Contents lists available at ScienceDirect

Food Control

journal homepage: www.elsevier.com/locate/foodcont

Biodistribution of ²¹⁰Po in seafood and risk assessment for consumers in Sweden

F. Piñero-García^{a,*}, R. Thomas^a, J. Mantero^{a,b}, E. Forssell-Aronsson^{a,c}, M. Isaksson^a

^a Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, SE-413 45, Sweden

^b Department of Applied Physics II, ETSA, University of Seville, Seville, 41012, Spain

^c Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, SE-413 45, Sweden

ARTICLE INFO

Keywords: Natural radioactivity Seafood Polonium Alpha spectrometry Committed effective dose

ABSTRACT

Seafood consumption per capita, in Sweden, is larger than World and European average. Although, 36% of Swedes consume seafood meals at least two times per week, the Swedish National Food Agency advises the necessity to increase this ratio. Seafood is one of the main entrances of ²¹⁰Po in the human food chain. Due to the high radiotoxicity, the intake of ²¹⁰Po plays an important role in the human health, even in extremely small quantities. In this study, 114 seafood samples representing 52 different marine species were analyzed. The biodistribution of ²¹⁰Po in seafood species were not uniformly distributed being higher in digestive system and gonads, and lower in seafood muscle. The activity concentration of ²¹⁰Po in fish ranged between 0.01 and 26 Bq/ kg with an average value of 4 Bq/kg, whereas in shellfish fluctuated between 0.1 and 239 Bq/kg, with a mean concentration of 18 Bq/kg. In general, the activity concentration of ²¹⁰Po in processed products were lower than fresh samples due to the decay of ²¹⁰Po from seafood capture to purchase. However, in boiled seafood such as Norway Lobster, with short elapsed time from collection to purchase, the boil samples presented higher activity concentration of 210 Po than fresh products. The results of the study showed that the annual intake of 210 Po via seafood consumption in Sweden exponentially increased by age and it was slightly higher in males than females. As a result, the annual committed dose ranged from 60 to 154 $\mu Sv,$ with an average value of 103 \pm 31 $\mu Sv,$ being controlled by fish consumption below 14 years old and by seafood consumption above 14 years old. Finally, the committed effective dose could increase up to 479 μ Sv/y for population group with higher seafood consumption.

1. Introduction

The entrance of radionuclides into the food chain is a problem for both humans and animals which can lead to adverse health effects. For humans, the ingestion of radionuclides contributes to approximately 12% of the annual effective dose received by population, 2.4 mSv (UNSCEAR, 2000). The effective dose largely depends on the food habits as well as the origin of the food. Most of the ingestion dose received by humans is due to the uptake of naturally occurring radionuclides from the progeny of uranium and thorium series (UNSCEAR, 2000). The radiotoxicity of the radionuclides with the major impact in food consumption decreases in the order 210 Po $> ^{228}$ Ra $> ^{210}$ Pb $> ^{226}$ Ra $> ^{234}$ U $> ^{238}$ U $> ^{224}$ Ra $> ^{235}$ U (UNSCEAR, 2000).

Dietary habits change as a consequence of population mixing and due to varying availability of food products will also affect the ingested radionuclides. In Sweden, the consumption of seafood has increased during the last decades (Martin et al., 2016; SCB, 2015). In 2019, approximately 123 777 tonnes of edible seafood were available in Sweden representing a per capita consumption of 27 kg (RISE, 2021). The worldwide seafood consumption per capita in 2019 was 20.5 kg. Swedish National Food Agency advices eating fish and shellfish at least two or three times per week due to the health benefits; however, RISE reports concluded that "Swedish consumption of seafood still does not reach the dietary advice of the Swedish National Food Agency" (RISE, 2021).

Seafood plays an important role in the entrance of ²¹⁰Po in the human food chain since it is strongly accumulated in the marine biota (IAEA, 2017; Struminska-Parulska et al., 2013). For that reason, in countries with high consumption of seafood, ²¹⁰Po is the main radionuclide responsible for the committed effective dose from food, representing approximately 80% of the total (Diaz-Frances et al., 2016; Komperød et al., 2019; Piñero-García et al., 2022). ²¹⁰Po is an alpha emitter (5.3 MeV) and one of the most radiotoxic radionuclides,

* Corresponding author. *E-mail address:* francisco.pinero.garcia@gu.se (F. Piñero-García).

https://doi.org/10.1016/j.foodcont.2023.109789

Received 9 December 2022; Received in revised form 17 March 2023; Accepted 11 April 2023 Available online 19 April 2023

0956-7135/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Table 1

Committed effective dose coefficient of 210 Po (μ Sv/Bq) for internal exposure via ingestion (food or water). Data is given as mean value and P95 of the annual consumption (kg/y) of fish and shellfish for different age groups, and also separated by gender.

Age	Age $e_{210}{}_{Po}$ $(\mu Sv/Bq)$	Woman			Man			All					
		Fish		Shellfish		Fish		Shellfish		Fish		Shellfish	
		mean	P95	mean	P95	mean	P95	mean	P95	mean	P95	mean	P95
4 y	4.4	14	46	2	5	16	55	2	6	15	52	2	6
8–11 y	2.6	20	90	2	10	18	99	1	7	19	95	2	9
14 y	1.6	20	97	2	15	30	130	2	10	25	114	2	13
17 y	1.2	12	65	3	17	22	108	5	25	17	87	4	21
18–30 y		19	55	5	14	25	81	6	20	22	69	5	17
31–44 y		26	82	7	20	27	99	7	25	26	86	7	22
45–64 y		32	91	8	23	35	115	9	29	34	103	8	26
65–80 y		38	98	10	25	47	110	12	27	42	102	11	26
> 18 y		30	86	7	21	34	107	9	27	31	95	8	24

moreover, it can pass through biological membranes favouring its bioaccumulation due to its affinity to proteins (IAEA, 2017). Consequently, ²¹⁰Po plays an important role in the human health, even in extremely small quantities (trace levels) (Diaz-Frances et al., 2016).

Hence, this study aims to analyse ²¹⁰Po in fresh seafood as well as various processed seafood (dried, brined, canned and frozen), and also to analyse the biokinetics of ²¹⁰Po by studying different organs and tissues. The obtained results will be valuable for conducting a more realistic dose assessment, since not all parts of seafood are eaten. Furthermore, the processing of food could further dilute or concentrate the activity concentration of ²¹⁰Po, thus, this will also be studied.

2. Materials and methods

Seafood samples representing 52 different marine species were purchased from various vendors available for the Swedish population; a total of 114 samples were analyzed. Whenever possible fish and shellfish were acquired in their fresh, frozen, canned, brined and/or dried forms, considering also different origins and brands. For each sample, approximately 0.5-4 kg were collected, sampling at least ten individuals per marine species and three cans of the same brand per canned sample. After the collection, the individuals of each marine species as well as the cans or processed products of the same brand were combined as individual samples. In general, the determination of ²¹⁰Po was carried out in meat samples, therefore, non-consumed parts, such as shells from shrimps or bones and skins from fishes, were removed. However, in fresh samples of Atlantic mackerel (Scomber scombrus, fish), Norway lobster (Nephrops norvegicus, crustacean) and Great Atlantic scallop (Pecten maximus mollusk), organs and tissues were dissected to study the biodistribution of ²¹⁰Po in fish and shellfish. All the samples were weighed, and oven dried at 80 °C to minimize the loss of polonium during the

where $\begin{cases} A_{2^{10}Po} \text{ is the activity concentration of } ^{210}Po \text{ refers to fresh weigh } [Bq/kg_{f.w.}] \\ M_i \text{ is the annual consumption of seafood for Swedish population group } (kg/y) \\ e_i \text{ is the effective dose coefficient of } ^{210}Po [\mu Sv/Bq] \end{cases}$

drying (IAEA, 2017). Moreover, the moisture content was determined. The determination of ²¹⁰Po was done 7 days after the sampling date at the latest to reflect the real intake of ²¹⁰Po by seafood consumption and to minimize the ²¹⁰Po decay and in-growth of ²¹⁰Po from ²¹⁰Pb. ²¹⁰Po determination by alpha spectrometry was performed in an aliquot of 0.25–4 g of dried sample. To assess the chemical yield and calculate the activity concentration of ²¹⁰Po, the samples were spiked with ²⁰⁹Po (ca. 50 mBq). The internal standard was prepared with a certified standard solution of ²⁰⁹Po (Eckert & Ziegler® Isotope Products, USA, Easy microwave digestion system (Milestone S.R.L., Italy). For that, 5 mL of nitric acid (HNO₃, 65%, Fisher Scientific[™]; UK), 5 mL of distilled water and 2 mL of hydrogen peroxide (H2O2, 35%, Chem Lab nv, Belgium) were used. The microwave acid digestion procedure was 15 min of ramp time, 15 min of step time and 1800 W. After the acid digestion, the samples were diluted in 1 L with distilled water. Then, polonium was concentrated by co-precipitation of iron (III) using 30 mg of Fe³⁺ carrier and adjusting the pH between 8 and 9 with ammonia solution (25%, Fisher ScientificTM; UK) to get the hydroxide precipitation (Fe(OH)₃). The iron carrier solution was prepared by iron (III) chloride hexahydrate (Fisher ScientificTM; UK). The precipitate was collected, dried, and later dissolved in 30 mL of HCl (1.5M, prepared by HCl, 37% Fisher Scientific[™]; UK) together with 150 mg of L-ascorbic acid (Sigma-Aldrich, USA) to carry out the self-deposition of Po on copper discs at 80 $^{\circ}$ C during 4h. The activity concentration of 210 Po on the copper discs were measured by alpha-particle spectrometry. Further details regarding the radiometric characterization as well as the validation and the analytical quality control of the radiometric determination are found in previous publications (Piñero-García et al., 2021, 2022).

reference number 1895-42). The samples were digested using an Ethos

Finally, assessment of the committed effective dose from seafood ingestion during one year for different gender and age groups in the Swedish population was calculated using the effective dose coefficient for internal exposure via ingestion from International Commission on Radiological Protection publication 119 (ICRP, 2012), and the following equation:

$$E\left(\mu Sv / y\right) = \sum A_{210}{}_{Po} \bullet M_i \bullet e_{210}{}_{Po}$$

Table 1 shows the effective dose coefficient of ²¹⁰Po (ICRP, 2012) together with the average and the 95th percentile (P95) of the annual consumption of fish and shellfish for the different age groups and divided for women, men and the entire population (Livsmedelsverket, 2006, 2012, 2018).

Table 2

Activity concentration of ²¹⁰Po in seafood (mBq/kg_{f,w}). All activity concentrations refer to fresh weight and they are shown with an uncertainty of one standard deviation (coverage factor k = 1). Additionally, Latin name and information about the type of samples are provided. Processed samples refer to samples in canned or brined.

Sample	Latin name	Product	²¹⁰ Po (mBq/
		type	kg _{f.w.})
Algoe: Keln	Laminaria angustata	Dried	1080 ± 101
Algae: Keip	Saccharina iaponica	Dried	1980 ± 191 787 ± 100
Algae: Seasoned laver	Pornhara	Dried	787 ± 100 903 ± 100
Atlantic cod	Cadus morbua	Erech	903 ± 109
Atlantic cod	Gadus morhua	Fresh	109 ± 9 1000 ± 16
Atlantic cod	Gadus morhua	Fresh	1090 ± 10 122 ± 4
Atlantic cod	Gadus morhua	Fresh	122 ± 4 1370 ± 45
Atlantic berring	Chunea harengus	Fresh	1050 ± 8
Atlantic herring	Chinea harengus	Fresh	961 ± 12
Atlantic herring	Chinea harengus	Fresh	901 ± 12 923 ± 27
Atlantic herring	Chinea harengus	Processed	<100
Atlantic herring	Chinea harengus	Processed	116 ± 23
Atlantic herring	Chinea harengus	Processed	167 ± 26
Baltic herring	Chipea harengus	Fresh	2350 ± 105
	membras		
Atlantic mackerel	Scomber scombrus	Frozen	643 ± 91
Atlantic mackerel	Scomber scombrus	Processed	<100
Atlantic mackerel	Scomber scombrus	Processed	5340 ± 242
Atlantic mackerel	Scomberscombrus	Processed	246 ± 28
Atlantic mackerel	Scomber scombrus	Fresh	1930 ± 83
Atlantic salmon	Salmo salar	Fresh	13 ± 1
(farm) ^a			
Atlantic salmon (wild) ^b	Salmo salar	Fresh	170 ± 7
Caviar: Atlantic cod	Gadus morhua	Processed	203 ± 48
Caviar: European	Engraulis encrasicolus	Processed	2060 ± 248
anchovy			
Caviar: Mackerel	Scomber scombrus	Processed	221 ± 39
Atlantic			
Caviar: Tuna Skipjack	Katsuwonus pelamis	Processed	2150 ± 206
Char	Salvelinus spp	Fresh	<100
Clam: Common edible	Cerastoderma edule	Fresh	10700 ± 467
cockle			
Clam: Japanese carpet	Ruditapes	Fresh	$239000 \pm$
shell	philippinarum		6910
Clam: Japanese carpet	Ruditapes	Fresh	$124000 \pm$
shell	philippinarum	_	6370
Clam: White clam	Meretrix lyrata	Frozen	2070 ± 251
Crab: Brown crab	Cancer pagurus	Boiled	19400 ± 1130
Crab: Brown crab	Cancer pagurus	Bolled	$52/0 \pm 395$
(atials)	Parallinodes	Bolled	735 ± 97
(SUCK)	Dortunus haanii	Drogogod	620 1 40
crab	r ontunus nuunu	FIOCESSEU	030 ± 40
Furopean anchovy	Fnoraulis encrasicolus	Processed	26000 ± 1010
Furopean anchovy	Engraulis encrasicolus	Processed	10900 ± 784
European hake	Merluccius merluccius	Fresh	10500 ± 701 1150 ± 46
European pilchard	Sardina pilchardus	Processed	794 ± 63
(sardine)			
European pilchard	Sardina pilchardus	Processed	17300 ± 713
(sardine)	1		
European pilchard	Sardina pilchardus	Processed	851 ± 68
(sardine)			
European plaice	Pleuronectes platessa	Fresh	1300 ± 20
European plaice	Pleuronectes platessa	Fresh	246 ± 5
European plaice	Pleuronectes platessa	Fresh	1370 ± 16
European plaice	Pleuronectes platessa	Fresh	1230 ± 24
European plaice	Pleuronectes platessa	Fresh	1300 ± 33
European sprat	Sprattus sprattus	Processed	968 ± 154
European sprat	Sprattus sprattus	Processed	856 ± 141
European sprat	Sprattus sprattus	Processed	1440 ± 228
European sprat	Sprattus sprattus	Processed	1230 ± 84
European sprat	Sprattus sprattus	Processed	328 ± 28
Greater weever	Trachinidae draco	Fresh	<100
Lake herring	Coregonus artedi	Frozen	<100
Lake whitefish	Coregonus	Frozen	871 ± 56
N 1 - 1	clupeaformis		00000 + 5
Mussel: Blue mussel	Mytilus edulis	Frozen	36300 ± 1610
Mussel: Blue mussel	Mytilus edulis	Frozen	35800 ± 1800
mussel: Blue mussel	mytuus eaulis	Processed	52900 ± 3940

Table 2 (continued)

Sample	Latin name	Product	²¹⁰ Po (mBq/
		гуре	кg _{f.w.})
Mussel: Blue mussel	Mytilus edulis	Processed	15000 ± 871
Mussel: Blue mussel	Mytilus edulis	Fresh	73000 ± 5480
Mussel: Blue mussel	Mytilus edulis	Fresh	36500 ± 1220
Mussel: Blue mussel	Mytilus edulis	Fresh	10000 ± 975
Mussel: Chilean mussel	Mytilus chilensis	Frozen	11700 ± 577
Mussel: Chilean mussel	Mytilus chilensis	Frozen	4670 ± 389
Mussel: Chilean mussel	Mytilus chilensis	Processed	11400 ± 790
Mussel: Chilean mussel	Mytilus chilensis	Processed	3630 ± 353
Mussel: New Zealand	Perna canaliculus	Frozen	6080 ± 434
mussel			4050 . 400
Norway lobster	Nephrops norvegicus	Fresh	1950 ± 409
Norway lobster	Nephrops norvegicus	Boiled	5900 ± 436
Norway lobster	Nephrops norvegicus	Boiled	4370 ± 314
Octopus	Octopus vulgaris	Processed	1120 ± 170
Oyster: Pacific cupped	Crussosirea gigas	Fresh	44300 ± 1770
Oyster Oyster: Pacific cupped	Crassostrea gigas	Fresh	27600 ± 1300
Ovster: European flat	Ostrea edulis	Fresh	8360 ± 760
ovster	va valad		1900 ± 700
Pike-perch	Sander lucioperca	Fresh	496 ± 25
Pike-perch	Sander lucioperca	Fresh	236 ± 9
Razor shells	Solenidae	Processed	2460 ± 221
Red swamp crawfish	Procambarus clarkii	Processed	602 ± 94
Red swamp crawfish	Procambarus clarkii	Processed	367 ± 40
Red swamp crawfish	Procambarus clarkii	Processed	100 ± 17
Red swamp crawfish	Procambarus clarkii	Processed	576 ± 54
Roe: Atlantic cod	Gadus morhua	Fresh	676 ± 124
Roe: Atlantic herring	Clupea harengus	Processed	259 ± 27
Roe: Lumpfish	Cyclopterus lumpus	Processed	<100
Saithe	Pollachius virens	Fresh	390 ± 29
Saithe	Pollachius virens	Fresh	562 ± 18
Scallop: American sea	Placopecten	Frozen	743 ± 51
scallop	magellanicus		
Scallop: American sea	Placopecten	Frozen	558 ± 50
scallop	magellanicus		
Scallop: Great Atlantic scallop	Pecten maximus	Fresh	5970 ± 428
Scallop: Yesso scallop	Patinopecten vessoensis	Fresh	799 ± 62
Shrimp: Giant tiger	Penaeus monodon	Frozen	<100
prawn			
Shrimp: Northern prawn	Padalus borealis	Frozen	<100
Shrimp: Northern prawn	Padalus borealis	Frozen	6600 ± 257
Shrimp: Northern prawn	Padalus borealis	Frozen	200 ± 26
Shrimp: Northern prawn	Padalus borealis	Frozen	2150 ± 115
Shrimp: Northern prawn	Padalus borealis	Frozen	<100
Shrimp: Northern prawn	Padalus borealis	Frozen	<100
Shrimp: Northern prawn	Padalus borealis	Frozen	443 ± 38
Shrimp: Northern prawn	Padalus borealis	Processed	604 ± 146
Shrimp: Northern prawn	Padalus borealis	Processed	2570 ± 175
Shrimp: Northern prawn	Pandalus borealis	Boiled	29800 ± 951
Shrimp: Whiteleg shrimp	Penaeus vannamei	Frozen	<100
Shrimp: Whiteleg shrimp	Penaeus vannamei	Frozen	<100
Squid: European flying squid	Todarodes sagittatus	Fresh	592 ± 53
Squid: Longfin squid Squid: Northern	Loligo spp Illex illecebrosus	Processed Frozen	$\begin{array}{c} 929\pm158\\ 244\pm17 \end{array}$
shortfin squid	Cominai	Due e 1	<100
Surimi	Surimi	Processed	<100
Tuna	I RUNNUS ODESUS	Fresh	6210 ± 482
Tuna Skipjack	Katsuwonus pelamis	Processed	9330 ± 439 14200 ± 622
Tuna Skipjack	Katsuwonus petunits	Processed	14200 ± 023
тапа экірјаск	Rusuwonus petunits	i iocesseu	10000 ± 000
		(continu	ed on next page)

Table 2 (continued)

Sample	Latin name	Product type	²¹⁰ Po (mBq/ kg _{f.w.})
Tuna Skipjack Tuna Skipjack Tuna Skipjack	Katsuwonus pelamis Katsuwonus pelamis Katsuwonus pelamis	Processed Processed	5650 ± 255 22100 ± 1190 5310 ± 336
Tuna (longfin)/ albacore	Thunnus alalunga	Frozen	390 ± 61
Tuna (longfin)/ albacore	Thunnus alalunga	Processed	426 ± 160
Tuna (Yellowfin) Wakame	Thunnus albacares Undaria pinnatifida	Fresh Processed	$\substack{<100\\778\pm120}$

^a (Heldal et al., 2019).

^b (Komperød et al., 2019).

3. Results and discussions

3.1. Activity concentration of ²¹⁰Po in seafood

Table 2 shows the activity concentration of ²¹⁰Po in seafood samples, whereas Fig. 1 summarizes the results of the activity concentration of ²¹⁰Po (mean \pm SD) clustering fish and shellfish samples by group of species (clam, oyster, lake fish, etc.) or product (caviar). For that, the average values presented in Fig. 1 were calculated considering the samples of each cluster with activity concentration higher than MDA and presented together with the standard deviation of each cluster. The activity concentration of ²¹⁰Po was higher than the minimum detectable activity (MDA, 100 mBq/kg_{f.w.}) in 88% of the seafood samples analyzed. The lowest activity concentration of ²¹⁰Po was found in farm Atlantic Salmon from Norway (13 \pm 1 mBq/kg_{f.w.}) (Heldal et al., 2019), whereas the highest activity concentration of ²¹⁰Po was measured in a clam sample of Japanese carpet shell (239 \pm 14 Bq/kg_{f.w.}) dredged by hand in the North zone of the Bay of Biscay (FAO27.VIII sub-A). On one hand,

the activity concentration of ²¹⁰Po in shellfish ranged between 0.1 Bq/kg and 239 Bq/kg_{f.w.}, with an average value of 18 Bq/kg_{f.w.}. On the other hand, the activity concentration of ²¹⁰Po in fish was between 0.01 and 26 Bq/kg_{f.w.} with a mean value of 4 Bq/kg_{f.w.}.

High activity concentration of 210 Po was detected in suspension feeders such as Japanese carpet shell (Ruditapes philippinarum), blue mussel (Mytilus edulis) and ovster (Crassostrea gigas), and zooplankton feeders such as European anchovy (Engraulis encrasicolus), sardine (Sardina pilchardus), Baltic herring (Clupea harengus membras) and Atlantic mackerel (Scomber scombrus). Those results demonstrate that ²¹⁰Po bioaccumulation in marine environment is higher in primary producers and primary consumers than top predators (Bustamante et al., 2002; Carvalho, 2011; Hansen et al., 2022). However, one exception, is the high ²¹⁰Po concentrations found in different samples of tuna, both fresh bigeve tuna (Thunnus obesus) and canned skipiack tuna (Katsuwonus pelamis). Tuna is a top predator with a diet rich in ²¹⁰Po, including small fish such as mackerel and herrings, as well as zooplankton. Therefore, their diet is rich in ²¹⁰Po and their metabolism favours the bioaccumulation of ²¹⁰Po in tuna organs and tissues (Carvalho, 2011; IAEA, 2017).

In general, the activity concentration of 210 Po in processed products such as frozen seafood was lower than 210 Po concentration in fresh products of the same species, probably due to 210 Po decay as a result of the elapsed time from capture to purchase of the processed products. However, boiled samples, with low elapsed time from capture to purchase, such as Norway lobster presented with higher 210 Po activity concentration than fresh samples, highlighting that even if polonium is volatile, cooking process could also increase the concentration of 210 Po due to polonium remains bound to the tissues or organs and the reduction of water content. In addition, the results of boiled Northern prawn also pointed out this trend, having the highest activity concentration of 210 Po detected in processed shrimps.

Fig. 1. Average activity concentration of ²¹⁰Po in fish and seafood species. Fish and shellfish samples have been clustered by group of species or products, considering those samples with activity concentration of ²¹⁰Po above MDA. Data is given by mean value together with the SD of each cluster. For those clusters represented by just one sample (Saithe, European hake, Razor shells and Octopus), Figure shows the activity concentration of ²¹⁰Po in the sample with an uncertainty of one standard deviation (coverage factor k = 1).

Fig. 2. Annual intake of ²¹⁰Po via seafood consumption in Sweden, given by age and gender.

Table 3

Activity concentration of ²¹⁰Po detected in different dissected organs and tissues from Atlantic mackerel, Great Atlantic scallop and Norway lobster (mBq/kg_{f.w.}). All activity concentrations refer to fresh weight and they are shown with an uncertainty of one standard deviation (coverage factor k = 1).

	²¹⁰ Po (mBq/kg _{f.w.})				
Atlantic mackerel (Scomber scombrus)					
Bones	4290 ± 257				
Digestive system	76900 ± 7220				
Gills	2930 ± 110				
Gonads	110000 ± 11100				
Heart	22100 ± 2150				
Liver	79500 ± 4620				
Muscle	1930 ± 83				
Kidney	29500 ± 2730				
Skin	6550 ± 565				
Norway lobster (Nephrops norvegicus)					
Gills	9170 ± 951				
Gonads	450000 ± 39700				
Heart	4270 ± 2620				
Hepatopancreas	6340 ± 2770				
Intestines	5100 ± 2260				
Muscle	2110 ± 410				
Stomach	26000 ± 2980				
Great Atlantic scallop (Pecten maximus)					
Adductor muscle	5970 ± 855				
Coral	18500 ± 2950				
Gills	36300 ± 4280				
Mantle skirts	6570 ± 978				
Visceral mass	160000 ± 18200				

Fig. 2 displays the average values of the annual intake of ²¹⁰Po in Sweden by age and gender. ²¹⁰Po intake was calculated based on the mean values of seafood consumption in Sweden (Table 1) and the average value of the activity concentration of ²¹⁰Po in fish and shellfish. The annual intake of ²¹⁰Po from seafood ingestion varied from 28 Bg to 348 Bg with a mean value of 156 \pm 102 Bg. The annual intake of 210 Po from seafood in Sweden exponentially increased by age and it was slightly higher in males than females (Fig. 2). In Europe, the estimated annual intake of ²¹⁰Po from ingestion of water and food is around 14-135 Bq (IAEA, 2017). Furthermore, UNSCEAR reported a worldwide annual intake of ²¹⁰Po from ingestion (both water and food) in infants (1 year old), children (10 year old) and adults (>18 year old) of 21, 39 and 58 Bq, respectively (IAEA, 2017; UNSCEAR, 2000). The results presented in the current investigation showed that children in Sweden reached the worldwide annual intake of ²¹⁰Po only considering seafood ingestion. In addition, the same tendency occurred in adult population, however, with higher yearly intake of about 88 \pm 26 Bq. Really, the annual intake of ²¹⁰Po is higher in countries or regions with high consumption of seafood such as Japan (225 Bq), Seville (Spain, 375 Bq) or Portugal (400 Bq) (Diaz-Frances et al., 2016). Though, in some regions with low consumption of seafood, high intake of ²¹⁰Po had been reported such as Northern Sweden (Lapland, 900 Bq) or Northwest Canada (1200 Bq) as a result of the high bioaccumulation of ²¹⁰Po in the typical food chain of these territories: Non-vascular plants (Lichen, mosses): Reindeer: Human (Diaz-Frances et al., 2016).

3.2. Biokinetic distribution of ²¹⁰Po in seafood

Table 3 shows the results of the activity concentration of ²¹⁰Po in tissues and organs of seafood species analyzed: Atlantic mackerel (*Scomber scombrus*, fish), Norway lobster (*Nephrops norvegicus*,

Fig. 3. Activity concentration of ²¹⁰Po detected in different organs and tissues in three types of seafood (Bq/kg). All activity concentrations refer to fresh weight. Left: Atlantic mackerel (*Scomber scombrus*). Middle: Norway lobster (Nephrops Norvegicus). Right: Great Atlantic scallop (*Pecten maximus*).

Fig. 4. Committed effective dose from seafood consumption during one year by age and gender. Top: Values based on average values of seafood consumption. Bottom: Values based on 95th percentile of seafood consumption.

crustacean) and Great Atlantic scallop (*Pecten maximus* mollusk), while Fig. 3 summarizes the results. These species represent different trophic levels in the marine food web. Great Atlantic scallop is a primary consumer and suspension feeder (phytoplankton, microscopic algae, bacteria, dead organic matter and/or small organisms out of the water column) (Sealifebase, 2022). Norway lobster is an omnivorous crustacean feeding on other crustaceans, molluscs, polychaete worms, and/or carrion (Institute of Marine Research (Norway), 2022). Whereas Atlantic mackerel is a pelagic fish with a diet rich on zooplankton and small fish (HELCOM, 2013).

The biokinetic distribution of ²¹⁰Po in the marine biota analyzed was not uniformly distributed. The activity concentration of ²¹⁰Po ranged as follow: i) Atlantic mackerel between 1.9 ± 0.1 Bq/kg_{f.w.} (muscle) and 110 ± 11 Bq/kg_{fw} (gonads) with an average value of 37 Bq/kg_{fw}; ii) Norway lobster from 2.1 \pm 0.1 Bq/kg (muscle) to 450 \pm 40 Bq/kg_{f.w.} (gonads), with a mean value of 72 $Bq/kg_{\rm f.w.}$ and iii) Great Atlantic scallop 7 \pm 1 Bq/kg (adductor muscle) – 160 \pm 18 Bq/kg_{f.w.} (visceral mass), with an average value of 45 Bq/kg_{f.w}. In the three species, high ²¹⁰Po concentrations were detected in organs and tissues from the digestive system and gonads, while low ²¹⁰Po content was measured in muscle tissues (see Fig. 3). For instance, the activity concentration of ²¹⁰Po in Atlantic Mackerel was 40 times higher in the digestive system than in the muscle whereas for Great Atlantic Scallop the ²¹⁰Po in visceral mass was 27 times higher than in adductor muscle; however, Norway Lobster ²¹⁰Po concentration was approximately 12 times higher in stomach than muscle tissues. The results support that the intake of ²¹⁰Po in the marine food web is via biota diet and the bioaccumulation is influenced by their metabolism and different biological processes (Bustamante et al., 2002; Carvalho, 2011; Hansen et al., 2022; IAEA, 2017). In addition, the high concentration of ²¹⁰Po in the gonads is probably related to the accumulation of protein in the egg and the affinity of polonium to proteins (IAEA, 2017). However, further investigations are needed to identify the biological processes controlling

the bioaccumulation of ²¹⁰Po in gonads and the radiological impact on the genetic material, also mentioned elsewhere (IAEA, 2017). On the other hand, ²¹⁰Po bioaccumulation in the marine environment is a good indicator of the trophic level position of the biota in the food web (Carvalho, 2011), being lower at upper trophic levels such as Atlantic mackerel than primary consumers such as Great Atlantic scallop (see Table 3 and compare ²¹⁰Po levels in muscle tissues).

3.3. Committed effective dose

Fig. 4 shows the results of the committed effective dose from seafood consumption during one year from different age groups, and also specified for females and males. Data is given both for mean and P95 annual seafood consumption in Sweden. The average committed effective dose for Swedish population ranged from 60 µSv to 154 µSv, with an average value of 103 \pm 31 μ Sv. The results highlight that committed effective dose higher than 120 µSv was found in the youngest population group (4 years old) because of the high dose coefficient (3.7 times higher than the ²¹⁰Po dose coefficient for adults) and persons older than 45 years old, due to the high consumption of seafood. The minimum dose was measured in the population group of 17 years old, due to the lowest consumption of seafood. The committed effective dose was controlled by fish consumption below 14 years old, whereas the major contribution to the committed effective dose came from shellfish consumption in people older than 14 years old. The radiological impact of ²¹⁰Po in males was slightly higher than females, except for the population group of 8-11 years old, where the consumption of seafood was higher for women.

Considering the 95th percentile (P95), the committed effective dose could raise between 249 μ Sv and 479 μ Sv, with an average value of 366 μ Sv, reaching the highest values on population groups below 11 years old (>400 μ Sv/y). UNSCEAR reported a worldwide exposure to natural radiation from uranium and thorium progeny ranging between 120 and 240 μ Sv/y (UNSCEAR, 2000). Therefore, in Sweden only the intake of ²¹⁰Po by seafood reflects the worldwide exposure to natural radiation, highlighting the importance of the monitoring of seafood to control the radiological impact of ²¹⁰Po on human food chain.

4. Conclusion

This study provided valuable data for better understanding of the radiological impact of ²¹⁰Po on human food chain to stakeholders, scientific community as well as consumers. The baseline data available in Sweden regarding radioactivity levels on seafood consumed was extended allowing to carry out a more realistic dose assessment. The highest activity concentration of ²¹⁰Po was detected in Japanese carpet shell (Ruditapes philippinarum, fresh samples), blue mussel (Mytilus edulis, fresh, frozen and canned samples), oyster (Crassostrea gigas, fresh samples), northern prawn (Pandalus borealis, boiled sample), European anchovy (Engraulis encrasicolus, canned) and skipjack tuna (Katsuwonus pelamis, canned samples). Therefore, the consumption of suspension feeders, zooplankton feeders and tuna should be reduced to decrease the intake of ²¹⁰Po by seafood consumption. In addition, in order to minimize the committed effective dose received by seafood consumption, tissues and organs from the digestive system and gonads should be removed before consumption due to the high levels of ²¹⁰Po detected. The average committed effective dose for Swedish population ranged from 60 µSv to 154 μ Sv, with an average value of 103 \pm 31 μ Sv. Moreover, the dose assessment showed that for Swedish population with higher consumption of seafood the committed effective dose could reach values above 400 μ Sv/y. Therefore, the monitoring of ²¹⁰Po in seafood is necessary to minimize the radiological impact in Swedish population, in particular, below 4 years old and above 45 years old considering that they were the populations groups with higher values of the committed effective dose.

CRediT authorship contribution statement

F. Piñero-García: Conceptualization, Methodology, Formal analysis, Investigation, Writing – original draft, Funding acquisition. R. Thomas: Investigation, Resources, Writing – review & editing. J. Mantero: Investigation, Writing – review & editing, E. Forssell-Aronsson: Resources, Writing – review & editing, Supervision, Funding acquisition, Supervision. M. Isaksson: Resources, Writing – review & editing, Supervision, Funding acquisition, Supervision, Funding

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

The authors want to thank to Swedish Radiation Safety Authority (SSM), Wilhelm och Martina Lundgrens Vetenskapsfond and NKS Nordic nuclear safety research for the kind support.

References

- Bustamante, P., Germain, P., Leclerc, G., & Miramand, P. (2002). Concentration and distribution of 210Po in the tissues of the scallop Chlamys varia and the mussel Mytilus edulis from the coasts of Charente-Maritime (France). *Marine Pollution Bulletin*, 44(10), 997–1002. https://doi.org/10.1016/s0025-326x(02)00135-2
- Carvalho, F. P. (2011). Polonium (210Po) and lead (210Pb) in marine organisms and their transfer in marine food chains. *Journal of Environmental Radioactivity*, 102(5), 462–472. https://doi.org/10.1016/j.jenvrad.2010.10.011
- Diaz-Frances, I., Mantero, J., Diaz-Ruiz, J., Manjon, G., & Garcia-Tenorio, R. (2016). (2) (1)(0)Po in the diet at Seville (Spain) and its contribution to the dose by ingestion. *Radiation Protection Dosimetry*, 168(2), 271–276. https://doi.org/10.1093/rpd/ ncv019
- Hansen, V., Mosbech, A., Riget, F. F., Sogaard-Hansen, J., Bjerregaard, P., Dietz, R., Sonne, C., Asmund, G., Boknaes, N., Olsen, M., Gustavson, K., Boertmann, D.,

Fabricius, S. D., Clausen, D. S., & Hansen, A. S. (2022). Background (210)Po activity concentrations in Greenland marine biota and dose assessment. *Science of the Total Environment*, 806(Pt 1), Article 150508. https://doi.org/10.1016/j. scitotenv.2021.150508

- HELCOM. (2013). HELCOM red list species information sheets (SIS) fish (HELCOM red list fish and lamprey species expert group 2013, issue. HELCOM.
- Heldal, H. E., Volynkin, A., Komperod, M., Hannisdal, R., Skjerdal, H., & Rudjord, A. L. (2019). Natural and anthropogenic radionuclides in Norwegian farmed Atlantic salmon (Salmo salar). *Journal of Environmental Radioactivity*, 205–206, 42–47. https://doi.org/10.1016/j.jenvrad.2019.05.002

IAEA. (2017). The environmental behaviour of polonium (technical reports series, issue. IAEA. ICRP. (2012). ICRP Publication 119: Compendium of dose coefficients based on ICRP Publication 60. Annals of the ICRP, 41(1), 1–130. https://doi.org/10.1016/j. icrp.2012.06.038

Institute of Marine Research (Norway). (2022). Topic: Norway lobster.

- Komperød, M., Piñero García, F., Guðnason, K., Kämäräinen, M., Roos, P., Kiel Jensen, L., & Kristin Skjerdal, H. (2019). Natural radioactivity in nordic fish and shellfish – summary report 2018. NKS-416.
- Livsmedelsverket. (2006). Livsmedels- och näringsintag bland barn i Sverige (Riksmaten barn 2003, Issue. https://www.livsmedelsverket.se/globalassets/matvanor-halsa-mil jo/kostrad-matvanor/matvaneundersokningar/riksmaten-_-barn_2003_livsmedels _och_naringsintag_bland_barn_i_sverige1.pdf.
- Livsmedelsverket. (2012). Riksmaten vuxna 2010–11 Livsmedels- och näringsintag bland vuxna i Sverige. Resultat från matvaneundersökning utförd 2010–11. https://www. livsmedelsverket.se/globalassets/publikationsdatabas/rapporter/2011/riksmaten_ 2010_20111.pdf.
- Livsmedelsverket. (2018). Riksmaten ungdom 2016-17 Livsmedelskonsumtion bland ungdomar i Sverige. Issue: Livsmedelverkets rapportserie.
- Martin, M., Oliveira, F., Dahlgren, L., & Thornéus, J. (2016). Environmental implications of Swedish food consumption and dietary choices. i. S. miljöinstitutet). https://www.ivl. se/download/18.34244ba71728fcb3f3f9ee/1591705616368/C181.pdf.
- Piñero-García, F., Thomas, R., Mantero, J., Forssell-Aronsson, E., & Isaksson, M. (2021). Radiological impact of naturally occurring radionuclides in bottled water. *Food Control*, 130, Article 108302, 130.

Piñero-García, F., Thomas, R., Mantero, J., Forssell-Aronsson, E., & Isaksson, M. (2022). Concentration of radionuclides in Swedish market basket and its radiological implications. *Food Control*, 133, Article 108658.

- RISE. (2021). Svensk konsumtion av sjömat. http://ri.diva-portal.org/smash/get/diva2: 1603845/FULLTEXT02.pdf.
- SCB. (2015). Jordbruksstatistisk sammanställning 2015 med data om livsmedel tabeller [Yearbook].
- Sealifebase. (2022). Pecten maximus.
- Struminska-Parulska, D. I., Borylo, A., Skwarzec, B., & Fabisiak, J. (2013). Polonium Po-210, uranium (U-234, U-238) and plutonium (Pu-238, Pu239+240) bioaccumulation in marine birds. In Proceedings of the 16th international conference on heavy metals in the environment. 1. ARTN3400410.1051/e3sconf./20130134004.
- UNSCEAR. (2000). Sources and effects of ionizing radiation (UNSCEAR 2000 report to the general Assembly, with scientific annexes, issue. U. Nations http://www.unscear.org/ docs/publications/2000/UNSCEAR_2000_Report_Vol.Lpdf.