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Stability of insulating viscous jets under axial electric fields 
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The stability spectrum for a jet of perfectly insulating, viscous liquid 
subjected to a longitudinal electric field is obtained for axisymmetric per- 
turbations. Both dielectric forces at the interface and viscous dissipation 
produce lower growth factors for all the range of unstable wavelengths. If 
the imposed field is time varying, parametric resonances are possible but 
they are easily suppressed, even by a small viscosity, and the r.m.s, value 
of the dielectric pressure dominates over the pulsating part. 

1 I N T R O D U C T I O N  

The temporal instability of an infinitely extended column of viscous 
liquid in the absence of an electric field is known since the works of Rayleigh 
[1], Weber [2] and Chandrasekhar [3]. On the other hand the effect of a d.c. 
longitudinal electric field on a perfectly insulating, inviscid liquid column 
was studied by Nayyar and Murty [4]. In [5] a first extension of this work 
to viscous columns was presented. Here we give further results about their 
stability spectrum. 

However, the validation of this analysis in the laboratory requires the 
use of a.c. fields. The reason is that perfectly insulating liquids do not exist 
in practice, for a residual conductivity is always observed and free charge 
is accumulated at the bulk and/or  the free surface of the system. It is then 
customary the use of a.c. instead of d.& fields. If the period of the imposed 
a.c. electric field is much shorter than the typical charge relaxation time, 
~/ac, with ~ and ac the electrical permittivity and conductivity respectively, 
forces due to free charge accumulation are negligible. 

When using a.c. fields, we open the door to the possibility of parametric 
resonances caused by the pulsating part of the dielectric forces acting on 
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the free surface. This question is addressed by considering the effect of a.c. 
fields on slightly viscous jets. 

2 D.C. ELECTRIC FIELDS: STABILITY ANALYSIS 

For a nonconducting liquid jet, polarization forces act only at the free 
surface and perpendicularly to it. These two facts enable us to formu- 
late and solve the electromechanical problem in two steps: (i) the purely 
hydrodynamic problem is considered, as done by the above-cited authors 
[1-3]; (ii) the dispersion relation, which is finally obtained from the Young- 
Laplace equation of normal stress balance at the free surface, is modified 
to account for an additional dielectric pressure term. 

2.1 Hydrodynamic problem 

We sketch a derivation of the dispersion relation of viscous jets (radius 
R, surface tension a and dynamical viscosity #). The linearized Navier- 
Stokes and continuity equations in non-dimensional form are 

0v 
0--/= - V p  + C V2v, V .  v = 0. 

The scaling is based on the capillary forces: r --~ r / R ,  t --~ t / tc  (with tc -- 
(pRa/a)  1/2, the capillary time) and p -+ p / ( a / R ) .  Here C, the Ohnesorge 
number (ratio of viscous to capillary forces), is defined as C - # R / a t c .  
These equations are still valid for a nonzero electric field because no electric 
force acts in the bulk. Application of divergence and laplacian operators 
to the first equation eliminates the pressure field: 

V2(V 2 1 0 )  C ~  v=0.  

This equation is solved through the decomposition v = vl + v2, which 
yields 

V2VI _~ 0, (~72 1 0 )  v =0. 

Hereafter, we will restrict ourselves to the axisymmetric case (v = u(r, z) er+ 
w(r ,  z)ez). If the free surface is described by F(r ,  z, t) - r - f ( z ,  t) = O, 
the appropriate boundary conditions are 
• At the axis: 

u(O,z) = O, w(O,z)  finite. 
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• At the interface: 

u(1,z) = Of 02f Ou (Ou Ow) 
~ '  P = - / -  Oz~ +2C~r' C b-;z+-~- =0. 

In the linear approximation,  the problem is solved via the modal  anal- 
ysis f ( z , t )  = ]exp(f~t  + ixz), leading to similar decomposit ions of the 
other involved quantities, { u, w, p } ( r, z, t ) = { fi, ~ ,  i0 ) ( r ) exp(f~t + ix z). Af- 
ter some lengthy algebra we arrive to the well-known dispersion relation 
without  electric contribution: 

x,l(x)'°(x) I.rx'°(x) r ,o(x),i(x) -,o(x.,)l + 4 c ~  ~ + 4c2x  2 ix - ~111-~,)]  = 1 - x2, (1) 

where x~ = x 2 + ~ / C ,  and In(x) are the modified Bessel functions of first 
kind and order n. 

2.2 Electric problem 

If the imposed field is nonzero we must  evaluate the pressure due to 
polarization forces at the jet surface. The electroquasistatic field derives 
from a harmonic potential: 

E = - V ¢ ,  V2¢ = 0; 

which are scaled with E0, the electric field at infinity. Per t inent  boundary 
conditions are (i) continuity of the potential  across the free surface and 
(ii) continuity of the electric displacement vector, eE. According to the 
above-stated modal  decomposition, the per turbed electric potential  is 

¢(r ,z , t )  = - z  + ¢(r) exp(f~t + izz) ,  

and a solution for the function ¢(r) is readily found. 
From the Maxwell stress tensor formalism, the electric pressure is 

p , = - X A  e -~r OzOrOz 2 \ O z /  J ' 

where A means j ump  across the free surface; e is the dielectric constant 
relative to go, the permit t ivi ty  of the outer medium (i.e. e = ei inside the 
jet and e = 1 outside); and X - goE~R/a is the electric Bond number.  
Once the solution for the potential  is subst i tuted,  this expression leads to 

X ( e i -  l)2x 
P c -  Ho(ei, x) ' 
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Figure 1. Growth factor versus 
wavenumber for a dielectric jet 
with ei = 3 and different values 
of X and C. 
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Figure 2. Maximum growth rates 
versus corresponding wavenum- 
bers for constant values of X 
(solid) and C (dashed lines), and 
ei = 3. (Reprinted from [5]) 

where Ho - eiIl(x)/Io(x) + Kl (x ) /Ko(x ) .  
The dispersion relation including the electric contribution is obtained 

by substitution of the right-hand side of (1) by 1 - x 2 - pc. 

P.3 Results 

In general f] is complex, f~ = a + #3. Temporal stability for a given set 
of parameters el, X, C, and a particular wavenumber x is determined by 
the sign of the growth factor a. The dispersion relation is analyzed using a 
root-finding routine in the complex plane. Figure 1 shows the wavenumber 
dependence of the growth factor a for some representative values of the 
electrical parameters ei and X and the Ohnesorge number C. An increase 
in the field strength produces stabilization for all wavenumbers, which is 
observed as a reduction of the capillary unstable z-domain and growth rates 
a. Viscosity also produces stabilization, but only through a reduction of 
the growth rate. For each curve shown in figure 1, we find three different 
regimes as x increases: pure growth, pure damping, and finally, after the 
jump in slope, damped oscillations. Figure 2 gives a map of maximum 
growth factors OCma x versus their associated wavenumbers Xmax for a wide 
range of both electric and Ohnesorge numbers. Stabilization implies an 
increase in the size of drops after break-up, at least from estimations given 
by linear analysis. 
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3 A .C.  E L E C T R I C  FIELDS:  R E S O N A N C E S  

If the imposed electric field is t ime varying, parametr ic  resonances are 
possible. A linear analysis of this case from the dynamical  formulation 
carried out in previous sections is very difficult for arbitrary viscosity. The 
reason is tha t  an exponential t ime dependence of all magni tudes  is assumed 
for the solution, which is not admissible when the electric field imposes its 
own t ime dependence cos(&t). However, if viscosity is not very large we can 
obtain some conclusions about  the importance of these resonances. The 
easiest way to deal with the a.c. case is via a lagrangian formulation of the 
dynamics of small perturbat ions in the ampli tude of the free surface. This 
mathemat ica l  approach is commonly used since the works of lord Rayleigh 
and has been extended to low viscosity systems [6]. 

Per turbat ions  of the jet are described by r = r s ( z ,  t) = Ro( t )+~( t )  cos(kz). 
We have to construct  the lagrangian (L: = T - Us 4- LIE) and dissipation 
(7~) functions, where T,  Us, and LiE are the kinetic, capillary, and elec- 
trostatic energies, respectively, associated with a per turbat ion of the jet 
shape. These quantit ies can be obtained from 

e ° / E l - E 0  dT; 7~ = 2 s~Tv2-dS. T = ~ p / v  2 dr; Li S = a sf d S ; LiE = ( e , - 1 ) ~  

Here E1 is the electric field inside the jet and ~- and S are jet volume 
and surface taken over a wavelength. Viscous effects are included in the 
dissipation function, the expression proposed being valid provided that  
the velocity field is assumed as potential. This velocity field is related to 
the surface per turbat ion through the kinematic condition d r s / d t  = yr. 
Calculations are carried up to second order in the amplitude.  Lagrange 
equation (e.g. see [6]) gives the governing equation for 

xXl(x) +4c[xI1-  x -  - x  (2) 

which has been presented in nondimensional form using the same scales 
as in previous sections. A new non-dimensional parameter  is the imposed 
field frequency w = &to. 

Equat ion (2) has periodic coefficients and can be studied on the basis of 
Floquet  theory. Solutions may be factorized as e~g( t ) ,  where g(t)  has the 
same period as the imposed field, T = 2~r/w; and V is a complex number  
(the Floquet  exponent) whose real part  determines the stability proper- 
ties. Numerical integration over a period may serve to obtain the Floquet 
exponents.  The real part  of the highest one is presented in Figure 3 as 
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Figure 3. Highest Floquet exponent versus perturbation wavenumber, with 
ei = 3, X = 2, ~v = 1, and different values of C. 

a function of the wavenumber x for fixed electric parameters and three 
different viscosities. For C = 0 some resonant lobes rise on the right of 
the unstable capillary region. These lobes decrease for large wavenumbers 
and their size and extension depend mainly on the electric field amplitude. 
The frequency of the applied electric field affects very slightly the capillary 
instability domain if ~: > 1, for which the effective field amplitude is the 
r.m.s, value. However, the effect of viscosity is to damp the value of the Flo- 
quet exponent, which eventually lies in the negative region (stabilization), 
even for very moderate values of C. The observability of resonances is thus 
determined by competition between field strength and viscosity, being the 
latter very effective in suppressing this phenomenon. 

In conclusion, a.c. fields behave as d.c. ones for frequencies greater than 
the capillary one, provided that  viscosity is not too small so that  paramet- 
ric resonances can be avoided. The only restriction remaining in order to 
consider the jet as perfectly insulating and subjected to an effective d.c. 
field is that  the period of the field must be much smaller than the charge 
relaxation time. 
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