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A set of one-dimensional models, previously derived for liquid jets, is generalized to viscous liquid 
bridges by applying suitably modified boundary conditions at the anchoring disks. A linear analysis 
for small-amplitude perturbations around the cylindrical static solution is performed. The oscillation 
frequencies and growth factors so obtained are compared to the already known linear 
three-dimensional results for a wide range in both the slenderness and viscosity. The relative error 
of each model is studied in terms of the typical axial length. Good agreement is found for slender 
enough bridges. The existence of boundary layers for weakly dissipative liquid bridges in the 
context of one-dimensional models is also discussed. 

I. INTRODUCTION

The stability and dynamics of liquid bridges, i.e. a body
of fluid anchored between two solid supports and held by
capillary forces, has received much attention in the literature.
The stability problem, whose solution is independent of the
viscosity of the liquid, may be solved exactly using a static
analysis. The solution for the linear dynamics of cylindrical
inviscid liquid bridges is also well known.1 However, its
solution for viscous liquid bridges on the basis of general
three-dimensional~hereafter 3-D!hydrodynamic equations
involves great difficulties, and only partial results are known.
Tsamopouloset al.2 have formally solved the linear problem
for arbitrarily viscous liquid bridges. However, a tedious
computation is necessary, and convergence is only guaran-
teed for Ohnesorge numbersC under 0.5. A boundary-layer
treatment of this linear problem, valid for very small values
of C, has been carried out by Borkar and Tsamopoulos,3 and
improved by Higueraet al.4 On the other limit, Nicola´s5 has
studied this linear eigenproblem for paramount viscosity.

The finite-amplitude oscillations of viscous axisymmet-
ric liquid bridges have been studied by Chen and
Tsamopoulos.6 The nonlinear dynamic equations that de-
scribe this 3-D problem cannot be solved analytically, and
hard computation is necessary in order to obtain numerical
solutions.

Because of the above-mentioned difficulties, several au-
thors have used one-dimensional~hereafter 1-D!models, ini-
tially derived for liquid jets, to study the dynamics of axi-
symmetric viscous liquid bridges. Most of these models7

retain integrally the capillary pressure term. Recently,
Bechtelet al.8 have performed a self-consistent asymptotic
1-D analysis for slender inviscid and viscous liquid jets.
Their perturbative approach developsall terms in the
Navier–Stokes equations, including the capillary pressure
one, in terms of a nondimensional wave number. The result-

ing leading-order models do not account for the finite insta-
bility cutoff of the exact linear 3-D analysis of Rayleigh.9

Finite, though approximate values for this cutoff are recov-
ered by higher-order models. This lack of accuracy is due to
the truncation of the capillary pressure. In the usual 1-D
models, the approach is not fully consistent from a formal
mathematical point of view, in the sense that all orders in the
small parameter are retained in the capillary term. However,
on the one hand, it is desirable to conserve the term which
leads the stability and dynamics of the physical system under
consideration, and this cannot produce worse results than the
Bechtelet al.models. As a matter of fact, the former models
reproduce more accurately the well known 3-D linear results.
On the other hand, the complexity of the models so derived
hardly increases, and its main virtue remains unchanged:
they are one-dimensional and do not depend on the radial
variable.

Meseguer10 extended theinviscid slice modelof Lee11

and theCosserat model12 to liquid bridges. The inviscid slice
model neglects radial momentum and viscous effects. Due to
its simplicity, it has been extensively used since~see Perales
and Meseguer13 for references!. The correct viscous contri-
bution has recently been derived by Eggers and Dupont14

and, independently, by Garcı´a and Castellanos.7 In order to
deal with viscous liquid bridges, some authors10,13,15–18have
used the more elaborate Cosserat model, which enhances the
Lee model in the inviscid case, since it accounts partially for
radial momentum effects. Unfortunately, its range of appli-
cation reduces to small viscosities, due to an inconsistency in
the viscous terms.13,7 Garcı́a and Castellanos7 have recently
derived a set of 1-D models for slender liquid jets, which
include the Lee, Eggers, and Cosserat models.

For slender bridges, the above-mentioned new set of 1-D
models, suitably modified to take account of the boundary
conditions at the anchors, is expected to be useful to find the
oscillation frequencies and damping rates for arbitrary values
of the viscosity. Here the results obtained with these models
are compared to the linear 3-D solutions given by Sanz,1

Higueraet al.,4 Tsamopouloset al.,2 and Nicolás,5 for invis-
a!Author for correspondence. Fax: 34-5-4239434, Electronic-mail:
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cid, weakly viscous, moderately viscous, and highly viscous
liquid bridges, respectively.

In this paper, a wide range in both the slenderness
(1<L<10) and the Ohnesorge number (0<C,`) is stud-
ied, where the slenderness is the nondimensional length of
the liquid bridge and the Ohnesorge number is the nondi-
mensional viscosity~to be defined precisely below!. Notice
that liquid bridges of slenderness larger thanp are consid-
ered. The analysis of such unstable columns is interesting for
two reasons. First, it is possible to have liquid bridges of
slenderness abovep, using either electric19,20 or magnetic21

forces to stabilize the interface, or by melting a solid metal
rod by means of an intense electric current passing through
it.22 Second, it is interesting to predict how many main
drops, aside from the satellite drops, are going to be pro-
duced in the breaking of such slender columns, as well as to
determine the minimum critical length above which these
liquid bridges behave as jets.

II. EQUATIONS AND BOUNDARY CONDITIONS

Let us consider an axisymmetric liquid bridge~see Fig.
1! held between two parallel rigid circular disks of radius
R, separated by a distanceL, and coaxially aligned. Here the
influence of the surrounding gas as well as gravity are ne-
glected. Also densityr, viscositym, and surface tensions
are supposed to be uniform and constant, and only axisym-
metric configurations are considered.

The equations for the 1-D models for liquid jets are de-
rived in detail in Ref. 7. With the latter assumptions, the
same dimensionless equations apply to liquid bridges, but
now additional boundary conditions at the disks must be
added.

Let V andW be the radial and axial components of the
velocity, which depend onr , z, andt, while the shape of the

interface is given byr5F(z,t). In nondimensional coordi-
nates, the disks are placed atz56L, whereL5L/(2R) is
the slenderness.

Impenetrability of each of the rigid disks and anchoring
to their respective edges yield

W~r ,6L,t !50, ~1!

F~6L,t !51. ~2!

As long as CÞ0, where C5m/(rsR)1/2 is the
Ohnesorge number, the no-slip condition at the disks must be
also satisfied:

V~r ,6L,t !50. ~3!

Finally, the volume of the liquid bridge must be con-
served, which gives

E
2L

L

dzF2~z,t!5E
2L

L

dzF2~z,0!. ~4!

The volume of the column is important for its stability
properties. However, if the dynamics of the system is under
study, the conservation of volume is guaranteed by fulfill-
ment of the continuity equation and the kinematic condition.
Therefore, Eq.~4! can be considered as an initial condition.

A. Mean-velocity models

The Lee, Cosserat, and averaged models may be called
mean-velocitymodels, since all of them have the mean axial
velocity on a sliceW̄ and the shape of the interfaceF as
dependent variables. Their differential order inz is four for
any value of the Ohnesorge number.7 Thus, four independent
boundary conditions at the disks must be satisfied. First, the
anchoring conditions~2! remain unchanged:

F~6L,t !51. ~5!

Second, as Meseguer10 has shown, the radial integration
of Eq. ~1! on a slice implies that the mean axial velocity must
be zero at the disks:

W̄~6L,t !50. ~6!

Finally, introducing the latter four conditions in the av-
eraged kinematic equation, which relatesF to W̄, another
two conditions forW̄ are obtained:

W̄z~6L,t !50, ~7!

which are dependent with respect to~5!.
It is important to note that the no-slip condition~3! leads

to ~7! again, as can be shown by averaging the continuity
equation on a slice atz56L. Therefore the boundary con-
ditions at the disks are always the same, independent of the
value of the Ohnesorge number.

Finally, notice that the above boundary conditions have
been derived without the aid of any approximation. Thus, the
relative error of the mean-velocity models, defined as the
order of magnitude of the neglected terms divided by the
retained ones, is expected to be the same as for liquid jets.

FIG. 1. Schematic description of an axisymmetric liquid bridge.



B. Parabolic model

The dependent variables of the parabolic model are
W0 , W2 , andF. In terms of these, the velocity field is given
by

W~r ,z,t !5W0~z,t !1 1
2 r

2W2~z,t !, ~8!

V~r ,z,t !52 1
2 rW0z

2 1
8 r

3W2z
. ~9!

When the viscosity is not zero, the differential order in
z is eight, while it changes to six in the inviscid case.7 This
imposes the number of boundary conditions in each case.

The anchoring conditions at the edges of the rigid disks
~5! apply again. If~8! and ~9! are introduced in the impen-
etrability and no-slip conditions,~1! and ~3!, the following
eight boundary conditions for the viscous parabolic model
are obtained:

W0~6L,t !50, W2~6L,t !50, ~10!

W0z
~6L,t !50, W2z

~6L,t !50. ~11!

The four conditions~11! do not apply ifC50. Instead,
substituting~8! and ~9! into the kinematic equation gives
another two conditions. In this particular case, the irrotation-
ality of the velocity field allows decouplingW2 from the
problem. Therefore the following six conditions forW0 must
be fulfilled by the inviscid parabolic model:

W0~6L,t !50, W0zz
~6L,t!50, ~12!

W0z
~6L,t !2 1

8W0zzz
~6L,t!50. ~13!

Conditions~13! come from imposing the anchoring of
the shape of the interface to the edges of the disks. However
they allow the liquid to slip on their surface, as is to be
expected as long as viscosity effects are absent.

Contrarily to the mean-velocity models, the parabolic
one conserves the sensitivity of the general equations and
boundary conditions to the viscous or inviscid character of
the problem.

III. LINEAR ANALYSIS

Let us consider small perturbations around the static cy-
lindrical solution. The linear 1-D models previously obtained
for liquid jets7 are valid for liquid bridges, as long as the
above discussed boundary conditions are added. To solve the
linear dynamics associated with the 1-D models, an exponen-
tial dependence in time is tried for the variables appearing in
each model:

f ~z,t !5Re@ f̂ ~z! eVt#, ~14!

w̄~z,t !5Re@ ŵ̄~z! eVt#, ~15!

w0~z,t !5Re@ŵ0~z! eVt#, ~16!

w2~z,t !5Re@ŵ2~z! eVt#, ~17!

whereV is complex in general, and its real and imaginary
parts are the growth factora and the oscillation frequency

v, respectively; and the lower case lettersf , w̄, w0 , and
w2 denote the respective perturbations ofF, W̄, W0 , and
W2 .

Although the evolution of a liquid bridge is an initial-
value problem with respect to time, we do not consider initial
conditions here. Instead, we address our interest to a modal
analysis, from which a countable infinite set of eigenvalues
Vm as well as their corresponding eigenfunctions are ob-
tained. The final solution of a particular problem, character-
ized by its initial conditions, would be an appropriate super-
position of these eigenmodes.

The above linear problem has well-defined parity with
respect toz, since the equations and boundary conditions are
invariant under the change of sign ofz. Therefore, the eigen-
modes can be classified in either antisymmetric or symmet-
ric, according to the parity of the shape of the interface with
respect toz. Note thatw̄, w0 , andw2 have opposite parity to
the shape of the interface, since applying a derivative with
respect toz to any quantity changes its parity.

Similar to the dependence on time, an exponential de-
pendence onz could be tried. However, the well-defined
parity of the problem suggests proposing a combination of
hyperbolic sines and cosines, which is equivalent.

A. Mean-velocity models

The substitution of the proposed dependence on botht
andz in the equations of the mean-velocity models leads to

the following general solution forŵ̄:

ŵ̄5(
j51

2

@A j cosh~k j z!1B j sinh~k j z!#, ~18!

where6k j ~with j51,2) are the four complex roots of the
biquadratic equation

k41c1k
21c050. ~19!

The coefficientsc0 and c1 , which are functions ofV,
take different values for each model:
for Lee,

c052V2, c15126CV; ~20!

for Cosserat,

c05
2V2

11 ~C/4! V
, c15

126CV2 1
4 V2

11 ~C/4! V
; ~21!

for averaged,

c052V2, c15126CV2 1
4 V2. ~22!

Notice that the antisymmetric and symmetric modes
with respect to the interface are characterized byB j50 and
A j50, respectively.

Substitution of~18! in the linear counterparts of~6! and
~7! gives two systems of homogeneous algebraic equations
for the antisymmetric and symmetric modes. In order to have
nontrivial solutions, the determinant formed by the coeffi-
cients of such algebraic equations must be zero. For antisym-
metric modes, this yields



k2 sinh~k2L! cosh~k1L!2k1 sinh~k1L! cosh~k2L!

50, ~23!

while the analogous condition for symmetric modes is

k2 cosh~k2L! sinh~k1L!2k1 cosh~k1L! sinh~k2L!

50. ~24!

Given the parametersL andC, this compatibility con-
dition is satisfied by a countable infinite set of eigenvalues
Vm , wherem is odd for antisymmetric modes and even for
symmetric ones. The numerical procedure implemented to
find such complex roots is described in the Appendix.

B. Parabolic model

A similar treatment can be applied to the parabolic
model. The dependence onz proposed forw0 induces an
analogous one forw2 when substituted in the equations, al-
though with different integration constants. The resulting
system of two homogeneous equations lead to the general
solution

ŵ05(
j51

J

@A j cosh~k j z!1B j sinh~k j z!#,

~25!

ŵ25(
j51

J

@A jh j cosh~k j z!1B jh j sinh~k j z!#,

whereh j depends onC andV, and is given by

h j52k j
2

V2C~81k j
2!

2V1C~1626k j
2!
, ~26!

and6k j ~with j51, 2, . . . ,J) are the 2J roots of

c4k
81c3k

61c2k
41c1k

21c050, ~27!

whose coefficients are functions ofC andV:

c05128CV2116V3,

c1564C1~82384C2!V296CV224V3,

c2548C1~7196C2!V118CV2, ~28!

c35215C2~1114C2!V,

c45C.

Again, the antisymmetric and symmetric modes are
characterized byB j50 andA j50, respectively.

Notice thatJ is the degree of the polynomial equation
~27!. ThereforeJ53 if C50, andJ54 otherwise. As shown
before, the boundary conditions are also different, depending
on the Ohnesorge number. Consequently, the viscous and
inviscid cases must be treated separately.

If the general solution~25! is introduced in the linear
counterparts of either~10!and~11! if C Þ 0, or ~12!and~13!
if C50, a system of homogeneous algebraic equations for
the integration constantsA j andB j is obtained. However, a
suitable combination of these equations leads to two systems
of equations, one for antisymmetric modes and the other for
symmetric modes.

Again, the determinants formed with the coefficients of
these homogeneous systems of algebraic equations must be
zero. In the viscous case, the corresponding conditions to
find the antisymmetric and symmetric eigenvalues are, re-
spectively,

(
i , j ,k,l51

4

E i jkl cosh~k iL!k j sinh~k jL!hk

3cosh~kkL!h lk l sinh~k lL!50 ~CÞ0!, ~29!

(
i , j ,k,l51

4

E i jkl sinh~k iL!k j cosh~k jL!hk sinh~kkL!

3h lk l cosh~k lL!50 ~CÞ0!, ~30!

whereE denotes the completely antisymmetric tensor. In the
inviscid case, the analogous conditions for antisymmetric
and symmetric modes are

(
j ,k,l51

3

E jkl cosh~k jL!kk cosh~kkL!k l~82k l
2!

3sinh~k lL!50 ~C50!, ~31!

(
j ,k,l51

3

E jkl sinh~k jL!kk sinh~kkL!k l~82k l
2!

3cosh~k lL!50 ~C50!. ~32!

IV. RESULTS AND DISCUSSION

As will be shown below, the relative errors committed in
the eigenvalues provided by the linear analysis of the 1-D
models are reasonably small. In comparison with the 3-D
computations, which are very heavy and present conver-
gence problems,2 the 1-D ones are very fast and efficient.
This allows a careful parametric study of the eigenvalues and
eigenfunctions, which provides valuable information about
the influence of the slenderness and the viscosity on the evo-
lution of the bridge.

Figure 2 shows the set of three eigenvalues associated
with the indexm51, for a typical viscous liquid bridge. For
eachm, there is a valueLm* of the slenderness under which
two eigenvalues are complex conjugate, witha<0. For
L.Lm* , the latter ones become real. One of them, labeled

FIG. 2. Frequencyv ~– – –! and growth factora ~—! versus the slender-
ness, as given by the parabolic model form51 andC50.2.



Vdm , increases monotonically asL does. The critical slen-
dernessLcm for whichVdm becomes positive, and therefore
unstable, determines the stability of themth mode. The other
eigenvalue,Vsm, decreases monotonically. The modes cor-
responding to these will be calleddominantand subdomi-
nant, respectively, since the former dominates the evolution
of the liquid bridge, with the latter dying down relatively
quickly. Thus, while nothing is saidVm denotesVdm . The
two modes discussed above, callednearly inviscidwhen
C!1,4 are the only ones appearing ifC50. Owing to the
greater differential order of the viscous equations, new
modes appear as long asC Þ 0. Theseviscousmodes have
real negative eigenvaluesVvm that are approximately pro-
portional toC for small Ohnesorge numbers, and are sub-
dominant for realistic values ofC ~see Fig. 2!.

The range of validity of the referred models is limited by
the condition of large slenderness. Concerning the other
limit, it could be thought unrealistic considering values
greater thanp, for which the liquid bridge is unstable. How-
ever, as we have commented before, such slender liquid col-
umns can be obtained by applying suitable electric or mag-
netic fields, or by melting a solid metal rod. In particular,
using electric fields,20 dielectric liquid bridges withL.5
have been obtained, and greater values of the slenderness are
attainable with slight changes in the geometry of the system.
If the electric field which stabilizes the dielectric liquid
bridge is suddenly removed att50, the early evolution of
the bridge is governed by the linear equations considered
here. Fort.0 the equations are purely hydrodynamic, be-
cause the depolarization of the liquid is instantaneous com-
pared to any mechanical time of interest. Therefore, we will
deal with slenderness within the range 1<L<10. Although
less realistic, much more slender liquid bridges are consid-
ered to study the asymptotic connection between liquid
bridges and jets.

No restrictions have been imposed on the value of vis-
cosity. The inviscid and very viscous cases deserve special
attention, since the above-cited exact linear 3-D results pro-
vide a good test of 1-D cases in both limits. As already
pointed out, the limit of small viscosity is also considered in
detail, in order to compare the behavior of the 1-D models
with respect to the boundary layers. Finally, we also discuss
the moderately viscous case.

A. Inviscid case

In Fig. 3, the module of the most significant value of

lengthl, defined as the distance between consecutive nodes
of the shape of the interface.l is a half of the wavelength in
a jet, but does not necessarily coincide withL for slender
enough bridges.

Let lmax be the value ofl for which the maximum
growth factor is attained in a jet, which is about 4.51 in the
inviscid case. In a bridge and for a given value ofL, the
most unstable mode should have a similar value ofl. How-
ever, this value can never be greater thanL, which shows
that the slenderness can be considered a good measure of the
characteristic axial length ifL,lmax ~for m51!. For more
slender bridges, it is expected thatl.lmax, independent of
the value ofL, and new nodes appear in the shape of the
interface. In fact, this is what can be observed in Fig. 4,
where the shape of the interface is plotted againstz/L for
increasing values ofL, C50, andm51. For a given mode
m, lm is approximately given by

lm.H 2L

m11 S if L,
m11

2
lmaxD ,

lmax S if L.
m11

2
lmaxD . ~33!

In fact the shapes of the interface of the odd and even
modes are well approximated by

FIG. 3. Module of the eigenvalueV of the first four modes as a function of
the slenderness, forC50. The short dashed line represents the growth factor
of the inviscid infinite jet. The long dashed horizontal line is the tangent at
the maximum of the latter curve.

FIG. 4. Shape of the interface of the first~antisymmetric!mode versus
z/L, for C50 andL52, 3, 5, 10, 20; as given by the 3-D analysis of Sanz
~Ref. 1!.

Vm ~dominant modes! is plotted against L, for the first four 
modes and C50, as calculated by Sanz.1 The short dashed 
line corresponds to the growth factor of the infinite jet, tak-
ing k5p /L as the dimensionless wavenumber, while the 
long dashed line is the tangent line at the maximum of the 
former.

Notice that, for L@Lcm  and C50, the growth factor 
does not tend to zero, as happens to liquid jets. Instead it 
approaches a constant value which is common to all the 
modes, and coincides with the value of the maximum growth 
factor of an infinite jet. This is also true for the 1-D models 
for any finite value of the Ohnesorge number, and it can be 
explained in terms of a characteristic nondimensional axial



f 2n21~z!55 cosS npz

2L D sin~pz/lmax! ~n51,3, . . .!,

sinS npz

2L D cos~pz/lmax! ~n52,4, . . .!;
~34!

f 2n~z!55 cosS npz

2L D cos~pz/lmax! ~n51,3, . . .!,

sinS npz

2L D sin~pz/lmax! ~n52,4, . . .!;
~35!

where the subscript denotes the index of the corresponding
mode.

The typical axial length is responsible for the relative
error of the 1-D models. On the one hand, we have seen that
l is directly related toL if the latter is not larger than
lmax. Thus, the mentioned error is expected to increase as
L decreases orm increases, due to the decreasing distance
between nodes. On the other hand,l tends tolmax if the
bridge is slender enough. This implies that the error must
tend to a constant value asL increases. Indeed, the above
reasoning is confirmed by Fig. 5, where the data of Fig. 3
have been used to calculate the relative errors in the eigen-
value as given by the 1-D models, forC50 andm51 and
2.

The error of the Cosserat and averaged models, which
coincide in the inviscid limit, is clearly of the same order
than the one of the parabolic model. In contrast, the error of
the Lee model is about twenty times greater than the previ-
ous ones. This confirms the theoretical expectations about
the relative order of each of these models.

Concerning the mean axial velocity and the shape of the
interface, we have found that their relative error, measured as
the deviation from the exact results divided by their ampli-
tude, is very similar to that shown above for the eigenvalues.
The same is not true for the velocity components themselves,
as we show below.

The different 1-D approximations of the velocity field
can be compared to the linear 3-D solution given by Sanz1 in
the linear inviscid case. Radial profiles of the axial and radial
velocities are shown in Figs. 6~a! and 6~b!, respectively, for
C50 andL53. Two approximations are plotted. On the one
hand the one-term averaged one, given by Meseguer,10 ap-
proximatesW as its mean value on each slice, andV as a
linear function ofr . Although the averaged model has been
chosen, the results are the same within the plot accuracy for
any mean-velocity model, the relative error beingl22. On
the other hand, the parabolic model provides a two-term
polynomial approximation, whose relative error is expected
to bel24.

The one-term averaged approximation behaves worse in
the center of the bridge (z.0) and near the disks (z.1). In
particular, the liquid slipping on the disks is not predicted.
However, it can be considered to be near the best one-term
polynomial fit to the exact velocity field. In general, the para-
bolic approximation shows to be better than the previous
one. It almost coincides with the exact results, except very
near the disks, where the profile is harder to be fitted by a
two-term polynomial inr . However it succeeds in describing
the cited slipping on the disks, and even the slightly negative
axial velocity near the anchors, already noted by Sanz.1

FIG. 5. Relative error in the determination ofV by the Lee~-••-), Cosserat
and averaged~– – –!, and parabolic~- - - ! models as a function of the
slenderness, for the first two modes (m51,2) andC50. The numbers on
the curves indicate the mode index.

FIG. 6. Radial profile of the axial~a! and radial~b! velocities for the first
mode,C50, andL53. The numbers indicate the values ofz/L. Results
given by Sanz~Ref. 1! ~—!, parabolic ~- - -!, and one-term averaged
~– – –! approximations.



With respect to the role of the slenderness, the error
increases asL decreases. The radial profiles of the axial
velocity are approximately constant on a slice for slender
bridges @e.g. see Fig. 6~a!#. This circumstance relaxes for
smallerL, and the error of the 1-D approximations increases
accordingly. Taking the amplitude ofw̄ as reference, the
relative error in the velocity field forC50 andL53 is
about 2% for the parabolic, and 6% for the one-term aver-
aged approximations. ForL52, the analogous errors are
5% and 13%, respectively.

B. Paramount viscosity

We now focus our attention on the case when viscous

A comparison of the different approximations of the ve-
locity field against a 3-D solution in this limit would be
interesting. Unfortunately, the latter result is not available.
The main features predicted by the parabolic approximation
are the no slipping on the disks, and that the maximum axial
velocity happens at the center of the bridge, and not at the
interface as forC50. This is in qualitative agreement with
the 3-D results for the stream function,5 and cannot be pre-
dicted by the one-term averaged approximation, due to its
limited dependence onr .

C. Weakly viscous case

Borkar and Tsamopoulos,3 and more recently Higuera
et al.,4 have studied the linear boundary-layer problem asso-
ciated with weakly viscous liquid bridges. They have shown
that there are two Stokes boundary layers, one at each disk,
as well as another one at the interface. These regions have a
very small thickness, of order (C/V0)

1/2, whereV0 is the
eigenvalue forC50. The most important correction to the
inviscid values of both the damping rate and the frequency is
associated with viscous dissipation at the disks~of order
C1/2), and at the bulk~of order C). The influence of the
interfacial boundary layer is significantly smaller, of order
C3/2. The damping rate for small viscosities is approximately
given by the real part ofV1C

1/21V2C. The first coefficient
happens to be much smaller than the second, which justifies
the second-order analysis of Higueraet al.4 Consequently,
the damping rate goes asC1/2 for very small Ohnesorge num-
bers, while it goes asC for more realistic values ofC. Due
to the higher order of the viscous momentum equations, new
modes appear. These viscous modes, found by Higuera
et al.,4 are purely damped (v50 anda,0), and for small
viscosities their growth factor is approximately proportional
to C, and only for unrealistically small Ohnesorge numbers
(C;1027 or less!do these modes become important. For
increasing, not necessarily small, values ofC, the damping
rate of such modes also increases monotonically. Therefore
the evolution of the bridge is mainly described by the most
significantnearly inviscidmodes.

The oscillation frequency and the shape of the interface
are almost the same as in the inviscid case. Therefore, they
are well estimated by the 1-D models. Now we examine
whether these models can predict the correct values of the
damping rate, the appearance of viscous modes, and the large
velocity gradients present at the boundary layers. The answer
is negative for the mean-velocity models and partially posi-
tive for the parabolic one, as we show below.

The damping rate, which is not zero as long asC.0, has
been provided by Higueraet al.4 In Fig. 8, the damping rate
2a of the first mode is plotted againstL, for C50.002 and
different approximations. The single crosses are data ob-
tained numerically by Tsamopouloset al.2 Notice that, for
this value ofC, the result given by the parabolic model
agrees very well with the data from the second-order
boundary-layer analysis. The error of the mean-velocity
models is clearly greater, the averaged one giving slightly
worse results. This is to be expected, since the damping rate
for very smallC is related to the dissipation in the Stokes

FIG. 7. Relative error in the determination ofCa by the Lee and averaged
~– – –!, Cosserat~-•-), and parabolic~- - -! models as a function of the
slenderness, for the first two modes (m51,2) and paramount viscosity. The
numbers on the curves indicate the mode index.

effects are paramount. This holds for C@a l2, which occurs 
not only for very large Ohnesorge numbers, but also near the 
stability limit.5 V is real for any positive value of L, and its 
dependence on the Ohnesorge number tends asymptotically 
to a constant divided by C. Therefore, the quantity Ca is 
considered.

The commentaries previously made about the typical 
axial length are valid for any value of C, provided that the 
wavelength of maximum growth factor for the infinite jet
lmax is computed for the given value of viscosity. This 
length tends to infinity as C does,7 which means that l;L
even for very slender bridges. The error must therefore tend 
to zero as L tends to infinity. This is found in Fig. 7, where 
the relative error of Ca for paramount viscosity, computed 
through the data given by Nicolás,5 is plotted against L, for 
m51 and 2. Such deviations are related to the viscous terms 
neglected in the derivation of the 1-D models.

In this limit,  the Cosserat model exhibits a worse agree-
ment with the exact solution, due to the inconsistency in the 
second-order viscous terms. As also occurs for jets, the better 
results of the averaged model get worse for L,2, since the 
approximation of some viscous terms in its derivation is not 
very good for small slenderness. Concerning the parabolic 
model, the error in the first two modes does not overcome a 
10% for L>1. As expected, the error increases with the 
mode index, due to the decreasing typical axial length.



boundary layers, which is not described by the latter. In gen-
eral, this error diminishes asL increases, but is much larger
than the error in the oscillation frequency.

The dependence of the damping rate onC is shown in
Fig. 9, forL52 and 3. Again the parabolic model is more
accurate than the mean-velocity models. The dependence on
C of the damping rate given by the mean-velocity models is
very approximately proportional toC, which gives worse
results for very smallC. This seems to indicate that these
models account for the dissipation in the bulk, and not for
the boundary layers at the disks. As a consequence, the rela-
tive error is significantly greater in the damping rate than in
the oscillation frequency. The relative error of the parabolic
model also increases for very smallC, but it is not propor-
tional toC, and the error is significantly smaller.

Note also that the cited 3-D approximation differs from
the 1-D ones for large enough viscosities, for which the

boundary-layer analysis is not as accurate. As already
pointed out, this is more evident forL53, where viscous
effects are greater for the same Ohnesorge number, and it
becomes apparent in Fig. 8 as well.

The differential order inz of the Lee, Cosserat, and av-
eraged models is four, independent of the value ofC. In
addition, the boundary conditions at the disks are the same
for the inviscid and viscous cases. Therefore, the mentioned
mean-velocity models cannot account for the boundary lay-
ers, and no viscous modes are found. This is to be expected,
since the no-slip condition on the disks does not affect either
the axial velocity or its mean value. Besides, the large gra-
dient of the axial velocity near the interface is confined to a
very thin layer, whose average influence on a slice is very
small. Thus,W̄ and its derivatives change slowly asC in-
creases from zero. The same is true for the shape of the
interface, related to the former through the kinematic condi-
tion. Since the one-term approximation of the velocity field
is in terms ofW̄ andF, it can only describe it in the bulk,
and not in the boundary layer.

Instead, the differential order inz of the parabolic model
changes from six whenC50 to eight whenC.0. Besides,
the number of boundary conditions at the disks changes
analogously. Therefore this model accounts for the appear-
ance of viscous modes. Although the relative error is large
~up to 50% for the first two viscous modes!, the importance
of these modes is secondary, since they die down quite rap-
idly. WhenC is small enough, a large gradient in the radial
velocity is to be expected near the wall. This is in fact found
in Fig. 10, where an axial profile of the radial velocity at
r50.5 is plotted for several values of the Ohnesorge number,
as given by the parabolic model. The 3-D inviscid solution
v0 , given by Sanz,

1 is also shown. According to the leading
term in the 3-D boundary-layer analysis given by Higuera
et al.,4 a uniform approximation to the radial velocityv can
be readily found from the exact inviscid solutionv0 , namely

FIG. 8. Damping rate2a versusL, for the first~antisymmetric!mode and
C50.002. As obtained by the Lee~-••-!, averaged~- - -!, Cosserat~-•-!, and
parabolic~- - -! models; and by the boundary-layer analysis of Higueraet al.
~Ref. 4! ~—!. The crosses are data from Tsamopouloset al. ~Ref. 2!.

FIG. 9. Damping rate2a versusC, as obtained by the Lee~-••-!, averaged
~- - -!, Cosserat~-•-!, and parabolic~- - -! models; and by the boundary-layer
analysis of Higueraet al. ~Ref. 4! ~—!. For the first~antisymmetric!mode
andL52,3.

FIG. 10. Axial profile of the radial velocity near an anchoring disk, as given
by the parabolic model~- - -! and the inviscid solution of Sanz~Ref. 1!as
well as boundary-layer estimations obtained from the latter~—!. For the first
mode,L53, and r50.5. The numbers on the curves indicate the values
of C.



v~r ,z,t !5v0~r ,z,t !$12 exp@2~11 i !~L2z!/d#%,
~36!

where d5(2C/v0)
1/2 is a measure of the boundary-layer

thickness, andv0 is the oscillation frequency for the inviscid
case. This uniform approximation is also plotted in Fig. 10
for the same values ofC. The gradients of the velocity field
are well predicted by the parabolic model, the difference in
the values of the velocity itself coming from the error of the
inviscid solution.

For C greater than 1022 the physical boundary layer
cannot be considered narrow, and the inviscid solution does
not fit the viscous one anymore. This illustrates the fact that
the viscous effects may become important even for quite
small values ofC, providedV is small enough. This occurs
near the stability limit for each mode, as in the preceding
example, in whichL53.

D. Moderately viscous case

The scarce data available from a 3-D approach prevent
us from doing a careful comparison. Nevertheless, some as-
pects related to the typical axial length, the eigenvalues, and
the approximations to the velocity field are discussed.

As commented before, relation~33! holds for any given
value ofC, providedlmax is computed for that Ohnesorge
number. Sincelmax increases asC does,7 the value ofL for
which new nodes appear in the shape of the interface in-
creases. This fact is put in evidence in Fig. 11, where the
shape of the interfacef is plotted for the first mode,L510
and several values ofC, as given by the parabolic model, the
other models giving similar results. Notice that the distance
between nodes increases withC, and it becomesL for
C510. For the latter value ofC, the viscous effects can be
considered paramount.

Meseguer10 has carried out a study of the dependence of
V on L for several values ofC, by means of the Cosserat
model. Quite similar results are obtained with the other mod-
els derived above. A comparison to the exact linear results of
Tsamopouloset al.2 is hardly interesting, since most of these
are for quite thick bridges. However, relative errors can be
calculated forL510p/9 and 2p/3, with C50.1. For the
first data (L.3.50), the errors of the Lee, Cosserat, aver-
aged and parabolic models are respectively 0.6%, 0.3%,
0.09%, and 0.095%; and for the second value (L.2.09) we
have 3.1%, 0.5%, 0.6%, and 0.6%. The former data show
the inconsistency in the viscous terms of the Cosserat model,

even for such a small value ofC, and are in qualitative
accordance with the corresponding results for paramount vis-
cosities. Note that in this case the weight of the viscous
terms is large, in spite of the relatively small Ohnesorge
number, becauseuVu is small enough. For the first mode, this
happens near its stability limit, atL5p.

V. CONCLUSIONS

A set of 1-D models, previously derived for jets, has
been formulated in the field of axisymmetric viscous liquid
bridges, under the hypothesis of large slenderness. The solu-
tion of the linear eigenproblem associated with each model
has been compared to the available known results. It has
been shown that the relative error of the cited models in
determining the frequencyv and growth factora is related
to the magnitude of the typical axial lengthl. For not very
slender columns,l.L/m, and the index of the modem
gives the number of nodes of the shape of the interface be-
tween the disks. AsL increases new nodes appear at the
eigenfunctions,l remains approximately constant, and the
growth factor of the corresponding eigenmode tends to
amax. Sincelmax increases asC does, this explains why the
cited relative errors tend to be constant for increasing values
of L—this constant decreasing to zero asC increases from
zero to infinity.

The different 1-D approximations to the velocity field
have been discussed and compared in the inviscid and vis-
cous cases. In the central region of the bridge, far from the
disks, the results are similar to those for jets. The well known
one-term approximation, given by Meseguer, gives an error
of orderl22. An inviscid and a very viscous two-term av-
eraged approximations, that improve the former for weakly
and highly viscous liquid jets, respectively, are more accu-
rate in the same limits ofC in the central part of the bridge.
However, it is worse near the disks, since they fulfill the
boundary conditions for the velocity field at the disks only
approximately. In contrast, the accuracy of the velocity field
given by the parabolic model is satisfactory, even near the
disks. It accounts for the nonzero radial velocity at the disks
whenC50 and also predicts the large velocity gradient near
the disks whenC is very small.

Further work is necessary to determine the value of these
models to study the breakup of liquid bridges. A common
objection is that the axial length scales near the rupture
might not be large, which would affect the error of these
approximations.10,18 In this sense, the work of Eggers and
Dupont14 with the viscous Lee model is very encouraging,
since they predict a good agreement with a 3-D approach in
the pinch region.

To conclude this study, we would like to stress the small
effort necessary to find each eigenvalue and its correspond-
ing eigenfunctions. The 1-D approach is at least four orders
of magnitude more economical in time of computation than
the 3-D one in the viscous case.2 Contrarily to the latter, the
former has no problems of convergence, for any value ofC
or L, and all the modes can be easily distinguished. Besides,
the method of solution is formally the same for any value of
the Ohnesorge number.

FIG. 11. Shape of the interface of the first~antisymmetric!mode versus
z/L, for C50, 0.1, 1, 10, andL510, as given by the parabolic model.
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APPENDIX: NUMERICAL ROOT FINDING

Here we dedicate a comment to the numerical procedure
employed to search out the eigenvaluesVm , which are the
complex roots of the transcendental complex relations~23!,
~24!, and~29!–~32!.

An integral method in the complex plane has been
implemented, based on the work of Mesaet al.23 It gives the
number of roots of a function present inside a circle in the
complex plane, as well as their value. This allows an exhaus-
tive search of zeros on the complex plane, and the desired
eigenvalue can be easily followed as the control parameters
of the problem change. Besides, the derivative of the func-
tion is not required. These advantages have allowed us to
overcome some of the problems of differential methods like
the Newton–Raphson one. The method is based on the fol-
lowing classical theorem, which is a consequence of theresi-
due theorem:24

Theorem. Let the function g(V) be analytic inside a
regionR of the complex plane, delimited by a closed curve
G, such that no zeros of g(V) lie on G. If V1 , V2 , . . . ,
VM are the M zeros of g(V) in R, then

sN5
1

2p i RG
dV VN

g8~V!

g~V!
5 (

m51

M

Vm
N . ~A1!

Notice thats0 gives the number of zerosM of g(V) in
R. Computings1 , s2 , . . . , sM and applying the theorem
yields an algebraic system ofM equations, whose solution
provides the desired roots. If the involved function has also
poles at known points in the named region, it can be made
regular so as to apply~A1!. If there are branch points,G can
be deformed to avoid the cuts.

In order to implement a general numerical procedure, the
curveG is chosen to be the circle centered inV0 with radius
r , i.e. V5V01reiu, 0<u,2p. Furthermore, the Taylor
approximationg(V).(k50

K bk(V2V0)
k is good as long as

r is small enough andK is large enough. This allows us to
have g8(V01reiu) in terms of g(V01reiu), by applying
the Cauchy formula to obtain the coefficientsbk . The above
development leads to

sN.
1

4p2E
0

2p

du
~V01reiu!N

g~V01reiu!(k51

K

keikuE
0

2p

du8g~V0

1reiu8! e2 iku8. ~A2!

The number of floating-point operations can be reduced
by computing iteratively the powers appearing in the last
equation. The value ofK depends on the given radiusr , the
regularity of the function, and the number of points to do the
integration. In practice, these parameters can be chosen at-
tending to the relative error of the result, which is approxi-
mately given bys02M .
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