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ABSTRACT

In this work, the morphology of nematic capillary nanobridges in slit pores sepa-
rated by a vertical distance D will be characterised by Monte Carlo simulations for
oblate molecules nematogen modeled by the Gay-Berne potential. Previous studies
on droplets show that the molecules are arranged homeotropically at the nematic-
vapor interface and form spherical droplets with an annular disclination located in
their equatorial plane. In the presence of pores with attractive substrates that favor
homeotropic anchoring, the formation of nanobridges characterized by anchoring
angles that decrease with increasing particle-substrate interaction intensity is ob-
served. When the orientational field in the nanobridge is analyzed, the formation
of an annular disclination of topological charge +1/2 located in the plane perpen-
dicular to the z axis that passes through the center of mass of the nanobridge is
observed for small D. However, when considering higher values of D, a change to a
biaxial orientational profile within the nanobridge is observed, where now the annu-
lar disclination is arranged in a plane perpendicular to one direction of the xy plane.
These results are indicative of the existence of an orientational phase transition for
an intermediate D value between a uniaxial and a biaxial orientational configuration
in the capillary nanobridge.
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1. Introduction

The long-range orientational order of nematic liquid crystals can be easily frustrated
by the presence of boundary surfaces, such as walls or interfaces. The interplay be-
tween the elastic distortions, surface tension and anchoring allows for many different
configurations in which the observation of topological defects is widespread [1]. The
characterization of these states is interesting not only from a fundamental point of
view, but because of their possible applications. As an example, the nematic droplets
have been extensively studied in the last years [2–13]. They have been proposed as key
ingredients for applications as privacy windows and other electro-optic devices [14–20].
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In this paper we address the configuration of capillary bridges confined in slit cap-
illaries. The motivation for this work is a recent experimental and theoretical work
[21] on 5CB capillary bridges on air in a slit pore formed by parallel glass surfaces
with homeotropic anchoring conditions. This work reports different nematic config-
urations in the capillary bridge by tuning its diameter-to-height aspect ratio Γ and
shape, which can be either barrel-like or hourglass-like. So, for large Γ a ring de-
fect is observed, while a point-defect structure is observed for small Γ. On the other
hand, the defects are either hyperbolic for hourglass-like bridges or radial for barrel-
like bridges. Our goal is to study this phenomenology via molecular simulations. For
this purpose, we have considered the Gay-Berne model for nematogens [22] . This
model has been used to model realistic liquid crystals. For example, the Gay-Berne
model with (κ, κ′, µ, ν) = (4.4, 20, 1, 1) has been used to parametrize the calamitic p-
terphenyl liquid crystal [23,24], and (0.345, 0.2, 1, 2) for the triphenylene core discotic
model [25,26]. On the other hand, the phase diagram of the Gay-Berne model has been
studied extensively [27–32]. For prolate molecules, the effect on the phase diagram of
κ and κ′ has been studied in Refs. [33–35]. Regarding oblate molecules, most of the
simulation studies focus on the nematic-columnar phase transition [25,36–39].

The paper is organized as follows. Section 2 is devoted the computer simulation
methodology to generate capillary nanobridges. In Section 3 we describe the principal
findings of our simulations. We end up the paper with a discussion of our results and
main conclusions.

2. Methodology

2.1. Potential model

The Gay-Berne potential [22] describes the intermolecular interactions in nematogen
fluids by a suitable modification of the Lennard-Jones potential:

Uij(rij ,ui,uj) = 4ε(r̂ij ,ui,uj)
[

ρ−12
ij − ρ−6

ij

]

(1)

with

ρij =
rij − σ(r̂ij ,ui,uj) + σ0

σ0
(2)

where ui is the unit vector along the symmetry axis of particle i, rij = |ri − rj | is the
distance along the intermolecular vector rij joining the centers of mass of particles i
and j, and r̂ij = rij/rij . The anisotropic contact distance, σ(r̂ij ,ui,uj), and the depth
of the interaction energy, ε(r̂ij ,ui,uj), depend on the orientational unit vectors, the
length-to-breath ratio of the particle, κ = σee/σss, and the energy depth anisotropy,
κ′ = ǫee/ǫss, which are both defined as the ratio of the size and energy interaction
parameters in the end-to-end (ee) and side-by-side (ss) configurations, respectively.
With these definitions, κ > 1 corresponds to prolate particles while κ < 1 corresponds
to oblate particles. Their expressions are given in terms of an arbitrary length scale,
σ0, and an arbitrary energy scale, ǫ0:

σ(r̂ij ,ui,uj)

σ0
=

[

1−
χ

2

(

(r̂ij · ui + r̂ij · uj)
2

1 + χ(ui · uj)
+

(r̂ij · ui − r̂ij · uj)
2

1− χ(ui · uj)

)]

−1/2

(3)
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and

ε(r̂ij ,ui,uj)

ǫ0
= [ǫ1(ui,uj)]

ν × [ǫ2(r̂ij,ui,uj)]
µ, (4)

where

ǫ1(ui,uj) = [1− χ2(ui · uj)
2]−1/2, (5)

ǫ2(r̂ij ,ui,uj) = 1−
χ′

2

[

(r̂ij · ui + r̂ij · uj)
2

1 + χ′(ui · uj)
+

(r̂ij · ui − r̂ij · uj)
2

1− χ′(ui · uj)

]

, (6)

χ = (κ2 − 1)/(κ2 + 1) and χ′ = [(κ′)1/µ − 1]/[(κ′)1/µ + 1]. Here σ0 is the side-by-side
intermolecular collision diameter, and ǫ0 is [2κ/(κ2 + 1)]ν times the minimum inter-
molecular potential energy between two molecules in the side-by-side configuration.
As in the original paper by Gay and Berne [22], we choose µ = 2 and ν = 1. With
this election, the key parameters are the length-to-breadth geometrical ratio κ and κ′,
which plays an important role in the formation of ordered phases, as well as the ne-
matic anchoring on the nematic-vapor phase [40,41]. So, if κ ≤ κ′, the nematic anchors
homeotropically to the nematic-vapor interface, and random-planar otherwise.

The interaction between the slit pore of width D along the z axis and the particle
i located at a height zi is given by

Uw,i(zi) = UGB,w(zi) + UGB,w(D − zi), (7)

where the interaction between the single wall and a particle i is a 9− 3 potential:

UGB,w(z) = a
2π

3
ρwσ

3
wǫw

[

2

15

(σw
z

)9
−
(σw

z

)3
]

, (8)

where z is the distance between the wall and the center of mass of the particle, ρwσ
3 =

0.988, σw/σ0 = 1.096, ǫw/ǫ0 = 1.277 and a is an adimensional wall interaction strength
which can be varied. Note that, for a = 1, UGB,w corresponds to the wall-particle
interaction for the Ar-CO2 system [42]. On the other hand, although the potential is
not dependent on the orientation of the GB particle (as it was considered in Ref. [43]),
we will see that this wall promotes a preferred anchoring to the GB particles.

2.2. Simulation procedure to generate the nanobridges

The procedure to generate the nanobridges is analogous to the considered to generate
nanodroplets in Refs. [41,44]. As a first step, we obtain a near-coexistence bulk nematic
phase by performing an isothermal-isobaric Monte Carlo simulation (NPT −MC) at
zero pressure [45]. We consider as simulation box a square cuboid in which the side
length along the z axis takes a fixed value D, but the side lengths along the x and y
directions are allowed to fluctuate. Starting from a configuration of N particles with
higher density than the expected nematic-vapor coexisting value, the system decreases
its density until it reaches the value of the nematic branch at coexistence. However,
simulations are short to prevent large fluctuations which may lead the system to the
vapor region. In addition, the maximum trial volume change is small, but tuned to get
an acceptance ratio of about 30% in volume change trial movements [41].
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Once the coexisting nematic phase is equilibrated, we use the last configuration of
theNPT−MC simulation as a seed for the simulation in the slit pore. For this purpose,
the final configuration of the bulk simulation is placed between the walls of a slit pore of
widthD, where the walls are perpendicular to the z axis. Now we perform Monte Carlo
simulations in the canonical ensemble (NV T −MC), by considering an Lx × Lx ×D
square cuboid box subject to periodic boundary conditions along the transversal x and
y directions. We take Lx larger than the output from the NPT −MC simulation in
order to prevent interactions between the particles of a nanobridge and those located
on its periodic images, but not so large that the nanobridge may evaporate. We usually
consider runs of 106 cycles to equilibrate the nanobridge, followed by other 106 cycles
to obtain the averages. In the NV T −MC simulations a cycle is a set of N attempts
to simultaneously translate and rotate a particle chosen at random.

During the simulation we monitor different physical quantities, such as the mean
potential energy and the global orientational ordering. For the latter, we quantify the
global nematic ordering by first calculating the tensor order parameter:

Q =

〈

1

N

N
∑

i=1

3ui ⊗ ui − I

2

〉

(9)

and by then choosing the larger positive eigenvalue of the tensor order parameter, S,
as the representative measure of the global nematic order. We note that, with this
selection, the director of the phase would correspond to the associated eigenvector, N.

As usual, we choose reduced units, where the energies and the lengths are chosen in
units of ǫ0 and σ0, respectively. In particular the reduced temperature T ∗ and number
density ρ∗ are defined as:

T ∗ =
kBT

ǫ0
, ρ∗ = ρσ3

0 . (10)

Hereafter we will drop the asterisk, so quantities are given in reduced units.

2.3. Evaluation of the density and order parameter profiles

We also characterize the shape and nematic texture within the nanobridge by cal-
culating density and orientational profiles. The density profile, ρ(x, y, z), is defined
as:

ρ(x, y, z) ≡

〈

N
∑

i=1

δ(xi − x)δ(yi − y)δ(zi − z)

〉

, (11)

where (xi, yi, zi) are the Cartesian coordinates of the particle i, δ denotes Dirac’s delta
and 〈. . .〉 stands for the ensemble average. The orientational order profile is given by
the local tensor order parameter

Q(x, y, z) ≡
1

ρ(x, y, z)

〈

N
∑

i=1

3ui ⊗ ui − I

2
δ(xi − x)δ(yi − y)δ(zi − z)

〉

, (12)
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where ui is the unit vector parallel to the symmetry axis of the particle i and I is the
identity matrix. The scalar nematic order parameter profile S(x, y, z) and the local
director field n(x, y, z) are obtained as the largest eigenvalue and the corresponding
eigenvector of Q(x, y, z), respectively. It is also possible to get the biaxiality profile
as the difference between the two smallest eigenvalues, but we see that this quantity
does not provide further information, so we will skip it in our analysis.

For the numerical evaluation of the density profile and local tensor order parameter,
we divide the box in a grid of cubic voxels of unit side length (in reduced units), so the
density and local tensor order profiles are obtained by averaging in each voxel.. This
voxel size is chosen as a compromise between coarse-graining and statistical precision,
since smaller sizes are subject to larger statistical fluctuations, while larger sizes lead
to a blurred picture of the density and order parameter profiles.

In some cases the nanobridges are axisymmetric around the z axis. In this situation,
the global nematic director N is also parallel to the z axis. Under these circumstances,
we can obtain the density profile and the local tensor order parameter by a similar
procedure to that previously used for nanodrops in calamitic [44] and oblate [41] liquid
crystals. This procedure generates density and orientational order parameter profiles
with better resolution than in the procedure described above. So, the density profile,
ρ(r, z), is defined as:

ρ(r, z) ≡
1

2πr

〈

N
∑

i=1

δ(zi − z)δ(ri − r)

〉

(13)

where (ri, zi) are, respectively, the instantaneous radial and vertical coordinates of
particle i. Regarding the orientational order profile, the local tensor order parameter
will present in different points of the (r, z) shell eigenvectors which are related by a
rotation around the z-axis. Then, the representation of the local tensor order parameter
in the local cylindrical basis (ur,uφ,uz) has as components

Qαβ(r, z) ≡
1

2πrρ(r, z)

〈

N
∑

i=1

3uαi u
β
i − δα,β
2

δ(zi − z)δ(ri − r)

〉

(14)

where the Greek indexes represent the vector components in the cylindrical basis
associated to the position of the particle. By diagonalization of the matrix defined by
Eq. (14) we get the local nematic order parameter profile S(r, z) and the local nematic
director field n(r, z) as its largest eigenvalue and associated eigenvector, respectively.
For its numerical implementation, now we divide the nanobridge along the z axis into
cylinders of height ∆z. Every slice is further divided into cylindrical shells of average
radius r and width ∆r. We have used in this work ∆r = 1/2 and ∆z = 1/4, again in
reduced units. The local density is obtained by the quotient of the number of particles
within each shell and its volume, and the local tensor order parameter as the average

over the particles on the shell of the matrix (3uαi u
β
i − δα,β)/2 (expressed in cylindrical

coordinates).

3. Results

We report simulation results for a system of N = 32000 GB oblate particles with
κ = 0.5 and κ′ = 1. With these parameters, nematic-vapour coexistence is observed
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in the narrow range of temperatures T = 0.4 − 0.5. We choose T = 0.5, in which the
density of the nematic phase at coexistence is ρ = 1.86(2), with a nematic order pa-
rameter S = 0.50 [41,46]. In addition, the nematic-vapour interface shows homeotropic
anchoring [46], as expected since κ < κ′. In absence of confining walls, near-spherical
nanodroplets of nematic liquid crystals are observed under these conditions, with a
disclination ring of topological charge +1/2 located inside the droplet on its equato-
rial plane [41]. Now we are going to characterize the formation of nanobridges in slit
pores. For this purpose, we have considered three different values of the adimensional
wall-particle potential strength a = 0.25, a = 0.6 and a = 1.

3.1. Nanodroplets on a single wall

As a previous analysis, we studied the wetting properties of a single wall. For this
purpose, we modified the procedure to generate nanobridges to study the formation
of a sessile nanodroplet on a wall. In order to do that, we placed the outcome of the
bulk NPT −MC simulation on one of the walls which limit the slit pore, with a width
much larger than side length of the NPT − MC simulation on the z direction. For
all values of the potential strength a, nanodroplets are shaped as near-spherical caps
on the wall. This observation is consistent with the almost spherical morphology of
the nematic nandroplets [41]. In addition, the order parameter profile is axisymmetric
around the z axis and there is no quirality, i.e. the azimuthal component of the local
director vanishes everywhere. Thus, we characterize the density and orientational order
parameter profiles by Eqs. (13) and (14). Our simulation results are summarized in
Fig. 1. The density is quite uniform and takes approximately the bulk value inside
the droplet. Deviations are only observed in the nematic-vapour interface and close to
the wall, which is located at z = 0. The density variation through the nematic-vapour
interface is smooth and consistent with the results reported in Ref. [46]. On the other
hand, close to the wall there is an empty layer of about one unity and, after that, it
is observed some density layering which decays to the bulk value. This observation is
consistent with the fact that the single wall-particle potential has a highly repulsive
region for z < σw/σ0 ∼ 1, while the layering is the typical for dense fluids close to hard
walls due to depletion effects. Regarding the shape of the droplet, it fits quite nicely
to a near-spherical cap, characterized by a single (apparent) contact angle θ between
the wall portion in contact with the nematic and the nematic-vapour interface at
the nanodroplet contact point. This contrasts with previous studies of wetting sessile
nematic droplets of calamitic nematogens on flat walls, which are anisotropic [47]. We
estimate that θ ≈ 144◦ for a = 0.25, θ ≈ 114◦ for a = 0.6 and θ ≈ 85◦ for a = 1.0,
meaning that the wall is nematic-phobic for a = 0.25 and a = 0.6, or slightly nematic-
philic for a = 1.0. The decrease of the contact angle with the potential strength a
is expected, since in wetting by liquids usually the more attractive the wall-particle
potential is, the more hygrophilic the substrate is. However, it is important to note
that these apparent contact angles may differ from the true thermodynamic contact
angle, as large finite-size deviations are observed even in simple fluids [48], which may
be enhanced by effect of the elastic distortions within the droplet.

Regarding the orientational order parameter, we see that the nematic phase prefer-
entially anchors homeotropically on the nematic-isotropic interface, where the scalar
nematic order parameter S decreases smoothly to zero through the interface, in agree-
ment with previous studies by the authors [46]. The wall also shows homeotropic
anchoring but now the local scalar nematic order parameter is enhanced in the layers
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Figure 1. Plots of the density profiles (left column) and orientational order profiles (right column) of a
nanodrop of nematic liquid crystal on top of a wall with a = 0.25 (top row), a = 0.6 (middle row) and a = 1.0
(bottom row). In each figure the abscissa axis corresponds to the radial coordinate r and the ordinate axis to the
vertical coordinate z. For the density ρ and scalar order parameter S profiles a colour mapping is considered.
In addition, on top of the S profile representation, segments represent the local nematic director orientation.
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of higher density. Thus, there are elastic distortions inside the nanodroplet to adapt
to these anchoring conditions on the boundaries of the nanodroplet. For a = 0.25, a
+1/2−disclination ring is observed at z ∼ 10, similar to the one observed in the free
nanodroplet [41]. However its core, defined as the region inside the nanodroplet with
S < 0.1, is highly distorted and the scalar nematic order parameter is in general re-
duced with respect to the bulk value, although biaxiality is restricted to the disclination
core region (not shown). This indicates that the disclination ring wanders inside the
droplet, as it also happened in the free nanodroplet. As a is increased, the equilibrium
position of the defect core moves towards the contact line of the sessile nanodroplet
to the wall. For a = 0.6 the disclination core is still quite elongated, but now the
central part of the nanodroplet shows a more uniform value of S, approximately equal
to the bulk value, where the nematic director field is almost uniformly vertical. For
a = 1.0, the disclination core has almost merged with the interfacial region but still
the order is slightly reduced with respect to the bulk value in the neighbourhood of
the nanodroplet-wall contact line. The central region with near-uniform, vertical ne-
matic director, on the other hand, is enlarged. The attraction of the disclination core
to the contact line can be understood if we consider that, for contact angles θ > 90◦,
the nematic director field close to it resembles the orientational field of a negative
topological charge disclination ring, in a similar way as it happens for a nematic con-
fined in a wedge [49,50]. Thus, the bulk +1/2 disclination ring will be attracted to the
contact line in a similar way as two disclination lines of opposite topological charge.
However, if we impose that the anchoring is homeotropic both at the wall and the
nematic-vapour interface, we find that its effective topological charge is −(180◦/θ−1)
[50]. Thus, the effective attraction between the bulk disclination ring and the contact
line increases as θ decreases, as it is proportional to the product of their topologi-
cal charges. It is worth mentioning that, for θ is smaller that 90◦, another texture
with positive effective topological charge +1 associated to the contact line becomes
more favourable energetically. However, around θ = 90◦ both are energetically almost
equivalent.

3.2. Nanobridges in the slit pore

Now we turn to the case of the formation of nanobridges in slit pores. As the number
of particles N is fixed in our simulations, its aspect ratio Γ = d/D (where d is the
nanobridge diameter at its middle plane and D is the pore width) decreases as D

increases. Note that, roughly, the nanobridge has a cylindrical shape, so d ∼
√

N/D.
Thus, if D is very large, the bridge will breakdown as d becomes smaller of one molec-
ular diameter. This value also depends on the wettability of the walls. So, for example,
no nanobridges are observed for a = 0.25 for D > 40 since the nematic detaches from
the wall to form a free droplet inside the slit pore. On the other hand, no bridges are
observed for a = 2.0 for D > 30 since two independent sessile droplets are formed
on each wall. Therefore, in the range of values of a we considered, we will focus on
the cases D = 20, 30 and 40, which, as we will see, correspond to Γ > 1, Γ ≈ 1 and
Γ < 1 cases, respectively. For this cases, the lateral size of the simulation box is taken
to be Lx = 44, which is enough to avoid interactions between any nanobridge and its
periodic replicas.

8



Figure 2. Snapshots of the cross section of a nanobridge in a slit pore of two horizontal walls separated by
a distance D = 20 and values of the wall-particle potential strength a = 0.25, a = 0.6 and a = 1.0. The colour
code associated to the GB particle orientations is the following: red if the main symmetry axes of the particles
are aligned with the z axis, blue if they are aligned with the y (i.e. horizontal, in-plane) axis and green if they
are aligned with the x (i.e. horizontal, out-of-plane) axis.

3.2.1. D=20

For D = 20 the aspect ratio of the nanobridges is Γ < 1 for all the values of a.
However, their shape depends on the wettability of the walls: the nanobridges are
barrel-shaped for a = 0.25 and a = 0.6, and hourglass-shaped for a = 1.0. Inspection
of simulation snapshots (see Fig. 2) indicate that particles are mainly oriented per-
pendicular to the walls throrought the nanobridge, except in a toroidal region close
to the nematic-vapour interface, where particles orient perpendicular to the interface.
Thus, the orientational order is axisymmetric around the vertical axis, with no hint
of quirality. These observations are confirmed by the evaluation of the density and
orientational order parameter profiles, shown in Fig. 3, which, as in the case of the
sessile nanodroplets, we evaluate by using Eqs. (13) and (14). The density inside the
nanobridges is almost homogeneous and takes the bulk value except close to the walls
and nematic-isotropic interface, where the density profiles behave as it was described
above in the case of the sessile nanodroplets. This is a common feature for all the val-
ues of D we consider. Regarding the orientational order parameter profile, for a = 0.25
we see that the scalar nematic order parameter profile takes uniformly a value approx-
imately equal to the bulk value in the central part of the nanobridge, with an almost
vertical nematic director field. On the equatorial plane and close to the nematic-vapour
interface, we observe a +1/2 disclination ring which allows the director field to anchor
homeotropically on the interface. The values of S are slightly reduced with respect
to the bulk value in a relatively extensive region around the disclination core which
connects to the nematic-vapour interface. As the value of a increases, the disclination
core stretches towards the contact lines of the nanobridge with the walls, so that for
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a = 1.0 the S profile shows almost a continuous line joining the contact lines in which
the nematic director changes abruptly from a vertical to an horizontal orientation as
the nematic-vapour interface is approached. This observation can be explained by the
same attraction that the disclination ring feels towards the wall-nanobridge contact
lines considered previously in the case of sessile nanodroplets. Therefore, the disclina-
tion ring inside the nanobridge may wander towards the contact lines, leading to this
extension of the region where the scalar order parameter is decreased with respect to
the bulk value.

3.2.2. D=30

For pore width D = 30 the nanobridges have an aspect ratio Γ ≈ 1. As in the previous
case, barrel-shaped nanobridges are observed for a = 0.25 and a = 0.6, while for
a = 1.0 the nanobridge is hourglass-shaped. However, there is a dramatic change in
the orientational order within the nanobridge for all the values of the wall-particle
interaction strength a we consider. For instance, an instantaneous snapshot of the
nanobridge for a = 1.0 is shown in Fig. 4. We can see that the orientational order is no
longer axisymmetric around the vertical axis. Instead, in a large portion of the central
part of the nanobridge, GB particles orient along a horizontal axis which we denote
as x′. However, close to the walls particles orient vertically, while in two sides of the
nanobridge, close to the nematic-vapour interface, particles orient along an horizontal
direction y′ orthogonal to x′. The non-symmetrical character of the orientational order
means that we have to use Eqs. (11) and (12) to evaluate the density and orientational
order parameter profiles. As a consequence, these profiles will be subject to stronger
statistical uncertainties, since the size of voxels are smaller than the shells considered
previously. Fig. 5 shows the scalar nematic order parameter S and the nematic director
orientational field of horizontal cross-sections of the nanobridge at different heights for
a = 0.6 (similar results are observed for a = 0.25). We see that, close to the walls (i.e.
z = ±12) the orientational field is consistent with an escaped radial configuration [51–
54], in which the nematic director field deforms smoothly from a vertical orientation in
the center to a homeotropic anchoring on the nematic-vapour interface. As we move
towards the center, a low orientational order region emerges inside the nanobridge
(in our case, for z ≈ ±8). As the center of the nanobridge is approached, this low
orientational order region splits in opposite sides with respect to the center of the
nanobridge section, and the in-plane nematic director field is consistent with a polar
planar texture [51–54], in which there are two +1/2 vertical disclination lines (see
subplots Fig. 5e), f) and g) for z = ±4 and z = 0). This is a clear indication of the
formation of a +1/2 disclination ring in a plane y′z, although our results show that its
position is subject to strong fluctuations. For a = 1.0, the qualitative picture is similar
to the described one above. However, the picture is different close to the walls, as we
can see in Fig. 6. As we can see, for z = ±12 a ring of lower values of S is formed close
to the nematic-vapour interface. This structure may be related to the wall-nanobridge
contact lines, as we saw above for D = 20. As we approach the nanobridge center,
two low orientational order regions emerge from the nematic-vapour interface (see
Figs. 6c) and d) for z = ±8), which move inside the nanobridge to form the +1/2
vertical disclination lines. Therefore, in this case there is no +1/2 disclination ring
but a couple of disclination lines which emerge and disappear on the nematic-vapour
interface.
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Figure 3. Plots of the density profiles (left column) and orientational order profiles (right column) of a
nanodrop of nematic liquid crystal on top of a wall with a = 0.25 (top row), a = 0.6 (middle row) and a = 1.0
(bottom row), where we used the same representation as in Fig. 1.
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Figure 4. Snapshots of the sections of a nanobridge in a slit pore of two horizontal walls separated by a
distance D = 30 and wall-particle potential strength a = 1.0: a) xz plane, b) yz plane, and c) xy plane. Colour
code associated to the GB particle orientations is the same as in Fig. 2.

3.2.3. D=40

Finally, we report our results for D = 40. As mentioned above, we restrict ourselves
the wall-particle interaction strength values a = 0.6 and a = 1.0, since for a = 0.25 no
nanobridge is formed inside the slit pore. In this case, the aspect ratio Γ < 1, being
the nanobridge barrel-shaped for a = 0.6 and hourglass-shaped for a = 1.0. Fig. 7
shows that the formation of a +1/2 disclination ring on a vertical plane, similar to the
reported for D = 30, is more clear as the nanobridge is stretched. This observation is
confirmed by the scalar nematic order parameter profiles and nematic director fields
on cross sections of the nanobridge (see Fig. 8). For the latter, we used a nail repre-
sentation, in which tilted particles are represented by nails, proportional in length to
the vertical component of the nematic director. We see that these are more evident
than in the D = 30 case. The nematic texture is consistent with an escaped radial
configuration close to the walls (i.e. z = ±16). At z ≈ ±6, we observe the emergence
of a low order region in the middle of the nanobridge, which splits into a couple of
two opposite regions of low order as we approach the nanobridge middle plane. In the
latter, the nematic texture is analogous to a a planar polar configuration in which
two vertical +1/2 disclination rings are formed on opposite sides of the cross-section
center. As we see, these results are analogous with those reported for the a = 0.6,
D = 30 case. Now, most particles in the nanobridge orient along a horizontal axis, so
do the global nematic director N.
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Figure 5. Order parameter S profile (colour map) and nematic director field (nail representation) of a cross
section of the bridge for a = 0.6 and D = 30 at: a) z = −12, b) z = 12, c) z = −8, d) z = 8, e) z = −4, f)
z = 4, and g) z = 0. Walls are located at z = −15 and z = 15.

13



-15

-10

-5

 0

 5

 10

 15

-15 -10 -5  0  5  10  15

a) S

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5  0  5  10  15

b) S

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5  0  5  10  15

c) S

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5  0  5  10  15

d) S

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5  0  5  10  15

e) S

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5  0  5  10  15

f) S

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5  0  5  10  15

g) S

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Figure 6. Same as Fig. 5 for a = 1.0 and D = 30.
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Figure 7. Same as Fig. 4 for D = 40 and a = 1.0.

4. Discussion and conclusions

In this paper we report computer simulation studies of nematic nanobridges between
slit pores. The model that we consider shows homeotropic anchoring both on the walls
and the nematic-vapour interface. This choice is motivated by the existence of experi-
mental studies of 5CB capillary bridges on glass surfaces with homeotropic anchoring
[21,55,56]. However, we stress that our model does not try to match actual experi-
ments, but we use a simple model which help us to understand the phenomenology
these systems may present. We have considered three different values of pore width,
in which the nanobridge has an aspect ratio Γ > 1, Γ ≈ 1 and Γ < 1. On the other
hand, we also explored different values of the wall-particle interaction, which determine
the wetting properties of the wall by the nematic and, consequently, we obtain either
barrel-like or hourglass-like nanobridges. We observe that, for Γ > 1, a nanobridge
with a +1/2 disclination ring is formed on the nanobridge equatorial plane if the
nanobridge is barrel-shaped. On the other hand, a similar structure in which an ex-
tended core which connects both contact lines between the walls and the nanobridge is
observed for hourglass-shaped nanobridges. For Γ . 1, the nematic texture within the
nanobridge changes dramatically, as now in general a +1/2 disclination ring is formed
on a vertical plane. Only for Γ ≈ 1 and hourglass-shaped nanobridges a slightly differ-
ent texture is observed, as two vertical +1/2 disclination lines emerge and disappear
on the nematic-vapour interface.

Our findings have similarities and differences with respect to the experimental re-
sults reported in the literature [21]. As in the experiments, we see that the aspect
ratio of the nanobridge is an essential property which determines the nematic texture
of it. In particular, for narrow slit pores, i.e. Γ > 1, and barrel-like nanobridges, we
clearly observe an analogous structure to the shown in experiments, i.e. a radial or
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Figure 8. Order parameter S profile (colour map) and nematic director field (nail representation) of a cross
section of the bridge for a = 1 and D = 40 at: a) z = −16, b) z = 16, c) z = −10, d) z = 10, e) z = −6, f)
z = 6, and g) z = 0. Walls are located at z = −20 and z = 20.
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+1/2 disclination ring. For hourglass-like, Γ > 1 capillary bridges, on the other hand,
experiments report the formation of a hyperbolic or −1/2 disclination ring, which it
is not the case in our simulations. Maybe smaller contact angles are needed to observe
this case, or a larger nanobridge, see below. The main differences arise for the cases
in which Γ . 1: instead of a texture characterized by a hyperbolic point defect lo-
cated at the center of the bridge, our simulations show a texture with a vertical +1/2
disclination ring.

In order to explain these discrepancies, we note that experiments consider bridges
of sizes which spans over tenths to hundreds of micrometers, while our simulations
are performed in a lengthscale of tenths of molecular diameters. In terms of nematic
correlation lengths, which is of order of tenths of nanometers for 5CB and similar to
the molecular diameter, experimental lengthscale is a factor of 103−104 larger than our
simulations. This fact may help to understand the discrepancies between experiments
and our simulations. First, we note that no true point defect can be observed in
our simulations, since simple calculations based on the Frank-Oseen functional show
that, in reality, they are disclination rings of microscopic radius [57]. Secondly, we
can understand the discrepancies for ∆ < 1 if we focus on the middle part of the
bridge, which can be roughly approximated by a cylinder. Theoretical calculations
show that, for infinitely long cylindrical capillaries and under conditions where no
chiral states emerge, a planar-polar configuration is stable for narrow capillary radii,
while an escaped radial configuration is observed for broad capillaries [51–54]. Note
that, in many circumstances, domains of opposite escaped radial configurations are
separated by narrow disclination rings which can be assimilated to point defects [54].
If we assume that these configurations deform continuously to the textures of the
capillary bridges in their central region, the discrepancies would be consequence of the
different lengthscales considered in experiments and computer simulations. So, the
reproduction of the experimental results by computer simulation may need a much
larger number of particles in the capillary bridge for a given aspect ratio, which could
be unfeasible from computational point of view. However, it may be possible to test
experimentally the simulation results by considering colloidal liquid crystals, such as
suspensions of gibbsite platelets [58].

Finally, it would be interesting to locate the borderline between the capillary states
corresponding to the low-Γ (i.e. non-axisymmetric state) and large-Γ (i.e. axisymmetric
state) cases. Our results show that this transition occurs for a pore width between 20
and 30 for N = 32000. Another aspect that we would like to address is the order of
the phase transition. We expect this transition to be first-order since both states have
different symmetry, but we cannot preclude more complex scenarios. These issues need
a more systematic computer study of the capillary nanobridges which is beyond the
scope of this paper. This analysis may be addressed in future works.
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