One-dimensional models for slender axisymmetric viscous liquid bridges
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A setof one-dimensionainodels,previouslyderivedfor liquid jets,is generalizedo viscousliquid
bridgesby applyingsuitablymodifiedboundaryconditionsat the anchoringdisks.A linearanalysis
for small-amplitudeperturbationsround the cylindricastaticsolution is performed. The oscillation
frequencies and growth factors so obtained are comparedto the already known linear
three-dimensionalesultsfor a wide rangein both the slendernesandviscosity. The relative error
of eachmodelis studiedin termsof the typical axial length. Goodagreements found for slender
enoughbridges. The existenceof boundarylayers for weakly dissipativeliquid bridgesin the
context of one-dimensionaimodelsis also discussed.

I. INTRODUCTION ing leading-order models do not account for the finite insta-
bility cutoff of the exact linear 3-D analysis of Rayleigh.
The stability and dynamics of liquid bridges, i.e. a body Finite, though approximate values for this cutoff are recov-
of fluid anchored between two solid supports and held byered by higher-order models. This lack of accuracy is due to
capillary forces, has received much attention in the literaturethe truncation of the capillary pressure. In the usual 1-D
The stability problem, whose solution is independent of themodels, the approach is not fully consistent from a formal
viscosity of the liquid, may be solved exactly using a staticmathematical point of view, in the sense that all orders in the
analysis. The solution for the linear dynamics of cylindrical small parameter are retained in the capillary term. However,
inviscid liquid bridges is also well knowh.However, its  on the one hand, it is desirable to conserve the term which
solution for viscous liquid bridges on the basis of generaleads the stability and dynamics of the physical system under
three-dimensionalhereafter 3-D)hydrodynamic equations consideration, and this cannot produce worse results than the
involves great difficulties, and only partial results are known.Bechtelet al. models. As a matter of fact, the former models
Tsamopoulo®t al? have formally solved the linear problem reproduce more accurately the well known 3-D linear results.
for arbitrarily viscous liquid bridges. However, a tedious On the other hand, the complexity of the models so derived
computation is necessary, and convergence is only guarafardly increases, and its main virtue remains unchanged:
teed for Ohnesorge numbe@sunder 0.5. A boundary-layer they are one-dimensional and do not depend on the radial
treatment of this linear problem, valid for very small valuesvariable.
of C, has been carried out by Borkar and Tsamopotikms Meseguel® extended thenviscid slice modebf Lee'!
improved by Higuerat al* On the other limit, Nicole® has  and theCosserat mod&? to liquid bridges. The inviscid slice
studied this linear eigenproblem for paramount viscosity. model neglects radial momentum and viscous effects. Due to
The finite-amplitude oscillations of viscous axisymmet- its simplicity, it has been extensively used sirfsee Perales
ric liquid bridges have been studied by Chen andand Meseguét for references). The correct viscous contri-
Tsamopoulo$. The nonlinear dynamic equations that de-bution has recently been derived by Eggers and Ddfiont
scribe this 3-D problem cannot be solved analytically, andand, independently, by Gaecand Castellandsin order to
hard computation is necessary in order to obtain numericajeal with viscous liquid bridges, some authtt$>*>-‘thave
solutions. used the more elaborate Cosserat model, which enhances the
Because of the above-mentioned difficulties, several autee model in the inviscid case, since it accounts partially for
thors have used one-dimensioa¢reafter 1-Dmodels, ini-  radial momentum effects. Unfortunately, its range of appli-
tially derived for liquid jets, to study the dynamics of axi- cation reduces to small viscosities, due to an inconsistency in
symmetric viscous liquid bridges. Most of these models the viscous term&”’ Garca and Castellandshave recently
retain integrally the capillary pressure term. Recently,derived a set of 1-D models for slender liquid jets, which
Bechtelet al® have performed a self-consistent asymptoticinclude the Lee, Eggers, and Cosserat models.
1-D analysis for slender inviscid and viscous liquid jets. For slender bridges, the above-mentioned new set of 1-D
Their perturbative approach develol terms in the models, suitably modified to take account of the boundary
Navier—Stokes equations, including the capillary pressur@onditions at the anchors, is expected to be useful to find the
one, in terms of a nondimensional wave number. The resulipscillation frequencies and damping rates for arbitrary values
of the viscosity. Here the results obtained with these models
@author for correspondence. Fax: 34-5-4230434, Electronic-mail:&I€ compared to the linear 3-D solutions given by Sanz,
castella@cica.es Higueraet al.* Tsamopoulot al.? and Nicola? for invis-




\\ interface is given by =F(z,t). In nondimensional coordi-
\\\\\\\\\\\ nates, the disks are placedzt £ A, whereA=L/(2R) is
the slenderness.

Impenetrability of each of the rigid disks and anchoring
to their respective edges yield

Z W(r,*A,t)=0, 1)
F(+A,t)=1. )
r As long as C#0, where C=ul/(poR)Y? is the
L Ohnesorge number, the no-slip condition at the disks must be

also satisfied:
V(r,+A,t)=0. 3)

Finally, the volume of the liquid bridge must be con-
served, which gives

R

] — fA szZ(z,t)zfA dzF%(z,0. (4)
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FIG. 1. Schematic description of an axisymmetric liquid bridge.

The volume of the column is important for its stability
properties. However, if the dynamics of the system is under
study, the conservation of volume is guaranteed by fulfill-
ment of the continuity equation and the kinematic condition.

Cid, Weak|y ViSCOUS, modera‘[e|y ViSCOUS, and h|gh|y ViscousTherefore, Eq(4) can be considered as an initial condition.

liquid bridges, respectively. A. Mean-velocity models
In this paper, a wide range in both the slenderness
(1<A<10) and the Ohnesorge numberC <) is stud- The Lee, Cosserat, and averaged models may be called

ied, where the slenderness is the nondimensional length gRéan-velocitymodels, since all of them have the mean axial
the liquid bridge and the Ohnesorge number is the nondivelocity on a sliceW and the shape of the interfa¢e as
mensional viscositfto be defined precisely belowNotice  dependent variables. Their differential orderzims four for

that liquid bridges of slenderness larger tharare consid- any value of the Ohnesorge numBéFhus, four independent
ered. The analysis of such unstable columns is interesting fdfoundary conditions at the disks must be satisfied. First, the
two reasons. First, it is possible to have liquid bridges ofanchoring condition$2) remain unchanged:

slenderness above, using either electri®?° or magnetié* N

forces to stabilize the interface, or by melting a solid metal F(xAD=1. ®)

rod by means of an intense electric current passing through Second, as Mesegd@rhas shown, the radial integration

it.”" Second, it is interesting to predict how many mainf Eq. (1) on a slice implies that the mean axial velocity must
drops, aside from the satellite drops, are going to be prope zero at the disks:

duced in the breaking of such slender columns, as wellasto
determine the minimum critical length above which these  w(+A t)=0. (6)
liquid bridges behave as jets.

Finally, introducing the latter four conditions in the av-
Il. EQUATIONS AND BOUNDARY CONDITIONS eraged kinematic_equation, which relateésto W, another

. . o . two conditions forW are obtained:
Let us consider an axisymmetric liquid bridggee Fig.

1) held between two parallel rigid circular disks of radius  \ (+ A t)=0, 7)
R, separated by a distante and coaxially aligned. Here the
influence of the surrounding gas as well as gravity are newhich are dependent with respect(fs).

glected. Also density, viscosity u, and surface tensioor It is important to note that the no-slip conditi¢d) leads
are supposed to be uniform and constant, and only axisynte (7) again, as can be shown by averaging the continuity
metric configurations are considered. equation on a slice &=+ A. Therefore the boundary con-

The equations for the 1-D models for liquid jets are de-ditions at the disks are always the same, independent of the
rived in detail in Ref. 7. With the latter assumptions, thevalue of the Ohnesorge number.
same dimensionless equations apply to liquid bridges, but Finally, notice that the above boundary conditions have
now additional boundary conditions at the disks must bebeen derived without the aid of any approximation. Thus, the
added. relative error of the mean-velocity models, defined as the
Let V andW be the radial and axial components of the order of magnitude of the neglected terms divided by the
velocity, which depend on, z, andt, while the shape of the retained ones, is expected to be the same as for liquid jets.



B. Parabolic model o, respectively; and the lower case lettdrsw, w,, and

The dependent variables of the parabolic model ardVz denote the respective perturbationsFf W, W, and

Wy, W,, andF. In terms of these, the velocity field is given W .

by Although the evolution of a liquid bridge is an initial-

value problem with respect to time, we do not consider initial
W(r,z,t)=Wo(z,t) +31°Wy(z,1), (8)  conditions here. Instead, we address our interest to a modal
analysis, from which a countable infinite set of eigenvalues
V(r,z,t)=—3rWo — §r°W, . ©) Qn, ;s well as their corresponding eigenfunctiongs are ob-
When the viscosity is not zero, the differential order in t&ined. The final solution of a particular problem, character-
z is eight, while it changes to six in the inviscid cdsehis ~ 12€d by its initial conditions, would be an appropriate super-
imposes the number of boundary conditions in each case. Position of these eigenmodes. _ o
The anchoring conditions at the edges of the rigid disks  1he above linear problem has well-defined parity with
(5) apply again. If(8) and (9) are introduced in the impen- _respgct ta, since the equanon; and boundary condltl_ons are
etrability and no-slip conditions(1) and (3), the following invariant under the change of signafTherefore, the eigen-

eight boundary conditions for the viscous parabolic modefModes can be classified in either antisymmetric or symmet-
are obtained: ric, according to the parity of the shape of the interface with

respect ta. Note thatw, w,, andw, have opposite parity to
Wo(£A,1)=0, W,(+A,t)=0, (10)  the shape of the interface, since applying a derivative with
B B respect taz to any quantity changes its parity.

Wo,(=A,1)=0, W, (*A,0)=0. (11) Similar to the dependence on time, an exponential de-

The four conditiong11) do not apply ifC=0. Instead, pen_dence orz could be tried. Howeve_r, the WeII-_defi_ned
substituting (8) and (9) into the kinematic equation gives Parity of the problem suggests proposing a combination of
another two conditions. In this particular case, the irrotation"yPerbolic sines and cosines, which is equivalent.
ality of the velocity field allows decouplingV, from the A Mean-velocity models
problem. Therefore the following six conditions féf, must

be fulfilled by the inviscid parabolic model: The substitution of the proposed dependence on both

andz in the equations of the mean-velocity models leads to

Wo(£A,1)=0, W, (£A,1)=0, (12)  the following general solution fow:
Wo (A0~ W, (=A,0)=0. (13) .2
w= Y, [.% costik;z)+.7; sinh(k;2)], (18)
=1

Conditions(13) come from imposing the anchoring of
the shape of the interface to the edges of the disks. However o
they allow the liquid to slip on their surface, as is to be\é\/_heredi ':_J' (with :__1’2) are the four complex roots of the
expected as long as viscosity effects are absent. Iquadratic equation

Contrarily to the me.a.n—.velocity models, the pa_rabolic K4+ c k2 +Co=0. (19)
one conserves the sensitivity of the general equations and
boundary conditions to the viscous or inviscid character of  The coefficientsc, and c;, which are functions of},

the problem. take different values for each model:
for Lee,

IIl. LINEAR ANALYSIS

) . . for Cosserat,
Let us consider small perturbations around the static cy-

lindrical solution. The linear 1-D models previously obtained 20)2 1-6CQ-102

for liquid jets’ are valid for liquid bridges, as long as the Co=7——=~7rnns C1=—F—~7r~ (21)
above discussed boundary conditions are added. To solve the 1+ (Cl4) 1+ (CHa
linear dynamics associated with the 1-D models, an exponenpr averaged,
tial dependence in time is tried for the variables appearing in
each model: co=202, ¢;=1-6CQ—3:02% (22)
f(z,t)=Rg f(z) e™], (14) Notice that the antisymmetric and symmetric modes
. with respect to the interface are characterized/y-0 and
w(z,t)=Rdw(z) "], (15)  .#;=0, respectively.
R Substitution of(18) in the linear counterparts @6) and
Wo(z,t)=ReWo(2) e™], (16)  (7) gives two systems of homogeneous algebraic equations
Wy(z,1) = R W,(2) 6], 17) for the antisymmetric and symmetric modes. In order to have

nontrivial solutions, the determinant formed by the coeffi-
where () is complex in general, and its real and imaginarycients of such algebraic equations must be zero. For antisym-
parts are the growth factar and the oscillation frequency metric modes, this yields



K2 Sinr(KzA) COSKKlA)_Kl Sin“KlA) COSI’(KzA) 0.8 LI L L L B L R 0.4
0.6 =~ . - 0.3
=0, (23) 8421 = S~ Q = 8%
while the analogous condition for symmetric modes is o _08 - g T T T T T ?01
Ky COSH KA Sin( ke, A) — kg cost{xyA) Sinh x,A) e i 3320
08 F A* i
-o0. (24) 2 3 -1
Given the parameterd andC, this compatibility con- /I’_’_’I’_j -1.8
dition is satisfied by a countable infinite set of eigenvalues 2 3 4 5 -19
Qn,, wherem is odd for antisymmetric modes and even for A
symmetric ones. The numerical procedure implemented to
find such complex roots is described in the Appendix. FIG. 2. Frequencw (— — -) and growth factor (—) versus the slender-

ness, as given by the parabolic model for=1 andC=0.2.

B. Parabolic model

Again, the determinants formed with the coefficients of
. these homogeneous systems of algebraic equations must be
model. The dependence anproposed forw, induces an zero. In the viscous case, the corresponding conditions to

analogous. one fow When sub_sntuted in the equations, ‘f.’“' find the antisymmetric and symmetric eigenvalues are, re-
though with different integration constants. The resultlngS P ectively
4

A similar treatment can be applied to the parabolic

system of two homogeneous equations lead to the general

solution ) |
J i,-;:l Zija COSH ki A) k; Sinh(A) 7y
Wo= >, [.% costix;z)+.%; sinh(k;2)],

=1

X cosh kA) mk sinh(kA)=0 (C#0), (29)
J (25) 4
\7\/2:]21 [%] Ui COSKK]Z)"'.,%] Ui Sinl"(KjZ)], ) ; L ;J(I]kl Sinr(KiA)Kj COSKKjA)ﬂk Sinr(KkA)
= L]L.Kl=
where 5; depends or€ and(}, and is given by X mk cosl{kiA)=0 (C#0), (30)
, Q-C(8+«?) (26) where# denotes the completely antisymmetric tensor. In the

inviscid case, the analogous conditions for antisymmetric

TN 20+ C(16-67)
and symmetric modes are

and* «; (with j=1, 2,...,J) are the 2 roots of

3
Car®+Car®+Cok?+ C x?+ =0, @7) X costirjA) ki costixA ) k(8= k)
jkT=1
whose coefficients are functions 6f and(): .

co=128C02%+ 1603, Xsinh(kA)=0 (C=0), (31)
3
C1=64C+(8—384C2)Q—96CQZ—4Q?’, 2 gjkl Sim’(KjA)Kk sinh( x, A) k(8 — KIZ)
j.kI=1

C,=48C+ (7+96C?) Q) +18CO2, 28)

xXcosiikyA)=0 (C=0). 32
Cs=—15C— (1+14C)Q, fiah)=0 (C=0) (32)
ca=C. IV. RESULTS AND DISCUSSION

Again, the antisymmetric and symmetric modes are  As will be shown below, the relative errors committed in
characterized by%;=0 and.Z;=0, respectively. the eigenvalues provided by the linear analysis of the 1-D

Notice thatJ is the degree of the polynomial equation models are reasonably small. In comparison with the 3-D
(27). Thereforel=3 if C=0, andJ=4 otherwise. As shown computations, which are very heavy and present conver-
before, the boundary conditions are also different, dependingence problem$,the 1-D ones are very fast and efficient.
on the Ohnesorge number. Consequently, the viscous anthis allows a careful parametric study of the eigenvalues and
inviscid cases must be treated separately. eigenfunctions, which provides valuable information about

If the general solution(25) is introduced in the linear the influence of the slenderness and the viscosity on the evo-
counterparts of eithgd0)and(11)if C # 0, or(12)and(13) lution of the bridge.
if C=0, a system of homogeneous algebraic equations for Figure 2 shows the set of three eigenvalues associated
the integration constants/; and.7) is obtained. However, a with the indexm=1, for a typical viscous liquid bridge. For
suitable combination of these equations leads to two systeneachm, there is a value\}, of the slenderness under which
of equations, one for antisymmetric modes and the other fotwo eigenvalues are complex conjugate, wi=0. For
symmetric modes. A>A}, the latter ones become real. One of them, labeled



Q4m, increases monotonically as does. The critical slen- 0.7 . —T .
dernessA ., for which Q,, becomes positive, and therefore T
unstable, determines the stability of timth mode. The other 0.6 ]
eigenvalue (), decreases monotonically. The modes cor- 0.5 _
responding to these will be calletbminantand subdomi- - -
nant, respectively, since the former dominates the evolution 04 — .
of the liquid bridge, with the latter dying down relatively 1€ R Y T U ]
quickly. Thus, while nothing is saif,, denotes{)4,,. The 0.3 B N — <. J
two modes discussed above, calladarly inviscid when 02 \! =
C<1} are the only ones appearing@=0. Owing to the -\ 1
greater differential order of the viscous equations, new 01~ 7]
modes appear as long &+ 0. Theseviscousmodes have 0 I T | P T
real negative eigenvaluel,,, that are approximately pro- 2 4 6 8 10
portional toC for small Ohnesorge numbers, and are sub- A

dominant for realistic values & (see Fig. 2).

The range of validity of the referred models is limited by FIG. 3. Module of the eigenvalu@ of the first four modes as a function of
the condition of |arge slenderness. Concerning the othelpe slenderness, f@=0. The short dashed line represents the growth factor
limit. it could be thouaht unrealistic considering values of the inviscid infinite jet. The long dashed horizontal line is the tangent at

' lought - unre ) ) 9 the maximum of the latter curve.
greater thanr, for which the liquid bridge is unstable. How-
ever, as we have commented before, such slender liquid col-

umns can be obtained by applying suitable electric or magrength\, defined as the distance between consecutive nodes
netic fields, or by melting a solid metal rod. In particular, of the shape of the interfack.is a half of the wavelength in
using electric field$? dielectric liquid bridges withA>5 4 jet, but does not necessarily coincide withfor slender
have been obtained, and greater values of the slenderness akgugh bridges.
attainable with slight changes in the geometry of the system. et \,, be the value of\ for which the maximum
If the electric field which stabilizes the dielectric liquid growth factor is attained in a jet, which is about 4.51 in the
bridge is suddenly removed at=0, the early evolution of inviscid case. In a bridge and for a given value /of the
the bridge is governed by the linear equations considereghost unstable mode should have a similar valua oHow-
here. Fort>0 the equations are purely hydrodynamic, be-ever, this value can never be greater thignwhich shows
cause the depolarization of the liquid is instantaneous conmthat the slenderness can be considered a good measure of the
pared to any mechanical time of interest. Therefore, we willcharacteristic axial length iA <\ 5, (for m=1). For more
deal with slenderness within the ranges A<10. Although  slender bridges, it is expected that=\ ., independent of
less realistic, much more slender liquid bridges are considthe value ofA, and new nodes appear in the shape of the
ered to study the asymptotic connection between liquidnterface. In fact, this is what can be observed in Fig. 4,
bridges and jets. where the shape of the interface is plotted agamhdt for

No restrictions have been imposed on the value of visincreasing values oA, C=0, andm=1. For a given mode
cosity. The inviscid and very viscous cases deserve speciah, \, is approximately given by
attention, since the above-cited exact linear 3-D results pro- oA
vide a good test of 1-D cases in both limits. As already _
pointed out, the limit of small viscosity is also considered in m+1
detail, in order to compare the behavior of the 1-D models
with respect to the boundary layers. Finally, we also discuss N max
the moderately viscous case.

) m+1
if A<T)\max ,
(33)

mz

) m+1
if A>T)\max .

o In fact the shapes of the interface of the odd and even
A. Inviscid case modes are well approximated by
In Fig. 3, the module of the most significant value of
Q,, (dominantmodes)is plottedagainstA, for the first four

modesand C =0, as calculatedby Sanz* The shortdashed 1.2
line correspondgo the growth factor of the infinite jet, tak- 0.8
ing k=m/A as the dimensionlessvavenumberwhile the 0.4
long dashedine is the tangentline at the maximumof the f oo
former. 0.4

Notice that, for A>A.,, and C=0, the growth factor 08

doesnot tend to zero, as happengo liquid jets. Insteadit
approachesa constantvalue which is commonto all the
modes.andcoincideswith the valueof the maximumgrowth
faCtorOf.a.n infinite Jet. This is alsotrue for the 1_[.) models FIG. 4. Shape of the interface of the firgntisymmetric)mode versus
for any finite value of the Ohnesorgenumber,andit canbe ZIA, for C=0 andA =2, 3, 5, 10, 20: as given by the 3-D analysis of Sanz
explainedin termsof a characteristimondimensionabxial  (Ref. 1).
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FIG. 5. Relative error in the determination @fby the Lee(-- - -), Cosserat
and averaged— — -), and paraboliq- - - ) models as a function of the
slenderness, for the first two modem<1,2) andC=0. The numbers on
the curves indicate the mode index.

nwz\ |
co8 - Si(7z N\ (=13, ...),
fon-1(2)= S (34)
sin(K) CoSmZ/ N ma)  (N=2,4,...);
1 I ] | 1 I 1 I 1
Nz , O 02 04 06 08 10
COE(X) coS mz/\ e (N=13,...), ®) ¥

f2n(z) = (35) FIG. 6. Radial profile of the axidla) and radial(b) velocities for the first

sin iz SIN( 72/ \ a0 (n=2,4, ...); mode,C=0, andA =3. The numbers indicate the valueszf\. Results
2A ma given by Sanz(Ref. 1) ), parabolic(- - -), and one-term averaged
(= — -) approximations.

where the subscript denotes the index of the corresponding
mode.
The typical axial length is responsible for the relative The different 1-D approximations of the velocity field
error of the 1-D models. On the one hand, we have seen thaan be compared to the linear 3-D solution given by $&mz
\ is directly related toA if the latter is not larger than the linear inviscid case. Radial profiles of the axial and radial
Amax- Thus, the mentioned error is expected to increase agelocities are shown in Figs(®) and 6(b), respectively, for
A decreases om increases, due to the decreasing distancé&C=0 andA = 3. Two approximations are plotted. On the one
between nodes. On the other hamdtends to\,, if the  hand the one-term averaged one, given by Mesetfump;
bridge is slender enough. This implies that the error musproximatesW as its mean value on each slice, avidas a
tend to a constant value as increases. Indeed, the above linear function ofr. Although the averaged model has been
reasoning is confirmed by Fig. 5, where the data of Fig. hosen, the results are the same within the plot accuracy for
have been used to calculate the relative errors in the eigemny mean-velocity model, the relative error beg?. On
value as given by the 1-D models, f&=0 andm=1 and the other hand, the parabolic model provides a two-term
2. polynomial approximation, whose relative error is expected
The error of the Cosserat and averaged models, whicto be\ ~4.
coincide in the inviscid limit, is clearly of the same order The one-term averaged approximation behaves worse in
than the one of the parabolic model. In contrast, the error ofhe center of the bridgez&0) and near the diskz&1). In
the Lee model is about twenty times greater than the previparticular, the liquid slipping on the disks is not predicted.
ous ones. This confirms the theoretical expectations abouiowever, it can be considered to be near the best one-term
the relative order of each of these models. polynomial fit to the exact velocity field. In general, the para-
Concerning the mean axial velocity and the shape of théolic approximation shows to be better than the previous
interface, we have found that their relative error, measured asne. It almost coincides with the exact results, except very
the deviation from the exact results divided by their ampli-near the disks, where the profile is harder to be fitted by a
tude, is very similar to that shown above for the eigenvaluestwo-term polynomial irr. However it succeeds in describing
The same is not true for the velocity components themselveshe cited slipping on the disks, and even the slightly negative
as we show below. axial velocity near the anchors, already noted by Sanz.



0.12 [ A comparison of the different approximations of the ve-
= locity field against a 3-D solution in this limit would be
0.08 4o interesting. Unfortunately, the latter result is not available.
\ \\ The main features predicted by the parabolic approximation
0.04 1 - are the no slipping on the disks, and that the maximum axial
= N velocity happens at the center of the bridge, and not at the
% 0 ?f--‘__—j__,?_—-g_-s_f.:._._,::: interface as folC=0. This is in qualitative agreement with
/1 *:, '1’:':' TS i the 3-D results for the stream functiérand cannot be pre-
0.04 {— ,27 8- dicted by the one-term averaged approximation, due to its
e 4 limited dependence on
0,08 P4

C. Weakly viscous case

Borkar and Tsamopouldsand more recently Higuera

et al.? have studied the linear boundary-layer problem asso-
ciated with weakly viscous liquid bridges. They have shown
that there are two Stokes boundary layers, one at each disk,
as well as another one at the interface. These regions have a
very small thickness, of orderQ(€,)*? where), is the

. eigenvalue forC=0. The most important correction to the
With respect to the role of the slendemess, the EITOfviscid values of both the damping rate and the frequency is

increases as\ decreases. The radial profiles of the ax'alassociated with viscous dissipation at the digks order

velocity are approximately constant on a slice for slendercl/z)' and at the bulk(of order C). The influence of the

bridges[e.g. see Fig. 6(a)]. This circumstance re_Iaxes fOrinterfacial boundary layer is significantly smaller, of order

smallerA, and the error of the 1-D apgoximations INCreases-sz the damping rate for small viscosities is approximately
accordingly. Taking the amplitude of as reference, the

FIG. 7. Relative error in the determination Gkx by the Lee and averaged
(= — -, Cosserat---), and parabolid- - -) models as a function of the
slenderness, for the first two modes= 1,2) and paramount viscosity. The
numbers on the curves indicate the mode index.

relative error in the velocity field foC=0 and A=3 is

about 2% for the parabolic, and 6% for the one-term aver
aged approximations. Faoh =2, the analogous errors are

5% and 13%, respectively.

B. Paramount viscosity

given by the real part of};CY2+Q,C. The first coefficient
happens to be much smaller than the second, which justifies
the second-order analysis of Higueeaal* Consequently,

the damping rate goes &3'2 for very small Ohnesorge num-
bers, while it goes a€ for more realistic values of. Due

to the higher order of the viscous momentum equations, new
modes appear. These viscous modes, found by Higuera

We now focus our attention on the case when viscougt al.} are purely damped«=0 anda<0), and for small

effectsareparamountThis holdsfor C>a\?, which occurs
not only for very largeOhnesorgenumbershut alsonearthe

stability limit.> Q is realfor any positivevalueof A, andits

dependencen the Ohnesorgenumbertendsasymptotically
to a constantdivided by C. Therefore,the quantity Ce is

considered.

The commentariespreviously made about the typical
axial length are valid for any value of C, providedthat the
wavelengthof maximum growth factor for the infinite jet
Amax IS computedfor the given value of viscosity. This
lengthtendsto infinity asC does’ which meansthat A\ ~ A
evenfor very slenderbridges.The error mustthereforetend
to zeroas A tendsto infinity. Thisis foundin Fig. 7, where
the relative error of Ca for paramountviscosity, computed
throughthe datagiven by Nicolas? is plottedagainstA , for
m =1 and?2. Suchdeviationsarerelatedto the viscousterms
neglectedn the derivationof the 1-D models.

In this limit, the Cosseratnodelexhibitsa worseagree-
mentwith the exactsolution,dueto the inconsistencyin the
second-ordeviscousterms.As alsooccursfor jets,the better
resultsof the averagednodelgetworsefor A <2, sincethe
approximationof someviscoustermsin its derivationis not
very good for small slendernessConcerningthe parabolic
model,the errorin thefirst two modesdoesnot overcomea
10% for A=1. As expected,the error increaseswith the
modeindex, dueto the decreasindypical axial length.

viscosities their growth factor is approximately proportional
to C, and only for unrealistically small Ohnesorge numbers
(C~10"7 or less)do these modes become important. For
increasing, not necessarily small, values&fthe damping
rate of such modes also increases monotonically. Therefore
the evolution of the bridge is mainly described by the most
significantnearly inviscidmodes.

The oscillation frequency and the shape of the interface
are almost the same as in the inviscid case. Therefore, they
are well estimated by the 1-D models. Now we examine
whether these models can predict the correct values of the
damping rate, the appearance of viscous modes, and the large
velocity gradients present at the boundary layers. The answer
is negative for the mean-velocity models and partially posi-
tive for the parabolic one, as we show below.

The damping rate, which is not zero as londZas0, has
been provided by Higueret al* In Fig. 8, the damping rate
— a of the first mode is plotted againat, for C=0.002 and
different approximations. The single crosses are data ob-
tained numerically by Tsamopoula al? Notice that, for
this value of C, the result given by the parabolic model
agrees very well with the data from the second-order
boundary-layer analysis. The error of the mean-velocity
models is clearly greater, the averaged one giving slightly
worse results. This is to be expected, since the damping rate
for very smallC is related to the dissipation in the Stokes
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FIG. 8. Damping rate- & versusA, for the first(antisymmetricmode and  FIG. 10. Axial profile of the radial velocity near an anchoring disk, as given
C=0.002. As obtained by the Lde --), averaged- - -), Cosseraf---), and by the parabolic mode} - -) and the inviscid solution of Sar(Ref. 1) as

parabolic(- - -) models; and by the boundary-layer analysis of Higwral.  well as boundary-layer estimations obtained from the ldtex. For the first
(Ref. 4) (). The crosses are data from Tsamopowdosil. (Ref. 2). mode, A=3, andr=0.5. The numbers on the curves indicate the values
of C.

boundary layers, which is not described by the latter. In gen-
eral, this error diminishes a% increases, but is much larger
than the error in the oscillation frequency. boundary-layer analysis is not as accurate. As already
The dependence of the damping rate©rns shown in  pointed out, this is more evident fox =3, where viscous
Fig. 9, for A=2 and 3. Again the parabolic model is more effects are greater for the same Ohnesorge number, and it
accurate than the mean-velocity models. The dependence @ecomes apparent in Fig. 8 as well.
C of the damping rate given by the mean-velocity models is  The differential order irz of the Lee, Cosserat, and av-
very approximately proportional t€, which gives worse eraged models is four, independent of the valueCofin
results for very smallC. This seems to indicate that these addition, the boundary conditions at the disks are the same
models account for the dissipation in the bulk, and not forfor the inviscid and viscous cases. Therefore, the mentioned
the boundary layers at the disks. As a consequence, the relmean-velocity models cannot account for the boundary lay-
tive error is significantly greater in the damping rate than iners, and no viscous modes are found. This is to be expected,
the oscillation frequency. The relative error of the parabolicsince the no-slip condition on the disks does not affect either
model also increases for very sm@l| but it is not propor- the axial velocity or its mean value. Besides, the large gra-
tional to C, and the error is significantly smaller. dient of the axial velocity near the interface is confined to a
Note also that the cited 3-D approximation differs from very thin layer, whose average influence on a slice is very
the 1-D ones for large enough viscosities, for which thesmall. Thus,W and its derivatives change slowly &sin-
creases from zero. The same is true for the shape of the
interface, related to the former through the kinematic condi-
0 tion. Since the one-term approximation of the velocity field

10 L is in terms ofW andF, it can only describe it in the bulk,
107 and not in the boundary layer.
Instead, the differential order inof the parabolic model
102 changes from six whe@=0 to eight whenC>0. Besides,
the number of boundary conditions at the disks changes
-0 107 - analogously. Therefore this model accounts for the appear-
E ance of viscous modes. Although the relative error is large
10" N (up to 50% for the first two viscous modeshe importance
3 of these modes is secondary, since they die down quite rap-
107 N idly. When C is small enough, a large gradient in the radial
velocity is to be expected near the wall. This is in fact found
10°° 3 2 3 % 1 in Fig. 10, where an axial profile of the radial velocity at
10 10 10 10 10 r=0.5 is plotted for several values of the Ohnesorge number,
c as given by the parabolic model. The 3-D inviscid solution

vo, given by SanZ,is also shown. According to the leading

FIG. 9. Damping rate- a versusC, as obtained by the Lee- --), averaged - _ _ - - -
(- - -), Cosseraf---), and paraboli¢- - -) models; and by the boundary-layer term in the 3-D boundary-layer analysis given by Higuera

4 . . . . .
analysis of Higuerat al. (Ref. 4) (—). For the first@ntisymmetricmode €t al.; a uniform approximation .tO the radial yelocﬂ:ycan
andA=23. be readily found from the exact inviscid solutiog, namely



even for such a small value &, and are in qualitative
accordance with the corresponding results for paramount vis-
cosities. Note that in this case the weight of the viscous
terms is large, in spite of the relatively small Ohnesorge
number, becaugé€l| is small enough. For the first mode, this
happens near its stability limit, &t = 7.

V. CONCLUSIONS

FIG. 11. Shape of the interface of the fitgintisymmetric)mode versus A set of 1-D models, previously derived for jets, has
Z/IA, for C=0, 0.1, 1, 10, and\ =10, as given by the parabolic model. ~ been formulated in the field of axisymmetric viscous liquid
bridges, under the hypothesis of large slenderness. The solu-
tion of the linear eigenproblem associated with each model
v(r,z,t)=vo(r,z,t){1— exd — (1+i)(A—2)/ 5]}, has been compared to the available known results. It has
(36)  been shown that the relative error of the cited models in

where 5=(2C/wo)Y? is a measure of the boundary-layer determining the frequency and growth factor is related
thickness, an, is the oscillation frequency for the inviscid t0 the magnitude of the typical axial lengih For not very
case. This uniform approximation is also plotted in Fig. 10S/ender columnsa=A/m, and the index of the modem
for the same values @&. The gradients of the velocity field 9ives the number of nodes of the shape of the interface be-
are well predicted by the parabolic model, the difference inffween the disks. As\ increases new nodes appear at the
the values of the velocity itself coming from the error of the €igenfunctions\ remains approximately constant, and the
inviscid solution. growth factor of the corresponding eigenmode tends to
For C greater than 107 the physical boundary layer @max- SINCEAmayincreases a€ does, this explains why the
cannot be considered narrow, and the inviscid solution doegited relative errors tend to be constant for increasing values
not fit the viscous one anymore. This illustrates the fact thaPf A—this constant decreasing to zero@sncreases from
the viscous effects may become important even for quite?€ro to infinity. o o
small values ofC, provided() is small enough. This occurs The different 1-D approximations to the velocity field

near the stability limit for each mode, as in the preceding'@ve been discussed and compared in the inviscid and vis-
example, in whichA =3. cous cases. In the central region of the bridge, far from the

disks, the results are similar to those for jets. The well known
one-term approximation, given by Meseguer, gives an error
of order\ 2. An inviscid and a very viscous two-term av-
The scarce data available from a 3-D approach prevergraged approximations, that improve the former for weakly
us from doing a careful comparison. Nevertheless, some agnd highly viscous liquid jets, respectively, are more accu-
pects related to the typical axial length, the eigenvalues, andate in the same limits of in the central part of the bridge.
the approximations to the velocity field are discussed. However, it is worse near the disks, since they fulfill the
As commented before, relatid33) holds for any given boundary conditions for the velocity field at the disks only
value of C, provided\ s IS computed for that Ohnesorge approximately. In contrast, the accuracy of the velocity field
number. Since . increases a€ does’ the value ofA for  given by the parabolic model is satisfactory, even near the
which new nodes appear in the shape of the interface indisks. It accounts for the nonzero radial velocity at the disks
creases. This fact is put in evidence in Fig. 11, where thevhenC=0 and also predicts the large velocity gradient near
shape of the interfacg is plotted for the first modeA=10 the disks wherC is very small.
and several values @, as given by the parabolic model, the Further work is necessary to determine the value of these
other models giving similar results. Notice that the distancanodels to study the breakup of liquid bridges. A common
between nodes increases wi@, and it becomesA for  objection is that the axial length scales near the rupture
C=10. For the latter value oF, the viscous effects can be might not be large, which would affect the error of these
considered paramount. approximations®*8 In this sense, the work of Eggers and
Meseguel? has carried out a study of the dependence oDupont* with the viscous Lee model is very encouraging,
Q) on A for several values o€, by means of the Cosserat since they predict a good agreement with a 3-D approach in
model. Quite similar results are obtained with the other modthe pinch region.
els derived above. A comparison to the exact linear results of To conclude this study, we would like to stress the small
Tsamopoulot al? is hardly interesting, since most of these effort necessary to find each eigenvalue and its correspond-
are for quite thick bridges. However, relative errors can bdang eigenfunctions. The 1-D approach is at least four orders
calculated forA =107/9 and 27/3, with C=0.1. For the of magnitude more economical in time of computation than
first data (\ =3.50), the errors of the Lee, Cosserat, aver-the 3-D one in the viscous ca$€ontrarily to the latter, the
aged and parabolic models are respectively 0.6%, 0.3%former has no problems of convergence, for any valu€ of
0.09%, and 0.095%; and for the second vale<2.09) we  or A, and all the modes can be easily distinguished. Besides,
have 3.1%, 0.5%, 0.6%, and 0.6%. The former data showhe method of solution is formally the same for any value of
the inconsistency in the viscous terms of the Cosserat modehe Ohnesorge number.

D. Moderately viscous case
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