
MASTER’S DEGREE PROJECT

Deep embeddings and Graph
Neural Networks: can context
improve domain-independent

predictions?

Produced by
Fernando Luis Sola Espinosa

For the completion of
Máster en Ingenieŕıa del Software: Cloud, Datos y Gestión

TI

Supervised by
Inmaculada Concepción Hernández Salmerón

Daniel Ayala Hernández

June call, academic year 2021/22

“The Python panda is used to work with data structure in efficient manner.”

Rupal Snehkunj and Khushboo Vachiyatwala, 2022

i

Acknowledgements

I would like to thank the DEAL research group for all the support, help and feedback they
have given me at all times. They have been, without a doubt, an essential part of the
realisation of this project.

I would also like to thank my parents, my brother and my whole family for encouraging
me, taking care of me and putting up with me on a daily basis.

I would also like to thank my grandmother Dolores, who was unable to see me finish
my Master’s degree, but I am sure she is proud of me. Here’s to you, grandma.

ii

Resumen

Las redes neuronales de grafos (GNN) son arquitecturas de aprendizaje profundo que aplican
convoluciones de grafos mediante procesos de “message passing” entre nodos, representados
como embeddings. Las GNNs se han hecho populares recientemente por la forma en que
obtienen una representación contextual de cada nodo que tiene en cuenta la información
de los nodos circundantes. Los trabajos existentes en la literatura se han centrado en el
desarrollo de arquitecturas GNN, utilizando información básica espećıfica del dominio sobre
los nodos para calcular los embedding.

En el contexto de los grafos de conocimiento, se han realizado muchos esfuerzos para
desarrollar técnicas de aprendizaje profundo que permitan obtener embeddings de nodos
que preserven la información sobre las relaciones y la estructura sin depender de los datos
espećıficos del dominio. El potencial de la aplicación de las redes neuronales de grafos con
embeddings profundos de grafos de conocimiento sigue inexplorado en su mayoŕıa.

En este proyecto, llevamos a cabo una serie de experimentos para responder a preguntas
de investigación abiertas sobre el rendimiento de dichos embeddings cuando se utiliza una
red neuronal de grafos. Probamos 7 técnicas de embeddings profundos diferentes en varias
tareas de predicción de atributos en dos conjuntos de datos ricos en atributos. Llegamos
a la conclusión de que hay una mejora significativa en el rendimiento, pero vaŕıa mucho
dependiendo de la tarea y de la técnica de embedding empleada.

Dado el interés de los resultados obtenidos, enviamos un art́ıculo a la conferencia
CIKM’22, y hemos definido algunas tareas y trabajos futuros para continuar este estudio
en forma de doctorado.

Palabras clave: Grafos de Conocimiento, Redes Neuronales de Grafos, Embeddings
Atributivos, Embeddings profundos de grafos, Machine Learning

iii

Abstract

Graph neural networks (GNNs) are deep learning architectures that apply graph convolutions
through message-passing processes between nodes, represented as embeddings. GNNs have
recently become popular because of how they obtain a contextual representation of each node
that takes into account the information from surrounding nodes. Existing work has focused
on the development of GNN architectures, using basic domain-specific information about the
nodes to compute embeddings.

In the context of knowledge graphs, much effort has been put towards developing deep
learning techniques to obtain node embeddings that preserve information about relationships
and structure without relying on domain-specific data. The potential of the application of
graph neural networks with deep embeddings of knowledge graphs remains largely unexplored.

In this project, we carry out a number of experiments to answer open research questions
about how said embeddings perform when using a graph neural network. We test 7 different
deep embeddings across several attribute prediction tasks in two attribute-rich datasets. We
conclude that there is a significant performance improvement but it varies heavily depending
on the task and deep embedding technique.

Given the interest of the results obtained, we have submitted an article to the conference
CIKM’22, and we have defined some tasks and future work in order to continue this study in
the form of a PhD.

Keywords: Knowledge Graphs, Graph Neural Networks, Attributive embeddings,
Deep graph embeddings, Machine Learning

iv

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Context of this TFM . 2
1.3 Document structure . 3

2 Preliminary study 4
2.1 Introduction . 4
2.2 Goals . 4
2.3 Methodology . 4
2.4 Planning . 5
2.5 Budget . 6
2.6 Conclusions . 7

3 State of art 8
3.1 Introduction . 8
3.2 Graph neural networks . 8
3.3 Node embedding techniques . 9
3.4 GNN popular approaches . 10
3.5 Conclusions . 11

4 Experimentation 13
4.1 Introduction . 13
4.2 Research questions . 13
4.3 Architecture of the neural networks . 13
4.4 Experimental setup . 14
4.5 Experimental results . 17
4.6 Research questions . 17
4.7 Conclusions . 20

5 Conclusions and future work 22

6 Bibliography 23

A Annexed documents 27
A.1 Article presented to CIKM’22 . 27

v

List of Figures

4.1 Baseline neural network architecture . 14
4.2 Standard graph neural network architecture 15
4.3 Folder hierarchy . 15
4.4 GNN vs. NN MAE percentage difference . 18
4.5 GNN vs. NN MAE percentage difference on different optimizer techniques . . 18

vi

List of Algorithms

1 Experimental script . 17

vii

1. Introduction

1.1. Introduction

Graph Neural Network (GNN) architectures seek to leverage the connections of a graph when
it comes to making predictions about the elements of the graph [33]. To achieve this, the
nodes of the graph are represented as numeric vectors called embeddings that can capture
and summarize the implicit information present in them. For example, graph convolutional
layers [20] aggregate the embeddings of each node with those of its neighbours to endow them
with contextual information. These architectures allow the networks to have a more complete
overall picture when it comes to, for example, making predictions about nodes. Research in
this area so far has mainly focused on developing new architectures or applying existing ones
to new domains. However, the type of embeddings being used has received significantly less
attention. In most cases, node embeddings are created using any domain-specific information
available about the nodes; for example, when representing data from the academic research
domain in which papers are nodes, the embeddings can be bag-of-words representations of
the text in the papers [14]. Another example can be found in the genetic information domain,
using gene positional sequences as embeddings [10].

Knowledge Graphs (KGs) have become a popular research topic as many companies
such as Google, Facebook, and Amazon [21] are increasingly relying on the integrated and
curated information in knowledge graphs. A considerable amount of research effort focuses
on developing deep learning techniques that are able to obtain embeddings in a domain-
independent way. A well-produced embedding space contains latent information about the
elements it represents, and therefore can be fed to algorithms for a variety of tasks [38,
12, 13, 6, 31], such as question answering, KG completion, link prediction, or clustering,
to mention a few. These techniques usually train the embeddings so that they contain the
necessary information to predict the presence of edges in the graph. More recent approaches
have introduced attributive embeddings [7] to take into account the information about node
properties, which tend to be numeric values such as years or ages. This may be beneficial for
prediction tasks in which the value of a property or the similarity with that of another node
can be exploited.

It has caught our attention that, while GNNs and deep KG embeddings are clearly
related, there are almost no insights in the existing literature on how well they perform when
combined. While domain-specific embeddings benefit from GNNs, it is interesting to study
the effect of using deep KG embeddings with GNNs because of their different nature.

This motivated us to carry out an experiment to shed some light on the feasibility of
such combination. Specifically, our work focuses on comparing the results obtained by a base-
line feedforward network and a standard GNN when trying to predict the value of different
attributes. We test seven different deep embedding techniques on seven attribute prediction
tasks. We focus on the testing of attributive embeddings, since they contain additional infor-
mation that could increase the benefits of applying a GNN; therefore, we limited ourselves to
datasets that are rich in attributes: YAGO [27] and FB15K237 [29]. The results obtained by
these configurations contribute towards the state of the art by thoroughly answering a series
of open research questions about how much different types of neural networks can benefit
from deep embeddings when performing prediction tasks.

1

All of this has made it possible to send an article to the Conference on Information and
Knowledge Management’22 (CIKM 2022), Appendix A.1.

1.2. Context of this TFM

In this section, the following points are developed in a reasoned manner:

— Degree of difficulty or complexity of the subject

GNN is a technology that has been on the rise in the last two or three years and on
which there is a lot of work to be done today. It is another deep learning approach, which
means that the mathematical and algorithmic components are very present, so the theoretical
difficulty is high, although the convolution principle characteristic of GNNs is not really that
complicated.

However, as far as implementation and experimentation are concerned, the degree of
difficulty is considerable, especially in my case since I opted for the use of a baseline network,
and given that frameworks such as PyTorch or, in my case, Tensorflow with Keras, have a
steep learning curve.

Talking about the issue addressed, that is, the study of the performance of GNNs when
employing deep/attributive embeddings, it is worth noting that no work has been done on
this research line, as showed by our state of art analysis, so the interest and novelty of this
project is high.

— Degree of compliance with the objectives set

Initially, all of the defined goals and sub-goals have been fulfilled. The completion
of the goal G1.1 about the state of art can be found in Section 3, goal G1.2 about the
implementation of the technical infrastructure employed in experiments can be found in
Section 4.3 and Section 4.4, goal G1.3 about the selection of adecuate datasets can be found
in Section 4.4, goal G1.4 about experimentation and the research questions posed can be
found in Section 4.2 and Section 4.4, goal G1.5 about the analysis of the results obtained can
be found in Section 4.5 and Section 4.6; and goal G1.6 about the dissemination of the results
can be found on the paper presented to CIKM’22 which is offered as an annex in Section A.1.

— Research component of the work

Through a deep study of the state of the art, we identified that while GNNs and deep
KG embeddings are clearly related, there are almost no insights in the existing literature on
how well they perform when combined. That is why this project focuses on shedding some
light on the feasibility of this combination by performing many experiments with different
setups, datasets and deep embedding techniques. To do so, we developed both a baseline
feedforward classical neural network and a standard graph neural network with a highly
configurable setup in order to automate this experimentation. As a result we were able to
give an answer to some open research questions and extract some valuable conclusions that
may define the direction of further research.

2

— Potential application of this work in an academic or industrial environment

This work has generated interesting results and have opened new lines of research as
collecting a large set of attribute-rich datasets for the evaluation of GNNs and deep em-
beddings in an automated way, or catalogue datasets according to their topology and other
characteristics that should affect how useful the information-passing mechanisms in GNNs
are.

So much so, in fact, that it has led to an article sent to the conference Conference on
Information and Knowledge Management’22 (CIKM 2022), Appendix A.1.

1.3. Document structure

The rest of this document is structured as follows: Chapter 2 is dedicated to project man-
agement aspects, Chapter 3 details the state of the art in the fields of GNNs and KG deep
embeddings. Chapter 4 describes the specific research questions we have identified, the neural
network architectures used in our experiments and the experimental setup, and discusses the
obtained results. Finally, Chapter 5 summarises our contributions and discusses potential
future work.

3

2. Preliminary study

2.1. Introduction

This chapter is dedicated to management aspects and prior to the execution of the project,
such as the study of the technologies used, the objectives set, the methodology followed and
the time and cost planning estimated at the beginning, as well as the real values obtained at
the end of the project.

2.2. Goals

The main objective of this project is:

Goal G1 : Study the influence of deep embeddings on graph neural networks perfor-
mance when combined.

To do so, we have defined a set of sub-goals:

Goal G1.1 : Study the state of art by understanding graph neural networks architec-
ture, variations, mode of operation, applicability and most popular approaches.

Goal G1.2 : Implement a baseline feedforward neural network and a standard graph
neural network script with a highly configurable execution pipeline, in order to automate
subsequent experiments as much as possible.

Goal G1.3 : Select a variety of benchmark knowledge graphs/datasets, including some
of the most widely used in the state of the art, and others that are suitable for the specific
experimentation we are proposing.

Goal G1.4 : Define and execute a set of experiments that can provide answers to the
research questions posed in this project.

Goal G1.5 : Analyse experiments results by means of visual elements such as charts
and tables in order to extract final conclusions.

Goal G1.6 : Disseminate the results of this work by means of a research paper to be
presented in a prestigious international forum or journal.

2.3. Methodology

The methodology used has been an adaptation of the classic software development method-
ologies with different phases executed sequentially to the research context and within the
limitations and particularities of a Master’s thesis. Therefore, work has been carried out
based on the objectives defined for the project, which are very similar to its different phases
in a similar way to the stages of the research process and the typical structure of a scientific
paper in the field; starting with a study of the current literature, the implementation of an
architecture for the pertinent experimentation, the selection of suitable data sets, experi-
mentation based on defined research questions, the analysis of the results obtained and their
dissemination.

4

It is worth highlighting the use, in this process, of different management support tools
such as Toggl to control the dedication or GitHub for the versioning of the developed code 1.
In addition, the weekly monitoring of the project’s progress through meetings with the project
manager and the consequent acquisition of feedback on a regular basis is also noteworthy.

2.4. Planning

The time required to complete the three hundred hours stipulated for a Master’s thesis was
divided between the different parts or phases worked on in this project, mainly related to the
goals defined in Section 2.2. An initial time distribution planning is presented, Table 2.1.

�� �� �� � � � � � � �

	
�����
�������

�������������

����
��������

�
��������
����

�
��������
���
�

 �!����"������
���������

��������

Table 2.1: Initial planning

The estimation of each of these phases and the actual time spent on the completion of
the project is therefore presented below:

Phase
Estimated
dedication (hours)

Real dedication
(hours)

Preliminary study 70 60

Implementation 100 126.73

Experimentation 70 40

Writing an article 30 59.82

Writing the report 20 18.03

Making of the
presentation

10 9.24

Total 300 313.82

In addition to the classical research phases, those of writing a scientific article based
on the study carried out, this project report and the making of the presentation have been
included.

As can be seen, the estimates made are fairly accurate with respect to the hours finally
invested. The most pronounced deviations are to be found in the phases of experimentation
and writing a research paper, mainly due to my lack of experience on these tasks and my
lack of first-hand knowledge of their typical scope.

1https://github.eii.us.es/DEAL/fsola-CIKM-22-code

5

https://github.eii.us.es/DEAL/fsola-CIKM-22-code

This meant that the 300 hours planned finally amounted to a total of 313.82 hours
spent.

2.5. Budget

The costing of this project will take into account several items, the amount of which will
depend to a greater or lesser extent on the amount of time spent on the project.

Firstly, personnel costs, for a full-time computer engineer with an annual salary of
around 32,000 euros 2, plus income tax and social security costs, amount to a total annual
cost of 41,568 euros for 1800 hours a year, i.e. 23.09 euros per hour worked.

On the other hand, within the costs of equipment and supplies, the depreciation of the
equipment used should be included, a laptop with an initial acquisition cost of 680 euros, and
a high-performance server with an i9 9900k, 64gb of RAM and an RTX 2080ti graphics card;
with an initial cost of 2,903.70 euros and with an estimated useful life of four years for both
computers, i.e. 48 months, and eight months of use for the project; the electricity supply
for the computers, with an estimated combined consumption of around 1000W/hour and an
average cost per kilowatt per hour of 0.40 euro cents; and the internet connection supply,
with a monthly fee of 55 euros per month.

Finally, a risk reserve cost of ten percent of the total costs is established to cover any
incident that may occur during the development of the project.

This brings the estimated costs to a total of 8,433.90 euros:

Item Calculation Total

Personnel cost 23.09e/h x 300 hours 6.927e

Amortización del
equipo

3,583.70e/48 months x 8 months
of project

597.28e

Electricity supply 1kWh x 0,40e x 300 hours 120e

Internet connection
supply

55e / 720hours/month x 300 hours 22,91e

Subtotal sum 7,667.19e

Reserve costs (10%) 766.72e

Total 8,433.90e

The costs finally incurred, after the execution of the project, were:

2Value on 19 June 2022 on https://www.glassdoor.es/Sueldos/ingeniero-inform%C3%
A1tico-sueldo-SRCH KO0,21.htm

6

https://www.glassdoor.es/Sueldos/ingeniero-inform%C3%A1tico-sueldo-SRCH_KO0,21.htm
https://www.glassdoor.es/Sueldos/ingeniero-inform%C3%A1tico-sueldo-SRCH_KO0,21.htm

Item Calculation Total

Personnel cost 23.09e/h x 313.82 hours 7,246.10e

Amortización del
equipo

3,583.70e/48 months x 8 months
of project

597.28e

Electricity supply 1kWh x 0,40e x 313.82 hours 125.53e

Internet connection
supply

55e / 720hours/month x 313.82
hours

23.97e

Total spending 7,992.88e

Total planned with reserve 8,433.90e

Surplus 441.02e

Thanks to the risk reserve cost, the deviations produced by the extra temporal dedica-
tion were covered and the total spending was into budget.

2.6. Conclusions

In this section, different aspects of the management of the project itself have been presented
and reviewed.

7

3. State of art

3.1. Introduction

In this section we present the existing related work and offer a more deep context of the
domain and the problem.

3.2. Graph neural networks

Graphs are a mathematical tool that compose a whole widely studied field known as graph
theory. Nevertheless, in short, graphs are no more than structures made of nodes, which
may have a set of features that describe and characterise them, and edges between them,
which, again, may have some kind of weight or feature vector associated. These principles
are now applied to many domains where data is represented in form of graphs leveraging its
great expressive power, but which has associated challenges involving the complexity of the
application of algorithms on these kind of data.

It has been a huge recent progress on neural networks, deep learning and the treatment
of Euclidean data, that is, images, text or video, with convolutional neural networks (CNN)
that leverage the local features of elements and their inter-connectivity to extract much richer
information. In that way, there is an increasing interest in applying these deep learning meth-
ods to non-Euclidean domains, generally known as geometric deep learning and, specifically,
when talking about graphs, this architectures are known as graph neural networks (GNNs).

Back in the 1990s, neural networks were first applied to graphs by propagating states
from one node to the others in an iterative way until a stable point was reached, using
recurrent graph neural networks (RGNN) [33]. Some of their main drawbacks were that they
are computationally costly and lack representation capabilities and extendability. Later,
several approaches that tried to leverage the progress in convolutional techniques emerged
and redefined the concept of convolution on graphs by using not only the features of a node,
but also those of its neighbours [3]. This type of procedure is common in image processing,
in which pixels are updated with the information features of adjacent pixels. The resulting
networks are known as convolutional graph neural networks (CGNN), and are further divided
in two groups: spectral-based approaches and spatial-based ones [37]. RGNNs and CGNN
are significantly related as they are both based on the same node representation update with
neighbouring information principle. Their main difference is that RGNNs always use the
same recurrent layer, using contractive constraints to ensure convergence, whereas CGNNs
use several convolutional layers with different weights in each of them.

Talking about CGNNs and its two approaches, spectral-based ones works on the spec-
tral graph theory, with a solid mathematical foundation in graph signal processing and defin-
ing graph convolutions as removing noises from graph signals. Spatial-based approaches, on
their side, define convolutions as RGNNs do, an information passing process, and have been
developed quickly due to its efficiency and flexibility.

Graph neural networks performance might be influenced by knowledge graphs size and
type, so they should be taken into consideration. KGs can be classified as following [39]:

8

• Directed/undirected: directed edges provide more information than undirected
ones, which can also be seen as double-directed edges.

• Homogeneous/heterogeneous: heterogeneous graphs provides a type for each node
and edge, adding an additional value to them.

• Spatiotemporal/static: on dynamic graphs, also known as spatial-temporal ones,
topology or features change over time, a characteristic that needs to be properly ad-
dressed.

• Small/large: there is not a clear defined criteria to distinguish between a small or
large graph as it is ever changing due to computation capabilities improvements on
devices like GPUs.

There are different kinds of tasks that can be carried out using GNNs: node attribute
prediction, node classification [14], link or edge strength prediction [9, 26, 19], and graph
level tasks such as graph classification [36, 34, 22, 23]. With all that, GNNs can work on
a wide variety of domains: on computer vision by parsing images into graphs consisting of
objects and their relationships or vice versa, natural language processing by leveraging words
or documents relations to label them, for example; traffic flows prediction, recommender
systems modelled as a graph with users and items as nodes or in biology and chemistry fields
by leveraging the graph-like structure of molecules, compounds or proteins interactions.

Nonetheless, there are some challenges about GNNs that are still to be addressed
like the depth of these models, that is, how many graph convolutional layers, and thus
convolutions, do we have to use in order to get good results taking into consideration that
with message passing strategy and a considerable number of convolutions, nodes information
will converge and be equal; or scalability issues, as these techniques usually require having
the graph loaded in memory in order to perform the convolutions and doing sampling or
clustering may end up on losing neighbourhood information [11].

3.3. Node embedding techniques

Knowledge graphs embeddings techniques have been widely studied recently because of its
numerous possibilities. Such embeddings aim to represent nodes as multi-dimensional vectors
while retaining information about the structure of the graph and the attributes of its nodes,
so that they can be used as input for other algorithms in subsequent tasks, such as GNNs.
Consequently, It should be noted that the performance of GNNs, as deep learning algorithms,
can therefore be influenced by the type of node embedding it is provided with.

Typical knowledge graph embedding approaches use distance-based scoring functions
to learn embeddings, to maintain information about the relations between nodes. This way,
with a triple s, r, t, where s and t are source and target nodes and r the relation between
them, the embedding of s plus the embedding of r should be near the embedding of t in the
corresponding dimensional space. In this regard, these approaches only take into consider-
ation the topology of the graph, and so they are called structure-based embeddings. When
using these techniques, literal information contained in nodes such as textual, numeric or
even image properties is discarded.

The challenge lies in learning embeddings taking these literals into account, which can
be addressed in two ways [7]. The first option is to handle literals separately, that is, training
the classical structure-based embedding and a node feature-learner one at the same time so

9

that the network uses both data sources in each step to learn the node embeddings. The
second option is to combine the classical structure-based embedding with the node literals by
adding, multiplying, concatenating, etc. these features in the form of additional embeddings.
Intuitively, these attributive embeddings contain much richer information about each node
and this may be highly leveraged by GNNs and their message-passing step.

3.4. GNN popular approaches

With all these considerations in mind, we summarise here, and in Table 3.1, the most popular
GNN architectures approaches, as well as the tasks that they carry out, the datasets on
which they are applied, the embedding techniques that they use, and the training, testing,
and validation splits that are used in their experimental validation:

• PATCHY-SAN (2016) [20]: It focuses on learning substructures from graph data
before convolution and was applied to graph classification task on bio-chemical domain
datasets as MUTAG, PCT, NCI1, NCI109, PROTEIN and D&D. They do not mention
how nodes are represented and performed a 10-fold cross-validation with 9 folds for
training and one for testing.

• GraphSage (2017) [10]: It puts the focus on using feature information to train a
model to produce embeddings for unseen nodes. They apply it to node and graph clas-
sification tasks on a citation dataset derived from Thomson Reuters Web of Science
Core Collection, Reddit dataset and protein interactions PPI dataset. In the citation
dataset, with 302,424 nodes, they are represented as 300-dimensional word vectors ob-
tained from papers abstracts by GenSim word2vec implementation and nodes degrees,
and use 2000-2004 data for training and 2005 for testing with 30% for validation. For
Reddit dataset, with 232,965 nodes, they took a 300-dimensional GloVe CommonCrawl
word vector for each node, which represents a post, concatenating the average embed-
ding of the title, the average embedding of the post’s comments, the post’s score and
the number of its comments; and use the posts of the first 20 days of the month of
September 2014 for training and the remaining days of the month for testing with 30%
for validation. In PPI dataset nodes are represented by positional gene sets, motif gene
sets and immunological signatures features and there are 20 graphs for training, two
for test and two for validation.

• GCN (2017) [14]: It is a spectral-based approach with some simplifications to improve
scalability and applicability in large-scale graphs. It is tested in node classification with
Cora, Citeseer, Pubmed and NELL datasets. Nodes are represented as sparse bag-of-
words feature vectors in the three first ones, and as sparse feature vectors in the last
one. They use 20 instances per class as training data, 1000 instances as test data and
500 labeled examples for hyperparameter optimization, the rest are used as unlabeled
data.

• MoNet (2017) [18]: It focuses on a generic spatial-domain framework for deep learn-
ing on non-Euclidean data such as graphs and manifolds. It is tested in node classifi-
cation with Cora and Pubmed datasets, with nodes represented as sparse bag-of-words
feature vectors and with the same setup as in GCN, 20 instances per class for training,
1000 for test and 500 instances for validation.

• GAT (2018) [30]: It uses attentional layers, enabling the specification of different
weights to different nodes in a neighbourhood, and test it on node classification task

10

with Cora, Citeseer and Pubmed datasets, and graph classification on PPI dataset.
Nodes are represented as sparse bag-of-words feature vectors in the three first ones,
and as a 50 features vector in PPI dataset. They use, for node classification, 20
instances per class as training data, that is 140, 120 and 60 respectively, 1000 instances
as test data and 500 labeled examples for hyperparameter optimization; while for graph
classification task, they use 20 graphs for training, 2 for validation and 2 for testing.

• GAAN (2018) [35]: It proposes a new attention model by gating attention heads to
control its importance. It was applied to graph classification on PPI dataset and node
classification on Reddit dataset, without specifying in any case, in what form the nodes
are represented. For PPI they use 20 sub-graphs as training set, 2 in the validation
set and 2 in the testing set. For Reddit dataset, they used the first 20 days posts for
training and the rest for testing (leaving 30% for validation). They also address traffic
speed forecasting where information is represented as a spatiotemporal graph, and use
METR-LA dataset with 70% training, 10% validation and 20% testing.

• FastGCN (2018) [4]: It concentrates on dealing with memory issue on GNN training
through batching using probability measures and test it on node classification on Cora,
Pubmed and Reddit datasets. They do not specify nodes representations and take a
45/18/37 (in percentage) training/validation/test split for Cora, 92/3/5 for Pubmed
and 65/10/25 for Reddit dataset.

• ClusterGCN (2019) [5]: It also focuses on memory issue and addresses it by, on
each step, using a batch of nodes that form a dense subgraph and which is identified
by clustering. It was applied to node classification task on PPI dataset, Reddit dataset
and a self-made Amazon2M dataset. They do not specify PPI and Reddit datasets
nodes representations but do specify that Amazon2M dataset nodes are represented as
a bag-of-words features vector extracted from products descriptions which dimension
was then reduced to 100 by applying PCA. They use a training/test/validation split
of 82/7/11, 66/24/10, 28/72/- and 70/30/- for PPI, Reddit, Amazon and Amazon2M,
respectively.

As can be seen, the most popular approaches focus on node or graph classification
tasks, and do not give much importance to the type of representation of the nodes with
which the algorithms are fed. In terms of benchmark datasets, we usually found Reddit [10],
PPI [10], Cora [25], and Citeseer [8], which are domain-specific, while other general purpose
graphs datasets, which are rich in attributes as YAGO [24] or FreeBase [1], are not usually
considered. Additionally, there is a big heterogeneity in the train/test/validation splits, since
they are very dependent on the characteristics of each dataset.

3.5. Conclusions

In this chapter we have reviewed graph neural networks and node embeddings previous work
in order to show the context of the topic and point out the limitations we have found.

11

Table 3.1: GNN architecture popular approaches (a dash means not specified)

Approach Task Datasets Node embeddings Train/test/val. %

PATCHY-SAN (2016) [20]
Graph classification

MUTAG - 10-fold cross-val.

PCT - 10-fold cross-val.

NCI1 - 10-fold cross-val.

NCI109 - 10-fold cross-val.

PROTEIN - 10-fold cross-val.

D&D - 10-fold cross-val.

GraphSage (2017) [10]
Node classification

Citation dataset
from Thomson
Reuters Web of
Science Core
Collection

GenSim word2vec 80/14/6

Reddit GloVe CommonCrawl 67/23/10

Graph classification PPI Gene sets and features 84/8/8

GCN (2017) [14]
Node classification

Cora Sparse bag-of-words
feature vector 9/61/30

Citeseer
Sparse bag-of-words
feature vector 7/62/31

Pubmed Sparse bag-of-words
feature vector 4/64/32

NELL Sparse feature vector 12/58/30

MoNet (2017) [18] Node classification
Cora Sparse bag-of-words

feature vector
9/61/30

Pubmed Sparse bag-of-words
feature vector 4/64/32

GAT (2018) [30]
Node classification

Cora Sparse bag-of-words
feature vector 9/61/30

Citeseer Sparse bag-of-words
feature vector

7/62/31

Pubmed Sparse bag-of-words
feature vector 4/64/32

Graph classification PPI 50 features vector 84/8/8

GAAN (2018) [35]

Node classification Reddit - 67/23/10

Graph classification PPI - 84/8/8

Traffic speed
forecasting
(spatiotemporal
graph)

METR-LA - 70/20/10

FastGCN (2018) [4] Node classification

Cora - 45/37/18

Pubmed - 92/5/3

Reddit - 65/25/10

ClusterGCN (2019) [5]
Node classification

PPI - 82/7/11

Reddit - 66/24/10

Amazon - 28/72/-

Amazon2M Reduced bag-of-words
feature vector 70/30/-

12

4. Experimentation

4.1. Introduction

In this chapter we present the contributions made: in Section 4.2 we describe the research
goals and questions we defined, in Section 4.3, we analyse the architectures we used to answer
the previous questions, in Section 4.4 the datasets that we have used, the different embedding
techniques under evaluation and the tasks that were performed. Subsequently, in Section 4.5
we display and comment on our experimental results, and in Section 4.6 we provide the
answer to the research questions.

4.2. Research questions

The previous study of the state of the art clearly shows that there has been little consideration
for the combination of GNN and KG deep embeddings. More specifically, to the best of our
knowledge, it does not exist any report on how this type of neural networks are affected
by the use of different kinds of KG deep embeddings. It is currently unclear whether or
not more specific research is needed to fully exploit the capabilities of GNNs when applied
to deep embeddings. Therefore, we have focused on answering a number of open research
questions that will help identify the scenarios in which performance is affected the most by
said networks:

• Q1: When using a GNN, does the kind of deep embedding being used have a significant
effect on performance? To what extent is the performance of GNNs affected by the use
of attributive embeddings?

• Q2: When using deep embeddings for attribute prediction tasks, does the use of a
GNN instead of a regular neural network result in significant performance differences?

• Q3: Are the aforementioned differences affected by the kind of deep embedding being
used?

• Q4: Is the improvement as pronounced as the reported in the state of art for tasks
that use domain-specific embeddings? Does it vary with the prediction task?

• Q5: To what extent is the improvement achieved by GNNs affected by the amount of
training data?

• Q6: Are the performance differences between GNNs and regular neural networks af-
fected by the selected optimizer technique?

4.3. Architecture of the neural networks

In order to answer the previous questions, we used a baseline feedforward neural network and
a standard graph neural network. The feedforward one, Figure 4.1, is composed by a series
of five “dense blocks” with skip connections, except the first one; and a final dense layer
which outputs logits, that is, the set of probabilities of the prediction classes in classification

13

and the predicted value in regression. Each “dense block” is composed by two groups of
batch normalisation, dropout and dense layers. The input of this network is the matrix of
the embeddings of the nodes.

The standard graph neural network, shown in Figure 4.2, is composed of two dense
blocks that perform preprocessing and postprocessing functions and between which we have
placed two graph convolution layers. These are made up of a preparation “dense block”,
a message aggregation layer, which can be performed by the sum, mean or max of the
embeddings to aggregate; and a node embedding updating layer that can be configured to
add, concatenate or employ a GRU layer; as well as a skip connection over them. Finally,
the output is given by a dense layer as logits. The input of this network is a matrix of the
embeddings of the nodes and the list of graph edges.

Note that, since the specific architectures are not the focus of this project, we have
relied on some basic state-of-the-art architectures in both cases. We should also highlight
that the technologies employed to implement these networks were Tensorflow and Keras in
Python, leveraging, as far as possible, the provided layers by the framework, as explained
before.

Dense

block

Dense

block

Dense

block

Dense

block

Dense

block

Dense

Input

Output

Dropout Dense

Node

embeddings

Batch

normalization

Dropout Dense

Batch

normalization

Figure 4.1: Baseline neural network architecture

4.4. Experimental setup

The attribute-rich datasets taken into consideration for experiments were FB15K237 [29] and
a reduced version of YAGO [27] which only contains nodes with at least one attribute and
have at least ten connected edges. Additionally, we also included Cora [25], a citations dataset
that is very commonly used in experiments involving GNNs, as shown in Table 3.1. The first
two datasets are rich in attributes, which allow us to compute attributed embeddings and
perform attribute prediction tasks, while the Cora dataset allows us to compare these results
to those obtained by domain-specific embeddings.

This dataset preprocessing consisted on a script that takes the various dataset files
containing node embeddings, relations and tasks information, and outputs the necessary file
hierarchy to be given to the script, Algorithm 1, explained later on this section. This file
hierarchy was defined to facilitate its management and avoid repeated information, as node
embeddings, which usually have a considerable size in disk. For example, for dataset YAGO,

14

Dense

block

Preprocess

GCL GCL

Dense

block

Postprocess

Dense

Input

Output

Preparation

Dense block

Aggregation Update

Skip connection

Node embeddings

and graph edges

(n1,n2)

(n2,n3)

...

Graph Convolution Layer (GCL)

Figure 4.2: Standard graph neural network architecture

Figure 4.3, we have a folder embeddings which contains sub-folders for every embedding tech-
nique calculated and its correspondent .nodes file containing the embeddings. Additionally,
each defined task has a folder to contain the prediction value for each node in a .preds file
and the results to be generated subsequently. Finally, we have a .edges file on the same level
as the other folders that contains the edges between nodes.

Figure 4.3: Folder hierarchy

In terms of embedding techniques, we selected the ones proposed by Gesese et al. [7],
which employ textual or/and numerical attributes and have an accessible implementation:
ASNE [16], LiteralE-ComplEx [15], LiteralE-DistMult [15], MTKGNN [28] and TransEA [32].
In addition, we included two well-known non -attributive embeddings as baselines: Trans-E [2]

15

Table 4.1: Prediction tasks

KG Task Nodes

Number
of
different
values

Values range
F
B
15
K
23
7

filmRating 739 13 [0; 100]

locationArea 2,150 2,063 [0.004; 165,250,000]

personHeight 2,870 122 [1.35; 2.18]

populationNumber 52,704 49,928 [0; 1,205,624,648]

Y
A
G
O

hasLatitude 8,671 6,620 [-75; 73]

hasLongitude 8,671 7,394 [-171.83; 178.44]

hasArea 11,922 10,075 [0.52; 8,000,036]

C
or
a

hasSubject 2708 7 [0; 6]

and Trans-R [17].

The node attribute prediction tasks we selected, shown in Table 4.1, include a variety
of attributes to predict. Except for the dataset Cora, which have only one available task,
the other ones were selected, as far as possible, taking into consideration the proportion
between different possible values and the number of instances in order to select those with
few possible values and lots of examples to facilitate the neural network’s task of learning,
e.g. filmRating, Table 4.1.

It is also worth noting that tasks involving FB15K237 and YAGO consist in the re-
gression of numerical attributes, while the Cora task consists in node classification. While
the node type can be treated as an attribute, the Cora dataset does not include actual at-
tributes that can be used to compute attributive embeddings, and thus we limit the deep
embeddings experiments to the FB15K237 and YAGO tasks, leaving the Cora dataset to the
domain-specific embeddings experiment that serves as a representative of how GNNs improve
performance when using said embeddings. We tested each task with three different train/test
split proportions: 80%, 50% and 20% of examples for training. Additionally, we executed
every task ten times in order to better assess the overall obtained performance.

To perform the experiments, we designed a script, Algorithm 1, to execute all the
combinations in terms of train split proportions and embedding techniques for every defined
task in the datasets, for both the baseline feedforward neural network and the standard
graph neural network. The datasets, tasks, embedding techniques and optimizers selected
are given in a dictionary and data itself is contained in different files, as explained before in
this section. It is also possible to perform automated binning, if indicated, in classification
tasks with numerical values, that is, gather prediction values in different groups and assign
a new prediction label to them. The output consists on the prediction evaluation metrics
values for each setup, that is, MAE, MSE and RMSE for regression tasks and accuracy and
cross entropy for classification tasks. However, in subsequent sections, we consider only MAE
and accuracy for more simplicity.

16

Algorithm 1: Experimental script

Input: TS: List<Double> Train splits
EN : Integer Executions number
D: Dictionary with datasets, tasks and its types, embedding techniques
and optimizers

Output: PM : Dictionary with prediction evaluation metrics
1 foreach dataset in D do
2 foreach task in dataset do
3 foreach train size in TS do
4 foreach optimizer in task do
5 foreach embedding technique in task do
6 foreach iteration in EN do
7 test nn(task, train size, optimizer, embedding technique,
8 iteration)
9 test gnn(task, train size, optimizer, embedding technique,

10 iteration)

Table 4.2: GNN accuracy on Cora

NN GNN ∆MAE%

20% 64.7431 67.5637 4.36

50% 73.9569 81.0633 9.61

80% 76.6745 84.8474 10.66

4.5. Experimental results

Tables 4.2 and 4.3 show the results of the experiments that we conducted.

Table 4.2 collects the reference results of the Cora dataset, in terms of accuracy. Fig-
ure 4.4 shows in a more visual way the MAE difference between GNNs and NNs depending
on the performed task on FB15K237 and YAGO, and the train set size, for deep embedding
technique LiteralE-DistMult, in which the effect of using different train set sizes is particularly
significant. On the other hand, Figure 4.5 offers a performance difference comparison between
GNNs and regular networks in terms of the selected optimizer technique, on film rating task
of dataset FB15K237 and for LiteralE-DistMult deep embedding technique.

Table 4.3 contains the mean absolute error (MAE) obtained after applying each embed-
ding technique in combination with the standard neural network and the GNN, to perform
different tasks and considering different training set sizes, on two of the datasets (FB15K237
and YAGO). Each execution was repeated ten times to compute average values.

4.6. Research questions

Next, we provide the answers to the questions posed in Section 4.2, according to the former
experimental results.

17

Figure 4.4: GNN vs. NN MAE percentage difference

Figure 4.5: GNN vs. NN MAE percentage difference on different optimizer techniques

Q1: When using a GNN, does the kind of deep embedding being used have
a significant effect on performance? To what extent is the performance of GNNs
affected by the use of attributive embeddings?

There are clear differences in GNN performance depending on the embedding tech-
nique and it is more noticeable in certain tasks, e.g. between TransEA and ASNE in the
hasLatitude task in GNN column in Table 4.3. However, we haven’t identified an embed-
ding technique that consistently obtains better results in most tasks. The same applies to
non-attributive embeddings (TransE and TransR) when compared to the rest.

Q2: When using deep embeddings for attribute prediction tasks, does the
use of a GNN instead of a regular neural network result in significant performance

18

differences?

Generally, it does, as can be seen in the ∆MAE% columns in Table 4.3, showing the
percentage difference between GNNs and NN with bold numbers when GNN outperforms the
regular NN in a majority of cases. However, some tasks tend to leverage context informa-
tion and thus, the improvement is greater in them, like locationArea or hasLongitude, see
Figure 4.4.

Q3: Are the aforementioned differences affected by the kind of deep em-
bedding being used?

Some embeddings seem to benefit more from the application of a GNN with higher,
more consistent reductions of the MAE. Overall, there is a higher chance of improvement
for attributive embeddings than for non-attributive ones with the exception of TransEA. As
can be seen in Table 4.3, GNNs lead to an improvement in roughly 50% of cases when using
the TransR, TransE, or TransEA embeddings, but when using ASNE, LiteralE-ComplEx,
LiteralE-DistMult, and MTKGNN there is an improvement in 66% to 75% of cases.

Q4: Is the improvement as noticeable as the reported in the state of art
for tasks that use domain-specific embeddings? Does it vary with the prediction
task?

The Cora experiments in Table 4.2 show an accuracy improvement between 5% and
10%. The results in Table 4.3, however, vary significantly between tasks.

It is clear than in some tasks, like filmRating or personHeight, there is little informa-
tion in the context of a node that could help improve the prediction, while for example, the
area of a country could be easier to predict based on contextual information. In this case,
GNNs lead to lesser improvements or even worse results, probably as a consequence of the
increased architecture complexity. These results are in contrast to the state of the art ones,
where GNN experiments are always carried out on citations or domain-specific datasets, as
seen in Table 3.1, and reach stunning performances. Other tasks such as populationNumber
seem to benefit more from the contextual information provided by the GNNs, reaching im-
provements of more than 25%.

Q5: To what extent is the improvement achieved by GNNs affected by the
amount of training data?

As can be seen in Figure 4.4, there is no clear trend when training size is altered.
In some tasks a reduced training size leads to a larger improvement, maybe due to how a
GNN can help use additional information to compensate for the lack of numerous examples.
In others, the opposite happens, which may be caused by the higher complexity of a GNN
needing a larger number of examples to reach its potential.

Q6: Are the performance differences between GNNs and regular neural
networks affected by the selected optimizer technique?

As can be seen in Figure 4.5, it is clear that some optimizer techniques do benefit GNNs
performance in contrast to regular neural networks, such as Adagrad or Adamax. In terms of
the amount of training data, there is not an appreciable difference as the performance keeps
generally the same despite training data size changes.

19

4.7. Conclusions

In this section we have we have defined a series of open research questions, presented the
experimental setup we employed and the results obtained, and as a consequence, we provide
the answers to the questions posed.

20

Table 4.3: Embedding techniques MAE comparison

N
N

G
N
N

∆
M
A
E
%

N
N

G
N
N

∆
M
A
E
%

N
N

G
N
N

∆
M
A
E
%

N
N

G
N
N

∆
M
A
E
%

N
N

G
N
N

∆
M
A
E
%

N
N

G
N
N

∆
M
A
E
%

N
N

G
N
N

∆
M
A
E
%

20%
9.5737

9.1583
-
4
.3
4

16.4734
15.8074

-
4
.0
4

16.5041
15.7854

-
4
.3
5

16.2449
15.5837

-
4
.0
7

15.9838
15.9753

-
0
.0
5

16.4583
16.3101

-
0
.9
0

16.1969
16.0243

-
1
.0
7

50%
5.9916

6.2949
5.06

15.4682
15.1325

-
2
.1
7

14.8965
15.5231

4.21
15.2264

14.9973
-
1
.5
0

15.4585
15.7934

2.17
15.5508

15.6815
0.84

14.7528
15.2734

3.53

80%
5.5274

5.0774
-
8
.1
4

14.5767
14.6457

0.47
14.7380

14.7621
0.16

14.8746
14.6467

-
1
.5
3

15.4188
15.7456

2.12
15.2660

15.3452
0.52

14.5562
14.8972

2.34

20%
12.6237

9.8694
-
2
1
.8
2

9.8040
10.8875

11.05
10.8566

8.8964
-
1
8
.0
6

10.1552
9.0006

-
1
1
.3
7

9.5080
9.0846

-
4
.4
5

9.0743
6.7642

-
2
5
.4
6

7.0607
6.8754

-
2
.6
2

50%
9.9147

7.4608
-
2
4
.7
5

9.4036
8.0787

-
1
4
.0
9

9.8365
8.2094

-
1
6
.5
4

8.7479
8.2774

-
5
.3
8

11.7681
8.5035

-
2
7
.7
4

9.0598
9.0088

-
0
.5
6

7.8769
10.2782

30.49

80%
9.2169

8.3831
-
9
.0
5

10.0565
8.4622

-
1
5
.8
5

8.9004
8.5203

-
4
.2
7

9.4371
8.6090

-
8
.7
7

9.4937
8.0584

-
1
5
.1
2

8.5825
8.1500

-
5
.0
4

9.2707
8.6887

-
6
.2
8

20%
0.0527

0.0577
9.46

0.0709
0.0687

-
3
.0
6

0.0704
0.0681

-
3
.1
7

0.0697
0.0713

2.23
0.0816

0.0819
0.38

0.0811
0.0816

0.63
0.0785

0.0794
1.17

50%
0.0455

0.0481
5.63

0.0668
0.0661

-
0
.9
4

0.0665
0.0654

-
1
.5
8

0.0653
0.0656

0.41
0.0797

0.0808
1.39

0.0782
0.0802

2.53
0.0718

0.0726
1.07

80%
0.0429

0.0456
6.37

0.0655
0.0653

-
0
.3
5

0.0651
0.0639

-
1
.7
0

0.0641
0.0632

-
1
.4
6

0.0790
0.0799

1.24
0.0778

0.0796
2.27

0.0711
0.0707

-
0
.5
1

20%
8.2767

6.5413
-
2
0
.9
7

8.7521
6.8001

-
2
2
.3
0

7.7478
6.3342

-
1
8
.2
5

7.3405
6.8819

-
6
.2
5

6.8641
6.7753

-
1
.2
9

7.6700
6.4430

-
1
6
.0
0

6.3780
6.3402

-
0
.5
9

50%
8.3747

7.1926
-
1
4
.1
1

8.8367
6.9774

-
2
1
.0
4

7.1711
7.0500

-
1
.6
9

9.2356
6.9539

-
2
4
.7
1

6.8944
6.7403

-
2
.2
4

7.7979
7.0100

-
1
0
.1
0

6.7265
7.0913

5.42

80%
7.8286

6.2857
-
1
9
.7
1

8.8838
6.4304

-
2
7
.6
2

7.2562
6.4460

-
1
1
.1
7

7.0696
6.4988

-
8
.0
7

6.2354
6.1064

-
2
.0
7

6.6006
5.9568

-
9
.7
5

6.3400
5.9621

-
5
.9
6

20%
15.8762

16.1874
1.96

8.0253
8.5256

6.23
9.6542

10.7848
11.71

9.6613
10.8258

12.05
7.3028

7.8766
7.86

8.5174
10.7656

26.40
9.6053

11.7178
21.99

50%
15.1523

15.4819
2.17

5.9231
5.8723

-
0
.8
6

7.7242
6.9875

-
9
.5
4

7.6592
7.6600

0.01
5.0203

4.6103
-
8
.1
7

5.4106
4.6542

-
1
3
.9
8

6.1409
6.0703

-
1
.1
5

80%
15.1493

15.4370
1.90

5.7398
5.4619

-
4
.8
4

7.3297
6.6112

-
9
.8
0

6.9609
6.6623

-
4
.2
9

5.0551
4.4951

-
1
1
.0
8

5.2888
4.3586

-
1
7
.5
9

6.0585
4.8657

-
1
9
.6
9

20%
39.3299

37.9247
-
3
.5
7

20.1994
20.8493

3.22
23.8878

22.4796
-
5
.9
0

23.0715
22.6942

-
1
.6
4

15.9415
16.0364

0.60
20.9329

23.1130
10.41

21.4411
28.7336

34.01

50%
36.3181

26.9464
-
2
5
.8
0

15.7095
17.0096

8.28
18.7299

17.6885
-
5
.5
6

18.8015
17.9712

-
4
.4
2

13.5979
13.6642

0.49
14.3521

13.2712
-
7
.5
3

15.9453
16.5460

3.77

80%
36.5138

24.9506
-
3
1
.6
7

15.8009
15.5438

-
1
.6
3

18.7531
17.2356

-
8
.0
9

17.7571
17.5213

-
1
.3
3

13.6332
13.0070

-
4
.5
9

15.1582
14.1030

-
6
.9
6

16.2791
14.0856

-
1
3
.4
7

20%
13.6660

12.3963
-
9
.2
9

7.5554
7.5238

-
0
.4
2

7.9465
8.6081

8.33
9.1942

7.0575
-
2
3
.2
4

8.6687
9.2323

6.50
10.6573

10.4682
-
1
.7
7

12.1870
8.9230

-
2
6
.7
8

50%
12.7663

12.3170
-
3
.5
2

6.1890
7.1071

14.83
6.5280

6.9359
6.25

6.8200
7.1586

4.96
6.1964

7.3155
18.06

5.9629
7.1403

19.75
7.8738

6.6341
-
1
5
.7
4

80%
12.4752

11.9690
-
4
.0
6

4.6004
5.6009

21.75
6.4699

6.7573
4.44

5.9645
5.5691

-
6
.6
3

6.2036
6.6932

7.89
5.9180

7.6781
29.74

6.5564
7.6224

16.26

Train

size
L
iteralE

-D
istM

u
lt

M
T
K
G
N
N

T
ran

sE
A

T
ran

sE
T
ran

sR

YAGO

h
asL

atitu
d
e

h
asL

on
gitu

d
e

h
asA

rea

(x
10

4)

FB15K237

film
R
atin

g

location
A
rea

(x
10

5)

p
erson

H
eigh

t

p
op
u
lation

N
u
m
b
er

(x
10

6)

A
S
N
E

L
iteralE

-C
om

p
lE
x

21

5. Conclusions and future work

In this work we have presented a much needed comprehensive study about how GNNs perform
when applied together with deep embeddings. Deep embeddings have the appeal of being
domain-independent and potentially able to capture latent information about the content of
the graph, which has led to their extended use in a variety of tasks, including prediction of
graph elements by feeding them to neural networks. Graph neural networks, which intend to
endow these networks with contextual information, seem to be a perfect fit, but so far they
have only been tested with domain-specific embeddings, which motivated our study.

The novelty and value of our work resides in how we answer several open research
questions about the performance of GNNs under several sets of circumstances including
seven attribute prediction tasks, seven types of deep embeddings, and three different training
sizes. We conclude that the application of GNNs to improve performance obtained by deep
embeddings has significant potential as can be seen in several tasks in which there is a
reduction of error of more than 25%. However, research so far has focused too much on
proposing new network architectures and too little on determining under what circumstances
they work best. As our experiments have shown, the same GNN can obtain completely
different results depending on the task and embeddings being used.

Future work should focus on collecting a large set of attribute-rich datasets for the
evaluation of GNNs and deep embeddings in an automated way. It would be particularly
useful to catalogue said datasets according to their topology and other characteristics that
should affect how useful the information-passing mechanisms in GNNs are.

Personally, I consider this project to be the culmination of my academic stage and the
beginning of my research career, as it is the first step on my way to obtaining a doctoral
degree, so much so that I have applied for a FPU grant based on this project. It has not been
an easy subject to understand and work on, especially on the technical side, but I reckon
that the results and conclusions obtained are of great interest, even meaning a research paper
sent to an international prestigious forum as CIKM, and there is still much more work to be
done. Also, having the support of the DEAL1 research group and the fact that this work
aligns with their objectives makes me look forward to continuing with it.

1https://deal.us.es/

22

https://deal.us.es/

6. Bibliography

[1] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase:
A collaboratively created graph database for structuring human knowledge. In SIGMOD,
pages 1247–1250, NY, USA, 2008. ACM New York. doi: 10.1145/1376616.1376746.

[2] Antoine Bordes, Nicolas Usunier, Alberto Garćıa-Durán, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In Christopher
J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States, pages 2787–2795, 2013. URL https://proceedings.
neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html.

[3] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. Geometric deep learning: Going beyond euclidean data. IEEE Sig-
nal Process. Mag., 34(4):18–42, 2017. doi: 10.1109/MSP.2017.2693418. URL https:
//doi.org/10.1109/MSP.2017.2693418.

[4] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional
networks via importance sampling. In ICLR 2018. OpenReview.net, 2018. URL https:
//openreview.net/forum?id=rytstxWAW.

[5] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-
gcn: An efficient algorithm for training deep and large graph convolutional networks. In
Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George
Karypis, editors, ACM SIGKDD 2019, pages 257–266, NY, USA, 2019. ACM. doi:
10.1145/3292500.3330925. URL https://doi.org/10.1145/3292500.3330925.

[6] Marc Franco-Salvador, Paolo Rosso, and Manuel Montes-y Gómez. A systematic study
of knowledge graph analysis for cross-language plagiarism detection. Information Pro-
cessing & Management, 52(4):550–570, 2016.

[7] Genet Asefa Gesese, Russa Biswas, Mehwish Alam, and Harald Sack. A survey on
knowledge graph embeddings with literals: Which model links better literal-ly? Se-
mantic Web, 12(4):617–647, 2021. doi: 10.3233/SW-200404. URL https://doi.org/
10.3233/SW-200404.

[8] C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. Citeseer: An automatic citation
indexing system. In Proceedings of the 3rd ACM International Conference on Digital
Libraries, June 23-26, 1998, Pittsburgh, PA, USA, pages 89–98. ACM, 1998. doi: 10.
1145/276675.276685. URL https://doi.org/10.1145/276675.276685.

[9] Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. Knowledge
transfer for out-of-knowledge-base entities : A graph neural network approach. In IJCAI,
pages 1802–1808, 2017. doi: 10.24963/ijcai.2017/250. URL https://doi.org/10.24963/
ijcai.2017/250.

[10] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems,

23

https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/MSP.2017.2693418
https://openreview.net/forum?id=rytstxWAW
https://openreview.net/forum?id=rytstxWAW
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.3233/SW-200404
https://doi.org/10.3233/SW-200404
https://doi.org/10.1145/276675.276685
https://doi.org/10.24963/ijcai.2017/250
https://doi.org/10.24963/ijcai.2017/250

pages 1024–1034, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html.

[11] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-
structured data, 2015. URL https://arxiv.org/abs/1506.05163.

[12] Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping Li. Knowledge graph embedding
based question answering. In Proceedings of the Twelfth ACM International Conference
on Web Search and Data Mining, pages 105–113, 2019.

[13] Fadhela Kerdjoudj and Olivier Curé. Rdf knowledge graph visualization from a knowl-
edge extraction system. arXiv preprint arXiv:1510.00244, 2015.

[14] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convo-
lutional networks. In ICLR. OpenReview.net, 2017. URL https://openreview.net/
forum?id=SJU4ayYgl.

[15] Agustinus Kristiadi, Mohammad Asif Khan, Denis Lukovnikov, Jens Lehmann, and Asja
Fischer. Incorporating literals into knowledge graph embeddings. In Chiara Ghidini,
Olaf Hartig, Maria Maleshkova, Vojtech Svátek, Isabel F. Cruz, Aidan Hogan, Jie Song,
Maxime Lefrançois, and Fabien Gandon, editors, The Semantic Web - ISWC 2019 -
18th International Semantic Web Conference, Auckland, New Zealand, October 26-30,
2019, Proceedings, Part I, volume 11778 of Lecture Notes in Computer Science, pages
347–363. Springer, 2019. doi: 10.1007/978-3-030-30793-6\ 20. URL https://doi.org/
10.1007/978-3-030-30793-6 20.

[16] Lizi Liao, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. Attributed social network
embedding. IEEE Trans. Knowl. Data Eng., 30(12):2257–2270, 2018. doi: 10.1109/
TKDE.2018.2819980. URL https://doi.org/10.1109/TKDE.2018.2819980.

[17] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and
relation embeddings for knowledge graph completion. In Blai Bonet and Sven Koenig,
editors, Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA, pages 2181–2187. AAAI Press, 2015. URL
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571.

[18] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, and
Michael M. Bronstein. Geometric deep learning on graphs and manifolds using mixture
model cnns. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 5425–5434. IEEE Computer
Society, 2017. doi: 10.1109/CVPR.2017.576. URL https://doi.org/10.1109/CVPR.
2017.576.

[19] Deepak Nathani, Jatin Chauhan, Charu Sharma, and Manohar Kaul. Learning
attention-based embeddings for relation prediction in knowledge graphs. In ACL, pages
4710–4723, 2019.

[20] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional
neural networks for graphs. In Maria-Florina Balcan and Kilian Q. Weinberger, editors,
ICML, volume 48 of JMLR Workshop and Conference Proceedings, pages 2014–2023.
JMLR.org, 2016. URL http://proceedings.mlr.press/v48/niepert16.html.

24

https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://arxiv.org/abs/1506.05163
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1007/978-3-030-30793-6_20
https://doi.org/10.1007/978-3-030-30793-6_20
https://doi.org/10.1109/TKDE.2018.2819980
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
https://doi.org/10.1109/CVPR.2017.576
https://doi.org/10.1109/CVPR.2017.576
http://proceedings.mlr.press/v48/niepert16.html

[21] Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, and Jamie
Taylor. Industry-scale knowledge graphs: lessons and challenges. Communications of
the ACM, 62(8):36–43, 2019.

[22] Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Philip S. Yu. Joint structure
feature exploration and regularization for multi-task graph classification. IEEE Trans.
Knowl. Data Eng., 28(3):715–728, 2016. doi: 10.1109/TKDE.2015.2492567. URL https:
//doi.org/10.1109/TKDE.2015.2492567.

[23] Shirui Pan, Jia Wu, Xingquan Zhu, Guodong Long, and Chengqi Zhang. Task sensitive
feature exploration and learning for multitask graph classification. IEEE Trans. Cybern.,
47(3):744–758, 2017. doi: 10.1109/TCYB.2016.2526058. URL https://doi.org/10.
1109/TCYB.2016.2526058.

[24] Thomas Rebele, Fabian M. Suchanek, Johannes Hoffart, Joanna Biega, Erdal Kuzey,
and Gerhard Weikum. YAGO: A multilingual knowledge base from wikipedia, word-
net, and geonames. In ISWC, volume 9982, pages 177–185, 2016. doi: 10.1007/
978-3-319-46547-0\ 19. URL https://doi.org/10.1007/978-3-319-46547-0 19.

[25] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina
Eliassi-Rad. Collective classification in network data. AI Mag., 29(3):93–106, 2008. doi:
10.1609/aimag.v29i3.2157. URL https://doi.org/10.1609/aimag.v29i3.2157.

[26] Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou. End-to-
end structure-aware convolutional networks for knowledge base completion. In AAAI,
volume 33, pages 3060–3067, 2019. doi: 10.1609/aaai.v33i01.33013060. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/4164.

[27] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic
knowledge. In WWW, pages 697–706. ACM, 2007.

[28] Yi Tay, Luu Anh Tuan, Minh C. Phan, and Siu Cheung Hui. Multi-task neural network
for non-discrete attribute prediction in knowledge graphs. In Ee-Peng Lim, Marianne
Winslett, Mark Sanderson, Ada Wai-Chee Fu, Jimeng Sun, J. Shane Culpepper, Eric Lo,
Joyce C. Ho, Debora Donato, Rakesh Agrawal, Yu Zheng, Carlos Castillo, Aixin Sun,
Vincent S. Tseng, and Chenliang Li, editors, Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, CIKM 2017, Singapore, November 06 -
10, 2017, pages 1029–1038. ACM, 2017. doi: 10.1145/3132847.3132937. URL https:
//doi.org/10.1145/3132847.3132937.

[29] Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge
base and text inference. In Proceedings of the 3rd workshop on continuous vector space
models and their compositionality, pages 57–66, 2015.

[30] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
and Yoshua Bengio. Graph attention networks. In ICLR. OpenReview.net, 2018. URL
https://openreview.net/forum?id=rJXMpikCZ.

[31] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding:
A survey of approaches and applications. IEEE Transactions on Knowledge and Data
Engineering, 29(12):2724–2743, 2017.

25

https://doi.org/10.1109/TKDE.2015.2492567
https://doi.org/10.1109/TKDE.2015.2492567
https://doi.org/10.1109/TCYB.2016.2526058
https://doi.org/10.1109/TCYB.2016.2526058
https://doi.org/10.1007/978-3-319-46547-0_19
https://doi.org/10.1609/aimag.v29i3.2157
https://ojs.aaai.org/index.php/AAAI/article/view/4164
https://ojs.aaai.org/index.php/AAAI/article/view/4164
https://doi.org/10.1145/3132847.3132937
https://doi.org/10.1145/3132847.3132937
https://openreview.net/forum?id=rJXMpikCZ

[32] Yanrong Wu and Zhichun Wang. Knowledge graph embedding with numeric attributes
of entities. In Isabelle Augenstein, Kris Cao, He He, Felix Hill, Spandana Gella, Jamie
Kiros, Hongyuan Mei, and Dipendra Misra, editors, Proceedings of The Third Workshop
on Representation Learning for NLP, Rep4NLP@ACL 2018, Melbourne, Australia, July
20, 2018, pages 132–136. Association for Computational Linguistics, 2018. doi: 10.
18653/v1/w18-3017. URL https://doi.org/10.18653/v1/w18-3017.

[33] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu
Philip. A comprehensive survey on graph neural networks. IEEE transactions on neural
networks and learning systems, 32(1):4–24, 2020.

[34] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamil-
ton, and Jure Leskovec. Hierarchical graph representation learning with dif-
ferentiable pooling. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, NeurIPS,
pages 4805–4815, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
e77dbaf6759253c7c6d0efc5690369c7-Abstract.html.

[35] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung.
Gaan: Gated attention networks for learning on large and spatiotemporal graphs. In
Amir Globerson and Ricardo Silva, editors, UAI, pages 339–349. AUAI Press, 2018.
URL http://auai.org/uai2018/proceedings/papers/139.pdf.

[36] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end
deep learning architecture for graph classification. In Sheila A. McIlraith and Kil-
ian Q. Weinberger, editors, AAAI, pages 4438–4445. AAAI Press, 2018. URL https:
//www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17146.

[37] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convolutional
networks: Algorithms, applications and open challenges. In International Conference on
Computational Social Networks, pages 79–91. Springer, 2018.

[38] Weiguo Zheng, Jeffrey Xu Yu, Lei Zou, and Hong Cheng. Question answering over
knowledge graphs: question understanding via template decomposition. Proc. of the
VLDB Endowment, 11(11):1373–1386, 2018.

[39] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods
and applications. AI Open, 1:57–81, 2020. doi: 10.1016/j.aiopen.2021.01.001. URL
https://doi.org/10.1016/j.aiopen.2021.01.001.

26

https://doi.org/10.18653/v1/w18-3017
https://proceedings.neurips.cc/paper/2018/hash/e77dbaf6759253c7c6d0efc5690369c7-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e77dbaf6759253c7c6d0efc5690369c7-Abstract.html
http://auai.org/uai2018/proceedings/papers/139.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17146
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17146
https://doi.org/10.1016/j.aiopen.2021.01.001

Deep embeddings and Graph Neural Networks: can context
improve domain-independent predictions?

Anonymous Author(s)
ABSTRACT
Graph neural networks (GNNs) are deep learning architectures
that apply graph convolutions through message-passing processes
between nodes, represented as embeddings. GNNs have recently
become popular because of how they obtain a contextual represen-
tation of each node that takes into account the information from
surrounding nodes. However, existing work has focused on the
development of GNN architectures, using basic domain-specific in-
formation about the nodes to compute embeddings. In the context
of knowledge graphs, much effort has been put towards developing
deep learning techniques to obtain node embeddings that preserve
information about relationships and structure without relying on
domain-specific data. The potential of the application of graph
neural networks with deep embeddings of knowledge graphs re-
mains largely unexplored. In this paper, we carry out a number of
experiments to answer open research questions about how said
embeddings perform when using a graph neural network. We test 7
different deep embeddings across several attribute prediction tasks
in two attribute-rich datasets. We conclude that there is a signifi-
cant performance improvement but it varies heavily depending on
the task and deep embedding technique.

CCS CONCEPTS
• Computing methodologies→ Neural networks; Knowledge
representation and reasoning.

KEYWORDS
Knowledge Graphs, Graph Neural Networks, Attributive embed-
dings, Deep graph embeddings, Machine Learning
ACM Reference Format:
Anonymous Author(s). 2022. Deep embeddings and Graph Neural Networks:
can context improve domain-independent predictions?. In Proceedings of 31st
ACM International Conference on Information and Knowledge Management
(CIKM’22). ACM, New York, NY, USA, 8 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION
Graph Neural Network (GNN) architectures seek to leverage the
connections of a graph when it comes to making predictions about
the elements of the graph [33]. To achieve this, the nodes of the
graph are represented as numeric vectors called embeddings that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM’22, October 17–22, 2022, Atlanta, GA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

can capture and summarize the implicit information present in
them. For example, graph convolutional layers [20] aggregate the
embeddings of each node with those of its neighbours to endow
them with contextual information. These architectures allow the
networks to have a more complete overall picture when it comes
to, for example, making predictions about nodes. Research in this
area so far has mainly focused on developing new architectures
or applying existing ones to new domains. However, the type of
embeddings being used has received significantly less attention. In
most cases, node embeddings are created using any domain-specific
information available about the nodes; for example, when repre-
senting data from the academic research domain in which papers
are nodes, the embeddings can be bag-of-words representations of
the text in the papers [14]. Another example can be found in the
genetic information domain, using gene positional sequences as
embeddings [10].

Knowledge Graphs (KGs) have become a popular research topic
as many companies such as Google, Facebook, and Amazon [21]
are increasingly relying on the integrated and curated information
in knowledge graphs. A considerable amount of research effort
focuses on developing deep learning techniques that are able to
obtain embeddings in a domain-independent way. A well-produced
embedding space contains latent information about the elements it
represents, and therefore can be fed to algorithms for a variety of
tasks [6, 12, 13, 31, 38], such as question answering, KG completion,
link prediction, or clustering, to mention a few. These techniques
usually train the embeddings so that they contain the necessary
information to predict the presence of edges in the graph. More
recent approaches have introduced attributive embeddings [7] to
take into account the information about node properties, which tend
to be numeric values such as years or ages. This may be beneficial
for prediction tasks in which the value of a property or the similarity
with that of another node can be exploited.

It has caught our attention that, while GNNs and deep KG embed-
dings are clearly related, there are almost no insights in the existing
literature on howwell they performwhen combined.While domain-
specific embeddings benefit from GNNs, it is interesting to study
the effect of using deep KG embeddings with GNNs because of their
different nature.

This motivated us to carry out an experiment to shed some light
on the feasibility of such combination. Specifically, our work fo-
cuses on comparing the results obtained by a baseline feedforward
network and a standard GNN when trying to predict the value
of different attributes. We test seven different deep embedding
techniques on seven attribute prediction tasks. We focus on the
testing of attributive embeddings, since they contain additional
information that could increase the benefits of applying a GNN;
therefore, we limited ourselves to datasets that are rich in attributes:
YAGO [27] and FB15K237 [29]. The results obtained by these con-
figurations contribute towards the state of the art by thoroughly

A. Annexed documents

A.1. Article presented to CIKM’22

CIKM’22, October 17–22, 2022, Atlanta, GA Anon.

answering a series of open research questions about how much dif-
ferent types of neural networks can benefit from deep embeddings
when performing prediction tasks.

The rest of this paper is structured as follows: Section 2 details
the state of the art in the fields of GNNs and KG deep embeddings.
Section 3 describes the specific research questions we have identi-
fied and the neural network architectures used in our experiments.
Section 4 describes the experimental setup and discusses the ob-
tained results. Finally, Section 5 summarises our contributions and
discusses potential future work.

2 RELATEDWORK
In the following subsections, we summarise the current state of the
art both in the fields of graph neural networks and node embedding
techniques.

2.1 Graph Neural Networks
Back in the 1990s, neural networks were first applied to graphs
by propagating states from one node to the others in an iterative
way until a stable point was reached, using recurrent graph neural
networks (RGNN) [33]. Some of their main drawbacks were that
they are computationally costly and lack representation capabilities
and extendability. Later, several approaches that tried to leverage
the progress in convolutional techniques emerged and redefined the
concept of convolution on graphs by using not only the features of
a node, but also those of its neighbours [3]. This type of procedure
is common in image processing, in which pixels are updated with
the information features of adjacent pixels. The resulting networks
are known as convolutional graph neural networks (CGNN), and
are further divided in two groups: spectral-based approaches and
spatial-based ones [37]. RGNNs and CGNN are significantly related
as they are both based on the same node representation update
with neighbouring information principle. Their main difference is
that RGNNs always use the same recurrent layer, using contractive
constraints to ensure convergence, whereas CGNNs use several
convolutional layers with different weights in each of them.

Graph neural networks performance might be influenced by
knowledge graphs size and type, so they should be taken into
consideration. KGs can be classified as following [39]:

• Directed/undirected: directed edges provide more infor-
mation than undirected ones, which can also be seen as
double-directed edges.

• Homogeneous/heterogeneous: heterogeneous graphs pro-
vide a type for each node and edge, adding an additional
value to them.

• Spatiotemporal/static: on dynamic graphs, also known
as spatial-temporal ones, topology or features change over
time, a characteristic that needs to be properly addressed.

• Small/large: there is not a clear defined criteria to distin-
guish between a small or large graph as it is ever changing
due to computation capabilities improvements on devices
like GPUs.

There are different kinds of tasks that can be carried out using
GNNs: node attribute prediction, node classification [14], link or
edge strength prediction [9, 19, 26], and graph level tasks such as
graph classification [22, 23, 34, 36]. Nonetheless, there are some

challenges about GNNs that are still to be addressed. The literature
specially reports some scalability issues, as these techniques usually
require having the graph loaded in memory in order to perform
the convolutions and doing sampling or clustering may end up
on losing neighbourhood information [11]. Other challenges that
remain unsolved are amethod for systematically finding the optimal
architecture for each network, or the use of advanced embeddings
that maximise the network performance.

2.2 Node embedding techniques
Knowledge graphs embeddings techniques have been widely stud-
ied recently because of its numerous possibilities. Such embeddings
aim to represent nodes as multi-dimensional vectors while retain-
ing information about the structure of the graph and the attributes
of its nodes, so that they can be used as input for other algorithms
in subsequent tasks, such as GNNs. Consequently, It should be
noted that the performance of GNNs, as deep learning algorithms,
can therefore be influenced by the type of node embedding it is
provided with.

Typical knowledge graph embedding approaches use distance-
based scoring functions to learn embeddings, to maintain infor-
mation about the relations between nodes. This way, with a triple
<s,r,t>, where s and t are source and target nodes and r the rela-
tion between them, the embedding of s plus the embedding of r
should be near the embedding of t in the corresponding dimensional
space. In this regard, these approaches only take into consideration
the topology of the graph, and so they are called structure-based
embeddings. When using these techniques, literal information con-
tained in nodes such as textual, numeric or even image properties
is discarded.

The challenge lies in learning embeddings taking these literals
into account, which can be addressed in two ways [7]. The first
option is to handle literals separately, that is, training the classical
structure-based embedding and a node feature-learner one at the
same time so that the network uses both data sources in each step
to learn the node embeddings. The second option is to combine
the classical structure-based embedding with the node literals by
adding, multiplying, concatenating, etc. these features in the form
of additional embeddings. Intuitively, these attributive embeddings
contain much richer information about each node and this may be
highly leveraged by GNNs and their message-passing step.

2.3 State-of-the-art approaches
With all previous considerations in mind, we summarise in Table 1
the most popular GNN architectures approaches, as well as the
tasks that they carry out, the datasets on which they are applied,
the embedding techniques that they use, and the training, testing,
and validation splits that are used in their experimental validation.

This summary shows that all of the proposals focus on node or
graph classification tasks, while the technique used to compute node
embeddings is usually not a specialized one. In terms of datasets, we
find that Reddit [10], PPI [10], Cora [25], and Citeseer [8], which are
domain-specific, are commonly used. Other general purpose KGs
that are rich in node attributes, such as YAGO [24] or FreeBase [1],
are not usually considered. Additionally, there is a big heterogeneity

Deep embeddings and Graph Neural Networks: can context improve domain-independent predictions? CIKM’22, October 17–22, 2022, Atlanta, GA

Table 1: GNN architecture popular approaches (a dash means not specified)

Approach Task Datasets Node embeddings Train/test/val. %

PATCHY-SAN (2016) [20] Graph classification

MUTAG - 10-fold cross-val.
PCT - 10-fold cross-val.
NCI1 - 10-fold cross-val.
NCI109 - 10-fold cross-val.
PROTEIN - 10-fold cross-val.
D&D - 10-fold cross-val.

GraphSage (2017) [10]
Node classification

Citation dataset from
Thomson Reuters Web of
Science Core Collection

GenSim word2vec 80/14/6

Reddit GloVe CommonCrawl 67/23/10
Graph classification PPI Gene sets and features 84/8/8

GCN (2017) [14] Node classification

Cora Sparse bag-of-words
feature vector 9/61/30

Citeseer Sparse bag-of-words
feature vector 7/62/31

Pubmed Sparse bag-of-words
feature vector 4/64/32

NELL Sparse feature vector 12/58/30

MoNet (2017) [18] Node classification
Cora Sparse bag-of-words

feature vector 9/61/30

Pubmed Sparse bag-of-words
feature vector 4/64/32

GAT (2018) [30] Node classification

Cora Sparse bag-of-words
feature vector 9/61/30

Citeseer Sparse bag-of-words
feature vector 7/62/31

Pubmed Sparse bag-of-words
feature vector 4/64/32

Graph classification PPI 50 features vector 84/8/8

GAAN (2018) [35]

Node classification Reddit - 67/23/10
Graph classification PPI - 84/8/8
Traffic speed
forecasting
(spatiotemporal graph)

METR-LA - 70/20/10

FastGCN (2018) [4] Node classification

Cora - 45/37/18
Pubmed - 92/5/3
Reddit - 65/25/10

ClusterGCN (2019) [5] Node classification

PPI - 82/7/11
Reddit - 66/24/10
Amazon - 28/72/-

Amazon2M Reduced bag-of-words
feature vector 70/30/-

CIKM’22, October 17–22, 2022, Atlanta, GA Anon.

in the train/test/validation splits, since they are very dependent on
the characteristics of each dataset.

3 OURWORK
In this section we describe our contributions: in Section 3.1 we
define the goals of our work and our research questions, while
Section 3.2 describes the architecture of the neural networks that
we used to answer the previous research questions.

3.1 Goals
The previous study of the state of the art clearly shows that there
has been little consideration for the combination of GNN and KG
deep embeddings. More specifically, to the best of our knowledge,
it does not exist any report on how this type of neural networks are
affected by the use of different kinds of KG deep embeddings. It is
currently unclear whether or not more specific research is needed
to fully exploit the capabilities of GNNs when applied to deep
embeddings. Therefore, we have focused on answering a number
of open research questions that will help identify the scenarios in
which performance is affected the most by said networks:

• Q1: When using a GNN, does the kind of deep embedding
being used have a significant effect on performance? To what
extent is the performance of GNNs affected by the use of
attributive embeddings?

• Q2: When using deep embeddings for attribute prediction
tasks, does the use of a GNN instead of a regular neural
network result in significant performance differences?

• Q3: Are the aforementioned differences affected by the kind
of deep embedding being used?

• Q4: Is the improvement as pronounced as the reported in the
state of art for tasks that use domain-specific embeddings?
Does it vary with the prediction task?

• Q5: To what extent is the improvement achieved by GNNs
affected by the amount of training data?

3.2 Architecture of the neural networks
In order to answer the previous questions, we used a baseline feed-
forward neural network and a standard graph neural network. The
feedforward one, Figure 1, is composed by a series of five “dense
blocks” with skip connections, except the first one; and a final dense
layer which outputs logits. Each “dense block” is composed by two
groups of batch normalisation, dropout and dense layers. The input
of this network is the matrix of the embeddings of the nodes.

The standard graph neural network, shown in Figure 2, is com-
posed of two dense blocks that perform preprocessing and postpro-
cessing functions and between which we have placed two graph
convolution layers. These are made up of a preparation “dense
block”, a message aggregation layer and a node embedding updat-
ing layer, as well as a skip connection over them. Finally, the output
is given by a dense layer. The input of this network is a matrix of
the embeddings of the nodes and the list of graph edges.

Note that, since the specific architectures are not the focus of this
paper, we have relied on some basic state-of-the-art architectures
in both cases.

4 EVALUATION
In this section, we discuss our evaluation setup: the datasets that
we have used, the different embedding techniques under evaluation
and the tasks that were performed. Subsequently, we display and
comment on our experimental results.

4.1 Experimental setup
The attribute-rich datasets we took into consideration for our ex-
periments were FB15K237 [29] and a reduced version of YAGO [27]
which only contains nodes with at least one attribute and have at
least ten connected edges. Additionally, we also included Cora [25],
a citations dataset that is very commonly used in experiments in-
volving GNNs, as shown in Table 1. The first two datasets are rich
in attributes, which allow us to compute attributed embeddings and
perform attribute prediction tasks, while the Cora dataset allows
us to compare these results to those obtained by domain-specific
embeddings.

Algorithm 1: Experimental script
Input: 𝑇𝑆 : List<Double> Train splits

𝐸𝑁 : Integer Executions number
𝐷 : Dictionary with datasets, tasks and its types, and
embedding techniques

Output: 𝑃𝑀 : Dictionary with prediction evaluation metrics
1 foreach 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 in 𝐷 do
2 foreach 𝑡𝑎𝑠𝑘 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do
3 foreach 𝑡𝑟𝑎𝑖𝑛_𝑠𝑖𝑧𝑒 in 𝑇𝑆 do
4 foreach 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒 in 𝑡𝑎𝑠𝑘 do
5 foreach 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 in 𝐸𝑁 do
6 𝑡𝑒𝑠𝑡_𝑛𝑛(𝑡𝑎𝑠𝑘, 𝑡𝑟𝑎𝑖𝑛_𝑠𝑖𝑧𝑒,
7 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)
8 𝑡𝑒𝑠𝑡_𝑔𝑛𝑛(𝑡𝑎𝑠𝑘, 𝑡𝑟𝑎𝑖𝑛_𝑠𝑖𝑧𝑒,
9 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)

In terms of embedding techniques, we selected the ones pro-
posed by Gesese et al. [7], which employ textual or/and numeri-
cal attributes and have an accessible implementation: ASNE [16],
LiteralE-ComplEx [15], LiteralE-DistMult [15], MTKGNN [28] and
TransEA [32]. In addition, we included two well-known non -
attributive embeddings as baselines: Trans-E [2] and Trans-R [17].

The node attribute prediction tasks we selected, shown in Table 2,
include a variety of attributes to predict. It is also worth noting
that tasks involving FB15K237 and YAGO consist in the regression
of numerical attributes, while the Cora task consists in node clas-
sification. While the node type can be treated as an attribute, the
Cora dataset does not include actual attributes that can be used
to compute attributive embeddings, and thus we limit the deep
embeddings experiments to the FB15K237 and YAGO tasks, leaving
the Cora dataset to the domain-specific embeddings experiment
that serves as a representative of how GNNs improve performance
when using said embeddings. We tested each task with three differ-
ent train/test split proportions: 80%, 50% and 20% of examples for
training. Additionally, we executed every task ten times in order to
better assess the overall obtained performance.

Deep embeddings and Graph Neural Networks: can context improve domain-independent predictions? CIKM’22, October 17–22, 2022, Atlanta, GA

Dense

block

Dense

block

Dense

block

Dense

block

Dense

block

Dense

Input

Output

Dropout Dense

Node

embeddings

Batch

normalization

Dropout Dense

Batch

normalization

Figure 1: Baseline neural network architecture

Dense

block

Preprocess

GCL GCL

Dense

block

Postprocess

Dense

Input

Output

Preparation

Dense block

Aggregation Update

Skip connection

Node embeddings

and graph edges

(n1,n2)

(n2,n3)

...

Graph Convolution Layer (GCL)

Figure 2: Standard graph neural network architecture

To perform the experiments, we designed a script, Algorithm 1,
to execute all the combinations in terms of train split proportions
and embedding techniques for every defined task in the datasets,
for both the baseline feedforward neural network and the stan-
dard graph neural network. The datasets, tasks and embedding
techniques information are given in a dictionary and data itself is
contained in different files. The output consists of the prediction
evaluation metrics values for each setup.

4.2 Experimental Results
Tables 3 and 4 show the results of the experiments that we con-
ducted.

Table 3 collects the reference results of the Cora dataset, in terms
of accuracy. Figure 3 shows in amore visual way theMAE difference
between GNNs and NNs depending on the performed task and the

train set size, for deep embedding technique LiteralE-DistMult, in
which the effect of using different train set sizes is particularly
significant.

Table 4 contains the mean absolute error (MAE) obtained af-
ter applying each embedding technique in combination with the
standard neural network and the GNN, to perform different tasks
and considering different training set sizes, on two of the datasets
(FB15K237 and YAGO). Each execution was repeated ten times to
compute average values.

4.3 Research questions
Next, we provide the answers to the questions posed in Section 3.1,
according to the former experimental results.

CIKM’22, October 17–22, 2022, Atlanta, GA Anon.

Table 2: Prediction tasks

KG Task Nodes

Number
of dif-
ferent
values

Values range

FB
15
K2

37

filmRating 739 13 [0; 100]

locationArea 2,150 2,063 [0.004;
165,250,000]

personHeight 2,870 122 [1.35; 2.18]
populationNumber 52,704 49,928 [0; 1,205,624,648]

YA
GO

hasLatitude 8,671 6,620 [-75; 73]
hasLongitude 8,671 7,394 [-171.83; 178.44]
hasArea 11,922 10,075 [0.52; 8,000,036]

Co
ra hasSubject 2708 7 [0; 6]

Table 3: GNN accuracy on Cora

NN GNN ∆MAE%

20% 64.7431 67.5637 4.36

50% 73.9569 81.0633 9.61

80% 76.6745 84.8474 10.66

Q1: When using a GNN, does the kind of deep embedding
being used have a significant effect on performance? To what
extent is the performance of GNNs affected by the use of
attributive embeddings?

There are clear differences in GNN performance depending on
the embedding technique and it is more noticeable in certain tasks,
e.g. between TransEA and ASNE in the ℎ𝑎𝑠𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 task in GNN
column in Table 4. However, we haven’t identified an embedding
technique that consistently obtains better results in most tasks. The
same applies to non-attributive embeddings (TransE and TransR)
when compared to the rest.

Q2: When using deep embeddings for attribute prediction
tasks, does the use of a GNN instead of a regular neural net-
work result in significant performance differences?

Generally, it does, as can be seen in the ΔMAE% columns in
Table 4, showing the percentage difference between GNNs and NN
with bold numbers when GNN outperforms the regular NN in a
majority of cases. However, some tasks tend to leverage context
information and thus, the improvement is greater in them, like
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐴𝑟𝑒𝑎 or ℎ𝑎𝑠𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 , see Figure 3.

Q3: Are the aforementioned differences affected by the
kind of deep embedding being used?

Some embeddings seem to benefit more from the application of a
GNN with higher, more consistent reductions of the MAE. Overall,
there is a higher chance of improvement for attributive embeddings
than for non-attributive ones with the exception of TransEA. As can
be seen in Table 4, GNNs lead to an improvement in roughly 50%
of cases when using the TransR, TransE, or TransEA embeddings,
but when using ASNE, LiteralE-ComplEx, LiteralE-DistMult, and
MTKGNN there is an improvement in 66% to 75% of cases.

Q4: Is the improvement as noticeable as the reported in the
state of art for tasks that use domain-specific embeddings?
Does it vary with the prediction task?

The Cora experiments in Table 3 show an accuracy improve-
ment between 5% and 10%. The results in Table 4, however, vary
significantly between tasks.

It is clear than in some tasks, like 𝑓 𝑖𝑙𝑚𝑅𝑎𝑡𝑖𝑛𝑔 or 𝑝𝑒𝑟𝑠𝑜𝑛𝐻𝑒𝑖𝑔ℎ𝑡 ,
there is little information in the context of a node that could help
improve the prediction, while for example, the area of a country
could be easier to predict based on contextual information. In this
case, GNNs lead to lesser improvements or even worse results,
probably as a consequence of the increased architecture complexity.
These results are in contrast to the state of the art ones, where GNN
experiments are always carried out on citations or domain-specific
datasets, as seen in Table 1, and reach stunning performances. Other
tasks such as 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑁𝑢𝑚𝑏𝑒𝑟 seem to benefit more from the
contextual information provided by the GNNs, reaching improve-
ments of more than 25%.

Q5: To what extent is the improvement achieved by GNNs
affected by the amount of training data?

As can be seen in Figure 3, there is no clear trend when training
size is altered. In some tasks a reduced training size leads to a larger
improvement, maybe due to how a GNN can help use additional
information to compensate for the lack of numerous examples. In
others, the opposite happens, which may be caused by the higher
complexity of a GNN needing a larger number of examples to reach
its potential.

5 CONCLUSIONS AND FUTUREWORK
In this paper we have presented a much needed comprehensive
study about how GNNs perform when applied together with deep
embeddings. Deep embeddings have the appeal of being domain-
independent and potentially able to capture latent information
about the content of the graph, which has led to their extended
use in a variety of tasks, including prediction of graph elements by
feeding them to neural networks. Graph neural networks, which
intend to endow these networks with contextual information, seem
to be a perfect fit, but so far they have only been tested with domain-
specific embeddings, which motivated our study.

The novelty and value of our work resides in how we answer
several open research questions about the performance of GNNs
under several sets of circumstances including seven attribute pre-
diction tasks, seven types of deep embeddings, and three different
training sizes. We conclude that the application of GNNs to improve

Deep embeddings and Graph Neural Networks: can context improve domain-independent predictions? CIKM’22, October 17–22, 2022, Atlanta, GA

Table 4: Embedding techniques MAE comparison

NN GNN ∆MAE% NN GNN ∆MAE% NN GNN ∆MAE% NN GNN ∆MAE% NN GNN ∆MAE% NN GNN ∆MAE% NN GNN ∆MAE%

20% 9.5737 9.1583 -4.34 16.4734 15.8074 -4.04 16.5041 15.7854 -4.35 16.2449 15.5837 -4.07 15.9838 15.9753 -0.05 16.4583 16.3101 -0.90 16.1969 16.0243 -1.07

50% 5.9916 6.2949 5.06 15.4682 15.1325 -2.17 14.8965 15.5231 4.21 15.2264 14.9973 -1.50 15.4585 15.7934 2.17 15.5508 15.6815 0.84 14.7528 15.2734 3.53

80% 5.5274 5.0774 -8.14 14.5767 14.6457 0.47 14.7380 14.7621 0.16 14.8746 14.6467 -1.53 15.4188 15.7456 2.12 15.2660 15.3452 0.52 14.5562 14.8972 2.34

20% 12.6237 9.8694 -21.82 9.8040 10.8875 11.05 10.8566 8.8964 -18.06 10.1552 9.0006 -11.37 9.5080 9.0846 -4.45 9.0743 6.7642 -25.46 7.0607 6.8754 -2.62

50% 9.9147 7.4608 -24.75 9.4036 8.0787 -14.09 9.8365 8.2094 -16.54 8.7479 8.2774 -5.38 11.7681 8.5035 -27.74 9.0598 9.0088 -0.56 7.8769 10.2782 30.49

80% 9.2169 8.3831 -9.05 10.0565 8.4622 -15.85 8.9004 8.5203 -4.27 9.4371 8.6090 -8.77 9.4937 8.0584 -15.12 8.5825 8.1500 -5.04 9.2707 8.6887 -6.28

20% 0.0527 0.0577 9.46 0.0709 0.0687 -3.06 0.0704 0.0681 -3.17 0.0697 0.0713 2.23 0.0816 0.0819 0.38 0.0811 0.0816 0.63 0.0785 0.0794 1.17

50% 0.0455 0.0481 5.63 0.0668 0.0661 -0.94 0.0665 0.0654 -1.58 0.0653 0.0656 0.41 0.0797 0.0808 1.39 0.0782 0.0802 2.53 0.0718 0.0726 1.07

80% 0.0429 0.0456 6.37 0.0655 0.0653 -0.35 0.0651 0.0639 -1.70 0.0641 0.0632 -1.46 0.0790 0.0799 1.24 0.0778 0.0796 2.27 0.0711 0.0707 -0.51

20% 8.2767 6.5413 -20.97 8.7521 6.8001 -22.30 7.7478 6.3342 -18.25 7.3405 6.8819 -6.25 6.8641 6.7753 -1.29 7.6700 6.4430 -16.00 6.3780 6.3402 -0.59

50% 8.3747 7.1926 -14.11 8.8367 6.9774 -21.04 7.1711 7.0500 -1.69 9.2356 6.9539 -24.71 6.8944 6.7403 -2.24 7.7979 7.0100 -10.10 6.7265 7.0913 5.42

80% 7.8286 6.2857 -19.71 8.8838 6.4304 -27.62 7.2562 6.4460 -11.17 7.0696 6.4988 -8.07 6.2354 6.1064 -2.07 6.6006 5.9568 -9.75 6.3400 5.9621 -5.96

20% 15.8762 16.1874 1.96 8.0253 8.5256 6.23 9.6542 10.7848 11.71 9.6613 10.8258 12.05 7.3028 7.8766 7.86 8.5174 10.7656 26.40 9.6053 11.7178 21.99

50% 15.1523 15.4819 2.17 5.9231 5.8723 -0.86 7.7242 6.9875 -9.54 7.6592 7.6600 0.01 5.0203 4.6103 -8.17 5.4106 4.6542 -13.98 6.1409 6.0703 -1.15

80% 15.1493 15.4370 1.90 5.7398 5.4619 -4.84 7.3297 6.6112 -9.80 6.9609 6.6623 -4.29 5.0551 4.4951 -11.08 5.2888 4.3586 -17.59 6.0585 4.8657 -19.69

20% 39.3299 37.9247 -3.57 20.1994 20.8493 3.22 23.8878 22.4796 -5.90 23.0715 22.6942 -1.64 15.9415 16.0364 0.60 20.9329 23.1130 10.41 21.4411 28.7336 34.01

50% 36.3181 26.9464 -25.80 15.7095 17.0096 8.28 18.7299 17.6885 -5.56 18.8015 17.9712 -4.42 13.5979 13.6642 0.49 14.3521 13.2712 -7.53 15.9453 16.5460 3.77

80% 36.5138 24.9506 -31.67 15.8009 15.5438 -1.63 18.7531 17.2356 -8.09 17.7571 17.5213 -1.33 13.6332 13.0070 -4.59 15.1582 14.1030 -6.96 16.2791 14.0856 -13.47

20% 13.6660 12.3963 -9.29 7.5554 7.5238 -0.42 7.9465 8.6081 8.33 9.1942 7.0575 -23.24 8.6687 9.2323 6.50 10.6573 10.4682 -1.77 12.1870 8.9230 -26.78

50% 12.7663 12.3170 -3.52 6.1890 7.1071 14.83 6.5280 6.9359 6.25 6.8200 7.1586 4.96 6.1964 7.3155 18.06 5.9629 7.1403 19.75 7.8738 6.6341 -15.74

80% 12.4752 11.9690 -4.06 4.6004 5.6009 21.75 6.4699 6.7573 4.44 5.9645 5.5691 -6.63 6.2036 6.6932 7.89 5.9180 7.6781 29.74 6.5564 7.6224 16.26

T
r
a
in

s
iz
e LiteralE-DistMult MTKGNN TransEA TransE TransR

Y
A
G
O

hasLatitude

hasLongitude

hasArea

(x104)

F
B
1
5
K
2
3
7

filmRating

locationArea

(x105)

personHeight

populationNumber

(x106)

ASNE LiteralE-ComplEx

Figure 3: GNN vs. NN MAE percentage difference

performance obtained by deep embeddings has significant poten-
tial as can be seen in several tasks in which there is a reduction
of error of more than 25%. However, research so far has focused
too much on proposing new network architectures and too little
on determining under what circumstances they work best. As our
experiments have shown, the same GNN can obtain completely
different results depending on the task and embeddings being used.

Future work should focus on collecting a large set of attribute-
rich datasets for the evaluation of GNNs and deep embeddings in
an automated way. It would be particularly useful to catalogue said
datasets according to their topology and other characteristics that
should affect how useful the information-passing mechanisms in
GNNs are.

REFERENCES
[1] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.

2008. Freebase: A Collaboratively Created Graph Database for Structuring Human
Knowledge. In SIGMOD. ACM New York, NY, USA, 1247–1250. https://doi.org/
10.1145/1376616.1376746

[2] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In Advances in Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems 2013. Proceedings of a
meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, Christo-
pher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Wein-
berger (Eds.). 2787–2795. https://proceedings.neurips.cc/paper/2013/hash/
1cecc7a77928ca8133fa24680a88d2f9-Abstract.html

[3] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. 2017. Geometric Deep Learning: Going beyond Euclidean data. IEEE
Signal Process. Mag. 34, 4 (2017), 18–42. https://doi.org/10.1109/MSP.2017.2693418

[4] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In ICLR 2018. OpenReview.net.
https://openreview.net/forum?id=rytstxWAW

CIKM’22, October 17–22, 2022, Atlanta, GA Anon.

[5] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph
Convolutional Networks. In ACM SIGKDD 2019, Ankur Teredesai, Vipin Kumar,
Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis (Eds.). ACM, NY,
USA, 257–266. https://doi.org/10.1145/3292500.3330925

[6] Marc Franco-Salvador, Paolo Rosso, and Manuel Montes-y Gómez. 2016. A
systematic study of knowledge graph analysis for cross-language plagiarism
detection. Information Processing & Management 52, 4 (2016), 550–570.

[7] Genet Asefa Gesese, Russa Biswas, Mehwish Alam, and Harald Sack. 2021. A
survey on knowledge graph embeddings with literals: Which model links better
literal-ly? Semantic Web 12, 4 (2021), 617–647. https://doi.org/10.3233/SW-200404

[8] C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. 1998. CiteSeer: An Automatic
Citation Indexing System. In Proceedings of the 3rd ACM International Conference
on Digital Libraries, June 23-26, 1998, Pittsburgh, PA, USA. ACM, 89–98. https:
//doi.org/10.1145/276675.276685

[9] Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. 2017.
Knowledge Transfer for Out-of-Knowledge-Base Entities : A Graph Neural Net-
work Approach. In IJCAI. 1802–1808. https://doi.org/10.24963/ijcai.2017/250

[10] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Repre-
sentation Learning on Large Graphs. In Advances in Neural Information Pro-
cessing Systems. 1024–1034. https://proceedings.neurips.cc/paper/2017/hash/
5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html

[11] Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep Convolutional Networks
on Graph-Structured Data. https://doi.org/10.48550/ARXIV.1506.05163

[12] Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping Li. 2019. Knowledge
graph embedding based question answering. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining. 105–113.

[13] Fadhela Kerdjoudj and Olivier Curé. 2015. RDF knowledge graph visualization
from a knowledge extraction system. arXiv preprint arXiv:1510.00244 (2015).

[14] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR. OpenReview.net. https://openreview.
net/forum?id=SJU4ayYgl

[15] Agustinus Kristiadi, Mohammad Asif Khan, Denis Lukovnikov, Jens Lehmann,
and Asja Fischer. 2019. Incorporating Literals into Knowledge Graph Embeddings.
In The Semantic Web - ISWC 2019 - 18th International Semantic Web Conference,
Auckland, New Zealand, October 26-30, 2019, Proceedings, Part I (Lecture Notes in
Computer Science, Vol. 11778), Chiara Ghidini, Olaf Hartig, Maria Maleshkova,
Vojtech Svátek, Isabel F. Cruz, Aidan Hogan, Jie Song, Maxime Lefrançois, and
Fabien Gandon (Eds.). Springer, 347–363. https://doi.org/10.1007/978-3-030-
30793-6_20

[16] Lizi Liao, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. 2018. Attributed
Social Network Embedding. IEEE Trans. Knowl. Data Eng. 30, 12 (2018), 2257–2270.
https://doi.org/10.1109/TKDE.2018.2819980

[17] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
Entity and Relation Embeddings for Knowledge Graph Completion. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015,
Austin, Texas, USA, Blai Bonet and Sven Koenig (Eds.). AAAI Press, 2181–2187.
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571

[18] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda,
and Michael M. Bronstein. 2017. Geometric Deep Learning on Graphs and
Manifolds Using Mixture Model CNNs. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017.
IEEE Computer Society, 5425–5434. https://doi.org/10.1109/CVPR.2017.576

[19] Deepak Nathani, Jatin Chauhan, Charu Sharma, and Manohar Kaul. 2019. Learn-
ing Attention-based Embeddings for Relation Prediction in Knowledge Graphs.
In ACL. 4710–4723.

[20] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
Convolutional Neural Networks for Graphs. In ICML (JMLR Workshop and Con-
ference Proceedings, Vol. 48), Maria-Florina Balcan and Kilian Q. Weinberger (Eds.).
JMLR.org, 2014–2023. http://proceedings.mlr.press/v48/niepert16.html

[21] Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, and
Jamie Taylor. 2019. Industry-scale knowledge graphs: lessons and challenges.
Commun. ACM 62, 8 (2019), 36–43.

[22] Shirui Pan, JiaWu, Xingquan Zhu, Guodong Long, and Chengqi Zhang. 2017. Task
Sensitive Feature Exploration and Learning for Multitask Graph Classification.
IEEE Trans. Cybern. 47, 3 (2017), 744–758. https://doi.org/10.1109/TCYB.2016.
2526058

[23] Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Philip S. Yu. 2016.
Joint Structure Feature Exploration and Regularization for Multi-Task Graph
Classification. IEEE Trans. Knowl. Data Eng. 28, 3 (2016), 715–728. https:
//doi.org/10.1109/TKDE.2015.2492567

[24] Thomas Rebele, Fabian M. Suchanek, Johannes Hoffart, Joanna Biega, Erdal
Kuzey, and Gerhard Weikum. 2016. YAGO: A Multilingual Knowledge Base
from Wikipedia, Wordnet, and Geonames. In ISWC, Vol. 9982. 177–185. https:
//doi.org/10.1007/978-3-319-46547-0_19

[25] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and
Tina Eliassi-Rad. 2008. Collective Classification in Network Data. AI Mag. 29, 3
(2008), 93–106. https://doi.org/10.1609/aimag.v29i3.2157

[26] Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou.
2019. End-to-End Structure-Aware Convolutional Networks for Knowledge Base
Completion. In AAAI, Vol. 33. 3060–3067. https://doi.org/10.1609/aaai.v33i01.
33013060

[27] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of
semantic knowledge. In WWW. ACM, 697–706.

[28] Yi Tay, Luu Anh Tuan, Minh C. Phan, and Siu Cheung Hui. 2017. Multi-Task
Neural Network for Non-discrete Attribute Prediction in Knowledge Graphs. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge Man-
agement, CIKM 2017, Singapore, November 06 - 10, 2017, Ee-Peng Lim, Marianne
Winslett, Mark Sanderson, Ada Wai-Chee Fu, Jimeng Sun, J. Shane Culpep-
per, Eric Lo, Joyce C. Ho, Debora Donato, Rakesh Agrawal, Yu Zheng, Carlos
Castillo, Aixin Sun, Vincent S. Tseng, and Chenliang Li (Eds.). ACM, 1029–1038.
https://doi.org/10.1145/3132847.3132937

[29] Kristina Toutanova and Danqi Chen. 2015. Observed versus latent features
for knowledge base and text inference. In Proceedings of the 3rd workshop on
continuous vector space models and their compositionality. 57–66.

[30] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR. OpenRe-
view.net. https://openreview.net/forum?id=rJXMpikCZ

[31] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph
embedding: A survey of approaches and applications. IEEE Transactions on
Knowledge and Data Engineering 29, 12 (2017), 2724–2743.

[32] Yanrong Wu and Zhichun Wang. 2018. Knowledge Graph Embedding with
Numeric Attributes of Entities. In Proceedings of The Third Workshop on Repre-
sentation Learning for NLP, Rep4NLP@ACL 2018, Melbourne, Australia, July 20,
2018, Isabelle Augenstein, Kris Cao, He He, Felix Hill, Spandana Gella, Jamie
Kiros, Hongyuan Mei, and Dipendra Misra (Eds.). Association for Computational
Linguistics, 132–136. https://doi.org/10.18653/v1/w18-3017

[33] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[34] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamil-
ton, and Jure Leskovec. 2018. Hierarchical Graph Representation Learn-
ing with Differentiable Pooling. In NeurIPS, Samy Bengio, Hanna M. Wal-
lach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett (Eds.). 4805–4815. https://proceedings.neurips.cc/paper/2018/hash/
e77dbaf6759253c7c6d0efc5690369c7-Abstract.html

[35] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung.
2018. GaAN: GatedAttentionNetworks for Learning on Large and Spatiotemporal
Graphs. In UAI, Amir Globerson and Ricardo Silva (Eds.). AUAI Press, 339–349.
http://auai.org/uai2018/proceedings/papers/139.pdf

[36] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An End-
to-End Deep Learning Architecture for Graph Classification. In AAAI, Sheila A.
McIlraith and Kilian Q. Weinberger (Eds.). AAAI Press, 4438–4445. https://www.
aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17146

[37] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. 2018. Graph convo-
lutional networks: Algorithms, applications and open challenges. In International
Conference on Computational Social Networks. Springer, 79–91.

[38] Weiguo Zheng, Jeffrey Xu Yu, Lei Zou, and Hong Cheng. 2018. Question answer-
ing over knowledge graphs: question understanding via template decomposition.
Proc. of the VLDB Endowment 11, 11 (2018), 1373–1386.

[39] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI Open 1 (2020), 57–81. https://doi.org/
10.1016/j.aiopen.2021.01.001

	Introduction
	Introduction
	Context of this TFM
	Document structure

	Preliminary study
	Introduction
	Goals
	Methodology
	Planning
	Budget
	Conclusions

	State of art
	Introduction
	Graph neural networks
	Node embedding techniques
	GNN popular approaches
	Conclusions

	Experimentation
	Introduction
	Research questions
	Architecture of the neural networks
	Experimental setup
	Experimental results
	Research questions
	Conclusions

	Conclusions and future work
	Bibliography
	Annexed documents
	Article presented to CIKM'22

