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Abstract- An analysis of slender axisymmetric liquid col- 
umns is performed on the basis of one-dimensional models, 
recently derived and generalised here to include the effect 
of dielectric forces at the interface. The natural frequencies 
and stability criteria in the absence of gravity are obtained. 
Results are compared with the known exact linear solutions 
of the corresponding three-dimensional problem. 

I .  INTRODUCTION 

HE dynamics of propagation and disintegration of lis- T uid columns, i.e. jet,s and liquid bridges, has long at- 
tracted the attention of investigators. The interest in these 
phenomena arose not only by their beauty but also by the 
possibility of wide application. The solution of these prob- 
lems on the basis of the general three-dimensional hydrodl - 
namic equations involves great difficulties. We address here 
1 he question of the validity of one-dimensional models dts- 
rived from appropriate truncation of the three-dimensional 
equations. 

The linear approach shows that jets as well as cylindricitl 
Iiquid bridges are unstable against axisymmetric perturbit- 
tions whose wavelength is greater than the perimeter of tlie 
undisturbed column. Experimental observations also show 
that the breaking process is axisymmetric. This justifivs 
considering only axisymmetric motioiis. 

The smallness of the ratio of the radius to the initial 
wavelength or height of the column, allows us to obtain 
one-dimensional models that greatly simplify the study <If 
these columns. The inviscid slice model introduced by Lt.e 
[l] and the Cosserat model [2], originally born in the con- 
text of continuum mechanics, are the more widely known. 
Here a set of one-dimensional models is derived by subst i- 
tuting a truncated Taylor series of the radial coordinate in 
the Navier-Stokes equations and boundary conditions at  
the interface. The Lee slice model is generalized to  take 
account of viscosity. A new model having a parabolic ra- 
dial dependence for the axial velocity is developed. The 
Cosserat model comes from the introduction of the mean 
axial velocity into the previous one, but an inconsistency 
arises from neglecting some viscous terms of the same order 
as those retained. A new model for the mean axial veloc- 
ity is derived. I t  conserves the same inertial contribution 
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Fig. 1: Schematic description of an axisymmetric liquid 
bridge subjected to an a.c. axial electric field. 

but avoids the above-mentioned problem by estimating the 
involved terms instead of neglecting them. 

Electrical forces acting upon the polarization charges 
present a t  the interface increase the minimum initial wave 
length or height below which the column is stable. Thus, 
more slender columns are feasible. The derivation of one- 
dimensional models is generalized to include the effect of 
dielectric forces at  the interface. 

In order t o  test the validity of these models, a linear 
stability analysis is performed, first in the absence and then 
in the presence of the axial electric field E. I t  has  been 
already shown that for jets the results obtained using these 
approximate models and the exact ones given by Rayleigh 
[3, 41 and Weber [E)] are in good accordance [6]. Here the 
results for liquid bridges are compared to  the exact linear 
solutions given by !ianz [7] (inviscid, E = 0),  Tsamopoulos 
e t  d. [8] (viscous, E = 0), Nicolk [9] (highly viscous, E = 
0), and Gonzilez e t  al. [lo] (inviscid, E # 0).  

11. GENERAL EQUATIONS 
Let us consider a cylindrical liquid column of radius R 

and height L anchored between two parallel coaxial disks. 
The liquid is assumed to be incompressible and with con- 
stant density and viscosity (see Fig. 1). The liquid bridge, 
confined by surface tension, is supposed to  be in a zero- 
gravity environment. Using the dimensional scales R for 
length, ( p R 3 / u ) ' / 2  for time, ( c ~ / ( p R ) ) ' / ~  for velocity, and 
u / R  for pressure, the radial and axial components of the 
Navier-Stokes equation, and the continuity equation are 

vt + vv, -I- wv, = -P, + C(L',, - W V Z ) ,  (1) 
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(3) 
1 -(rV), + W, = 0. 

where the subscripts t,  r ,  and z indicate derivatives with re- 
spect to time and the radial and axial coordinates, respec- 
tively; and V, W ,  and P are the radial and axial velocities 
and pressure. The Ohnesorge number C = ~ / ( p a R ) ’ / ~  
shows the ratio of viscous to capillary forces. 

To these equations, we must add the following boundary 
conditions: 

0 Regularity at the axis and axisymmetry: 

V(O, Z, t )  = 0, Wr(O, Z, t )  = 0, Pr(O,z, 1 )  = 0; (4) 

0 kinematic condition at the interface ( r  = F ( z ,  t ) ) :  

[Ft - + F 2 W 1  Ir=F(z , t )  = O; (5) 
0 normal and tangential components of the stress equi- 

librium at the interface: 

C [(Wr + vz) (F,” - 1) + 2 ~ z  ( ~ z  - K)] lr=F(t,l) = 0; 
(7) 

where n is the unitary vector normal to the interface, and 
the mean curvature Vn, which gives the capillary pressure, 
takes the form 

1 
(1 + F 2 ) i  

V , n  = 

The above boundary conditions are valid for liquid jets 
as well as for liquid bridges. For the latter, some other con- 
straints must be added in order to account for the presence 
of the rigid disks: 

0 Impenetrability of the rigid disks: 

W ( r ,  z = *A, 1 )  = 0; (9) 
anchoring to their respective edges: 

F ( z  = & A , t )  = 1; (10) 

V ( r , z =  * A , t )  = 0; (11) 

0 no-slip condition at  the disks (if C # 0): 

0 conservation of the volume of the liquid bridge: 

d z F 2 ( z ,  0). (12) 

where A = L/(2R) is the slenderness. 
The volume of the column is important for its stabil. 

ity properties. However, if the dynamics of the system ic 
under study, the conservation of volume is guaranteed b) 
fulfilment of the continuity equation (3) and the kinematic 
condition (5). Therefore, Eq. (12) can be considered ar 
initial condition. 

111. ONE-DIMENSIONAL MODELS 
The difficulty of the above equations can be circum- 

vented through the use of the so-called one-dimensional 
models, valid for slender columns. The smallneas of the 
typical radial length as compared to the axial one, charac- 
terized by the value l/A, suggests expanding the mentioned 
variables in series of powers of r .  Furthermore, axisymme- 
try implies that the axial velocity W and the pressure P 
are even functions of r ,  while the radial velocity V is an odd 
one. Therefore, the following Taylor series are proposed: 

-- 2 j  + r2j+lWzj, + . . . , 
(23’ + 2)! 

where the coefficients Wz,, Pzj, with j = 0, 1, . . . are func- 
tions o f t  and z ,  and Eq. (3) is implicitly present in the 
series associated to V. 

The generation of one-dimensional models can be sum- 
marized as follows. First, the series (13)-(15) are intro- 
duced in the momentum equations (1)-(2). This gives an 
infinite set of equations that can be truncated according 
to the relative error expected from the model. This rela- 
tive error is defined as the order of magnitude of the larger 
neglected terms divided by that of the retained ones of 
the same nature. In order to characterize it, the nota- 
tion O,(A-.) is introduced, which following an expression 
means that the neglected terms are of order l/An times the 
order of the retained terms. Second, the set of momentum 
equations is completed with the boundary conditions at the 
interface, in which the same Taylor series are substituted, 
and high-order terms are neglected consistently with the 
cited relative error. Finally, some of the variables can be 
eliminated from the formulation, providing a reduced sys- 
tem of differential equations which does not depend on r 
anymore. Since this procedure is applied to Eqs. (1)-(7), 
which are common to jets and bridges, the derived models 
are valid for both kinds of liquid columns (for details about 
their derivation, see [SI). 

The first-order model may be called viscous Lee model, 
since in the limit C = 0 it matches the inviscid slice model 
proposed by Lee. The relative error of this model is A-2. 
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Since at  this order the axial velocity is represented by its 
mean value on a slice within the same accuracy, the viscous 
Lee model has w and F as variables: 

F 2  (mt + Vw,) = - F 2  (V.n), + 3C (F’m, ) ,  , (16) 

(F’),  + ( F ’ T ) ,  = 0 .  (17) 

Note that the kinematic condition (17) is exact, as it can 
be deduced integrating Eq. (3) on a slice. 

The second-order model, with relative error consid- 
ers the contribution of first-order radial and axial momen- 
tum as well as second-order axial momentum equations. 
Since this approach leads to a parabolic radial approxima- 
tion of the axial velocity, it may he called parabolic one- 
dimensional model. The subsequent system of six differen- 
tial equations in the variables WO,  W Z ,  W4, F ,  PO, and P2 
can be reduced to the following three ones for WO, W2, and 
F :  

The difficulty of this formulation as compared to thfa vis- 
cous Lee one is evident. A simpler model for the mean axial 
velocity and the shape of the interface can be obtained from 
the former. To this end, Eq. (19) multiplied by F 2  is added 
to Eq. (20) multiplied by 1/4. In this single equation, WO 
can be eliminated in favor of m. However, Wz appears 
in  second-order viscous terms. If these are neglected. the 
following equation for and F is obtained: 

~ 
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1 1 
- F 3 F , ~ 2 Z z  - 5 (F3F,, + 3F2F,2) ITzz + Or(A-2) 

+ Or(A-4)1 (21) 

which together with the kinematic condition (17) consti- 
tute the well-known Cosserat one-dimensional model. The 
described inconsistency affects the relative error of the mod- 
el, changing from A-4 to Ah-’ when the Ohnesorge number 
is large enough. This inconvenience can be overcome if Eq. 
(13) is substituted into Eq. (7), which allows us to obtain 
an approximate relationship for Wz in terms of v. Thus, 
the neglected second-order viscous terms in the Cosserat 
model can be so estimated to give 

3 
4 +- [ (F3F,?,  - 3F2FZ2) m,] , 

which together with Eq. (17) is referred as the averaged 
parabolic one-dimensional model, or briefly averaged mod- 
el. It conserves the same inertial terms as the Cosserat 
model, but its corrected viscous contribution guarantees 
that the relative error of the former is A-4 instead, for any 
value of the Ohnesorge number. 

A .  Boundary condztions at the anchoring disks. 
The presence of rigid walls at  z = &A, mathematically 

characterized by the boundary conditions (9)-( 1 1), distin- 
guishes liquid bridges from jets. The same procedure of 
one-dimensionalxzation applied to the referred conditions 
provides another ones that do not depend any longer on 
the radial variable. In order to close the problem for liq- 
uid bridges, the number of these one-dimensional boundary 
conditions must be the same as the differential order in z 
of the model. 

The Lee, Cosserat, and averaged models may be called 
mean-veloczty models, since all of them have m and F as 
dependent variables. Their differential order in z is four 
for any value of C. Thus, four independent boundary con- 
ditions at  the disks must be satisfied. First, the anchoring 
conditions (10) remain unchanged. 

F ( z  = * A , t )  = 1. (23 ) 
Second, as Meseguer [ll] has shown, the radial integra- 

tion of Eq. (9) implies that the mean axial velocity must 
be zero at  the disks: 

Finally, introducing the latter conditions in the kine- 
matic equation (17), another two conditions for v are ob- 
tained: 

- 
W ,  ( z  = f A , t )  = 0, (25) 

which are dependent with respect to (23 ) .  



I t  is important to notice that the no-slip condition (11) 
leads to (25) again, as can be shown by averaging Eq. (3) 
on a slice. Therefore, the differential order as well as the 
boundary conditions at the disks are independent of the 
value of the Ohnesorge number. 

The parabolic model is defined in terms of the variables 
WO, W2, and F .  When viscosity is not zero, the differential 
order in z is eight, while it changes to  six in the inviscid 
case. This imposes the number of boundary conditions in 
each case. 

The anchoring condition at the edge of the rigid disks 
applies again: 

F ( z = f A , t ) = l .  (26) 
If the series (13)-(14) are introduced in the impenet- 

rability and no-slip conditions, (9) and ( l l ) ,  the following 
eight boundary conditions for the viscous parabolic model 
are obtained: 

are the dielectric ones. The exact formulation of the prob- 
lem for static conditions has been given in [12] and for 
dynamic conditions in [lo]. In both cases, the only place 
where the electric field enters the formulation of the hydro- 
dynamic equations is in the normal stress boundary con- 
dition, where now the electric pressure has to be added to 
the capillary one following the substitution rule 

The Maxwell equations reduce to both the divergence 
and curl of the electric field being zero. Introducing the 
electrical potential @, i t  must fulfill the Laplace equation 

V2@ = 0, (35) 

as well as the following boundary conditions 

@ ( P I  z = A , t )  = 1, @ ( r ,  z = - A , t )  = 0; (36) 

W2 ( Z  = f A , t )  = 0, (28) @(O, z ,  t) finite, (37) 

WO, (Z = f A , t )  = 0, z + A  
r-oo lim @(r,z,t)  = - 2A 

(30) A@ = 0, (39) 

(40) 

W2, (Z = & A , t )  = 0. 

The four conditions (29) and (30) do not apply if C = 
0. Instead substituting the above-mentioned series into 
the kinematic equation (18) gives another two conditions. 
Using (20) with C = 0 to &couple W2 from.the problem, 
the following six conditions for WO and F must be fulfilled 
by the inviscid parabolic model: 

A [E ( - e r  + Fz@z)] = 0, 

where E is the ratio of the electric permittivity of the 
vacuum €0  to the one of the inner liquid €in; A denotes 
the jump of a magnitude through the interface; and Z = 
(Ein/(bR))'/2@o is the electric Bond number, which shows 
the ratio of electric to capillary forces. WO ( Z  = *A, t )  = 0, (31) 

IV. LINEAR STABILITY ANALYSIS 
The static cylindrical solution is characterized by having 

zero velocity and constant values of the pressure and shape 
of the interface. A perturbative solution is proposed for the 
one-dimensional models, in terms of a small deviation of 
the amplitude of the involved magnitudes from the static 

WO,, (2 = f A , t )  = 0, (32) 

(33) 
1 
8 

WO, (Z = & A , t )  - -WO,,, (Z = f A , t )  = 0. 

Conditions (33) come from imposing the anchoring of 
the shape of the interface to the edges of the disks. How- 
ever they allow the liquid to slip on their surface, as it is 
expected as long as viscosity effects are absent. 

Contrarily to the mean-velocity models, the parabolic 
one conserves the sensitivity of the general equations and 
boundary conditions to the viscous or inviscid character of 
the problem. 

B. Presence of an axial a.c .  electric field. 
Consider now that an a.c. potential difference is applied 

to the bounding plates (electrodes) in which the liquid 
bridge anchors are welded (see Fig. 1). For frequencies 
much higher than the inverse of the charge relaxation time, 
the only forces of electrical origin that are of importance 

solution, and second-order terms in such amplitude will be 
neglected. The linearized shape of the interface f becomes 
decoupled through the kinematic equation. The linearized 
one-dimensional models so obtained are valid for jets as 
well as for liquid bridges, and are written down explicitly 
in [SI. The boundary conditions at the disks for these linear 
mean-velocity models are given in section 1II.A. 

A treatment similar to the one presented by GonzSlez et 
al. in [lo] has been performed to solve these linear bound- 
ary problems. An exponential time dependence is pro- 
posed, of the type e a t .  The electric problem given by Eqs. 
(35)-(39) is solved by separation of variables. The solu- 
tion takes the form of a Fourier series of sines of z. Since 
the electric problem is coupled to the dynamical one by 
the boundary conditions at  the interface, the coefficients of 
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Fig. 3: Relative error in the determination of R by the Lee 
(short dashed), (3osserat and averaged (long dashed), and 
parabolic (solid lines) models as a function of slenderness, 
for the first two modes and C = 0. 

Fig. 2: Module of the eigenvalue 62 o f t h e  first four modes 
as a function of the slenderness, for C = 0, E = 0.55, E = 0 
(solid) and E = 30 (dished lines). 

such series can be found in terms of the ones correspond- 
ing to the analogous series proposed for the velocity and 
the shape of the interface. The compatibility condition of 
the resulting system of linear equations restricts the pos- 
sible values of the eigenvalue R = cr + iw ,  whose real and 
imaginary part are the growth factor and the frequency 
of vibration of the column. The qualitative linear evolu- 
tion of a liquid bridge has been well described by Meseguer 
[ll]. For w # 0 the bridge oscillates. If cr < 0 the per- 
turbation damps out,  and if cr > 0 it grows exponentially 
in time. The different resulting modes can be classified 
in antisymmetric or symmetric, attending to the parity of 
the shape of the interface for the selected mode. The first, 
mode ( m  = l ) ,  which is antisymmetric, determines the 
linear stability limit. 

In order to check the error of the one-dimensional models 
and to find the influence of the slenderness and viscosity 
on the evolution of the bridge, we have considered a wide 
range in both parameters (2 5 A 5 10 and 0 5 C < 00). 

Notice that liquid bridges of slenderness larger than A are 
considered. The analysis of such unstable columns, not 
performed before, is interesting for two reasons. First, it is 
possible to  have liquid bridges of slenderness above x ,  using 
either electric [la] or magnetic forces [13] t.o stabilize the 
interface, or by melting a solid metal rod passing through 
it an intense electric current impulse [14]. Secondly, it is 
interesting to predict how many drops are going to be pro- 
duced in the breaking of such slender columns. as well i l s  to 
det.ermine the minimum critical length, above which these 
liquid bridges behave as jets. 

Let A, be the value of A for which R = 0. In the inviscid 
case, R is imaginary if A < A, ,  and real otherwise. For 

large enough viscosities, R is real for any positive value of 
A. In Fig. 2, the module of the most significant value of R 
is plotted against, A, for the first four modes and C = 0, as 
calculated by Sanz [7]. These data  and the ones provided 
by Nicolcis [9], have been used to calculate the relative er- 
rors in the eigenvalue given by the Lee, Cosserat, averaged 
and parabolic models, which are plotted in Figs. 3 and 4 .  
Such deviations are respectively related to  the neglected 
inertial and viscous terms in the derivation of these mod- 
els. These results can be compared to the respective ones 
for jets [3, 4, 51, by taking k = m r / A  as the dimensionless 
wavenumber, where m characterizes the selected mode. 

Notice that,  for A > A, and C = 0, the growth factor 
as well as its relative error do not tend to zero, but to a 
constant value that is common to  all modes. This can be 
explained in ternis of a characteristic nondimensional axial 
length A,  defined as the distance between consecutive nodes 
of the shape of the interface. A is a half of the wavelength 
in a jet ,  but doe:5 not necessarily coincide with A for slen- 
der enough bridges. Let A,,, be the value of A for which 
the maximum growth factor is attained in a jet, which is 
about 4.51 in  the inviscid case. In a bridge and for a given 
value of A, the most unstahle mode should have a similar 
value of A .  However, the latter can never be greater than 
A ,  which shows that the slenderness can be considered a 
good measure of the characteristic axial length if A < A,,, 
(for m=l ) .  For more slender bridges, it  is expected that 
A N A,,,, independently of the value of A ,  and new nodes 
appear in the shape of the interface. In fact, this is ob- 
served in Fig. 5, where the shape of the interface is plotted 
against z /A for increasing values of A ,  C = 0, and m = l .  
For a given mode m, A, is approximately given by 
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Fig. 4: Relative error in the determination of Ca by the Lee 
and averaged (long dashed), Cosserat (dotted-dashed), and 
parabolic (solid lines) models as a function of slenderness, 
for the first two modes and C >> 1. 
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Fig. 5: Shape of the interface of the first antisymmetric 
mode versus z/A, for C = 0 and A = 2, 3, . . . , 10, as given 
by Sanz. 

(41) 
2A (if A < ?Amax) , { (ifA > ~ X m a X )  . 

Since the typical axial length is responsible for the rela- 
tive error of the one-dimensional models, this one remains 
approximately constant for large enough A. Concerning 
the influence of viscosity, Amax increases as C does. Thus, 
the value of A for which new nodes appear increases, and 
X N A if C >> 1,  for any value of A. This fact is put 
in evidence in Fig. 6, where the shape of the interface is 
plotted for several values of C, as given by the parabolic 
model, the other models giving very similar results. This 
explains the clear analogy between very viscous liquid jets 
and bridges observed by NicolL [9], and why the relative 
error of one-dimensional models tends to zero as A -, w 
for C >> 1. 

1.2 I I I I 1 

0.4 
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0 . 4  
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0 . 8  
-1 .o -0.5 0.0 
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Fig. 6: Shape of the interface of the first antisymmetric 
mode versus z/A, for C = 0, 0.1, 1, 10, and A = 10, as 
given by the parabolic model. 

The main features discussed in the derivation of the one- 
dimensional models arise in Figs. 3 and 4. If C = 0, the 
Cosserat and averaged models coincide. Their error is of 
the same order than the one of the parabolic model, as 
expected. The error of the Lee model is about twenty 
times greater than the previous ones. Although the linear 
Lee model tends to coincide with the averaged one when 
C + CO, this is not true when nonlinear terms are taken 
into account. Therefore, the good behavior of the former 
cannot be extended to more realistic situations. In this 
limit, the Cosserat model exhibits a worse agreement with 
the exact solution, due to  the inconsistency in the second- 
order viscous terms. The better results of the averaged 
model get worse for A < 2, since the approximation of the 
terms neglected by the Cosserat one is not so good for small 
slenderness. Concerning the parabolic model, the error in 
the first two modes does not overcome a 7% in the studied 
parametric range. As expected, the error increases with 
the index of the mode, due to the decreasing typical axial 
length. 

Meseguer [ll] has carried out a study of the dependence 
of R on A for several values of C ,  by means of the Cosserat 
model. Quite similar results are obtained with the other 
models above derived. A comparison to the exact linear 
results of Tsamopoulos e l  al. [SI is not interesting, since 
most of these are given for small values of the slenderness. 
However, relative errors can be calculated for A = 10a/9 
and 2 ~ 1 3 ,  with C = 0.1. For the first data (A N 3.50), the 
errors of the Lee, Cosserat, averaged and parabolic models 
are respectively 0.6%, 0.3%,’099%, and 0.095%; and for 
the second value (A N 2.09) we have 3.1%, 0.5%, 0.6%, 
and 0.6%. The former data show the inconsistency in the 
viscous terms of the Cosserat one, even for such a small 
value of C ,  and are in qualitative accordance with the cor- 
responding results for C >> 1. Notice that,  as Garcia and 
Castellanos have shown for jets, the weight of the viscous 
terms can be large for relatively small viscosities, provided 
IRI is small enough. 

In Fig. 2 the module of the eigenvalue is plotted against 
A,  for E = 0.55, Z = 30, and C = 0. Notice that the 
value of A for which the bridge becomes unstable increases 

1694 



2 4 8 8 10 

A 

Fig. 7: Relative error in the determination of R by the 
Cosserat and averaged models as a function of slenderness, 
for the first mode, C = 0, E = 0.55, 2 = 0 (solid), and 
E = 30 (dashed line). 
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Fig. 8: Shape of the interface of the first antisymmetric 
mode versus 2/14, for C = 0 and Z = 0, 10, 20, 30, 40, 50, 
as given by Gonzalez e t  al. 

as the electric field increases, as shown by Gonzilez el al. 
[12]. The effect of viscosity is attenuated by the presence of 
the electric field, i.e. for the same value of C ,  w increases (if 
the bridge is stable) and a decreases, as 2 increases. The 
corresponding relative errors of the Cosserat and averaged 
models for the first mode are shown in Fig. 7. It is ob- 
served that the relative errors decrease as the electric field 
increases. The stabilizing effect of the electric field makes 
the typical axial length increase, as can be observed in Fig. 
8, where the shape of the interface is shown for A = 10, 
C = 0, E = 0.55, and several values of E. Therefore, the 
above one-dimensional models are expected to behave even 
better when an axial electric field is applied. 

V. CONCLUSIONS 
A set of new one-dimensional models for viscous jets, 

recently developed, has been generalized to include the an- 
chorage to rigid disks and the effect of dielectric forces. A 
linear stability analysis based on these models has been 
performed. For a given value of the viscosity, there is a 
value of the slenderness above which the liquid bridges tend 
to behave as jets. I t  can be concluded from the comparison 
with the known exact three-dimensional linear solutions 
that the one-dimensional models are quite adequate to deal 
with the first stages of development of perturbations. The 
accuracy of these models improves in the presence of an 
a.c. axial electric field, since the latter makes the typical 
axial length incrense. 
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