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Abstract: This study aims to analyze the effects of Dry Needling (DN) for the release of myofascial
trigger points (MTrPs) in the triceps surae muscles (TSM). A systematic review was performed up to
February 2022 in PubMed, PEDro, Scopus, CENTRAL, and Web of Science. Selection criteria were
studies involving subjects older than 18 years presenting MTrPs in the TSM, without any concomitant
acute or chronic musculoskeletal conditions; DN interventions applied to the MTrPs of the TSM; and
results on pain, range of motion (ROM), muscle strength, muscle stiffness, and functional outcomes.
The PEDro scale was used to assess the methodological quality of the studies, and the Risk of Bias
Tool 2.0 to assess risk of bias. A total of 12 studies were included in the systematic review, involving
426 participants. These results suggest that DN of MTrPs in TSM could have a positive impact on
muscle stiffness and functional outcomes. There are inconclusive findings on musculoskeletal pain,
ROM, and muscle strength. Significant results were obtained in favor of the control groups on pressure
pain thresholds. Despite the benefits obtained on muscle stiffness and functional performance, the
evidence for the use of DN of MTrPs in the TSM remains inconclusive.

Keywords: dry needling; trigger points; triceps surae; physical therapy

1. Introduction

Myofascial pain is a clinical syndrome derived from musculoskeletal pain, which
presents with a referred component and is diagnosed by rigorous examination to locate
myofascial trigger points (MTrPs) [1–3]. MTrPs are clinically defined as a hyperirritable
nodule of spot tenderness located in a taut band of skeletal muscle which is tender and
palpable through physical examination [4]. A recent study carried out by Li et al. [5]
stated that the diagnosis of MTrPs is mostly based on the presence of three criteria, either
stand-alone or combined: spot tenderness, referred pain and local twitch response (LTR).
The use of these criteria combined provide a more reliable diagnosis, as it is known that the
reliability of each criterion is associated with the analyzed muscle [6]. In addition to physical
examination, taut bands can be objectively characterized by magnetic resonance [7], and
the irritability caused by MTrPs can be showed by electromyography [3,8]. Nevertheless,
an objective standard diagnostic of MTrPs is still needed [5].

The most common muscle dysfunctions that can be caused by these MTrPs are a
decreased range of motion, weakness, fatigue, referred spasm, poor post-exercise recovery
and alterations in motor activity patterns [9–11]. Those muscle dysfunctions are addressed
by different physical therapy interventions, such as passive therapy, muscle strengthening,
and stretching, which have shown positive results [12]. Specifically, multimodal treat-
ments, including dry needling (DN), seem to be safe, cost-effective, and reliable to treat
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MTrPs [2,13,14]. According to Dunning et al. [15], DN “encompasses the insertion of needles
without injectate into, alongside, or around nerves, muscles, or connective tissues for the manage-
ment of pain and dysfunction in neuromusculoskeletal conditions”. When DN is applied directly
into MTrPs, it consists of inserting a fine needle without medication into the skin, subcuta-
neous tissues, and muscle for eliciting LTR and disrupting mechanically MTrPs [16]. This
technique should be differentiated from wet needling or injection, which uses an additional
injection of analgesic substances, such as lidocaine, when performing the needling [17,18].
Among the different modalities of DN applied to the MTrPs, the most widely used is the
“fast-in fast-out” or “pistoning” modality, which consists of repeated and fast entry of the
needle into the MTrPs area in a fan or cone shape to elicit LTR [18].

Although there are previous reviews and meta-analyses discussing the effectiveness of
DN on specific variables related to myofascial pain (highlighting its effect on reducing pain,
increasing the range of motion -ROM- and reducing tone) [19–21], and for the treatment
of MTrPs in different muscles of the lower extremity [22–24], a comprehensive analysis
of the benefits of the DN application on triceps surae is still needed. The functional
involvement of the triceps surae muscles is essential for functional activities, such as gait
and balance [25]. Adequate flexibility of these muscles is related to increased dorsiflexion
ROM, force production to generate elastic energy and decreased pronation upon weight
acceptance [26]. For example, during landing jumps, increased dorsiflexion ROM has an
impact on pre-stretching of the ankle plantar flexors, improving the utilization of elastic
energy and enhancing jump function, acting as injury prevention [27].

In view of this background, our objective was to analyze the effectiveness of DN of
MTrPs in the triceps surae muscles, according to the results on pain, ROM, muscle strength,
muscle stiffness, and functional outcomes.

2. Materials and Methods

This study was performed following the guidelines of the PRISMA (Preferred Re-
porting Items for Systematic Review and Meta-Analysis) 2020 checklist [28] (List S1). In
addition, this systematic review was registered in the Prospective Register of Systematic
Reviews (PROSPERO), register number: CRD42021265987.

2.1. Search Strategy

A systematic search was performed up to February 2022 in the following scien-
tific databases: Medline/PubMed, Physiotherapy Evidence Database (PEDro), Scopus,
Cochrane Controlled Register of Trials (CENTRAL), and Web of Science. The search
strategy included the following combination of terms (Table S1): “dry needling” AND
(gastrocnemius OR soleus OR calf OR “triceps surae” OR “triceps sural” OR “sural triceps”).
No filters were applied by language, type of study or publication date. The literature search
was performed by two authors (D.L.A. and J.A.M.M.), retrieving the potentially relevant
studies. A third reviewer (C.L.M.) participated to establish a consensus when necessary.
After performing the search, duplicated articles were excluded. The title and abstract were
assessed and those that were not performed in humans and those that did not have the
established study design were discarded. Finally, the full text of the screened articles was
assessed and articles that did not meet the established selection criteria were excluded. The
remaining studies were included in the systematic review.

2.2. Selection Criteria

As inclusion criteria, studies were selected according to the PICOS model (Population;
Intervention; Comparison; Outcome/Results; Study Design) [29]: P: subjects, athletes
and non-athletes, older than 18 years presenting with MTrPs in the triceps surae muscles,
without any concomitant acute or chronic musculoskeletal conditions, nor other causes
of neuropathic pain, such as low back radiculopathy or muscle soreness spasms; I: DN
technique applied to MTrPs of the triceps surae muscles using any parameter of time of
insertion, number of insertions and number of LTR in the study protocol; C: Conventional
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therapies, such as stretching and ischemic compression, sham DN, and no intervention;
O: Results on pain, ROM, muscle strength, muscle stiffness, and functional outcomes;
S: Clinical trials including an experimental group and a comparison group. There were ex-
cluded studies not performed on humans and studies using electroneedling, electroacupunc-
ture or acupuncture or injecting any drug. In addition, the studies in which DN was applied
to different muscles and the results were not reported separately for the triceps surae mus-
cles were excluded.

2.3. Methodological Quality and Risk of Bias Assessment

The methodological quality of the clinical trials was assessed using the PEDro scale [30].
It consists of 11 evaluation criteria and assesses external and internal validity, as well as
statistical information to interpret the results. A study scored from 9 to 11 is considered
as excellent methodological quality, 6 to 8 is considered good, 4 to 5 is considered fair,
and above 4 is considered poor quality [31]. Moreover, the risk of bias of each study was
assessed using the Cochrane Risk of Bias tool 2.0 (RoB 2.0) [32,33]. This tool includes
different questions about the risk of bias of the included studies, helping to classify among
low risk, uncertain risk, or high risk.

The assessment was preformed independently by two authors (C.G.M. and C.L.M.).
A third reviewer (D.L.A.) participated to establish a consensus when necessary.

2.4. Data Extraction

The data extracted from each article were: author/s, year of publication, intervention
(treatment carried out in each group; duration, and frequency of the intervention), sample
size, outcomes and measurement instruments used, and the main results (significant
intergroup differences). Two independent reviewers (D.L.-A. and J.V.-M.) took part in the
data extraction process and an additional reviewer (J.A.M.-M.) intervened for consensus.
Furthermore, a synthesis was provided with data on the significance of the different
variables measured in the included papers.

3. Results
3.1. Study Selection

The first search identified 353 potential articles; 12 met the eligibility criteria and
were included in the systematic review. The screening process is reported according to
the PRISMA flow diagram (Figure 1), and a detailed description of the included studies is
shown in Table 1.
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Table 1. Main characteristics of the studies included in the systematic review.

Author/Year Country Population/Age Type of Intervention Intervention Dose/Method of
Intervention Outcome Measures Measuring Instruments Results

Albin et al. [34] 2020 United
States

Non-Athletes
G1: n = 52/25.1 ± 3.6

G2: n = 50/27.0 ± 5.0 N =
102/18–50 years

G1: DN
G2: Sham needling

2 sessions of DN pistoning technique for
5–10 s in 3 latent MTrPs of gastrocnemius

to elicit as many LTR as possible

-Muscle stiffness (resting
and contracted
gastrocnemius)

-Muscle strength
(triceps surae)

-Myoton PRO
-Hand-held dynamometer

Significant improvements were found
in the resting muscle stiffness at the
site of the MTrPs for the DN group

(p = 0.03).

Bandy et al. [35] 2017 United
States

Non-Athletes
G1: n = 18/ND
G2: n = 17/ND

N = 35/
22.7 ± 2.4

G1: DN
G2: Sham needling

1 session of DN of latent MTrPS in four
sites on bilateral gastrocnemius (two at
the medial head and two at the lateral
head). The needles were tapped and

inserted, one right after the other

-Vertical Jump height -Chalk marks on the wall
The DN group significantly increased
vertical jump eight 1.2 inches over the

sham group (p = 0.038).

Baraja-Vegas et al. [36]
2019 Spain

Non-Athletes
G1: n = 18 (target leg)

G2: n = 18
(contralateral leg)
N = 18/25.5 ± 5.0

G1: DN
G2: Not intervention

1 session of DN in gastrocnemius latent
MTrPs using the fast-in and fast-out
technique during 8–10 insertions to

elicit LTR

-Intramuscular edema
-Muscle contractile

properties
-Pain

-Magnetic Resonance
Imaging

-Tensiomyography
-11-point Numerical Pain

Rating Scale

Significant changes between groups
were found in the intramuscular

edema for the DN group (p < 0.001).
Significant changes between groups

were found in the resting muscle
stiffness with an improvement in

contraction time for the DN group
(p < 0.001).

Benito-de-Pedro et al.
[37] 2019 Spain

Athletes
(Triathlon)

G1: n = 17/35.3 ± 5.4
G2: n = 17/33.7 ± 5.7
N = 34 (18–75 years)

G1: DN
G2: Ischemic
compression

1 session of deep DN in triceps surae, on
latent MTrPs using the fast-in and

fast-out technique to elicit LTR until the
limit of tolerance of the patient or

reaching a maximum number of 8 to
10 insertions

-Pressure pain thresholds
-Thermographic

measurement

-Wagner analog algometer
-Thermographic camera

with MSX technology

Statistically significant differences
between groups were found in the

Pressure pain threshold reduction in
favor of the DN group (p < 0.05).

Benito-de-Pedro et al.
[38] 2020 Spain

Athletes
(Triathlon)

G1: n = 17/ND
G2: n = 17/ND

N = 34 (18–75 years)

G1: DN
G2: Ischemic
compression

1 session of deep DN in gastrocnemius,
on latent MTrPs using the fast-in and

fast-out technique to elicit LTR until the
LTR were exhausted, up to the limit of
tolerance of the patient or reaching a

maximum number of 8 to
10 insertions

-Ankle dorsiflexion ROM
-Dynamic plantar pressures

-Static plantar pressures

-Goniometer
-Plantar pressure sensor

platform with T-plate
software

No significant changes between
groups were found in any outcome.

Benito-de-Pedro et al.
[39] 2021 Spain

Athletes
(Triathlon)

G1: n = 17/35.3 ± 5.4
G2: n = 17/33.7 ± 5.7
N = 34 (18–75 years)

G1: DN
G2: Ischemic
compression

1 session of deep DN in gastrocnemius,
on latent MTrPs using the fast-in and

fast-out technique to elicit LTR until the
LTR were exhausted, up to the limit of
tolerance of the patient or reaching a

maximum number of 8 to 10 insertions

-Superficial
electromyographic activity -Electromyography

Statistically significant differences
between groups were found for a

reduction of superficial EMG
measurements differences (%) in

triathletes who train at a speed lower
than 1 m/s, in favor of the DN group

(p = 0.037).

Cushman et al. [40] 2021 United
States

Athletes
(Runners)

G1: n = 28/42.1 ± 11.8
G2: n = 33/41.2 ± 13.1

N = 61 (>18 years)

G1: DN
G2: Sham needling

1 session of DN in soleus to elicit LTR
until the LTR was extinguished or
reaching a maximum number of

10 insertions

-Pain (soreness)
-Postrace cramps

-Subjective improvement of
soreness

-Numeric Pain Rating Scale
-Survey

Objective pain scores showed an
increase in pain of the soleus muscles

at days 1 and 2 in the DN group
(p ≤ 0.003 and p ≤ 0.041, respectively).
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Table 1. Cont.

Author/Year Country Population/Age Type of Intervention Intervention Dose/Method of
Intervention Outcome Measures Measuring Instruments Results

Devereux et al. [41] 2018 Ireland

Athletes
(Any sport competitively

in which jumping,
sprinting, twisting,

turning, acceleration, and
deceleration were

important components)
G1: n = 10/ND
G2: n = 10/ND
G3: n = 10/ND
G4: n = 10/ND

N = 40/25.6 ± 5.5

G1: DN rectus femoris
G2: DN medial
gastrocnemius

G3: DN rectus femoris
+ gastrocnemius

G4: Not intervention

1 session of
Deep DN of latent MTrPS to elicit LTR

-Jump height
-Power output
-Optimal force

-Optimal velocity

My Jump App (iOS)

Significant improvements were found
in jump height for DN medial

gastrocnemius group from
immediately to 48 h post-DN

(p = 0.01).

Espejo Antúnez et al.
[42] 2014 Spain

Non-Athletes
G1: n = 23/22.4 ± 1.5
G2: n = 22/21.1 ± 1.3

N = 45 (>18 years)

G1: DN
G2: Sham needling

1 session of DN in gastrocnemius latent
MTrPs using the fast-in and fast-out

technique to elicit LTR

-Adverse neural tension
-Pain

-Slump neurodynamic test
-Visual Analogue Scale

Significant differences were found
between groups for the perceived pain

in favor of the DN group (p < 0.01).

Janowski et al. [43] 2021 United
States

Athletes
(Professional ballet

dancers)
G1: ND
G2: ND

N = 11 ND

G1: DN + stretching
G2: sham needling +

stretching

1 session of DN in triceps surae MTrPs
repeatedly moved up and down in order

to elicit LTR

-Pain
-Temperature

-Ankle dorsiflexion ROM
-Maximum muscular

torque of plantar flexion

-Visual Analogue Scale
-Surface thermometer

-Goniometer
-Biodex

No statistically significant differences
between groups were found in any

outcome.

Lake et al. [44] 2018 United
States

Non-Athletes
G1: n = 10/25.1 ± 2.4
G2: n = 10/27.1 ± 4.9
G3: n = 10/23.3 ± 4.8

N = 30/26.4 ± 3.1

G1: DN
G2: Stretching

G3: DN + stretching

G1: 1 session of DN pistoning technique
(eliciting LTR) in gastrocnemius and

soleus
G2: 1 session of 30 s 3 times each leg

G3: G1 + G2 interventions

-ROM (passive
dorsiflexion, closed chain

half kneeling and standing
dorsiflexion)
-Deep squat

-Functional dorsiflexion
and dynamic balance

-Inclinometer
-Deep squat score

-Y-Balance Test of the
Lower Quarter (YBT-LQ)

Significant differences were found
between groups for deep squat

performance in favor of the DN group
(p < 0.01).

Pérez-Bellmunt et al.
[45] 2021 Spain

Non-Athletes
G1: n = 25/ND
G2: n = 25/ND

N = 50/22.4 ± 8.4

G1: DN
G2: Not intervention

1 session of DN in gastrocnemius latent
MTrPs using the fast-in and fast-out

technique to elicit LTR

-Viscoelastic properties
and contractile properties
-Pressure pain sensitivity
-Ankle dorsiflexion ROM

-Muscle strength

-MyotonPro instrument
-Manual

algometer/11-point
Numerical Pain Rating

Scale
-Goniometer during

lunge test
-Dynamometer

Significant differences between groups
were found in the lateral

gastrocnemius viscoelastic properties:
stiffness (p = 0.02), relaxation

(p = 0.045), and creep (p = 0.03), in
favor of the DN group.

The control group showed a higher
increase in pressure pain thresholds

than the experimental group (p = 0.03).

DN: Dry Needling; G1/2: Group 1
2 ; LTR: Local Twitch Response; MTrPs: Myofascial Trigger Points.
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Figure 1. Flow diagram of the different phases of the systematic review.

3.2. Methodological Quality and Risk of Bias Assessment

The methodological quality of the studies can be considered good according to the PE-
Dro scale, ranging from 5 to 9 with a mean score of 6.41. Albin et al. [34] obtained the highest
score (9 points) and Bandy et al. [35], Baraja-Vegas et al. [36], Pérez-Bellmunt et al. [45],
Janowski et al. [43], and Cushman et al. [40] the lowest (5 points). Detailed information is
shown in Table 2.
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Table 2. Physiotherapy Evidence Database scores for clinical trials included in the review.

Study 1 2 3 4 5 6 7 8 9 10 11 Total

Albin et al. [34] 2020 Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes 9

Bandy et al. [35] 2017 Yes Yes No Yes Yes No No No No Yes Yes 5

Baraja-Vegas et al. [36] 2019 Yes No No Yes No No No Yes Yes Yes Yes 5

Benito-de-Pedro et al. [37] 2019 Yes Yes Yes Yes No No Yes Yes Yes Yes Yes 8

Benito-de-Pedro et al. [38] 2020 Yes Yes Yes Yes No No Yes Yes Yes Yes Yes 8

Benito-de-Pedro et al. [39] 2021 Yes Yes Yes Yes No No Yes Yes Yes Yes Yes 8

Cushman et al. [40] 2021 Yes Yes No Yes Yes No Yes No No Yes No 5

Devereux et al. [41] 2018 Yes Yes No Yes No No Yes Yes No Yes Yes 6

Espejo Antúnez et al. [42] 2014 No Yes No Yes Yes No Yes Yes No Yes Yes 7

Janowski et al. [43] 2021 Yes Yes No No Yes No Yes No No Yes Yes 5

Lake et al. [44] 2018 Yes Yes No Yes No No Yes Yes No Yes Yes 6

Pérez-Bellmunt et al. [45] 2021 Yes Yes No Yes No No Yes No No Yes Yes 5

Criterion 1 is not included in the total score, which is out of 10. Median, 6.42; range, 5 to 9. 1, eligibility
criteria specified; 2, random allocation; 3, concealed allocation; 4, baseline comparability; 5, blinding of subjects;
6, blinding of therapists; 7, blinding of assessors; 8, more than 85% follow-up; 9, intention-to-treat analysis;
10, reporting of between-group statistical comparisons; 11, reporting of point measures and measures of variability.

Concerning the risk of bias according to the ROB 2.0, Albin et al. [34] obtained the
lowest risk, while Cushman et al. [40] obtained the highest (Figure 2). The domains with
the lowest risk were missing outcome data, measurement of the outcome, and selection of
the reported result (Figure 3). The domain with the highest risk was the deviations from
intended interventions.
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Figure 3. Overall risk of bias, with each category presented as percentage.

3.3. Population Characteristics

A total of 426 subjects were involved in the studies included in the systematic review,
assuming that the studies carried out by De-Pedro et al. [37–39] involved the same partic-
ipants. Albin et al. [34] is the study with the highest sample size, with 102 participants.
Six studies included healthy non-athletic subjects [34–36,42,44,45], and the other six in-
cluded athletes, all of them presenting MTrPs in the triceps surae muscles. From the studies
in athletes, they practiced the following sports: triathlon [37–39], running [40], professional
ballet dance [43], and any sport in which jumping, sprinting, twisting, turning, acceleration,
and deceleration were important components [41]. The mean age ranged from 22.4 [45] to
42.1 [40] years, with 20–30 years being the most common age in the studies.

3.4. Intervention Characteristics

First, it is worth noting that all DN and comparison interventions were performed by
physical therapists. All studies used the DN applied to the MTrPs, which were previously
located by palpation. All the studies used the fast-in fast-out or pistoning modality, except
the study by Bandy et al. [35], who only simultaneously tapped and inserted the needles
into different MTrPs.

Regarding the protocol, all studies performed the DN to elicit LTR, but many studies
stopped when reaching a maximum number of 10 insertions [36–40], and/or until the LTR
were exhausted [34,36–40]. The remaining studies [35,41–45] did not describe it. All the
results are based on a single session to examine the effects of DN, except for the study by
Albin et al. [34], who performed two sessions.

Concerning the comparison groups, the control groups were based on sham needling
in five studies [34,35,40,42,43], which consisted of performing a simulation of the DN proce-
dure without the insertion of the needle [46]. Three studies [36,41,45] did not perform any
intervention in the control group. Ischemic compression was used in three studies [37–39],
and stretching was used in one study [44].

3.5. Outcome Measures

Following the selection criteria, the present systematic review focused on the follow-
ing outcomes: pain, according to musculoskeletal pain [36,40,42,43] and pressure pain
thresholds [37,45]; ROM [38,43–45]; muscle strength [34,43,45]; muscle stiffness [34,36,45];
and functional performance, such as jump height [35,41], deep squat [44], maximum power,
optimal force and velocity during squat jump [41].

In addition, the included studies also reported the following outcomes: lower limb
surface temperature [37,43]; adverse neural tension [42]; post-race soreness and cramps [40];
intramuscular edema [36], dynamic and static plantar pressures while standing [38], and
dynamic balance [44].

The effects obtained for the different outcomes are shown in Table 3. These results
suggest that DN for MTrPs in the triceps surae could have a positive impact on muscle
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stiffness and functional outcomes. There are inconclusive findings on musculoskeletal pain,
ROM, and muscle strength. Significant results were obtained in favor of the control groups
on pressure pain thresholds.

Table 3. Summary of the main effects of DN interventions compared to comparison group and
associated methodological quality and risk of bias.

Author/Year Population Study
Design Pain Pressure Pain

Thresholds ROM Muscle
Strength

Muscle
Stiffness

Functional
Perfor-
mance

Overall
PEDro

Overall
RoB 2.0

Albin et al. [34] 2020 Non-
athletes RCT N/A N/A N/A =

+ (Resting
muscle

stiffness) N/A Excellent Low risk

= (Con-
tracted
muscle

stiffness)
Bandy et al. [35]

2017
Non-

athletes RCT N/A N/A N/A N/A N/A + (Jump
height) Fair Some

concerns
Baraja-Vegas et al.

[36] 2019
Non-

athletes CT N/A N/A N/A N/A + N/A Fair High risk

Benito-de-Pedro
et al. [37] 2019 Athletes RCT N/A - N/A N/A N/A N/A Good Some

concerns
Benito-de-Pedro
et al. [38] 2020 Athletes RCT N/A N/A = N/A N/A N/A Good Some

concerns
Benito-de-Pedro
et al. [39] 2021 Athletes RCT N/A N/A N/A N/A N/A N/A Good Some

concerns

Cushman et al. [40]
2021 Athletes RCT N/A N/A N/A N/A N/A N/A Fair High risk

Devereux et al. [41]
2018 Athletes RCT N/A N/A N/A N/A N/A

+ (Jump
height) Good High risk
= (Jump
power
output,
optimal

force, and
velocity)

Espejo Antúnez et al.
[42] 2014

Non-
athletes RCT + N/A N/A N/A N/A N/A Good Some

concerns
Janowski et al. [43]

2021 Athletes Pilot RCT = N/A = = N/A N/A Fair Some
concerns

Lake et al. [44] 2018 Non-
athletes RCT N/A N/A = N/A N/A + (Deep

squat) Good Some
concerns

Pérez-Bellmunt et al.
[45] 2021

Non-
athletes

Within-
participant

RCT
N/A - = = + N/A Fair High risk

RCT: Randomized controlled trial; CT: Controlled Trial; N/A: No available. Green, in favor of DN; yellow, not
statistically significant; red, in favor of control/sham or other intervention.

4. Discussion

The present systematic review aimed to analyze the effectiveness of DN of MTrPS in the
triceps surae muscles in adults without any concomitant acute or chronic musculoskeletal
conditions, compared with no intervention, sham needling, and conventional therapies. A
total of 12 studies, involving 426 subjects, were included. To the best of our knowledge,
this is the first systematic review focused on this topic. In view of the results of the
included studies, DN of MTrPS in the triceps surae muscles may contribute positively to
the improvement in muscle stiffness and functional outcomes. Controversial findings were
found in musculoskeletal pain, ROM, and muscle strength. The results were obtained in
favor of control groups for the improvement in pressure pain thresholds.

According to the obtained results, the fast-in fast-out modality of the DN technique is
the most used. All the included studies used it, except of Bandy et al. [47]. Nevertheless,
the protocols used in terms of time of insertion, number of insertions and number of LTR
were different. In that way, there is no consensus about the best combination of parameters
to obtain the MTrPS release. Therefore, we cannot recommend the protocolized application
of this technique. Nevertheless, this systematic review provides an overview of the use of
DN of MTrPS in the triceps surae muscles, in which the use of the fast-in fast-out modality
obtained positive results in muscle stiffness and functional performance outcomes.
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Regarding musculoskeletal pain, our results were based on pain perceived immedi-
ately after the intervention, obtaining controversial results. This finding coincided with
those by Gattie et al. [20] and Rodríguez-Mansilla et al. [47], who found no immediate
benefits for reducing pain compared with the control, sham DN or other treatments in
subjects with different musculoskeletal conditions. Nevertheless, the first one found sig-
nificant overall results from immediate to 12-week follow-up. This overall result is in line
with two recent meta-analyses [48,49] reporting short-term benefits, but one of them used
a short-term period, including from immediate follow-up to 12-weeks, and the other was
from immediate follow-up to 72 h post-intervention. Therefore, our results were based on
the immediate post-intervention measurements, and further research is needed to know
the mid-term and long-term effects of the DN in MTrPs in the triceps surae.

Significant results were obtained in favor of the control groups for improving pressure
pain thresholds. This finding agreed with the meta-analysis conducted by Gattie et al. [20],
which showed no significant results immediately after DN intervention compared to no
intervention, sham, and other interventions, such as ischemic compression, stretching,
among others. Similar results were found by Navarro-Santana et al., who performed a
meta-analysis [50] analyzing the effects of DN of MTrPs compared with no intervention
and sham DN in subjects with neck pain.

In view of our findings and the previous literature, the controversial results obtained
on musculoskeletal pain and no significance in pressure pain thresholds could be related
to the presence of post-needling induced pain [51], the most common minor adverse
event after intervention [52], which was also observed in two trials [36,40] included in
this review. In this way, post-needling pain may be associated with the neuromuscular
damage produced by the numerous insertions into the MTrPs [53], and, consequently,
with sensitization of muscle nociceptors elicited by the inflammatory mediators [54]. This
soreness could underlie the pain found after palpation in post-intervention measurement,
influencing the pain perceived immediately after DN intervention [55].

Concerning the ROM outcome, we found controversial results, since there is not
a clear improvement in the included studies [38,43–45]. On the one hand, in the literature,
ROM of the lower limbs was only studied by Morihisa et al. [56], stating that DN did
not have positive short-term or long-term effects on this outcome, so these findings are
in line with ours. Nevertheless, this statement is based only on Huguenin et al. [57] and
Mayoral et al. [58], measuring the hip internal rotation ROM and straight leg raise. Fur-
thermore, in Mayoral et al. [58], ROM restrictions were due to the arthroplasty limitations
and scar tissue formation in the knee joint capsule. On the other hand, there are recent
systematic reviews with positive findings for MTrPs in the short-term [21] and in several
clinical conditions, such as subacromial syndrome [59], tendinopathy [60], or stroke [61],
and without effects in other conditions, such as neck pain [50]. In view of our results and
the available literature, we cannot state that DN is superior to the control in improving
ROM after DN in MTrPs in triceps surae. Moreover, Navarro-Santana et al. [50] supported
the theories about the neurophysiological mechanism for DN approaches [14], explain-
ing the relationship between hypoalgesic effects and improvements in ROM. In that way,
Janowski et al. [43] is the only included study that evaluated both ROM and pain outcomes,
and there are no significant differences in either, probably due to this relationship.

The findings obtained on muscle strength did match with the meta-analysis carried
out by Mansfield et al. [62], which suggested no effects of DN therapies on muscle force
production, but it was not specifically focused on triceps surae muscles in healthy sub-
jects. In that way, although the physiological effects of the DN in muscular strength are
unknown [63], improvements in physical function after DN intervention could be related
to the reduction in pain [64,65]. Accordingly, only Janowski et al. [43] included both pain
and muscle strength outcomes, reporting no differences between experimental and control
groups. Thus, further research is needed to know if there are changes in muscle strength
when DN is applied to MTrPS in triceps surae muscles.
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Three studies [34,36,45] assessed the effects of DN interventions on muscle stiffness,
which is commonly involved in the MTrPs pathophysiology, obtaining positive results.
Our findings are related to the conclusions recently reported by Sánchez-Infante et al. [66]
and Kelly et al. [67]. The first stated that DN intervention in non-active MTrPS showed
lower stiffness values after 24 h and 72 h follow-up compared to the sham-DN group
and baseline. The second stated that DN may cause a change post-intervention but is
not maintained 24 h later. These approaches are in line with the equilibrium theory of
the DN proposed by Mullins et al. [68], who stated that DN interventions could decrease
spontaneous electrical activity by suppressing the mechanical effects caused by the altered
length-tension relationship and the increased myofilament overlap occurring in MTrPs,
resulting in improved tissue stiffness. Therefore, although those findings support our own,
further research is needed to obtain solid conclusions about the long-term effects of the DN
intervention, since muscle stiffness may probably be a risk factor for muscle injury [69,70].

As stated in the Introduction section, the involvement of the triceps surae muscles is
relevant to functional activities [25]. In that way, our systematic review includes studies
measuring functional performance through the height, maximum power, optimal force,
and velocity during jump and deep squat. These two movements need an adequate
flexibility of the triceps surae tissues for allowing adequate execution of the exercise [27],
leading to higher test performance. Positive findings were reported for jump height and
deep squat, so it seems to have some benefits on functional performance, although more
randomized controlled trials are needed to confirm these results. In this way, to our
knowledge, there are no published systematic reviews discussing the effect of DN on
functional performance, but there are some about functional outcomes measured with
functionality scales. Morihisa et al. [56] concluded that there are no improvements in
functionality for DN in MTrPs in lower limbs. Gattie et al. [20] found small but significant
effects for improving functional outcomes during the immediate to 12-weeks follow-up but
considered several musculoskeletal conditions and measurement instruments. Therefore,
there is a clear need for future research lines analyzing this issue.

In general terms, the present systematic review showed immediate positive effects
on functional performance and muscle stiffness after a single session (except for the study
by Albin et al. [34], which performed two sessions). According to Bandy et al. [35] and
Lucas et al. [71], DN could release latent MTrPs, which affect movements via muscle
activation patterns and provoke muscle weakness and fatigue, allowing greater functional
performance. Therefore, we can suggest that the improvements in muscle stiffness obtained
in the present review could be related to the positive results on functional performance,
but this relationship should be further studied.

According to the type of participants, athletes and healthy non-athletic subjects
were involved in the analyzed studies. It should be remarked that studies involving
athletes [37–41,43] showed no positive results on any of the outcomes analyzed, except for
the study conducted by Devereux et al. [41], which obtained significant results on jump
height. Therefore, due to the heterogeneity of the sport modalities included, we cannot
provide a categorized overview according to the influence of the characteristics of each
sport modality on the outcomes. Conversely, the studies involving healthy non-athletic
subjects [34–36,42,44,45] showed benefits on muscle stiffness [34,36,45], and functional
performance, specifically, on jump height [35] and deep squat [44]. Nevertheless, muscle
stiffness was not analyzed in studies involving athletes, so we cannot establish comparisons
between these participants. In view of these findings, although it is well-known in the
scientific literature [72] that regular physical activity is related to alterations in pain per-
ceptions, in the studies included in this systematic review, both athletes and non-athletes
obtained inconclusive results in this outcome.

Study Limitations

The results obtained in our study could be useful in clinical practice by using DN of
MTrPs in the triceps surae muscles. However, the results should be taken with caution due
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to the limited number of studies analyzed within each outcome. It would be advisable to
unify protocols regarding the outcome assessment to obtain solid conclusions about the
effectiveness of DN for improving each specific outcome, as well as to perform more ran-
domized controlled clinical trials with higher methodological quality using larger sample
sizes. Moreover, another limitation was related to the different protocols used both within
the DN technique and the control groups. Another consideration is related to the single
session carried out by the studies, and the measurement of only immediate and short-term
effects. Therefore, the analysis of intervention programs of longer duration incorporating
long-term follow-up is still needed to determine the effectiveness of DN in clinical practice.
It should be highlighted that three studies analyzed in the review were performed by the
same first author. These studies were probably based on data from the same participants
and addressed the same topic, which could lead to a limitation, since all data analyzed by
the systematic review may not be mutually independent. However, because these studies
analyzed different outcomes and the review analysis has been performed in isolation for
each outcome, the overall conclusion about the effect of the intervention on each outcome
was not biased. Finally, due to the limited number of studies analyzing the same outcome
and lack of data, a meta-analysis could not be performed, so this systematic review provides
an overview of the use of DN of MTrPS in the triceps surae muscles via qualitative analysis.

5. Conclusions

In conclusion, although research focused on the use of DN of MTrPs in the triceps
surae muscles has increased in recent years, direct scientific evidence on its effectiveness is
still lacking. Nevertheless, this systematic review provides the first findings about the use
of DN of MTrPs in the triceps surae muscles. Our findings suggest that this intervention
could have a positive impact on muscle stiffness and functional outcomes. The positive
results obtained on muscle stiffness could encourage the inclusion of DN in clinical practice,
since muscle stiffness may probably be a risk factor for muscle injury. Musculoskeletal pain,
ROM, and muscle strength, compared to no intervention, sham needling, and conventional
therapies, obtained inconclusive results. In case of pressure pain thresholds, significant
results were obtained in favor of the control groups. This may be explained by the presence
of post-needling-induced pain, the most common minor adverse event after intervention,
which could negatively affect the results obtained after intervention. Despite these results,
they should be taken with caution because of the heterogeneity in terms of participants,
DN protocols, and control groups. Therefore, well-designed research protocols are needed
in future studies.

Finally, we encourage authors to carry out randomized controlled trials including
follow-up measurements to determine the mid and long-term effects of DN of MTrPs in the
triceps surae muscles. Further research will be necessary to integrate this intervention into
clinical practice. This manuscript could be used as the base of future clinical studies and
highlights the necessity of further research on the underlying mechanisms of DN.
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