the considered service,
each customer makes his own decision on this respect. This has
motivated the inclusion of customers’ preferences in some location
problems. The first work where these preferences were taken into
account is Hanjoul & Peeters (1987), where the Simple Plant Lo-
cation problem with Order (SPLO) is introduced. In the SPLO, the
number of facilities is not defined beforehand, and a fixed cost is
incurred for setting each facility. Moreover, customers’ preferences
are known in advance, and each customer is assumed to be served
from its most preferred facility among those that have been lo-
cated. The work presents a simple heuristic for this problem. The
SPLO was tackled later by means of mathematical programming
with different formulations and the study of valid inequalities, for
instance, in Canovas, Garcia, Labbé, & Marin (2007), Hansen, Ko-
chetov, & Mladenovic (2004), Vasilyev, Klimentova, & Boccia (2013),
Vasil’ev, Klimentova, & Kochetov (2009). Even more focus on cus-
tomers’ preferences is placed in the minimum-envy location prob-
lem (Espejo, Marin, Puerto, & Rodriguez-Chia, 2009), where a set
of facilities is sought yielding an equitable customer allocation ac-
cording to these preferences.

More recent location works involving customer preferences
are essentially focused on providing heuristics. For the problem
with fixed costs and uncapacitated facilities, Maric, Stanimirovic,
& Milenkovic (2012) proposes a heuristic that combines a reduced
and a basic Variable Neighborhood Search and shows that it
outperforms other heuristics such as Particle Swarm Optimization
and Simulated Annealing. The same methods are improved in
Mari¢, Stanimirovi¢, Milenkovi¢, & Djenic¢ (2015) to tackle large
scale instances. Heuristics for similar problems involving a fixed
number of facilities are also considered in the literature. For
instance, Casas-Ramirez & Camacho-Vallejo (2017) proposes a
heuristic based on Scatter Search for the p-median problem where
assignments are made according to customer preferences, and
Diaz, Luna, Camacho-Vallejo, & Casas-Ramirez (2017) explores the

34

European Journal of Operational Research 307 (2023) 33-47

use of GRASP and Tabu Search for a problem where a fixed num-
ber of facilities is to be set in a context with existing competitors.
Again, customers patronize facilities according to their preferences,
but only customers having a facility at a given distance can be
served.

Preferences have also been considered in combination with
other issues. For instance, Casas-Ramirez, Camacho-Vallejo, &
Martinez-Salazar (2018) addresses a problem with fixed costs and
capacitated facilities. In this bilevel problem, customer assignments
are made according to their preferences but taking into account
facility capacities. The paper proposes a heuristic based on the
Cross Entropy method. A closely related field is that of pricing
with preferences, where pairs product-price can be seen as loca-
tions and users have preferences on products and a given budget,
see for instance (Calvete, Dominguez, Galé, Labbé, & Marin, 2019;
Dominguez, Labbé, & Marin, 2021; 2022).

In the current paper facility reliability in combination with
customers’ preferences has been considered, elaborating upon the
model in Albareda-Sambola et al. (2015a). Here, we consider a new
problem called the Dynamically Second-preferred p-center Problem
(DSpP) where each customer has a subset of sites that is willing
to accept as service centers and customers’ preferences are taken
into account. One can understand this problem as a hierarchical
decision-making process where the planner (leader) sets the ser-
vice centers considering the worst case customers’ behavior and
then, the customers (followers) choose according with their pref-
erences, the most preferred open center and in case of failure the
most preferred one from that new location. Since centers can fail,
the decision maker assumes a risk-averse attitude so that he evalu-
ates an alternative by the worst case situation, with respect to dis-
tances, among the most preferred open centers for the customers.
Therefore, this problem aims at choosing at most p centers so that
each demand point can visit at least two acceptable centers and
the maximum sum of distances from any demand point to any of
its preferred centers (among the chosen ones) plus the distance
from any of the preferred centers to any of the centers the user
prefers once he is there is minimized.

One can find applications of this problem in situations where
the decision of placing the service centers and trips are supported
(paid) by a planner (leader) but once these centers are located the
trips to visit the centers are chosen by the customers (followers).
Using this model the planner assumes a conservative (risk-averse)
attitude and tries to hedge against misbehavior of customers that
may choose the longest trips to maximize their preferences. This
model has direct applications, for instance in cash machines and in
bike-sharing systems. In this last situation, the dealership company
wishes to offer service in a given area (usually a city) and thus, it
decides on where to place the dock stations in the strategic level.
Once the dock stations are in operation, the users pick the bikes
in a dock station and return them in different ones, where upon
arrival, it might not have empty slots. This situation leads the user
to move to his/her most preferred station from his/her current po-
sition. All these operations imply to the dealership company extra
costs because it has to relocate the bikes in their original stations.
This is the reason why the dealership company wants to minimize
the maximum sum of distances of any pair of most preferred pairs
of sequential dock stations.

The contributions of our paper are the following. First of all, we
present three different mixed-integer linear programming formula-
tions for the problem. We strengthen the formulations using valid
inequalities and variable fixing criteria (that can be applied when
valid upper bounds are available). A heuristic algorithm is devel-
oped to obtain valid upper bounds and to provide good quality so-
lutions for large size instances. Finally, a computational experience
has been performed to compare their utility to solve DSpP using
standard solvers for MIP.

Y. Hinojosa, A. Marin and J. Puerto

The rest of the paper is organized as follows. Section 2 states
the problem, sets the notation and gives an example clarifying the
details of feasible solutions of the problems. Section 3 presents a
first formulation with 3-indexed variables which is the most in-
tuitive at the price of losing efficiency as will be shown in our
computational experiments. Section 4 introduces a straight for-
mulation for (DSpP) which makes use of only one index vari-
ables. Section 5 develops another valid formulation based on ra-
dius variables similar to those already used in Garcia, Labbé, &
Marin (2011), Marin, Nickel, Puerto, & Velten (2009), Marin, Nickel,
& Velten (2010). The most efficient of our three formulations can
handle medium size instances with up to 150 customers. Due to
the difficulty of solving instances of larger sizes, we develop in
Section 6 a heuristic procedure providing good quality solutions of
(DSpP). These solutions can be also used to feed the exact meth-
ods improving their performance by means of the preprocessing
described in Section 7. We present in the Section 8 the compu-
tational results. The paper ends with a section devoted to conclu-
sions and future research.

2. Problem statement

Let A= {1,...,n} be a given set of sites where users are sit-
uated and which is also the set of candidate sites for locating
the centers. For each pair (i, j), i, j € A, let d;; > 0 be the distance
(travel time, cost) from i to j and for each triplet (i, ¢, j), i, ¢, j € A,
let djy; > 0 be the length of the two-leg path i — ¢ — j, that is,
digj = dig + dy;.

Each user i € A has a subset of sites A; € A that is willing to ac-
cept as service centers. The sites in A; are ranked by the customer,
and we use ji <j jp (resp. ji >} j2, j1 =} j2» J1 <} j2, j1 =} j2) to de-
note that i prefers center j; more than (resp. less than, the same
as, more or the same, less or the same) he prefers center j,. User
i will try to visit one of his preferred installed service centers but,
after arriving at it, it could be closed due to a failure and then cus-
tomer i can change his list of preferences once he has moved to the
failed center. Then we use j; <! j, (resp. ji >f jo, j1 =/ j2, j1 <} ja,
Jj1 =} j2) to denote that i, after noticing that center ¢ failed, prefers
center j; more than (resp. less than, the same as, more or the
same, less or the same) he prefers center j,, for all ji, js, ¢ € A;.

We assume that “<{” defines a weak order on the set A; for
each i € A, ¢ € A;. Furthermore, =f is an equivalence relation which
defines a partition «* = {Af(1),..., Al (n{)} of the set A; such that
(i) j1. Jo € AL(t) if jy ={ jp and (ii) j; € A{(t), jo € AL(t') with t <t/
when j; <f jo. Then, for a given user i and center ¢, <f defines a
total order on the set of the equivalence classes ,94‘.

Additionally, let p be the number of centers which can be in-
stalled among the n possibilities.

The problem, named the Dynamically Second-preferred p-center
Problem (DSpP), is to choose at most p elements of A so as each el-
ement can visit at least two acceptable centers and the maximum
sum of distances from any element in A to any of its preferred
centers (among the chosen ones) plus the distance from any of the
preferred centers to any of the centers the user prefers once he is
there is minimized. Note that we assume that the user can visit
any of the most preferred centers and, in case of failure, any of the
most preferred centers from his position, and the objective is to
minimize the maximum of the distances travelled by the users.

We formalize the problem as

max{
icA

max

{di, + max
tearg minAinQ

. Ay’
Jjeargming o

v(DSpP) := raniR {d1}1}

lQl=p
where "arg min“ is the set of elements of A; " Q most preferred by

i, and “arg min‘” is the set of elements of A; N Q most preferred by
i when i is at position ¢.

35

European Journal of Operational Research 307 (2023) 33-47

Example 2.1. Consider six locations (users and candidate centers)
1,..,6 on the real line sited at 0, 1, 2, 5, 8 and 11, respectively (see
Figure 1A), p = 4 and Euclidean distances between the points. As-
sume that when any user i is in a given position, he first prefers his
own position, secondly the closest site at the right and the closest
site at the left (indifferently, and independently of the distance),
then the second closest sites and so on. Also assume that user 1
rejects location 3 (sited at 2) and user 4 rejects location 1 (sited at
0). With the introduced notation we have A = {1, 2, 3,4, 5, 6},

0 1 2 5 8 1
1 0 1 4 7 10
2 1 0 3 6 9
@)=1 5 4 3 0 3 6
8 7 6 3 0 3
1 10 9 6 3 0

and, for instance, Ay =1{2,3,4,5,6}, n3 =4 and &} ={A3(1)=
(3}.43(2) = (2.4}, A3(3) = {5}, A%(4) = {6}).

A feasible solution to problem DSpP is to locate centers 1, 3, 5,
6 sited at 0, 2, 8 and 11 respectively. We see in Figure 1B-1G the
routes that users 1 — 6 could choose. Black-filled nodes are sites
that the user rejects and dashed lines represent maximum paths
traveled by the users. For instance, user 4 sited at 5 (Figure 1E)
could choose the point at the left, center 3 located at 2 and, in case
of failure, he would go to center 5 located at 8 (he does not want
to use center 1 located at 0). But he could also choose the point
at the right, center 5 located at 8 and, in case of failure, he would
go to center 6 located at 11. The maximum distance that could be
traveled by this user is 9 (from point 4 to center 3 and then from
center 3 to center 5). In fact, this is the maximum distance that
any user could travel and the objective value of this feasible solu-
tion.

In order to summarize the information about the preferences of
the users, we will use an n x n matrix for every user. Every row
of this matrix refers to a site where the customer could be, ei-
ther at the beginning or after noticing that the first choice failed.
Columns are also associated with sites. A column with a given en-
try is preferred to columns with greater numbers, and is equally
preferred to columns with the same number (see e.g., the matrix
in Example 2.2). A sign “-” in an entry means that the user is not
willing to use that site.

Example 2.2. Consider the situation described in Example 2.1 and
user 4 located at 5. A matrix of preferences that is compatible with
the given example is

b WN = |
DW= N
WN =N W |
N =N WA
N W U

Now, we slightly modify the preferences of this example to
show that, contrary to what is usual in location problems, open-
ing more centers does not imply smaller objective values. Con-
sider again Example 2.1 but reverse the preferences (assume that
greater numbers mean more preferred sites). Table 1 reports the
optimal solutions for different values of p (assuming that the de-
cision maker is forced to open exactly p centers). Columns 2 to
6 refer to the number of centers forced to be open. Second row
states the opened centers in each optimal solution, whereas rows
3 to 8 state the first and second centers for each user that give the
maximum total distance. For instance, row 4 refers to the second
user and in the second column (5,4) means that when exactly two
centers are opened, the route of maximum length that user 2 will
choose is the one from the position of user 2 to center 5 and then

Y. Hinojosa, A. Marin and J. Puerto

Table 1

Optimal solution of Example 2.2.
p 2 3 4 5 6
Centers 4,5 12,3 1234 12345 123456
User 1 (54) (21 @41 (51) (6,1)
User 2 (54) (1,3) (4,1) (5,1) (6,1)
User 3 (54) (1,3) (1,4) (5,1) (6,1)
User 4 (54) (23) (24 (2,5) (6.2)
User 5 (45) (1,3) (1,4) (1,5) (1,6)
User 6 (45) (1,3) (1,4 (1,5) (1,6)
Optimal value 11 13 16 19 22

to center 4. Notice that the optimal value of the instance increases
with the number of opened centers (see last row in Table 1).

3. Three-indexed formulation

Two-stage location problems (see e.g. Landete & Marin, 2009),
among others, have been formulated by means of binary variables
associated with the possible routes from each origin through the
plants/hubs to the final destination. In our case, a route is given
by three elements: site i, first center ¢ and second center j. Thus
we introduce binary variables x;,; to indicate whether the first and
second centers of user i giving the path of maximum length are ¢
and j, respectively. Note that these variables are only defined for
¢+#jand ¢ gif Jj, since the remaining indices represent paths that
cannot be used in any feasible solution. For each i € A we denote
by I; this set of indices, i.e, [j={(¢.j): teA; jeA. j#¢t <
J}

With these variables, plus the standard variables in location
analysis

-

plus a continuous variable z for the objective function, the problem
is formulated as follows.

if a center is located at site i,

otherwise, VicA,

Vi

(T) min z
st. Yyi=p (1
icA
Z xi(j:] VieA, (2)
(€.J)el;
Z Xitj + Z Xije < Ve VieA tehA, (3)
J:(e.j)el; J:(J.O¢€l;
e+ Y xpy=1 VieA teh, (4)
(h.jel;: he,
[<§1j or «<§h
vi+ 3 xpp <1 VieA jeA, (5)
(t‘.j’)eli:t‘#j.
(=i or (G=fi)n @,y <dy)
YerYi+ Do Xep<2+ D) W

heA;:
(£ (<t j)

VieA, (4,)) el

! ilyels ol =i
. jhel: ¢'=te,

dyyrjp <t

(6)

z> Y digjXi VieA, (7)
(. j)ek

Xij € {0, 1} Vi, (¢,j)el. (8)

yi€{0, 1} VieA. (9)

36

European Journal of Operational Research 307 (2023) 33-47

Constraint (1) states that at most p centers are open. Con-
straints (2) force each site to be assigned a two-leg trip that is
consistent with the preference relationship, and (3) ensures that
those paths go through two sites where centers have been set for-
bidding the use of non-opened centers. To ensure the preferences
of users are satisfied, constraints (4) forbid, when center sited at
¢ is open, assigning user i to a center that is less preferred than
site ¢ as first or second center. Constraints (5) and (6) enforce the
correct computation of the objective function. On the one hand,
(5) forbids second centers less preferred than j for i from ¢ when-
ever j is open and state that in case there exist two second centers,
j and j/, with the same preference for i from ¢ then i must choose
the furthest one (to ensure the worst case behavior of the objec-
tive function in case of ties). On the other hand, (6) forbid paths of
the form i — ¢ — j/, whenever centers ¢ and j are set, ¢’ is equally
preferred to ¢ for i, none of the centers most preferred than j for
i once in ¢ is open and the length d;y; of the path i — ¢/ — j' is
less than the length d;,; of the path i — ¢ — j.

Finally, constraints (7) determine the length of the longest path
and constraints (8) and (9) define the domain of the decision vari-
ables.

Note that if constraints (8) are relaxed to 0 < x;,; < 1 variables
will still take integer values in some optimal solution to the prob-
lem. Indeed, if there exists an optimal solution of the problem
with two different fractional variables 0 < x;; <1 and 0 < x;y <
1, constraints (3) force y, =yj =y, =y = 1. Then, by constraints
(4), (5) and (6), centers ¢, ¢/, j and j* must satisfy (¢ =§ v, jzf' J
and j:f ' (dej = dyy and dyj=dyy) and (dj; = d;yj) respec-
tively. Under these conditions, it is clear that taking x;; = 1 and
Xy = 0 or vice versa gives an alternative optimal solution of the
problem.

A stronger version of Constraints (6) can be used to improve

formulation (T):
Z Z Yn

(' j)el;: hed;:
@=iond, (h#)A(h<t)

Ye+Yyi+ Xipjr <2+

it’j’<d“1) or

é<;(’ or
(HONE £DAGE=IAGE 7)) or
(i<t G OO

VieA, (¢,j)el. (10)

In addition to the forbidden paths in (6), constraints (10) forbid
paths of the form i — ¢’ — j' with ¢’ less preferred to ¢ for i, or ¢’
equally preferred to ¢ for i but j' less preferred to j for i from ¢/,
or ¢/ equally preferred to ¢ for i but j’ less preferred to ¢ for i from
7.

4. Straight formulation

The following formulation aims at representing directly the ob-
jective function using only location variables. To this end, we will
use again the set of location variables previously defined:

{5

plus a continuous variable z for the objective value. Using these
variables our problem can be formulated as follows.

if a center is located at site i,
otherwise,

Yi VieA,

(S) min z (11)
sit. (1), (9)
> ys=2 VieA, (12)
sehA;
z>dyj(ye+y;—1- Z Ys — Z Vs)
seh;r s<ie s:(6,5)elin(s<! j)
VieA, (¢, j)el. (13)

Y. Hinojosa, A. Marin and J. Puerto

Constraints (12) guarantee that each customer will be able to
attend at least two centers. The objective function to be mini-
mized in (11) is bounded from below in constraints (13). Namely,
(13) makes z to take a value greater than or equal to d;,; if all ys
variables with s in the set

{seAi: s<tgyuls: (¢5)el,s <! j}

take value 0. The reason is the following. In the case that y; = 1 for
some s in the previous set, user i will never choose the route from
i to ¢ and then j because s is preferred by i either as first center or
as second center. However, if the route through center s is longer
than or equal to the route through ¢ and j, the bound still applies.
There are two cases in which we can assure that the length of
the route through s is large enough: (i) if s goes after ¢ in the route
and dgs > d,; and (ii) if s is the first stop in the route and dj plus
the minimum length to be added after visiting s is greater than or
equal to d;,;. Therefore, we can modify constraints (13) to obtain

z>dij(ye+y;i—-1- Y ys— Y,

seh: s<it HEE N
dis+6is <dyy; (s<{DA(des=<dy))

ys)VieA, (, j) el

(14)

where for any i € A and s € A;, 6;; represents the minimum length
from center s to any of the centers that user i prefers once he is in
center s, that is,

0 := min (15)
ted;, r#s
rgfr Vreh;, r#s

{ds}.

Finally, we note in passing that the variable z is free although by
(13) it always assumes non-negative values.

5. Radius formulation

We develop now a third formulation for the problem, the so-
called radius formulation. This kind of formulations for discrete
location problems were first used in Cornuéjols, Nemhauser, &
Wolsey (1980), Elloumi et al. (2004), and more recently exploited
e.g. in Garcia et al. (2011), Marin et al. (2009, 2010).

To this end, some previous operations with the data are needed.
We sort the values dy,; Vi€ A, (¢, j) €]; in increasing order and ig-
noring ties. Let

A= (A1 Ag ... Ay

denote the strictly increasing vector and let G be the set {1,...,g}.

Example 5.1. Using the same data as in Example 2.1, we get the
matrices (d;;) for each user i=1,2,3,4,5,6 respectively, where
each row of these matrices refers to the first visited center, ¢, and
each column refers to the second visited center, j,

-1-5811\ /~--36912\ /- ———1013
——-581|[1-14710)[2--58mn
————— ~l3--4710]|21-369
————-81||l----710]||87--69
fffff nfl--—---1w0]{a----9
- ‘w8 - ———-)f11-----
—4--912||87 - ———-[|1110--- -
-53-36[|876--—-]|11109---
~109--6]|8763-9]|111096--
~16----/\1413129--/\111096 3 —

and where '-’ means that the entry does not satisfy the condi-
tions given above. Then A =(1,2,...,13,14,16), g=15 and G =
{1,...,15}.

37

European Journal of Operational Research 307 (2023) 33-47

For this third formulation we will use the same y-variables as
before, plus binary variables

1 if the distance that could be travelled
by some user is at least Ay,
otherwise,

Zk = Vk € G.

0

Using these variables the radius formulation of our problem is

g
(R) min Az + Z(Ak - Ap_1)zg (16)

k=2

st. (1), (9), (12)

<7z, Vk=2,....8 (17)

Ze+ Y s+ Y Yszye+yj—1 VieA (. j) el
sedj: s:(¢,8)el;

< A(s<t])

VkeG: Ak = dilj- (18)

Here the objective function (16) measures the maximum dis-
tance needed by a user if he goes first to his closest center and
then to the next closest center, ties broken arbitrarily. The y-
variables in the left hand side of (18) correspond with centers that
either are preferred by i before ¢ or will be chosen as the second
center in the route after ¢ instead of j. If no site in those con-
ditions exists, then z, will take value 1 provided that ¢ and j are
open. Since by (9) the y-variables are binary we do not have to im-
pose any condition on the z -variables. Constraints (17) guarantee
that if the distance traveled by some user is at least A, then this
user has traveled a distance greater than A,_;. These constraints
are necessary because constraints (18) are not sufficient to guaran-
tee this fact as we can see in the following example.

Example 5.2. Consider again the data of Example 2.1. Without
constraints (17), one optimal solution to (R) for p =4 is to locate
centers 3, 4, 5 and 6 (sited in 2, 5, 8 and 11, respectively), and its
optimal value is 3. Nevertheless, the correct optimal value of (R)
for p=4 is 6 (an optimal solution is given in Fig. 2) and, more-
over, the cost of locating centers 3, 4, 5 and 6 is 8 (see Fig. 3). The
reason for this error is the following.

When k = 7 with A; =7, six different possible combinations of
values (i, ¢, j) satisfy Ay =d;; (see Example 2.1), namely (2,3,5),
(24,5), (3.4,2), (53.2), (54,2), (55,2). The corresponding con-
straints (18) with right hand side 1 are

z7 + Ys= Y3+Ys—1=2z7+y2+Yaz2y3+ys -1

2

si(s<33)v
[(3.5)ebA(s<35)]

2

si(s<34)v
[(4,5)612/\(S<‘2’5)]

2

si(s<34)v
[(4,5)elA(s<42)]

2

si(s<23)v
[(3.5)elsA(s<32)]

2

si(s<24)v
[(4.5)elsA(s<42)

2

s:(s<25)Vv
[5.5)elsA(s<32)]

z7 + Ys2Ya+ys—1=2z74+y2+y3+y12Y4+ys—1

z7 + Ys=Ya+Y2—-1=274+y3+Y5 2y4+y2 -1

z7 + Ys2y3+Y2—1=274+Ys+Ys+Y¥6 2y3+y2—1

z7 + Ys=Va+Y2—1=274+ys+y3 = ya+y2— 1

z7 + Vs=ys+y2—1=2z74+y3+ya+Yy6 =2ys+y2—1

Y. Hinojosa, A. Marin and J. Puerto

BEE
01 2

A Il
11
B user 1
C user 2
D user 3
E user4
F user5
¢ OO
3
Fig. 1. Example of possible travels of users.
A - B . =
n 1 2 5
1
user 1
1
1 L o o yser2
1 1 7/ 7
user 3
user4
userS
user6

3

Fig. 2. Optimal solution to Example 2.1 (Fig. 1) for p = 4.

which do not force z; to take any value since there is always a
variable taking value 1 in the left hand side. A similar effect is
produced when k=1, 2, 5 and 6, and then the objective function
value is Ag + A4 — A7 — Ay =3, reducing in 3 units the objective
value of the solution.

38

European Journal of Operational Research 307 (2023) 33-47

user1

user2

user3

user4

userS

user6

Fig. 3. Solution to Example 2.1 (Fig. 1) corresponding to sites 3-4-5-6.

In what follows, we develop an improvement to be applied to
constraints (18) in formulation (R).

Consider a triplet (i, ¢, j) with (¢, j) € I;. Consider also the value
of k such that Ay = d;,;. Constraint (18) for these values makes z;
to take value 1 except when some y variable with s in the union
of sets

{seAi: s<tegyuls: (¢s)el,s <! j}

takes value 1. To improve this constraint, we can reduce the first
set of indices in this union to this other set

Sii={sehAi: s<ie, {teA: s<it, dx <A} #0},

in which any center s, preferred by i before ¢ such that di; > A,

for all ¢t preferred by i after s, is excluded. Similarly, the second set
can be reduced to this one

Syi={s:(€,5) el s <{ j, dis < Ag}

in which any center s, chosen as the second center in the route,
more preferred by i once i is in ¢ than j verifying d;; > Ay, is ex-
cluded. The resulting constraints (to be used instead of (18)) are

Ze+ Y yszye+yi—1 VieA (6j) el VkeG: Ay =dy;
seS1US,
(19)
Additionally, the following set of valid inequalities can be added
to (R).
Z+ Y. Y=y VieA teA, Vk: di+ 6 =N,

seA;: s<;t‘.
dig+0 <Ay

(20)

where 6;, is calculated as in expression (15).

6. Heuristic procedure

In this section we propose a heuristic approach to obtain an
upper bound of the optimal value of DSpP. In order to present it,
we assume the following notation.

Y. Hinojosa, A. Marin and J. Puerto

For any fixed user i € A we sort the values d;j, V(¢, j) € I;, in in-
creasing order ignoring ties. Let Al = (A}, AL ..., Afgi) denote the
strictly increasing vector and let P,’(be the set of pairs giving the
value Al, that is, P = {(¢.j) € I; : djj = AL}

A pseudocode of this heuristic is shown in the forthcoming
Algorithm 4, that is based on three main steps:

1. Constructing an initial set of open centers, C, verifying that for
each user i€ A, set C contains at least two different centers,
£,] € Ai'

2. Reducing the size of set C.

3. Trying to improve the objective value.

To construct the initial set C we select for each user i € A a value
A, and we proceed as shown in Algorithm 1. The choice of the
1

Algorithm 1: Constructing an initial set of open centers C.
input :
o C =(: Set of open centers
» For each i€ A: A} and P .

Sort in decreasing order A;{_. Let A;{r be the rth sorted value
i ir

and i, the index of the corresponding user.

forr=1tor=ndo ' '

if there exists a pair (¢, j) € B such that ¢ < ¢/ V&' eC
ir r

then

c=cU{e}

1f]<‘ j'Vj ec then

L c=cUlj}

else

if |[A;, NC| < 2 then '

L ¢ =cU{¢} for some ¢ € A;, such that (¢, j) € P .

ozltput: C.

value A’ for each i € A can be done in different ways. For instance,

once a reference index k is fixed, we can take for each i € A its cor-
responding k-index value, Al, or we can compute AP = max; A}(
and consider k; for each i € A as the index s of value Al verifying
that Al < AN < Al

Given a set of open centers C let z(C) = max{d;; : (¢.)) €
I t.jec, t<ie'Ve ec, j<tjVj ec)be the distance traveled
by the user i€ A. If there exists a user i € A such that the set
C does not contain two centers ¢, j € A; then z;(C) = oco. And let
z(C) = max; z;(C) be the objective value given the set of open cen-
ters C. To reduce the size of a given set C we proceed as shown in
Algorithm 2.

Finally, to improve (whenever this is possible) the objective value
we proceed as shown in Algorithm 3. Given a set of open cen-
ters C, let imax(C) € argmax;.4 z;(C) denote a user index that gives
the maximum (worst) distance to be traveled and let iy, (C) €
arg MaXiea\ imax(c)} 2i(C) denote a user index that gives the second
worst distance.

The heuristic algorithm for the DSpP is described below
(Algorithm 4). As mentioned above it consists of a while loop that
modifies (augmenting or reducing) the set of open centers trying
to improve the objective value.

39

European Journal of Operational Research 307 (2023) 33-47

Algorithm 2: Reducing the size of set C.
input :
e C: Set of open centers.
e Z=2(C): Current value of the objective function.

for ccC do
Compute z(C \ {c})
if z(C\{c}) < Z then
L Z=z(C\{c})

c=c

output: C = C\{c}, ¢ andz

Algorithm 3: Trying to improve the objective value.
input :
e C: Set of open centers.
* imax(C) and izpex (C).
* Z=2,..(c)(C): Current objective value.
e p: maximum number of open centers.

Compute the index k such that
Almax(c) <z, @ ©) < Almax(c)
forr_k tor=1do

Select (¢, j) € Pm>(©) and take ¢ = c U {¢, j}
while |C| > p do

| C, ca, za =Reducing the size of C
while |C| > 2 do

C, ¢y, zp=Reducing the size of C
if z;, < z, then

L Za=2p

else

L C=CuU {Cb}

break (while)

if z, < Z then
Z=2q4

| break (for).

output: C and Z

7. Preprocessing

Let zyp be the value of the objective function given by
Algorithm 4. The following valid inequalities can be added to the
three formulations, for all ¢, j € A such that for some i € A, (¢, j) €
I;, ¢ 5;: ¢ for all ¢/ € A;, j ff j' for all j’ € A; verifying that (¢, j') € I;,
and Zyg < d,‘[jl

Ye+y; <1

Additionally, in formulation (T) we can fix to zero the correspond-
ing variables x;,; and X;j,.

On the other hand, if there exists a customer i and a center
teA;, €<isVseA such that

zyp < diy+ min d;
J#LjeA;

]J(Vit#teA;

then one can fix y, = 0 in the three formulations.

Regarding the formulation (R), if A} > zyp, then we can fix vari-
able z; to zero. Note also that AT# = max; Ai] gives a lower bound
of the optimal value and then, we can fix to one all the variables
zi such that Ay < AT

Similarly, in the formulation (T), if d;;; > zyp we can fix to zero
variable x;,;.

Y. Hinojosa, A. Marin and J. Puerto

Algorithm 4: Heuristic.
input :
e C =: Set of open centers
e For each i € A: Af{i and P,ii.
e Z = oo: Current value of the objective function.
e p: maximum number of open centers.

C=Constructing an initial set of open centers.
if |C| < p then
| Compute z=z(C)
else
while |C| > p do
| C, ca, Zq =Reducing the size of C
while |C| > 2 do
C, ¢y, zp=Reducing the size of C
if z, < z, then
L Za=2
else
c=Cu {Cb}
break (while)
L Z=2,
C, z =Trying to improve the objective function value.while z < Z
do
=12
| C, z=Trying to improve the objective function value.
output: C and Z.

8. Computational tests

In this section we report on the results of a series of computa-
tional tests to assess the usefulness of the formulations discussed
in previous sections to solve the DSpP with standard software, and
to compare their performances. All experiments were carried out
with the Gurobi 9.1.1 optimizer, under a Windows 10 environment
in an Intel(R) Core(TM) i7-6700K CPU @ 4.00 GHz 4.01 GHz proces-
sor and 32 GB of RAM. Default values were used for all parameters
of Gurobi. A CPU time limit of 3600 seconds was set.

To carry out the experiment we generate instances in the fol-
lowing way. Sites in the set A are points randomly placed in a
square of size 100 x 100. Distances (d;;) are rounded Euclidean
distances between these points. Each site accepts to be assigned to
each other site with probability 0.8. In order to determine the pref-
erences with respect to the accepted sites, we consider two cases:

1. Random instances. In this case we generate integer num-
bers P(i, ¢, j) ~ [L5]U(0, 1)] so that j; <f jo» when P(i, ¢, j1) <
P(i. ¢, j») and j; ={ j, when P(i, £, j1) = P(i, €, jp).

2. Euclidean instances. In order to have a positive correlation be-
tween distances and preferences, we initially obtain the values
of P(i, ¢, j) sorting in increasing order the distances from a site
¢ to all sites j, removing the sites ¢ and j rejected by i, and as-
signing, for each i and ¢, numbers 1,2... in the given order. Af-
terwards, we slightly perturbate these values (at the same time
creating ties in the preference list) by either adding 3 units to
a value with a probability of 0.4 or subtracting 5 units with
probability of 0.24. Negative numbers are finally replaced with
number 1.

Note that we checked also some instances with different prob-
ability distributions that gave rise to similar computational results.

The study is organized in two phases, each presented in one
subsection. A last subsection is devoted to discussing the number
of open centers and the possibility of distributing them in an al-
ternative way.

40

European Journal of Operational Research 307 (2023) 33-47
8.1. Preliminary results

In this phase n ranges in {25, 50, 75}, whereas p varies in ei-
ther {5,10} (when n =25) or {5, 10,20} (when n € {50, 75}). The
performance of each of the three formulations is tested with and
without preprocessing (Prepr e {Yes, No}) and with and without
dispensation of the initial solution provided by Algorithm 4 to
the solver (InitSole {Yes, No}). Moreover Improv e {Yes, No} with
the meaning depending on the formulation. Specifically, Improv =
Yes means (i) constraints (10) are added to formulation (T), (ii)
constraints (14) are added to formulation (S) and (iii) constraints
(19) and (20) are added to formulation (R). We solve five instances
for each type (random, Euclidean), each dimension (n, p), each for-
mulation and each combination of Prepr, InitSol and Improv, total-
izing 1920 instances.

The results of the preliminary study are summarized in Figs. 4,
5 and 6 for the random instances and in Figs. 7, 8 and 9 for the Eu-
clidean instances. All instances have been solved up to optimality
within the time limit except some instances of the three-indexed
formulation with n =50 and n = 75, where, either the time limit
was exceeded or a feasible solution was not found within the time
limit or the flag “Out of memory” was the output of the solver.
These figures show the average CPU time required to solve the in-
stances. Clearly, the best formulations are (S) and (R) in all con-
figurations of parameters. For Random instances, it seems that the
best combination is Prepr = Yes, Improv = Yes and InitSol = Yes.
For Eucliean instances, there are two configurations with similar
behaviour, namely (i) Prepr = Yes, Improv = Yes, InitSol = Yes
and, (ii) Prepr = No, Improv = Yes and InitSol = No. We will asses
the performance of these combinations on the second phase of our
computational study devoted to larger sized instances.

8.2. Advanced results

The aforementioned best solution methods are com-
pared in a second phase, using larger instances with
n e {100, 125, 150, 175,200} and p < {5,10,20}. As before, we
consider five instances for each dimension (n, p). We solve a total
of 450 instances.

Tables 2 and 3 show the results obtained by using formulations
(S) and (R) with preprocessing, initial solution and valid inequali-
ties, for random and Euclidean instances, respectively. On the other
hand, the results for Euclidean instances using formulations (S) and
(R) only with valid inequalities are given in Table 4. In these tables
the information contained in each row refers to average values of
5 instances.

These tables are organized in two different blocks of columns:
Gap and CPU Time. The block named “Gap” contains three blocks
of two columns, each block reporting different types of gaps. “UB-
Gap” is the (average) percentage gap computed using the objec-
tive values of the best solution obtained by the corresponding for-
mulation, say 7, and the feasible solution found using the heuris-
tic, say vy. Specifically, “UBGap” is computed as [vy — v]/v x 100.
“MIPGap” is the (average) percentage MIP gap returned by Gurobi
when solving the problem with each formulation and “RootGap” is
the (average) percentage gap between the best solution obtained
by the corresponding formulation and the solution obtained in the
root node.

The second big block, named “CPU Time”, is organized in
four blocks, the first one of one column and the other three
of two columns. “HTime” stands for the CPU time spent when
solving the heuristic, “ETime” is the CPU time needed when
solving the problem using the different formulations, being
“TotalTime”="HTime"+“ETime” the total time required for solving
the problem when preprocessing or initial solution are used. Note
that when neither preprocessing nor initial solution are used, To-

Y. Hinojosa, A. Marin and J. Puerto

(S) p=5
200,00
100,00
0,00 .——/

25 50 75

== IMProv. YES w=ge=Iimprov. NO

(R) p=5
200,00
100,00 :
0,00

e IMpProv. YES === improv. NO

(T) p=
3000,00
1500,00
0,00
25 50 75

e IMProv. YES w=@e= Improv. NO

(S) p=10
200,00
100,00 ﬁ
0,00
25 50 75

e IMProv. YES e Improv. NO

(R) p=10
200,00
100,00
0,00
25 50 75

e IMProv. YES ==@==Improv. NO

(T) p=10
4000,00
2000,00
0,00
25 50 75

e MpProv. YES ==@== improv. NO

European Journal of Operational Research 307 (2023) 33-47

(S) p=20
200,00
100,00 %
0,00
25 50 75

= Improv. YES ==@==Improv. NO

(R) p=20
400,00
200,00
0,00
25 50 75

= IMmprov. YES ==@==Improv. NO

(T p=20
600,00
300,00
0,00
2 50 7

= IMmprov. YES e=g@=improv. NO

Fig. 4. Comparing the CPU time for random instances varying Improv e {YES, NO}.

(S) p=
100,00
50,00
0,00
25 50 75

@ Prepr. YES ==g==Prepr. NO

(R) p=
200,00
100,00 :
0,00
25 50 75

== Prepr. YES «==g==Prepr. NO

(T) p=5
3000,00
1500,00 : :
0,00

25 50

~
v

=@ Prepr. YES ==g==Prepr. NO

(S) p=10
100,00
50,00
0,00
25 50 75

w—=Prepr. YES «==g@==Prepr. NO

(R) p=10
200,00
100,00
0,00
25 50 75

i PrEpr. YES weipu Prepr. NO

() p=10
4000,00
2000,00
0,00
2 50 7

=== Prepr. YES ==ge=Prepr. NO

(S) p=20
200,00
100,00 /
0,00
25 50 75

== Prepr. YES e=ge=Prepr. NO

(R) p=20
200,00
100,00
0,00
25 50 75

w—@eePrepr. YES w=ipm=Prepr. NO

() p=20
7000,00
3500,00
0,00
2 50 7

w—g=Prepr. YES === Prepr. NO

Fig. 5. Comparing the CPU time for random instances varying Prepr < {YES, NO}.

41

Y. Hinojosa, A. Marin and J. Puerto

(S) p=5
100,00
50,00
0,00
25 50 75

=@ Init SOIYES ==g=Init SOINO

(R) p=5
200,00

100,00 :
0,00
25 50 75

=== INit SOIYES ==g==Init SOINO

(T p=5
3000,00
1500,00
0,00
25 50 7

=@ Init SOIYES ==@==Init SoINO

(S) p=10
100,00
oo /
0,00

25 50 75

=@ Init SOIYES ==g==Init SOINO

(R) p=10
200,00
100,00 .____“;::::
0,00

25 50 75

=@ Init SOIYES «==@==Init SOINO

(T) p=10
4000,00
2000,00 "”‘l,///‘
0,00

25 50 75

=== Init SOIYES ==g==Init SoINO

European Journal of Operational Research 307 (2023) 33-47

(S) p=20
200,00
100,00 "——‘ﬂ.
0,00
25 50 75

w=@=Init SOIYES ==g==Init SOINO

(R) p=20
400,00
200,00
0,00 "”"
2 50 75

=@ Init SOIYES ==g==Init SOINO

(T) p=20
10000,00
5000,00 .”’,ﬂ'
0,00
25 50 75

=@ Init SOIYES ==g==Init SOINO

Fig. 6. Comparing the CPU time for random instances varying Init Sol € {YES, NO}.

(S) p=5
200,00
100,00 /
0,00
25 50 75

o= IMprov. YES e=g@==Improv. NO

(R) p=5
500,00
250,00
0,00
25 50 75

e IMProv. YES ==ge=Improv. NO

(T) p=5
5000,00
2500,00
0,00
25 50 75

el IMProv. YES e improv. NO

(S) p=10
300,00
150,00 .——/
0,00

25 50 75

=——Improv. YES ==@=Improv. NO

(R) p=10
500,00
250,00 :: :
0,00
2 50 75

(T) p=10
5000,00
2500,00
0,00
25 50 75

e MProv. YES el Improv. NO

(S) p=20
500,00
250,00 ",/"
0,00
25 50 75

= Improv. YES ==g==Iimprov. NO

(R) p=20
800,00
400,00 %
0,00
25 50 75

e IMProv. YES e=ge= Improv. NO

(T) p=20
6000,00
3000,00 ,;;55’
0,00
25 50 75

= Improv. YES ==g==improv. NO

Fig. 7. Comparing the CPU time for Euclidean instances varying Improv € {YES, NO}.

42

Y. Hinojosa, A. Marin and J. Puerto

European Journal of Operational Research 307 (2023) 33-47

(S) p=5 (S) p=10 (S) p=20
200,00 400,00 500,00
100,00 '——/ 200,00 .—/ 250,00
0,00 0,00 0,00
25 50 75 25 50 75 25 50 75

wge= Prepr. YES amgeePrepr. NO

(R) p=5 (R) p=10 (R) p=20
400,00 400,00 600,00
200,00 200,00 / 300,00 /
0,00 0,00 0,00
25 50 75 25 50 75 25 50 75

e Prepr. YES wei@e Prepr. NO

el PrEPr. YES i Prepr. NO

e Prepr. YES wipem Prepr. NO

(T) p=5 (T) p=10 (T) p=20
5000,00 5000,00 5000,00
2500,00 2500,00 ./ 2500,00 /
0,00 0,00 0,00
25 50 75 25 50 75 25 50 75

@ Prepr. YES «wiesPrepr. NO

w@uePrepr. YES wwlePrepr. NO

@ Prepr. YES el Prepr. NO

Fig. 8. Comparing the CPU time for Euclidean instances varying Prepr e {YES, NO}.

(S) p=5 (S) p=10 (S) p=20
200,00 400,00 500,00
100,00 200,00 4 ﬁ 250,00
0,00 0,00 0,00
25 50 75 25 50 75 25 50 75

«=@==Init SOIYES ==g==Init SOINO

w=@==Init SOIYES ==@==Init SOINO

=@~ INit SOIYES ==gp==Init SOINO

(R) p=5 (R) p=10 (R) p=20
400,00 400,00 600,00
200,00 ﬁ 200,00 .——/ 300,00
0,00 0,00 0,00
25 50 75 25 50 75 25 50 75

e NPT SOIYES wmim INit SOINO

e INIT SOIYES e INit SOINO

wuee INit SOIYES ~ wui Init SOINC

(M p=5 () p=10 () p=20
6000,00 6000,00 5000,00
3000,00 / 3000,00 L/(2500,00 /
0,00 0,00 0,00
25 50 75 25 50 75 25 50 75

i [Nt SOIYES i INit SOINO

wipn [Nt SOIYES amsipm Init SOINO

el [Nt SOIYES et Init SOINO

Fig. 9. Comparing the CPU time for Euclidean instances varying Init Sol € {YES, NO}.

talTime and ETime coincide and we only report on one of them.
Finally, “RootTime” stands for the CPU time required to solve the
root node of the branching tree.

One can observe in Table 2 (MIPGap) that instances with sizes
up to n =150 have been solved up to optimality within the time
limit with both formulations. Nevertheless, (R) performs better in
terms of CPU time required to solve the instances. For n = 175, (R)

43

performs better for p =5 regarding both, Gap and CPU time, but
the other way around for p = 10, 20. For larger sizes (n = 200) only
(R) can solve instances, always for p = 5.

Table 3 compares the results obtained on Euclidean instances
with all the potential improvements. These instances are harder to
solve and one can observe that formulation (R) clearly outperforms
(S). Formulation (S) already fails to solve up to optimality some

Y. Hinojosa, A. Marin and J. Puerto

European Journal of Operational Research 307 (2023) 33-47

Table 2
Computational results on the random instances with Prepr = Yes, Improv = Yes and InitSol = Yes.
Gap CPU Time
UBGap MIPGap RootGap Htime ETime TotalTime RootTime
n p (5 (R) S (R) () (R) (S (R) (S) (R) (S) (R)
100 5 4.10 4.10 0.00 0.00 41.82 000 2295 130.12 15.60 153.07 38.55 76.11 12.25
10 5058 50.58 0.00 0.00 2620 152 1157 202.13 104.14 213.70 115.71 166.47 103.18
20 82.82 8282 0.00 0.00 2763 155 2373 225.05 171.69 248.78 195.42 214.33 170.36
125 5 6.26 6.26 0.00 0.00 7634 294 59.83 460.36 26.86 520.19 86.69 428.95 26.47
10 39.83 39.83 0.00 0.00 3031 393 2430 573.29 306.23 597.58 330.53 545.08 301.10
20 9449 9449 0.00 0.00 4558 251 69.31 665.41 511.36 734.72 580.66 595.99 503.85
150 5 1133 1133 0.00 0.00 6342 3.88 12043 116844 202.35 1288.87 322.78 1084.07 193.60
10 52.00 52.00 0.00 0.00 4517 562 4623 1291.57 809.96 1337.80 856.19 1269.09 793.69
20 7438 7438 0.00 0.00 6146 3.16 11657 1333.08 1263.82 1449.65 1380.39 1277.48 1246.64
175 5 4.61 7.23 16.14 0.00 5432 2,02 177.53 2299.54 104.13 2477.07 281.66 172323 74.56
10 4433 1391 0.00 5141 3164 096 86.15 2601.35 289336 2687.49 2979.51 2451.79 731.75
20 95.65 0.00 0.00 89.54 1564 0.00 18458 2586.86 3602.70 2771.44 3787.28 2463.41 0.60
200 5 ** 7.85 * 0.00 o 121 267.20 ** 298.06 o 565.26 ** 239.84
20 *k *k *k *k *k kK 276'34 *k *k *k *k *k *k
Table 3
Computational results on the Euclidean instances with Prepr = Yes, Improv = Yes and InitSol = Yes.
Gap CPU Time
UBGap MIPGap RootGap Htime ETime TotalTime RootTime
n p) (R) (S) (R) (S) (R)) (R) (S (R) (S) (R)
100 5 19.62 19.62 0.00 0.00 4527 269 101.92 342.69 55.41 444.61 157.32 342.06 55.06
10 4298 4298 0.00 0.00 4584 324 28558 409.98 149.75 695.57 435.34 341.12 146.88
20 50.14 50.14 0.00 0.00 4552 277 552.15 436.28 177.51 988.43 729.66 306.24 174.98
125 5 2529 2529 0.00 0.00 2251 339 19095 1042.27 162.08 1233.21 353.03 1027.96 154.88
10 5280 52.80 0.00 0.00 59.14 222 395.28 1244.62 391.47 1639.90 786.76 1046.51 386.70
20 57.06 57.06 0.00 0.00 4490 234 1465.82 131731 462.77 2783.13 192859 1096.71 453.67
150 5 4520 4520 16.00 0.00 36.12 231 52243 2540.69 861.88 3063.12 138431 2073.03 844.39
10 56.10 5742 16.15 0.00 61.27 2.08 1369.36 2878.73 119458 4248.09 2563.95 243576 1180.91
20 6437 6437 0.00 0.00 60.07 054 574496 2353.36 1383.44 8098.31 712840 2013.68 1344.12
175 5 o 1414 ** 3494 1.75 633.90 ** 2100.75 ** 273465 ** 656.36
10 19.21 ** 52.10 ** 0.53 188649 ** 2910.53 ** 4797.02 ** 739.10
20 26.12 ** 3484 ** 0.50 5035.77 ** 2620.58 ** 7656.34 ** 1156.86
200 5 . . o o ok o 1096.10 ** o . ok ok o
Table 4
Computational results on the Euclidean instances with Prepr = No, Improv = Yes and InitSol = No.
Gap CPU Time
UBGap MIPGap RootGap ETime RootTime
n p) (R) S (R)) (R)) (R) (S) (R)
100 5 19.62 19.62 0.00 0.00 100.00 3.22 473.18 234.00 411.70 222.03
10 4298 4298 0.00 0.00 100.00 0.50 431.41 229.68 355.44 225.12
20 50.14 50.14 0.00 0.00 80.00 151 42564 240.08 329.38 235.61
125 5 2529 2529 0.00 0.00 82.67 518 1778.02 583.56 1669.41 569.42
10 5280 52.80 0.00 0.00 56.41 246 1583.90 518.24 1219.16 507.42
20 57.06 57.06 0.00 0.00 80.00 246 1705.12 513.37 114481 502.52
150 5 4520 -0.65 20.00 60.00 47.95 052 3011.20 3048.64 2569.10 880.98
10 57.42 3028 40.00 40.00 60.00 0.54 279346 2908.53 2106.14 1451.82
20 6437 1627 60.00 60.00 80.00 0.27 2966.03 3033.80 1790.85 865.90
175 5 *k kK *k *k *k *k *k *%k *k *k
‘lO *%k *% *k *% *% *%k *% *%k *%k *%
20 * x ok o . o . o o ok
‘10 *%k *% *%k *% *%k *%k *% *%k *%k *%
20 * . o . o ok . wox ok o

instances for n = 150. For larger sizes, (S) does not solve the in-
stances and (R) is able to provide solutions, at least for n = 175,
although not certifying optimality.

Table 4 reports the same comparison with a different config-
uration of parameters. One can observe that its performance is
worse than the one obtained with the previous configuration. Even

44

the instances with n = 150 could not be solved up to optimality
now.

From our experiments one can conclude that the radius for-
mulation (R) outperforms the other ones and that using it with
the preprocessing and the initial solution provided by the heuris-
tic procedure proposed in Section 6 together with the improve-

Y. Hinojosa, A. Marin and J. Puerto

Table 5

Number of centers actually opened.
random instances Euclidean instances
n n

p 25 50 75 100 125 150 25 50 75 100 125 150

5 36 46 48 5 48 48 48 5 5 5 5 5
10 36 48 52 5 52 52 54 6 54 7 6.6 5.5
20 - 48 52 5 52 52 - 6 54 7 6.6 5.5

ments obtained incorporating constraints (19) and (20), instances
with up to n =175 customers can be solved. The maximum total
time spent on solving the heuristic plus the radius formulation is
one hour of CPU time for the random instances and around two
hours for larger Euclidean instances.

8.3. An alternative way of distributing centers

In Table 5 we show the average number of centers that are ac-
tually open for each combination of parameters (n, p) where op-
timality is proven considering the random and the Euclidean in-
stances. As mentioned in Example 2.2 we can see that in this prob-
lem, contrary to what is usual in location problems, opening more
centers does not imply smaller objective values and that the num-
ber of opened centers does not reach the maximum number p in
most of the instances for p =10 and p = 20. Indeed, for the in-
stances considered in this work, it seems that it suffices consider-
ing values up to p = 10.

This observation led us to consider an alternative distribution
of centers that may locate up to two centers per point. In this way
one can model the possibility of installing more available centers
(up to p), giving service with the second center located at the same
place that the first, unavailable, center. Examples of this policy can
be found, for instance, when installing cash machines in the bank
offices, bikes in bike-sharing dock stations and many other cases.
To cope with this situation we double the size of candidate sites
for locating centers and we assume that the favorite site of a cus-
tomer when he is in the first, preferred open center, is a center
located at the same point. Then, we slightly modify the formula-
tions as follows.

Let A={1,...,n} be the set of sites for users and let A’ =
{1,....,n,n+1,...,2n} be the set of candidate sites for locating
centers, being site n + j the replica of site j. In the different for-
mulations we distinguish between these two index sets and we
update variables and parameters accordingly,

« we consider Al =A;U{n+j: je A} CA as the subset of sites
that user i € A is willing to accept as service centers;

 we suppose variables x;, ; defined for i € A, (¢, j') € I] where,

[={.j): t'eAl jeA, j#t ¢ <ij})foralieAh;

variables y; are defined for i € A;

distances are duplicated in the natural way, that is, dj,j = dj;

for icA, tcA, jeA and ¢/ €A, j €A, such that ¢/ e {¢,n+

¢, j efin+j;

European Journal of Operational Research 307 (2023) 33-47

Table 6
Number of centers actually opened assuming that up to two of service facilities
can be placed at the same location.

random instances Euclidean instances

n n
p 25 50 75 100 125 150 25 50 75 100 125 150

42 44 42 46 5 4.6
68 82 78 88 82 64
- 82 78 88 82 64
24 26 22 32 4 3.4
34 44 4 44 42 32
- 44 4 44 42 32

5 44 4 42 5 4.8
T 10 56 64 84 76 72
20 - 64 84 76 72
5 24 22 22 4 3.6
D 10 3 34 42 38 36
20 - 34 42 38 36

FNECNECNE

o preferences verify that (i) the level of preference of i for j’
when i is at ¢/ is the same as the level of preference of i
for j when i is at ¢ for j e {j,n+j} and ¢ e {¢,n+¢}, (ii)
ji € {j.n+ j} is the favorite site of i when i is at j}, € {n+ j, j}.

Using these modifications, we obtain the results given in
Tables 6 and 7. In Table 6 block named “T” stands for the total
number of actual open centers and the block named “D” repre-
sents the number of different locations for the open centers, that
is to say, two centers sited at the same point count 2 in block “T”
but 1 in block “D”.

Note that, for p = 10, 20, each average of block “D” is approxi-
mately equal to half of the corresponding average of block “T”, that
is to say, in almost all the cases either a site is not used or it is
used to install two centers. This is natural, since once the user has
visited a center, his favorite one and the one with the minimum
distance (so the best one for the objective function) is the cen-
ter placed at the same site. As a result, the number of total open
centers may increase, with respect to the number of open centers
of Table 5, to reach an even number. Although a similar behav-
ior can be observed in the case p =5, since here there is an odd
number of available centers, not always the twin centers can be lo-
cated. The aforementioned phenomenon of equal optimal solutions
for the cases p=10 and p =20 is also present here. More open
centers bring more options to the users that carry larger distances
in the objective function. The trade-off between freedom for the
users and total distance for the decision maker fixes the number
of open centers in a value that will not change when p increases.

Another fact that merits attention is that in the case p =5 there
is a total number of open centers (Table 6, block “T”) less than the
number of open centers when only one can be installed (Table 5).
Again, this is probably due to the fact that 5 is an odd number.
Sometimes it is better for the objective value to install 2 +2 cen-
ters in two sites than locating 2 + 2 + 1 in three sites.

These phenomena can be observed in Fig. 10 where the solution
obtained when solving one of the generated instances for n = 25
and p =5 is depicted. In this figure, blue points stand for the user
and potential center sites, red points represent open center sites,
green point is the user that gives us the value of the objective
function and lines symbolize the path followed by this user to the
first most preferred open center (black line) and from this one to

-Il’-zlr)cl:nZage of improvement on the objective function value when two different centers can be placed at the same loca-
tion.
Random instances Euclidean instances
n n
p 25 50 75 100 125 150 25 50 75 100 125 150

5 25.10 15.51 11.78 8.18 4.60 6.50
10 25.10 19.61 23.33 1545 15.68 15.97
20 - 19.61 23.33 1545 15.68 16.35

2280 15.60 7.01 7.13 2.03 5.82
29.62 1886 1506 17.66 12.63 14.22
- 18.86 1506 17.66 12.63 14.22

45

Y. Hinojosa, A. Marin and J. Puerto

0 10 100

European Journal of Operational Research 307 (2023) 33-47

100
90

80

30

70 80 90 100

Fig. 10. Solution for an instance with n =25 and p =5 (or p = 10) when locating two different centers in the same site is not allowed (left) and when it is allowed (right) .

the most preferred open center for the user when he is in the first
center (red line). In the left figure locating two different centers
in the same site is not allowed. In this case, the optimal solution
is obtained when five centers are open (centers sited at location
5, 11, 21, 22 and 24). The maximum sum of the distance from any
user to any of its preferred open centers plus the distance from
this center to any of the open centers the user prefers once he is
there is obtained when user sited at 13 goes to center sited at 11
(the most preferred center of the five open centers) and, in case of
failure, he goes from this position to center sited at 22 (the most
preferred center of the remaining four when he is at position 11)
and its value is 85 distance units (d.u.).

In the right figure we assume that two centers can be located
at the same position. In this last case the optimal number of open
centers is a total of four (two centers sited at location 11 and two
centers at location 22). The maximum sum of the distance from
any user to any of its preferred open centers plus the distance from
this center to any of the open centers the user prefers once he is
there is obtained when user sited at 8 goes to center sited at 22
(one of the most preferred center of the four open centers) and, in
case of failure, he uses the second center located at the same po-
sition and its value is 67 d.u. Here, we can observe that if we open
a fifth center in any other position the value of the objective func-
tion increases. For instance, suppose that a center sited in position
24 is open. In this case, the value of the objective function would
be 71, since user sited at 8 has the same preference for center at
position 24 than for centers sited at position 22 and then, he can
go first to the only center sited at 24 (at a distance of 67 d.u.) and,
in case of failure, he goes from position 24 to center sited a 22 (at
a distance of 4 d.u. from position 24).

In both cases (only one or two centers can be opened at the
same location), the optimal solution obtained for p=10 is the
same as for p=5. When only one center can be opened at the
same location opening more than five centers is not optimal be-
cause the preferences of the users. For instance, suppose that we
also open center sited at 3 then, the value of the objective func-
tion would be 89. This value is reached because user 8 first goes
to center sited at 5 (at a distance of 72 d.u.) which is the most
preferred open center for user 8 and, in case of failure, he goes to
center sited at 3 (at a distance of 17 d.u. from position 5) which is
the most preferred open center for user 8 when he is at location
5. A similar situation happens when any other center or group of
centers are added to the list of open centers. In the case that two
centers are allowed to open in the same location, the optimal solu-
tion obtained for p =5 is also optimal for p = 10 but, in this case,
there is another alternative optimal solution opening a total of 10
centers (two centers sited at locations 11, two at location 22, two
at site 24, two at site 12 and two centers located at site 6).

Finally, Table 7 shows the average improvements (in percent-
age) on the objective function value of the alternate way of dis-

46

tributing the centers with respect to the objective function value of
the original one. We can observe that allowing two different cen-
ters to be located in the same site gives rise to a benefit that, in
the solved instances, ranges from 2% for n = 125 and p = 5 to close
to 30% for n =25 and p = 10.

9. Conclusions

This paper introduces the Dynamically Second-preferred p-
center Problem. This is a new problem that extends the p-next
center problem in Albareda-Sambola et al. (2015a) considering a
worse case situation, customers’ preferences and subsets of ac-
cepted service centers for each customer. The DSpP aims at choos-
ing at most p centers so that each demand point can visit at least
two acceptable centers and the maximum sum of distances from
any demand point to any of its preferred centers plus the distance
from any of the preferred centers to any of the centers the user
prefers once he is there is minimized. This new model responds to
those situations where the decision of placing the service centers
and trips are supported by a planner but once these centers are
located the trips to visit the centers are chosen by the customers.
Using this model the planner assumes a risk-averse attitude and
tries to hedge against misbehavior of customers that may choose
the longest trips to maximize their revenue.

We have presented three different formulations based on differ-
ent spaces of variables: (i) Three-indexed formulation, (ii) Straight
formulation, and (iii) Radius formulation. Each one exhibits inter-
esting features that make it worth to be considered and evaluated.
From our experiments we conclude that the Radius formulation (R)
outperforms the other two formulations allowing to solve to opti-
mality instances with up to n = 175 customers. Going beyond this
size requires further analysis looking for strengthening of the cur-
rent formulations or new ones in other spaces of variables, and
perhaps, the use of better heuristic algorithms that provide good
solutions in short CPU times. Both subjects, although very interest-
ing, are beyond the scope of this paper and may be the topic of a
follow up paper.

Acknowledgments

This research has been partially supported by the Agencia Es-
tatal de Investigacién (AEI) and the European Regional Develop-
ment’s funds (ERDF): PID2020-114594GB-C21; Regional Govern-
ment of Andalusia: projects CEI-3-FQM331, FEDER-US-1256951, and
P18-FR-1422; Fundacién BBVA: project NetmeetData (Ayudas Fun-
dacion BBVA a equipos de investigacién cientifica 2019). Alfredo
Marin has been supported by Spanish Ministry of Science and
Innovation under project PID2019-110886RB-100. Part of this re-
search was conducted while he was on sabbatical at Universidad
de Sevilla, Spain.

Y. Hinojosa, A. Marin and J. Puerto

References

Albareda-Sambola, A, Diaz,]. A., & Fernandez, E. (2010). Lagrangean duals and exact
solution to the capacitated p-center problem. European Journal of Operational
Research, 201, 71-81.

Albareda-Sambola, M., Hinojosa, Y., Marin, A., & Puerto,]. (2015a). When centers
can fail: A close second opportunity. Computers & Operations Research, 62, 145-
156.

Albareda-Sambola, M., Hinojosa, Y., & Puerto,]. (2015b). The reliable p-median
problem with at-facility service. European Journal of Operational Research, 245,
656-666.

Berman, O., Krass, D., & Menezes, M. (2013). Location and reliability problems on a
line: Impact of objectives and correlated failures on optimal location patterns.
Omega, 41, 766-779.

Brimberg, J., Maier, A., & Schdbel, A. (2021). When closest is not always the best:
The distributed p-median problem. Journal of the Operational Research Society,
72(1), 200-216.

Calvete, H., Dominguez, C., Galé, C., Labbé, M., & Marin, A. (2019). The rank pric-
ing problem: Models and branch-and-cut algorithms. Computers & Operations
Research, 105, 12-31.

Canovas, L., Garcia, S., Labbé, M., & Marin, A. (2007). A strengthened formulation
for the simple plant location problem with order. Operations Research Letters,
35, 141-150.

Casas-Ramirez, M., & Camacho-Vallejo, J. F. (2017). Solving the p-median bilevel
problem with order through a hybrid heuristic. Applied Soft Computing, 60,
73-86.

Casas-Ramirez, M. S., Camacho-Vallejo, J. F, & Martinez-Salazar, 1. A. (2018). Ap-
proximating solutions to a bilevel capacitated facility location problem with
customer’s patronization toward a list of preferences. Applied Mathematics and
Computation, 319, 369-386.

Cornejo Acosta,]. A. Garcia Diaz,], Menchaca-Méndez, R., & Menchaca-Mén-
dez, R. (2020). Solving the capacitated vertex k-center problem through the
minimum capacitated dominating set problem. Mathematics, 8(9), 1551.

Cornuéjols, G., Nemhauser, G. L., & Wolsey, L. A. (1980). A canonical representation
of simple plant location problems and its applications. SIAM Journal on Algebraic
Discrete Methods, 1, 261-272.

Das, T., Sridharan, V., & Gurusamy, M. (2019). A survey on controller placement in
SDN. IEEE Communications Surveys & Tutorials, 22, 472-503.

Daskin, M. S. (2000). A new approach to solving the vertex p-center problem to op-
timality: Algorithm and computational results. Communications of the Operations
Research Society of Japan, 45, 428-436.

Diaz, J. A, Luna, D. E., Camacho-Vallejo, J. F, & Casas-Ramirez, M. S. (2017). GRASP
and hybrid GRASP-tabu heuristics to solve a maximal covering location problem
with customer preference ordering. Expert Systems with Applications, 82, 67-76.

Dominguez, C., Labbé, M., & Marin, A. (2021). The rank pricing problem with ties.
European Journal of Operational Research, 294, 492-506.

Dominguez, C., Labbé, M., & Marin, A. (2022). Mixed-integer formulations for the
capacitated rank pricing problem with envy. Computers & Operations Research,
140, 105664.

Drezner, Z. (1987). Heuristic solution methods for two location problems with un-
reliable facilities. Journal of the Operational Research Society, 38, 509-514.

Elloumi, S., Labbé, M. & Pochet, Y. (2004). A new formulation and resolution
method for the p-center problem. INFORMS Journal on Computing, 16, 84-
94.

Espejo, 1., Marin, A., Puerto, P, & Rodriguez-Chia, A. M. (2009). A comparison of
formulations and solution methods for the minimum-envy location problem.
Computers & Operations Research, 36(6), 1966-1981.

Garcia, S., Labbé, M., & Marin, A. (2011). Solving large p-median problems with a
radius formulation. INFORMS Journal on Computing, 22, 546-556.

47

European Journal of Operational Research 307 (2023) 33-47

Hanjoul, P.,, & Peeters, D. (1987). A facility location problem with clients’ preference
orderings. Regional Science and Urban Economics, 17, 451-473.

Hansen, P.,, Kochetov, Y., & Mladenovi¢, N. (2004). Lower bounds for the uncapaci-
tated facility location problem with user preferences. In Les Cahiers du GERAD
g-2004-24. HEC Montreal.

Herrera, R., Kalcsics,]., & Nickel, S. (2007). Reliability models for the uncapacitated
facility location problem with user preferences. In Operations research proceed-
ings (pp. 135-140). Springer, Berlin, Heidelberg.

Jaeger, M., & Goldberg, J. (1994). A polynomial algorithm for the equal capacity
p-center problem on trees. Transportation Science, 28, 167-175.

Kariv, O., & Hakimi, S. L. (1979). An algorithmic approach to network location prob-
lems Part I: The p-centers. SIAM Journal of Applied Mathematics, 37, 513-538.
Khuller, S., & Sussmann, Y. J. (2000). The capacitated k-center problem. SIAM Journal

on Discrete Mathematics, 13, 403-418.

Killi, B. P. R. (2018). On placement of controllers and hypervisors in software defined
networks. Indian Institute of Technology Guwahati Doctoral dissertation.

Killi, B. P. R, & Rao, S. V. (2016). Controller placement with planning for failures
in software defined networks. In 2016 IEEE international conference on advanced
networks and telecommunications systems (ANTS) (pp. 1-6). IEEE.

Killi, B. P. R, & Rao, S. V. (2017). Capacitated next controller placement in soft-
ware defined networks. IEEE Transactions on Network and Service Management,
14, 514-527.

Kramer, R., lori, M., & Vidal, T. (2020). Mathematical models and search algo-
rithms for the capacitated p-center problem. INFORMS Journal on Computing, 32,
444-460.

Landete, M., & Marin, A. (2009). New facets for the two-stage uncapacitated facility
location polytope. Computational Optimization and Applications, 44, 487-519.
(2019). In G. Laporte, S. Nickel, & F. Saldanha da Gama (Eds.), Location science.

Springer. ISBN 978-3-030-32176-5

Lopez-Sanchez, A. D., Sanchez-Oro,]., & Hernandez-Diaz, A. G. (2019). GRASP and
VNS for solving the p-next center problem. Computers & Operations Research,
104, 295-303.

Mari¢, M., Stanimirovi¢, Z., & Milenkovi¢, N. (2012). Metaheuristic methods for solv-
ing the bilevel uncapacitated facility location problem with clients’ preferences.
Electronic Notes in Discrete Mathematics, 39, 43-50.

Mari¢, M., Stanimirovi¢, Z., Milenkovi¢, N., & Djeni¢, A. (2015). Metaheuristic ap-
proaches to solving large-scale bilevel uncapacitated facility location problem
with clients’ preferences. Yugoslav Journal of Operations Research, 25, 361-378.

Marin, A., Nickel, S., Puerto, J., & Velten, S. (2009). A flexible model and efficient
solution strategies for discrete location problems. Discrete Applied Mathematics,
157(5), 1128-1145.

Marin, A., Nickel, S., & Velten, S. (2010). An extended covering model for flexible
discrete and equity location problems. Mathematical Methods of Operations Re-
search, 71(1), 125-163.

Mladenovic, N., Labbé, M., & Hansen, P. (2003). Solving the p-center problem with
tabu search and variable neighborhood search. Networks, 42, 48-64.

Ozsoy, F. A., & Pinar, M. c. (2006). An exact algorithm for the capacitated vertex
p-center problem. Computers & Operations Research, 33, 1420-1436.

Quevedo-Orozco, D. R, & Rios-Mercado, R. Z. (2015). Improving the quality of
heuristic solutions for the capacitated vertex p-center problem through iterated
greedy local search with variable neighborhood descent. Computers & Operations
Research, 62, 133-144.

Scaparra, M. P, Pallotino, S., & Scutella, M. G. (2004). Large-scale local search heuris-
tics for the capacitated vertex p-center problem. Networks, 32, 241-255.

Vasil'ey, 1. L., Klimentova, K. B., & Kochetov, Y. A. (2009). New lower bounds for the
facility location problem with clients’ preferences. Computational Mathematics
and Mathematical Physics, 49, 1010-1020.

Vasilyev, I, Klimentova, X., & Boccia, M. (2013). Polyhedral study of simple plant
location problem with order. Operations Research Letters, 41, 153-158.

http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0005
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0007
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0008
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0010
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0011
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0012
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0013
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0015
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0016
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0017
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0019
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0020
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0026
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0027
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0039
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0042
http://refhub.elsevier.com/S0377-2217(22)00747-0/sbref0043

	Dynamically second-preferred -center problem
	1 Introduction
	2 Problem statement
	3 Three-indexed formulation
	4 Straight formulation
	5 Radius formulation
	6 Heuristic procedure
	7 Preprocessing
	8 Computational tests
	8.1 Preliminary results
	8.2 Advanced results
	8.3 An alternative way of distributing centers

	9 Conclusions
	Acknowledgments
	References

