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Abstract: Objectives: More than two years into the COVID-19 pandemic, SARS-CoV-2 still remains a
global public health problem. Successive waves of infection have produced new SARS-CoV-2 variants
with new mutations for which the impact on COVID-19 severity and patient survival is uncertain.
Methods: A total of 764 SARS-CoV-2 genomes, sequenced from COVID-19 patients, hospitalized from
19th February 2020 to 30 April 2021, along with their clinical data, were used for survival analysis.
Results: A significant association of B.1.1.7, the alpha lineage, with patient mortality (log hazard ratio
(LHR) = 0.51, C.I. = [0.14,0.88]) was found upon adjustment by all the covariates known to affect
COVID-19 prognosis. Moreover, survival analysis of mutations in the SARS-CoV-2 genome revealed
27 of them were significantly associated with higher mortality of patients. Most of these mutations
were located in the genes coding for the S, ORF8, and N proteins. Conclusions: This study illustrates
how a combination of genomic and clinical data can provide solid evidence for the impact of viral
lineage on patient survival.
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1. Introduction

With more than 12 million sequences submitted to GISAID [1] and other databases,
SARS-CoV-2 is probably one of the most widely sequenced pathogens. Successive waves of
infection have resulted in the constant selection of SARS-CoV-2 variants with new muta-
tions in their viral genomes [2–4]. Sometimes, these novel variants carry specific mutations
that have been linked to higher transmissibility [5–7] and/or immune evasion [8,9], making
them relevant from a public health perspective [10] and leading to their classification as
variants of interest (VOI) or variants of concern (VOC) [11]. However, current studies
have failed to provide solid evidence on the potential effects of viral variants or muta-
tions on COVID-19 severity or patient survival. Paradoxically, the impact of host genetics
over COVID-19 progression and patient survival [12], as recently revealed in case–control
studies [13], genome-wide association studies [14–17], and whole-genome sequencing stud-
ies [18], is better known than the impact of the viral variants or the mutations present in
the viral genome. For example, while some studies suggest that lineages as B.1.1.7 (alpha)
are associated with increased mortality [19], others could not find such association [20,21].
Epidemiological studies suggest that certain mutations, such as the D614G mutation in
the S protein, could be associated with higher mortality [22]. More recently, the delta
variant was described as more transmissible and pathogenic than the alpha variant [23]
and the omicron variant has been found to be more transmissible although less pathogenic
than the delta variant [24,25]. Studies using undetailed patient outcomes (with no covari-
ates considered) find some mutations potentially associated with severe COVID-19 [26].
Previously, a 382-nucleotide deletion in the open reading frame 8 was associated with
milder infection [27]. Actually, the definition or variants of concern (VOC) or variants of
interest (VOI) is proposed by the World Health Organization (WHO) [11], the Centers for
Disease Control and Prevention (CDC) [28], and COVID-19 Genomics UK Consortium
(COG-UK) [29] are based on observed transmissibility, greater severity of disease, or in vitro
evidence of reduced antibody neutralization [30]. The phenotypes of these VOCs and VOIs
depend on the presence of specific mutations, known as mutations of concern [31], found
to be associated with higher transmissibility [5,6] and/or immune evasion [8,32]. However,
because of the lack of large datasets in which viral genomes and detailed patient clinical
data are simultaneously available, studies providing solid evidence on the effects of viral
variants or mutations on COVID-19 severity or patient survival are scarce. Thus, there is
an urgent need for the use of large clinical data repositories in combination with systematic
viral genome sequencing to determine these relationships of high clinical relevance.

Andalusia, located in the south of Spain, is the third largest region in Europe; it has
a population of 8.4 million, similar to a medium-sized European country such as Austria
or Switzerland. In the beginning of the pandemic, Andalusia implemented an early pilot
project for first-wave SARS-CoV-2 sequencing [33], which was later transformed into the ge-
nomic surveillance circuit of Andalusia [34,35], a systematic genomic surveillance program
in coordination with the Spanish Health Authority. In addition, the Andalusian Public
Health System has systematically been storing the EHRs data of all Andalusian patients
in the Population Health Base (BPS, acronym from its Spanish name “base poblacional de
salud”) [36] since 2001, making of this database one of the largest repositories of highly
detailed clinical data in the world (containing over 13 million comprehensive registries) [36].
Data generated in both sequencing initiatives along with clinical data stored in BPS were
used to carry out this study.

2. Materials and Methods
2.1. Design and Patient Selection

Among the whole-genome SARS-CoV-2 sequences obtained from the pilot project of
SARS-CoV-2 sequencing [33] (in which 1000 viral genomes corresponding to the first wave,
randomly sampled, representative of all the COVID-19 diagnosis in Andalusia between
19 February and 30 June 2020, were sequenced), the Spanish Genomic epidemiology of
SARS-CoV-2 (SeqCOVID) [37], and the Genomic surveillance circuit of Andalusia [34,35]
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(including 2438 SARS-CoV-2 genomes corresponding to the second wave, systematically
sequenced among PCR-positive individuals, following the recommendations of the Spanish
Ministry of Health [38]), a total of 764 sequences corresponded to individuals hospitalized
between 19 February 2020 and 30 April 2021. In particular, 287 samples corresponded to
the pilot project, 103 to the SeqCOVID project, and 374 to the sequencing circuit.

2.2. Sequencing SARS-CoV-2 Genome

SARS-CoV-2 RNA-positive samples were subjected to whole-genome sequencing at
the sequencing facilities of the Genyo (Granada, Spain), Hospital San Cecilio (Granada,
Spain), Hospital Virgen del Rocío (Sevilla Spain), IBIS (Sevilla, Spain), and CABIMER
(Sevilla, Spain).

RNA preparation and amplification were performed as described in the protocols
published by the ARTIC network [39] using the V3 version of the ARTIC primer set from
Integrated DNA Technologies (Coralville, IA, USA). In brief, correlative amplicons covering
the SARS-CoV-2 genome were created after cDNA synthesis by using SuperScript IV Re-
verse Transcriptase (Thermo Fisher Scientific, Waltham, MA, USA), 1 µL of random hexamer
primers, and 11 µL of RNA. Libraries were prepared according to the COVID-19 ARTIC pro-
tocol v3 and Illumina DNA Prep Kit (Illumina, San Diego, CA, USA). Library quality was
confirmed using the Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA).
The libraries were then quantified by Qubit DNA BR (ThermoFisher Scientific, Waltham,
MA, USA), normalized, and pooled, and sequencing was performed using Illumina MiSeq
v2 (300 cycles) and NextSeq 500/550 Mid Output v2.5 (300 Cycles) sequencing reagent kits.

2.3. Sequencing Data Processing

Sequencing data were analyzed using in-house scripts and the nf-core/viralrecon
pipeline software [40]. Briefly, after read quality filtering, sequences for each sample were
aligned to the SARS-CoV-2 isolate Wuhan-Hu-1 (GenBank accession: MN908947.3) [41]
using bowtie2 algorithm [42], followed by primer sequence removal and duplicate read
marking using iVar [43] and Picard [44] tools, respectively. Genomic variants were identified
through iVar software, using a minimum allele frequency threshold of 0.25 for calling
variants and a filtering step to keep variants with a minimum allele frequency threshold
of 0.75. Using the set of high confidence variants and the MN908947.3 genome, a consensus
genome per sample was finally built using iVar.

With the aim of having all the genomic variants in our dataset, the whole set of
consensus genomes, regardless of missing data, has been used as input to the Nextclade
software [45]. Consensus genome was aligned against the SARS-CoV-2 reference genome
and aligned nucleotide sequences were compared with the reference nucleotide sequence,
one nucleotide at a time. Mismatches between the query and reference sequences are re-
ported differently, depending on their nature: nucleotide substitutions, nucleotide deletions,
or nucleotide insertions. Lineage assignment to each consensus genome was generated by
the Pangolin tool [46].

The SARS-CoV-2 whole genomes are available in the European Nucleotide Archive
(ENA) database under the project identifiers PRJEB44396, PRJEB47798, and PRJEB43166
(see also Supplementary Table S1).

The evolutionary rate of the virus was obtained using the Augur application [47].
Augur functionality relies on the IQ-Tree software [48], which estimates the phylogenetic
tree by maximum likelihood using a general time-reversible model with unequal rates and
unequal base frequencies [49], from which the evolutionary rate is inferred.

2.4. Clinical Data Preprocessing

Clinical data for 764 hospitalized patients was requested from the BPS. The data were
transferred from BPS to the Infrastructure for secure real-world data analysis (iRWD) [50]
from the Foundation Progress and Health, Andalusian Public Health System.
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The main primary outcome was COVID-19 death (certified death events during
hospitalization). Following previous similar studies, the first 30 days of hospital stay were
considered for survival calculations [51]. The time variable in the models corresponds to
the length (in days) of hospital stay. Stays that imply one or more changes of hospital units
are combined in a single stay where the admission and discharge dates were set to the start
of the first and the end of the last combined stay, respectively. Finally, in order to reduce
possible confounding effects due to reinfection mechanisms we have opted to include only
the first stay for each patient. The data used from BPS to properly account for covariates
known to be related with COVID-19 survival are listed in Table 1.

Table 1. Data imported from BPS for each patient: code and definition of the variable.

Code Meaning

FECNAC Birth date
FECDEF Death date

SEXO Gender
FEC_INGRESO Hospital admission date

FEC_ALTA Discharge date

MOTIVO_ALTA Reason for the discharge: (recovery/death/admission in another
hospital/voluntary discharge/retirement home/unspecified)

COD_PATOLOGIA_CRONICA Hospital codes for chronic conditions
COD_FEC_INI_PATOLOGIA Date of condition diagnosis
COD_CIE_NORMALIZADO A mixture of ICD9 and ICD10 codes for diseases
DESC_CIE_NORMALIZADO Description of the ICD

FECINI_DIAG Diagnosis date
FECFIN_DIAG End of the diagnosed condition
FUENTE_DIAG Source of the diagnosis (hospital, emergency, etc.)

IND_CRONICO_HCUP Is it a chronic disease? (yes/no)
Test COVID: FECHA Test COVID date
Test COVID: TYPE PCR/antigens

Test COVID: RESULTADO_TEST Result of the test (positive/negative)
Pharmacy (Hospital and external):

DESCRIPCION List of drugs used in hospital or purchased in the pharmacies

Pharmacy (Hospital and external): FECHA Dispensing date
VACUNA List of vaccines

VACUNAFECHA Vaccination dates

2.5. Statistical Analysis

The statistical analysis has been performed at two levels, at the level of lineages and at
the level of mutations in the viral genome. In order to elucidate the association between
each lineage/mutation and the survival outcome, the following steps have been used: (i) as
a first step a covariate balance analysis to determine the viability for a causal analysis
was applied [52]; (ii) for these lineages or mutations suitable for causal analysis hazard
ratios were obtained using the closed form variance estimator for weighted propensity
score estimators with survival outcome [53]; (iii) a causal bootstrapped hazard ratio is also
obtained for the same lineages or mutations [54].

In detail, the first step involved the use of inverse probability weighting (IPW) for
each mutation/lineage. IPW is based on propensity scores generated using the WeightIt R
package (v 0.12) [55], where the exposed condition is, in the case of lineages, being infected
by a virus of a specific lineage and, in the case of viral mutations, being infected by a
virus harboring a specific mutation. To assess the viability of a causal analysis based on
IPW, the proportion of covariates that could be effectively balanced using the standardized
mean differences test as implemented in the Cobalt R package (v 4.3.1) [56] was checked
using the 0.05 threshold [52]. As covariates, variables previously associated with COVID-
19 mortality were used, such as: age, sex, pneumonia/flu vaccination status, chronic
obstructive pulmonary disease, hypertension, obesity, diabetes, chronic pulmonary and
digestive diseases, asthma, chronic heart diseases, and cancer [57] (see Table 1).
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Covariate-adjusted log hazard ratios (LHR) were computed for each mutation/lineage
of interest using the closed form estimator as implemented in the hrIPW R package
(v 0.1.3) [53]. For each analysis an estimate of the LHR along with a 95% confidence
interval and a p value of significance was provided. This methodology provides a robust
estimation of the variability of the LHR under IPW-based tests [53].

A mutation or a lineage is considered eligible for a causal analysis if the closed form
estimator converges and all the covariates can be properly balanced.

In addition, a bootstrapped estimation of the covariate-adjusted LHR has been com-
puted, where the causal adjustment has been done using IPW as follows: (i) the weights
are computed with a binomial linear model where the response is the presence/absence
of a given variant and the regressors are the covariates using WeightIt; (ii) a Cox propor-
tional hazards model as implemented in the R package Survival (v 3.2); (iii) a bootstrapped
95% confidence interval of the LHR coefficient was computed using adjusted bootstrap
percentile (BCa) as implemented in the R Boot package (v 1.3).

The theoretical p-values [53] associated with the survival outcome have been adjusted
using the FDR method [58].

2.6. Visualization of Lineage Prevalence over Time

A script based on the CoVariants application [59] was used to visualize the distribu-
tion of lineage relative prevalence over the time period studied. Data from neighboring
European countries (France, UK and Portugal) and Spain were obtained from GISAID [60].

3. Results and Discussion

Here, we used viral genomes from the pilot project of SARS-CoV-2 sequencing [33],
the Genomic surveillance circuit of Andalusia [35], and the Spanish SeqCOVID project [37].
Among the individuals for whom a SARS-CoV-2 whole-genome sequence was available, 764
had a hospitalization event during the studied period, which covered 19 February 2020 to 31
April 2021. According to PANGO lineage classification [61], a total of 18 SARS-CoV-2 lineages
were identified among the 764 viral sequences used in this study (see Supplementary Table S1),
5 of them were eligible for causal analysis (see Methods): A, A.2, B.1, B.1.177, and B.1.1.7.
Figure 1 shows the circulation of different lineages in Andalusia and Spain during the studied
period, and Supplementary Figure S1 shows the circulation in neighboring European coun-
tries. Although the different lineages emerged and declined approximately at the same time,
documenting a fast and effective inter-country transmission, there are quantitative differences
in their proportions. For example, B.1.1.177 was far more prevalent in Spain and Andalusia
than in the surrounding countries (Portugal, France, and the United Kingdom (UK), see
Supplementary Figure S1). However, the fast substitution of the alpha lineage (B.1.1.7) was
similar in all countries.

Figure 2 shows the log hazard ratios obtained for the different lineages. Only one of
them, the alpha variant (B.1.1.7), has rendered a significant impact on patient survival (log
Hazard Ratio, LHR, of 0.51, with a confidence interval (CI) = [0.14,0.88]). These results are
in agreement with recent observations reporting that this variant suppresses the innate
immune responses more effectively than first-wave isolates [62]. Interestingly, the A lineage,
now virtually extinct, seems to cause a lower mortality than other lineages, although the
result does not reach significance (LHR = −1.80, C.I. = [−3.84,0.19]). However, the retro-
spective survival analysis of lineages reveals relevant information on many lineages already
extinct, or with very low representation, which limits its practical clinical application.

Contrarily, the survival analysis of mutations provides interesting information, given
that a large proportion of the studied mutations are still present in current lineages. More-
over, it throws light on regions of the proteins in which mutations could be related to higher
mortality. In total, 594 nucleotide mutations were found with respect to the SARS-CoV-2
reference genome [41], 49 of which were eligible for formal causal analysis (see Methods).
Figure 3 represents the LHR of the different mutations, plotted along the structure of the
protein (see also Supplementary Figure S2). Among them, a total of 27 mutations presented
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a significant (FDR-corrected) association with patient survival, two of which have not been
confirmed by subsequent bootstrapping analysis. Eighteen of them affect known Pfam [63]
motifs (Table 2), some of them are related to relevant viral features. For example, S:T716I
affects the PF01601 motif (coronavirus spike glycoprotein S2), which drives membrane pen-
etration and virus cell fusion and is involved in host specificity [64]; ORF8:Y73C, ORF8:R52I,
and ORF8:Q27*, which affect the PF12093 (betacoronavirus NS8 protein) motif, allowing
SARS-CoV-2 ORF8 to form unique large-scale assemblies that potentially mediate unique
immune suppression and evasion activities [65,66]; or S:N501Y, which affects the PF09408
motif (betacoronavirus spike glycoprotein S1, receptor binding), which has been implicated
in binding to host receptors [67]. However, some motifs disrupted by mutations are of
unknown function, such as PF19211 or PF12379, corresponding to NSP2 and NSP3 proteins,
respectively, which suggests that other relevant viral functionalities not yet characterized
could be affected. Moreover, one of the significant mutations, ORF1ab:I2230T, does not
affect any known motif, but it is significantly associated with patient higher mortality
(see Figure 2 and Supplementary Table S2) by itself, given that it does not present corre-
lations with other mutations (see Supplementary Figure S3). It is worth noting that some
of these mutations associated with higher mortality in hospitalized unvaccinated patients
are present in the current omicron variant, such as ORF1ab:del3674-3676, S:del69-70 and
S:del144 in BA.1, and S:N501Y and S:P681H in BA.1 and BA.2. Although there are no direct
comparisons between omicron and the variants present in the first wave, and the immunity
status of the population was completely different, the delta variant approximately doubled
the hospitalization ratio compared with alpha [23], while omicron only showed reduced
severity compared to delta [24,25]. These mutations could contribute to this still higher
pathogenicity, although it is difficult to interpret the effect of individual mutations in the
context of new mutations without new clinical and genomic data.
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Table 2. Mutations associated with higher patient mortality that affect PFAM motifs and pangolin
lineages eligible for causal analysis with the mutation (non-synonymous from outbreak.info [68] and
synonymous from cov-spectrum.org [69].

Mutation Position CDS AAc
Position

AAc
Mutation PFAM 1 Definition

Lineages Eligible for
Causal Analysis

Bearing the Mutation

C3267T 3267 ORF1ab 1001 ORF1ab:T1001I PF12379 Betacoronavirus replicase
NSP3, N-terminal A; B.1.177; B.1.1.7

A4964G 4964 ORF1ab 1567 ORF1ab:T1567A PF08715 Coronavirus papain-like
peptidase B.1; B.1.1.7

C5388A 5388 ORF1ab 1708 ORF1ab: A1708D PF08715 Coronavirus papain-like
peptidase B.1; B.1.177; B.1.1.7

del11288.
11297 11288 ORF1ab 3975-3677 ORF1ab:del3675-

3677 PF08717 Coronavirus replicase NSP8 A; A.1; B.1; B.1.177;
B.1.1.7

C14676T 14676 ORF1ab 4803 ORF1ab:P4803P PF00680 RNA-dependent RNA
polymerase B.1; B.1.177; B.1.1.7

C15279T 15279 ORF1ab 5004 ORF1ab:
H5004H PF00680 RNA-dependent RNA

polymerase B.1; B.1.177; B.1.1.7

del21766.21772 21766 S 69-70 S:del69-70 PF16451 Betacoronavirus-like spike
glycoprotein S1, N-terminal

A; A.1; B.1; B.1.177;
B.1.1.7

del21994.21997 21994 S 144 S:Y144- PF16451 Betacoronavirus-like spike
glycoprotein S1, N-terminal

A; A.1; B.1; B.1.177;
B.1.1.7

A23063T 23063 S 501 S:N501Y PF09408
Betacoronavirus spike

glycoprotein S1, receptor
binding

A; A.1; B.1; B.1.177;
B.1.1.7

C23271A 23271 S 570 S:A570D PF19209 Coronavirus spike
glycoprotein S1, C-terminal A; B.1; B.1.177; B.1.1.7

C23709T 23709 S 716 S:T716I PF01601 Coronavirus spike
glycoprotein S2 B.1; B.1.177; B.1.1.7

T24506G 24506 S 982 S:S982A PF01601 Coronavirus spike
glycoprotein S2 B.1; B.1.177; B.1.1.7

G24914C 24914 S 1118 S:D1118H PF01601 Coronavirus spike
glycoprotein S2 B.1; B.1.177; B.1.1.7

C27972T 27972 ORF8 27 ORF8:Q27* PF12093 Betacoronavirus NS8 protein A; B.1; B.1.177; B.1.1.7
G28048T 28048 ORF8 52 ORF8:R52I PF12093 Betacoronavirus NS8 protein A; B.1; B.1.177; B.1.1.7
A28111G 28111 ORF8 73 ORF8:Y73C PF12093 Betacoronavirus NS8 protein A; B.1; B.1.177; B.1.1.7
C28977T 28977 N 235 N:S235F PF00937 Coronavirus nucleocapsid A; B.1; B.1.177; B.1.1.7

1 PFAM information can be accessed at: https://pfam.xfam.org/family/PFXXXX with PFXXXX being the corre-
sponding PFAM ID.

Interestingly, some mutations in the viral genome seem to display a positive association
with patient survival. The most remarkable case is the mutation ORF1ab:A3523V, which
was significant with the bootstrap test (see Supplementary Table S2), although failed to be
significant with the covariate-adjusted LHR test, because of the relatively small sample
size. This mutation affects the 3C-like proteinase nsp5, a protein from the peptidase C30
family (Prosite domain PS51442), involved in the control of the activity of the coronavirus
replication complex by processing ORF1ab and ORF1a into 16 non-structural proteins [70].
Because of this role, it has been suggested as a potential drug target for coronaviruses [70]
and more recently for SARS-CoV-2 specifically [71]. Therefore, it could be speculated that
less efficient replication might be behind the lower mortality associated with this mutation.

The interest on mutations has focused mainly on non-synonymous changes, which
produce a modification of the protein sequence that may have a potential influence on
SARS-CoV-2 phenotypic properties. In contrast, much less attention has been paid to
synonymous changes, which has a less clear relationship with viral phenotypes; there
are currently no reports of synonymous mutations of concern [30]. Here, for the first
time, we describe nine synonymous mutations (G4300T, C2710T, C14676T, C15279T, C913T,
C6968T, C5986T, C15240T, and T16176C) in the ORF1ab with a significant association to
higher mortality in hospitalized COVID-19 patients (Figure 3). However, some of them can
simply be highly correlated with other coding mutations (e.g., C15279T is highly correlated
with ORF1ab:T5303T, and C15240T is correlated with ORF1ab:T1567A), as depicted in
Supplementary Figure S2. Lineages harbor specific mutational profiles that are inherited
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by the descendants, along with some new mutations, thus creating a pattern of correlation
between the mutations characteristic of lineages.

The evolutionary rate displayed by SARS-CoV-2 since February 2020 in the Andalu-
sia region, according to the SARS-CoV-2 whole-genome sequencing circuit [34,35], is of
0.00063 substitutions per nucleotide per year (s/n/y), in agreement with the evolutionary
rate previously described, which ranged from 0.0004 and 0.002 s/n/y [2,4,30,72,73]. Inter-
estingly, when mutations associated with high mortality (such as ORF1ab: A1708D) are
depicted over the clock-adjusted phylogeny, these tend to appear in the variants that have
shaped the evolution of the virus in the Andalusia region during the period under study, with
many of them related to the alpha (B.1.1.7) lineage (See Supplementary Figure S4A,B). The
mutation associated with the highest mortality (ORF1ab:T1567A) shows a similar evolution-
ary rate (see Supplementary Figure S4C) and it seems to define a specific clade within the
alpha lineage (Supplementary Figure S4D). However, some specific mutations, such as those
marginally associated with better survival (e.g., N:D377Y), appear in variants with apparently
slower mutation rates (B.1.177, and sublineages), although it also appears in lineages B.1
and A,2, which are now extinct, and in a few variants that are ancestors of the delta lineage.
Actually, all the sublineages of the delta lineage carry this mutation, according to the Genomic
surveillance circuit of Andalusia [35] (see [74] and Supplementary Figure S5).

4. Conclusions

To summarize, the combined use of SARS-CoV-2 genome sequences and detailed
clinical information of the patients allowed us to assess the impact of both the SARS-
CoV-2 lineage and the mutations each virus harbors on the mortality rate among patients
hospitalized for COVID-19. These studies provide a more realistic and unbiased approach
to define VOIs and VOCs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14091893/s1. Supplementary Figure S1. Circulation of the five
SARS-CoV-2 variants eligible for the causal analysis in Andalusia (upper panel) and Spain (lower
panel). Supplementary Figure S2. Log hazard ratios estimated for the 69 nucleotide mutations eligible
for the causal analysis using the two approaches described in the text (the closed form estimator and
the bootstrap). For each analysis an estimate of the LHR along with a 95% confidence interval and a
p-value (FDR adjusted) of significance is provided. Supplementary Figure S3. Correlations among the
mutations in the SARS-CoV-2 genome significantly associated with patient survival. Supplementary
Figure S4. Mutations occurring during the period studied (from 19 February 2020 to 30 April 2021)
represented over the variants in which they appear in two phylogenetic formats. First column contains
the mutation. Second column accounts for the evolutionary rates. Third column contains the time at
which every variant was sampled from a patient. Supplementary Figure S5. Presence of the mutation
N:D377Y in the different SARS-CoV-2 viral genomes sampled in Andalusia according to the Genomic
surveillance circuit of Andalusia. The upper branch corresponds to the delta variant and subtypes
and the lower branch to the almost extinct alpha variant. See http://nextstrain.clinbioinfosspa.es/
SARS-CoV-2-all?branchLabel=none&gt=N.377Y. Supplementary Table S1. ENA sample and project
Ids of the SARS-CoV sequences used in this work. Supplementary Table S2. Nucleotide mutations
eligible for causal analysis. The first column is the mutation name; the second is the position; the third
column, labeled as CDS, is the protein affected; the fourth column is the amino acid mutation name;
the fifth column is the number of variants bearing this mutation; and the following columns provide
the values of the two approaches for hazard ratio estimation, the closed form, with the hazard ratio
coefficient, SD, confidence intervals 5 and 95, the p-value and the FDR adjusted p-value, and the
bootstrap approach with the HR coefficients (Boot. Statistic), bias, SD, confidence intervals 5 and
95 and the last column, labeled as Boot, indicates if significance is confirmed by bootstrap (T: true
and F: false). The Andalusian COVID-19 sequencing initiative. List of members of the Andalusian
COVID-19 sequencing initiative.
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