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A temporal linear modal stability analysis is presented for conducting viscous liquid jets flowing
with nonzero velocity relative to an ambient gas and subjected to an ac radial electric field.
Parametric resonance between natural dc frequencies and the frequency~or multiple! of the imposed
ac field eventually leads to destabilization of the jet for perturbations with wave numbers in the
stable domain. In this way, it is possible to obtain drops of smaller size. The main result is the
extension of the stability analysis to liquids of arbitrary viscosity using a dynamical approach,
instead of previous variational models valid for slightly viscous liquids. The effect of the outer gas
in relative motion is taken into account in the framework of currently available semiempirical
theories. A brief discussion of the dispersion relation for dc fields is included as the natural starting
point for the discussion of the ac case. Use of the 1-D averaged model for axisymmetric
perturbations, an alternative to the 3-D approach, allows a complete determination, in this particular
case, of the distribution and nature of roots of the dispersion relation in the complex plane. The
theoretical study presented here is ready to be compared to future experiments in the Rayleigh and
first wind-induced regime, as no relevant instability mechanisms have been excluded; namely,
capillary instability, viscous damping, quasi-electrostatic pressure effects, Kelvin–Helmholtz
instability corrected to account for the gas viscosity, and finally, parametric resonance. ©2003
American Institute of Physics.@DOI: 10.1063/1.1529659#

I. INTRODUCTION

The application of electric fields is at present widely
used in ink jet printing technologies as a method for charging
and deflecting the ink drops resulting from jet
disintegration.1 Electric forces may also be applied to select
perturbations with a specific wavelength, a mechanism alter-
native to piezoelectric stimulation.2 For this purpose, sharp
electrodes close to the jet surface establish a locally strong
alternating field; the time-varying quasi-eletrostatic pressure
jump induces a perturbation whose frequency, along with the
jet velocity, determines the selected wavelength. Also, in the
same configuration, an electric pulse has revealed to be use-
ful for obtaining isolated drops inside a continuum jet.3–5

These applications, among others, have motivated the inter-
est of the EHD researchers’ community in electric forces
acting on conducting jets. Conducting jets in the presence of
radial electric fields have been studied since the work of

Melcher,6 where liquids were restricted to be inviscid and the
imposed electric potential was supposed constant in time.
The effect of viscosity was later included by Saville.7 This
linear stability analysis has been more recently revisited by
Garcı́a,8 who conducted a thorough study of the resulting
dispersion equation in all the relevant parameters; in addi-
tion, in his work can be found a comparison with one-
dimensional models that are validated as a computationally
economic approach to the nonlinear jet dynamics. Besides,
alternating fields have been considered by Gonza´lez et al.9 in
the hope that parametric resonances give new tools for the jet
breakup control. The main objective was to reduce the size
of the final drops. In this latter work, a variational approach
~using the Lagrangian method introduced by Lord
Rayleigh10! was employed to formulate the linear stability
problem for the restricted conditions of slightly viscous liq-
uid and a negligible outer medium.

However, the effect of the surrounding gas in relative
motion on a jet is not negligible in many experimental situ-a!Electronic mail: helio@us.es
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ations. The first attempt to account for it was done by
Weber11 by introducing the Kelvin–Helmholtz instability
mechanism with the assumption of a zero gas viscosity. Ster-
ling and Sleicher12 corrected the resulting dispersion relation
and included the effect of a small viscosity of the gas in a
semiempirical way. Based on the results found by
Benjamin13 for a planar geometry, these authors modified the
instability mechanism by considering a reduction in the nor-
mal stress exerted by the gas on the free surface. The reduc-
tion coefficient does not come from a rigorous derivation,
which still remains as an unaddressed theoretical issue. A
recent work14 provides the linear stability analysis of liquid
and gas basic flows, characterized by nonuniform velocity
profiles numerically calculated, for the related problem of a
jet co-flowing in a gas stream, but there are neither results for
small aerodynamic Weber numbers nor an explicit compari-
son with the results of Sterling and Sleicher, whose model
we adopt in this paper.

The problem we now formulate may be considered as
the natural end of the sequence that we have just described:
ac fields, arbitrary viscosity and surrounding gas dynamics
are all together taken into account. But, for this general prob-
lem, the variational method is not suitable because the veloc-
ity field of a viscous liquid is no longer potential, a necessary
condition to apply it. Instead, the starting point will be the
linearized Navier–Stokes equations, as in Refs. 7 and 8. In
fact, a generalization of the dispersion equations therein
found for dc fields for including the effects of the outer gas
previously derived and used as a reference to better under-
stand the ac case.

It is well-known that systems driven by time-varying,
periodic forces exhibit in general a resonant behavior for
selected values of the force strength parameter. For this rea-
son we use expressions such as ‘‘parametric instability’’ or
‘‘parametric resonance.’’ Faraday resonance in a liquid layer
subjected to periodic vertical motion as a whole enters in this
category, as well as our present problem. In fact, the reader
can find a parallel between the resolution proposed here and
recent publications on Faraday resonance in viscous
liquids.15–17The basic mathematical tool in all these works is
a direct application of Floquet’s theory to the governing par-
tial differential equations, which leads to a splitting of all
unknowns into an exponential time dependence multiplied
by a periodic function of time, with subsequent Fourier de-
composition of the latter. Here, solutions are obtained in the
form of rapidly converging continued fractions, whose terms
are directly related to the dispersion equation for the dc prob-
lem. In those references, the authors pay attention only to the
loci in the parameter space leading to periodic~nongrowing!
solutions, i.e., the marginal stability analysis. However, in
our case, the growth rates of the jet perturbations are essen-
tial information, which we obtain by exploiting the same
technique.

Aside from the three-dimensional~3-D! analysis, which
gives results valid for any wavelength of the jet perturba-
tions, one-dimensional~1-D! models rigorously developed
by Garcı´a and Castellanos18 are employed to reobtain these
results. The main assumption of 1-D models is that the wave-
length l must be much greater than the unperturbed jet ra-

diusR; this restriction is not as severe as one could think and
the 1-D approach remains useful for a range of wavelengths
typical in experiments with periodically stimulated jets
(2pR/l*1). In any case, the structure of parametric reso-
nances as a function of the wavelength of perturbations is
well described; and the simplicity of the dispersion relations
that we have to handle makes 1-D models an excellent tool
to understand the role of each parameter.

The paper is organized as follows. Section II presents the
problem formulation along with the basic solution. In Sec.
III, the stability analysis about this basic state is carried out
in two steps: first for the dc case~starting with a zero-field
solution and then adding the electric field influence! and later
for the ac case. In this same section, we propose an alterna-
tive 1-D treatment to obtain the dispersion relation for the
axisymmetric case, which is later used to analyze the distri-
bution of roots in the complex plane. In Sec. IV, we give a
summary of the stability behavior of jets under dc fields; and,
after some discussion concerning the choice of nonspurious
roots ~using the 1-D model!, the same study for jets sub-
jected to ac fields. Finally we tackle the practical problem of
competition among capillary and resonant modes, including
a realistic case. Conclusions are drawn in Sec. V.

II. STATEMENT OF THE PROBLEM

Let us consider an infinitely long liquid column of un-
perturbed radiusR. The outer medium is a gas flowing lon-
gitudinally at a relative velocityU0. The liquid is assumed to
be a good conductor, in the sense that its charge relaxation
time is much shorter than any other relevant time scale. Con-
sequently, the jet is equipotential for an electroquasistatic
situation. A cylindrical electrode of radiusbR (b.1) is co-
axially placed with respect to the jet and an ac electric po-
tential F0 cos(vt) is established between them. The liquid
has arbitrary dynamic viscositym and densityr. Concerning
the gas, its density isrg , but viscosity effects are treated as
a phenomenological correction to an inviscid model. Both
fluids are assumed to be incompressible.

The dynamics of the jet is governed by the continuity
and Navier–Stokes equations:

¹•V50, r~] tV1V•¹V!52¹P1m¹2V, ~1!

where V and P are the velocity and pressure fields in the
liquid. Note that gravity effects are disregarded. For the sur-
rounding gas, which we consider as inviscid for the moment,
we have the continuity and Euler equations

¹•Vg50, rg~] tVg1Vg•¹Vg!52¹Pg , ~2!

with the subscript ‘‘g’’ standing for the fields in this medium.
Note that the presence of an electroquasistatic field does not
manifest in these bulk equations but, as we shall see later, in
the boundary conditions.6 This electric field is zero in the
conducting liquid; while, in the outer medium, it satisfies

E52¹F, ¹2F50. ~3!
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Let us describe the jet shape by the equationF(r ,t)
50, and the unit normal vector at each surface point asn
5¹F/u¹Fu evaluated atF50. At this locus, the potentialF
is prescribed to

FuF505F0 cos~vt !,

assuming that the outer electrode is grounded, i.e.,Fur 5bR

50. Other required boundary conditions are: the kinematic
conditions of an evolution of the jet shape consistent with the
velocity fields and the equality of their normal components
~note that jumps in the tangential components are allowed
due to the inviscid treatment of the outer gas!,

] tF1V•¹F50, ~V2Vg!•n50;

and finally, the stress balance at the free surface,

~P2Pg!n2m@¹V1~¹V! t#•n5Fs¹•n2
e0E2

2 Gn,

wheres is the gas–liquid interfacial tension and the super-
script ‘‘t’’ stands for transposition of the corresponding ten-
sor. In the last equation, we can recognize the pressure jump,
the viscous stress, the capillary pressure, and the electrostatic
pressure terms, respectively. Other general requirements ap-
plied at r 50 andr→` are that all physical magnitudes are
bounded.

As we are interested in a temporal, modal analysis of the
jet dynamics, no initial conditions are considered. The unper-
turbed jet is regarded as an infinite cylindrical column at rest,
with a surrounding gas flowing with uniform axial velocity
with respect to the former. These features describe a solution
of the above equations and boundary conditions, associated
with a perfectly cylindrical shape (Fcyl[r 2R50). Electric
potential and pressure jump are in this case

Fcyl~r ,t !52F0 cos~vt !
ln~r /bR!

ln b
,

Pcyl2Pcyl,g5
s

R
2

e0F0
2 cos2~vt !

2R2 ln2 b
.

III. STABILITY ANALYSIS

Any small perturbation of the basic solution satisfies a
linearized set of equations that we shall present in nondimen-
sional form. Letv5(u,v,w) and vg5(ug ,vg ,wg) be the
perturbation of the basic velocity fields in the liquid and gas,
respectively, with explicit decomposition in the local basis of
cylindrical coordinates,$ur ,uu ,uz%. Let alsop andpg be the
perturbations of the pressure fields in the liquid and the gas,
respectively. The bulk equations in the liquid and in the gas
become, respectively,

¹•v50, ] tv52¹p1C¹2v;

¹•vg50, r̄Dvg52¹pg ,

where

D[] t2AWe]z .

In these equations, we have introduced dimensionless
magnitudes using the jet radiusR, and thecapillary time tc

5ArR3/s as length and time scales, respectively, and de-
rived scales for the velocity and the pressure fields. Three
nondimensional parameters appear in this scheme; namely,
the Ohnesorge number C5m/ArsR, the density ratior̄
5rg/r, and theWeber numberWe5rU0

2R/s.
From the fact that bothv andvg are solenoidal, the pres-

sure fields are harmonic functions:

¹2p50, ¹2pg50. ~4!

The gas velocity field is easily obtained once the pressure is
known. For the velocity field in the liquid, we find an un-
coupled equation by applying the operator¹2 to the linear-
ized Navier–Stokes equation, giving

¹2@] t2C¹2#v50.

We propose a solution split into two terms,v5vv1vi , re-
spectively satisfying the equations

@] t2C¹2#vv50, ¹2vi50. ~5!

The fact that the linear operators¹2 and ] t commute guar-
antees that the sum of these partial fields satisfies the original
equation.

For the electric problem, we have the nondimensional
perturbation of the electric potentialw, also satisfying the
Laplace equation,

¹2w50.

The electric potential has been made nondimensional with
the scaleRE0, whereE05F0 /@R ln(b)# is the field at the jet
surface.

The linearized boundary conditions are now considered.
At the z-axis, regularity of the velocity and pressure fields
leads to19

]uuur 505vur 50 , ]uvur 5052uur 50 , ]uwur 5050,

]uzuur 505]zvur 50 , ]uzvur 5052]zuur 50 ,

] ruwur 505 lim
r→0

]uw

r
, lim

r→0

]uuw

r
52] rwur 50 ,

]upur 5050, ] rupur 505 lim
r→0

]u p

r
,

lim
r→0

]uup

r
52] rpur 50 .

The jet shape is described, also in nondimensional form, by
r 511 f (u,z,t). At that locus, we impose the kinematic con-
ditions

u~r ,u,z,t !ur 515] t f , ~6!

ug~r ,u,z,t !ur 515u~r ,u,z,t !ur 512AWe]zf , ~7!

and the stress balance at the free surface,

C~]zu1] rw!ur 5150, ~8!

C~] rv2v1]uu!ur 5150, ~9!

pur 512pgur 5112C] ruur 5152 f 2]zzf 2]uu f 2DpE .
~10!
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HereDpE is the perturbation of the electrostatic pressure

DpE52x cos2~v̄t !~ f 1] rwur 51!,

wherex is the electric number, defined as

x[
e0E0

2R

s
,

and v̄5vtc is the nondimensional field frequency. It is im-
portant to note that, since the liquid is perfectly conducting,
electric forces only act on the free surface and in its normal
direction, so there is no shear stress of electric origin.

A. The dc case

The dc limit (v̄50) of the above problem serves as a
first stage in the derivation of the general case (v̄Þ0) and,
at the same time, constitutes an obligatory reference for a
discussion of the results. This case was first published by
Saville7 but here we follow the treatment of Garcı´a.8

The electromechanical dc problem may be solved in two
steps. Initially we omit the electrostatic pressure term in Eq.
~10! and find the corresponding dispersion relation. Next we
evaluate the electrostatic pressure as a function of the free
surface shape,f. In fact this term enters the dispersion rela-
tion in the same manner as the capillary term, so they are just
added. Details will be shown later.

Let us now consider a modal decomposition of all un-
knowns in the form

g~r ,u,z,t !5Re@ ĝ~r !exp~Vt1 imu1 ikz!#, ~11!

for g5ui ,v i ,wi ,uv ,vv, wv, p, ug, vg ,wg ,pg ; and

f ~u,z,t !5Re@ f̂ exp~Vt1 imu1 ikz!#, ~12!

whereV is a complex eigenvalue whose real and imaginary
parts are calledgrowth factorand oscillation frequency, re-
spectively; m is the azimuthal number~integer! and k
52pR/l is the already mentioned nondimensional wave
number of the perturbation. Once this modal decomposition
is substituted in the set of equations and boundary conditions
~4!–~10!, we obtain the following problem in the radial vari-
able:

p̂91
p̂8

r
2S k21

m2

r 2 D p̂50,

ûi91
ûi8

r
2S k21

m211

r 2 D ûi2 i
2m

r 2 v̂ i50,

v̂ i91
v̂ i8

r
2S k21

m211

r 2 D v̂ i2 i
2m

r 2 ûi50,

ŵi91
ŵi8

r
2S k21

m2

r 2 D ŵi50, ~13!

ûv91
ûv8

r
2S kv

21
m211

r 2 D ûv2 i
2m

r 2 ûv50,

v̂v91
v̂v8

r
2S kv

21
m211

r 2 D v̂v2 i
2m

r 2 ûv50,

ŵv91
ŵv8

r
2S kv

21
m2

r 2 D ŵv50,

where primes mean derivation with respect tor and we de-
fine

kv
25k21

V

C
.

For the gas pressure field we have

p̂g91
p̂g8

r
2S k21

m2

r 2 D p̂g50. ~14!

The boundary conditions atr 50 reduce to

û~0!5 v̂~0!5ŵ8~0!5 p̂8~0!50 ~ for all m!,
~15!

ŵ~0!5 p̂~0!50 ~ for m50!,

while the rest are now written

û~1!5V f̂ , ~16!

ûg~1!5û~1!2 ikAWe f̂ , ~17!

C@ ikû~1!1ŵ8~1!#50, ~18!

C@ v̂8~1!2 v̂~1!1 imû~1!#50, ~19!

p̂~1!2 p̂g~1!5~m2211k2! f̂ 12Cu8~1!. ~20!

The general solution that satisfies the regularity conditions at
r 50 andr→` are

p̂~r !52A VI m~kr !

kIm8 ~k!
, ~21!

p̂g~r !52Ag

I m~kr !

kIm8 ~k!
, ~22!

û~r !5ûi~kr !1ûv~kvr !

5A
I m8 ~kr !

I m8 ~k!
2B

I m8 ~kvr !

I m8 ~kv!
1C I m~kvr !

I m~kv!
, ~23!

v̂~r !5 v̂ i~kr !1 v̂v~kvr !

5A imIm~kr !

krI m8 ~k!
2B imIm~kvr !

kvrI m8 ~kv!
1C

ikvI m8 ~kvr !

mIm~kv!
,

~24!

ŵ~r !5ŵi~kr !1ŵv~kvr !5A i I m~kr !

I m8 ~k!
2B ikvI m~kvr !

kIm8 ~kv!
,

~25!

where we have used standard notation for the intervening
modified Bessel functions; andA, Ag , B, and C are con-
stants to be determined. Substitution of solutions~21!–~25!
into conditions~16!–~20! gives the following algebraic sys-
tem:

A2B1C2V f̂ 50, ~26!

A2B1C2 ikAWe f̂ 5
Ag

r̄~V2 ikAWe!
, ~27!
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A2S 11
V

2Ck2DB1
1

2
C50, ~28!

2m~12jm~k!!A22m~12jm~kv!!B

1
2m21kv

222/jm~kv!

m
C50, ~29!

$jm~k!V12C@~k21m2!jm~k!21#%A

22C@~kv
21m2!jm~kv!21#B12CS 1

jm~kv!
21D C

2
Km~k!

kKm8 ~k!
Ag1~k21m221! f̂ 50, ~30!

where we have defined the auxiliary function

jm~k!5
I m~k!

kIm8 ~k!
.

From Eqs.~26!–~29!, we can write all the unknown con-
stants as functions off̂ only:

A5VS 11
2Ck2

V
$12hm~kv!@12jm~kv!#% DG0

21 f̂ ,

Ag5 r̄~V2 ikAWe!2 f̂ ,
~31!

B52Ck2$12hm~kv!@12jm~k!#%G0
21 f̂ ,

C52VH 2hm~kv!@12jm~k!#1
2Ck2

V
hm~kv!

3@jm~k!2jm~kv!#J G0
21 f̂ ,

with

hm~kv!5
m2

2m21kv
222/jm~kv!

and

G05122hm~kv!@12jm~k!#1
2Ck2

V
hm~kv!

3@jm~k!2jm~kv!#.

Substitution of all these integration constants in Eq.~30!
givesD0 f̂ 50, with

D0[G0
21$jm~k!V212CV~211$2k21m22k2hm~kv!@12jm~kv!#%jm~k!12hm~kv!@12jm~k!#@121/jm~kv!# !

14C2k2~~k21m2!$12hm~kv!@12jm~kv!#%jm~k!2~kv
21m2!$12hm~kv!@12jm~k!#%jm~kv!

1hm~kv!@jm~kv!2jm~k!#@122/jm~kv!# !%211m21k22 r̄~V2 ikAWe!2
Km~k!

kKm8 ~k!
. ~32!

The dispersion relation in the absence of an applied elec-
tric field is D050. In the last term of the definition ofD0 we
find the expression (V2 ikAWe)2. The semiempirical intro-
duction of the gas viscosity in the model of Sterling and
Sleicher12 is done by the substitution of this expression by

V22bk2 We22ikAWeV,

with b being a new parameter to be experimentally adjusted
and equal to 0.175 in their case. This modification is only
justified for the axisymmetric mode, for which the model has
been theoretically conceived and experimentally tested.12

However, we extend it to nonaxisymmetric modes because
the main fact resulting from the viscosity of the outer gas is
to eliminate the velocity jump, responsible for the Kelvin–
Helmholtz instability for all modes. This qualitative argu-
ment does not allow us to maintain the same value forb, so
the results obtained formÞ0 must be considered only ten-
tative.

Taking also into account that the jet velocity must be
much higher than the group velocity of perturbations for the
temporal analysis to be valid, we have the following simul-
taneous restrictions in the parameter space:20

We.8 and r̄ We,13.

The next step is the addition of the electrostatic~out-
ward! pressureDpE to be previous formulation. It is not
difficult to show,6 once the electric potential problem is
solved, that this new term has the formDpE52xH f̂ , with

H512k
2I m~kb!Km8 ~k!1Km~kb!I m8 ~k!

I m~kb!Km~k!2Km~kb!I m~k!
.

The new dispersion relation is

D01xH50.

B. The ac case

Now we turn to the original problem, for whichv̄Þ0.
The electric number is modified by a factor of cos2(v̄t) and
any of the expressions~11!–~12! are no longer valid. A
modal decomposition without any assumption for the tempo-
ral dependence is in order:

g~r ,u,z,t !5Re@ ĝ~r ,t !exp~ imu1 ikz!#,

f ~u,z,t !5Re@ f̂ ~ t !exp~ imu1 ikz!#

~again,g stands for any fluid dynamic magnitude other than
the free surface of the jet!. The general method to deal with
problems where periodic coefficients enter the set of govern-
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ing equations is the decomposition in a temporal exponential
factor and a periodic function of time.21 In our case, the
periodicity of the time-dependent coefficient isT/2, with
T52p/v̄, i.e.,

ĝ~r ,t !5Re@ ĝT/2~r ,t !egt#, f̂ ~ t !5Re@ f̂ T/2~ t !egt#, ~33!

whereg, the so-calledFloquet exponent, is complex in gen-
eral. The functions ĝT/2(r ,t) and f̂ T/2(t) being
(T/2)-periodic, we perform a Fourier expansion in the form

ĝT/2~r ,t !5 (
n52`

`

gn~r !ei2nv̄t,

f̂ T/2~ t !5 (
n52`

`

f nei2nv̄t.

Any of the unknowns has the explicit temporal dependence

ĝ~r ,t !5 (
n52`

`

gn~r !exp~gt1 i2nv̄t !,

~34!

f̂ ~ t !5 (
n52`

`

f n exp~gt1 i2nv̄t !.

Therefore a temporal derivative has the algebraic equivalent
factor g1 i2nv̄.

Solutions to system of linear differential equations with
periodic coefficients may be subharmonic,22 this distin-
guished case corresponds tog5 i v̄.

Note that the substitution of these expansions in Eqs.
~4!–~9! gives an independent set of equations for each
n (n52`,...,0,...,̀ ), equivalent to the one in the dc case,
given by Eqs. ~13!–~19!, provided V is replaced byg
12inv̄. Therefore, for eachn expressions~21!–~29! and
~31!, together with the substitutions

V←g1 i2nv̄ and f̂← f̂ n ~35!

give us the solution forp̂n , p̂gn , ûn , v̂n , andŵn in terms
of f̂ n .

Now, we are ready to apply the remaining condition, Eq.
~30!, in which the electric pressure term has now a factor
cos2(v̄t). This factor, which can be expressed as

cos2~v̄t !5 1
21 1

4e
2i v̄t1 1

4e
22i v̄t,

couples the equations for differentn. If we introduce the
Fourier expansion forp, pg , ur , andf; and express all the
coefficients in terms of thef n’s, we can collect the coeffi-
cients of terms havingei2nv̄t to obtain the infinite set of
difference equations

Dnf n1 1
4 xH~2 f n1 f n111 f n21!50, ~36!

whereDn comes from the functionD0 once we have made
the substitution~35!.

The difference equations~36! are solved in terms of con-
tinued fractions.23 To this end, we will consider separately
the casesn50, n.0, andn,0. Forn50 we have

D01
1

4
xHS 21

f 1

f 0
1

f 21

f 0
D50. ~37!

For n.0 we rearrange Eq.~36! to give

f n

f n21
5

2xH/4

Dn1
xH

2
1

xH

4

f n11

f n

.

Repeated substitution of the ratiosf n11 / f n for n increasing
lead to a continued fraction. Following the book of
Abramowitz and Stegun,22 we define

cf~an ,bn!5b01
a0

b11

a1

b21
•••

and we have

xH

4

f 1

f 0
5cf~2x2H2/16,Dn1xH/2! with b050.

Analogously, forn,0,

f n

f n11
5

2xH/4

Dn1
xH

2
1

xH

4

f n21

f n

and we find

xH

4

f 21

f 0
5cf~2x2H2/16,D2n1xH/2!.

Finally, substitution in Eq.~37! gives

D01 1
2xH1cf~2x2H2/16,Dn1xH/2!

1cf~2x2H2/16,D2n1xH/2!50, ~38!

which is an implicit relation determining the values of the
Floquet exponentsg as a function of all the relevant param-
eters.

The roots of Eqs.~38! are not easy to find. Truncation of
the two involved continued fractions determines the number
and distribution of poles and zeros in the complex plane. A
general knowledge of these distributions is needed to find
nonspurious roots and to study their convergence with re-
spect to the number of retained terms. A simplified version of
the dispersion relation for axisymmetric jets~m50! comes to
our assistance in this particular case.

C. Axisymmetric jet: 1-D approach

In this subsection we describe the changes in the disper-
sion relation, valid for both the dc and ac cases, when using
a 1-D model for the dynamics of an axisymmetric jet~m50!.
Among the 1-D schemes studied by Garcı´a and
Castellanos,18 the ‘‘average model’’ has proven to be the best
choice if accuracy and simplicity are considered together.
This model performs a Taylor-series expansion of the veloc-
ity field of the liquid in the radial coordinate and retains only
terms up to the second power of the variable. Consistent
truncation in all the magnitudes and the choice of the free
surface and the mean velocity at each section of the jet as the
two sole unknowns lead to a very simple formulation of the
jet dynamics. Its linearized version allows us to replace Eq.
~32! by
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D052S 11
k2

8 D V2

k2 16CV211k2

2 r̄~V2 ikAWe!2
K0~k!

kK08~k!
~39!

for the dc problems and the same substitution rule~35! in
this expression for the ac problem. No further changes must
be considered.

The interesting point in this formula is that we have a
polynomial dependence onV; consequently all the zeros of
the dispersion relation at any level of truncation of the con-
tinued fractions are obtained by standard methods. Spurious
zeros, an effect of numerical truncation, are easily discerned
from persisting ones by comparison for different truncations.
Moreover, the persisting approximate zeros from the 1-D
model serve as a convergence guide~typical number of terms
retained in the continued fractions! to obtain accurate values
from the 3-D formulation. All these features are discussed in
Sec. IV B.

IV. RESULTS

A. dc fields

The dc problem with negligible influence of an outer
medium is analyzed by Saville,7 and with more detail by
Garcı́a,8 who discusses the existence of the so-called hydro-
dynamic modes. For this reason, the analysis of the role of
the relevant parameters that we present now is brief, and has
the purpose of serving as a reference to understand paramet-
ric resonances when we deal with ac fields. Concerning
Saville’s results, it is perhaps worth to advance that our range
of interest for the Ohnesorge number,C, not much greater
than 0.1, does not coincide with his, typically greater than 1.
In our case,C is limited by experimental conditions for
which parametric resonances could be observed, as we shall
see later. In any case, this fact does not mean any restriction
on the values ofC in our computations.

The dispersion relation for the modem,
dm(V,k;C,We,r̄,x,b)[D01xH50, implicitly determines
the functionsVm(k) in terms of all listed parameters. The
dependence with respect toV is transcendental, as it appears
in the argument of the modified Bessel functions through the
variablekv. For fixed values of the wave numberk and the
azimuthal numberm, a countable, infinite number of roots
can be found. Two of them are associated with the surface
deformation, and their corresponding eigenmodes will be
called ‘‘capillary modes.’’ The other eigenmodes have a re-
circulating velocity field, whose amplitude is typically much
greater than the one of a capillary mode with the same am-
plitude of the shape of the interface. These are the ‘‘hydro-
dynamic modes,’’ whose evolution is mostly dominated by
inertia and viscous stresses in the bulk, while capillary and
electrical forces usually have a negligible influence. That is
why they are always purely damped, i.e., their corresponding
eigenvalues are real and negative. Capillary modes are by far
the relevant ones in most situations. Their behavior deter-
mine the stability limit ink and the typical breakup time,
since their eigenvalues usually have the greatest real part.

The existence of hydrodynamic modes has not been reported
until recently8 because of two reasons. First, as their roots in
the complex plane lie very close to poles, they are hard to be
found. Second, being purely damped, they do not contribute
to the rupture of the liquid jet into drops. Thus their role is
much less significant and no interesting information is lost if
they are ignored. In addition, being their eigenmodes real,
they are not able to generate parametric resonance, as it will
be clear later.

The physical mechanisms that play a role in the stability
of the jet against small perturbations are easily identified in
the dispersion relation. Capillary forces are the reference
ones; if alone, they make the jet unstable to perturbations
with k,1 and stable otherwise~Rayleigh instability!. Vis-
cous forces are measured by the Ohnesorge numberC, and
they do not modify the Rayleigh stability limit but lower the
growth rate of any perturbation. The pressure field of the
surrounding gas introduces the Kelvin–Helmholtz instability
mechanism, identified in the dispersion equation by the term
affected by the combinationr̄ We. Thus it acts more strongly
for higher jet velocities and fluids with more similar densi-
ties; this mechanism is well known to be more efficient for
greater wave numbers. The nonuniformity of the gas velocity
near the free surface is responsible for the loss of efficiency
of this mechanism.12 Finally, electric forces acting on the
free surface are measured by the electric numberx; for m
50, we must distinguish two opposite mechanism:6–8 on the
one hand, we have stabilization due to a relative increase of
the outward electrostatic pressure in the valleys of perturba-
tions ~because the field is greater for thinner columns at a
fixed potential!; on the other hand, we have destabilization
caused by the point effect at the crests. As these two effects
are related to the local mean curvature of the jet surface, their
dominance depends on the wavelength of the perturbations,
so the electrostatic pressure is globally stabilizing for lowk
and destablizing for highk. The value ofk which is the limit
between both situations, i.e., neutral electrical effect, is de-
pendent on the parameterb ~radius of the outer electrode in
units of jet radius!, but not greater in any case thank50.595.
For m51, the cross section is circular and area-preserved and
the stabilizing mechanism related to the radial dependence of
the field is not present. Higher azimuthal modes, character-
ized by a corrugation of the peripheral line of the cross sec-
tion, are hard to be destabilized because the capillary forces
act more strongly.

Figure 1 shows a typical stability spectrum form50,
with the real and imaginary parts ofV represented separately
as functions of the nondimensional wave numberk. Stable
and unstable regions in thek-axis are easily identified by the
sign of Re~V!. If x.1, the outward electrostatic pressure is
strong enough with respect to the capillary pressure jump to
stabilize a small region neark50, where we find slightly
damped oscillations. In the figure, this region is not notice-
able becausex is too close to unity, so it is restricted to 0
<k,0.0077 and the maximum real and imaginary parts of
the eigenvalues are of the order of 2.531026 and 5
31024, respectively. Otherwise~x,1!, this region has a real
positive root leading to aperiodic growth, like the adjacent
k-region, up to a value ofk increasing withx and We from
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the Rayleigh stability limitk51 ~valid for x5We50!. Be-
yond this region we find aperiodic damping, except for a
k-segment where we have damped oscillations@Im~V!Þ0#;
this segment is not presented forC.0.573 ifx5We50, even
for lower values when the electric field and/or the influence
of the outer medium are considered.

From a practical point of view, the most interesting fea-
ture in the dc dispersion relation is the maximum growth rate
among all possible perturbations and its corresponding wave

number, giving respectively the breakup length of the jet and
the size of the resulting drops. A map of these values for
different C and x has been reported by Garcı´a and
Castellanos.24 In Fig. 2 we reproduce a representative part of
that parametric study for the sake of further comparison with
ac results. The general behavior shown is an increase of the
maximum growth rate and its associated wave number forx
increasing andC decreasing.

The effect of the surrounding gas has not been consid-
ered in the previous discussion. The effect over any stability
curve is very similar to that of the electrostatic pressure, i.e.,
an increase in height and length of the unstable lobe for
increasing values ofr̄ We.

B. ac fields

The parametric instability is clearly originated by a cou-
pling between a natural frequency of the system and the fre-
quency of the imposed electric field.9 For this reason, hydro-
dynamic modes are discarded as generators of parametric
resonance, since they are purely damped modes. For axisym-
metric modes, no relevant information is lost if we substitute
the 3-D ~transcendental! dispersion relation by the 1-D
~polynomial! one. The 1-D approach allows us to analyze the
distribution of zeros in a simpler manner.

The Floquet exponent remains multivalued because the
complex numbersg1 i2v̄n, with n integer, are equivalent.
As a consequence, all roots are ordered in columns, with a
vertical separation 2i v̄. Moreover, ifg is a root, so it is its
complex conjugateg* . These properties imply the restriction
of the effective root finding to a strip 0<Im~g!<v̄ in the
complex plane. If we truncate both continued fractions
present in the 1-D ac dispersion relation at the first term, we
find an expression whose zeros are identical to those of a
polynomial expression of degree six, namely

S D01
xH

2 D S D11
xH

2 D S D211
xH

2 D
2

x2H2

16
~D11D211xH !50. ~40!

Similar expressions are found for successive orders of trun-
cationp, giving polynomials of degree 214p. Although the
corresponding number of complex roots is also 214p, only
some of them are persisting whenp is increased, the others
being equivalent roots lying outside the strip defined above.
A typical scenario in the complex plane is shown in Fig. 3~a!
where roots forp51, 2, 3, and 4 are tracked for some values
of the parameters leading to resonance. Although some ar-
rangement of roots in columns is apparent, the rule concern-
ing the indetermination ing is violated due to truncation of
the continued fractions. Note that the substitution ofg
12iqv̄ in the infinite set~36!, with q an arbitrary integer,
leads to an equivalent infinite set of equations~we have
merely to renamen85n1q); but if we deal with a truncated
set, the equivalence is lost. Forp51 the six roots lie in the
vertical line defined by the two roots of the dc case; in fact
these roots are also roots forp51, as it could be demon-
strated from Eq.~40!. For p52, only two conjugate roots lie

FIG. 1. Nondimensional growth factor Re~V! and natural frequency Im~V!
for the axisymmetric mode~m50! of a jet subjected to a dc field, as a
function of the nondimensional wave numberk of perturbations. The se-
lected values of the parameters are:C50.03, b525, We50, and x50
~dashed line! or x51.25~solid line!. Only the first~most significant! hydro-
dynamic mode from an infinite series is represented.

FIG. 2. Maximum growth rate@Re(V)#max and corresponding wave number
kmax for the axisymmetric mode for different values of the parametersC and
x ~dc case!. The rest of the parameters are fixed tob525 and We50. These
magnitudes are the most relevant to determine the unbroken length of a jet
and the size of the resulting drops from a natural~noise-driven! breakup
process.
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in the former vertical line, more separated than those corre-
sponding top51, while the remaining eight migrate to two
new verticals. When the number of terms retained in the
continued fractions increases, the distribution of roots re-
veals its subsequent tendency: the two roots in the central
vertical, having increasing imaginary parts, are spurious; the
remaining roots lie near two vertical lines and are persistent,
with extremely quick convergence to their final values. Only
the closest roots to the real axis, pointed in the figure, are
relevant, the other being redundant. In this first example, as
Im~g! results to be equal tov̄, the instability is subharmonic.
In Fig. 3~b! a nonresonant situation is shown. The roots are
also organized in two columns, but now only slightly devi-
ated from the positions of the two real dc roots. The ac roots
closest to the real axis lie on the axis itself, so the instability
is harmonic for them. In view of these facts, we will restrict
our findings to the closest roots to the real axis forp.1
~typically we choosep55!, with Im~g!>0; and, among them,
we will choose the one with greatest real part as the domi-
nant Floquet exponent in the stability analysis.

The root selection that we have just discussed is shown
in Fig. 4. Real and imaginary parts of the dominant Floquet

exponent are represented as a function of the nondimensional
wave number for some values of the parameters, for lowk.
We find an instability window very similar to the dc one~the
dashed line in the same figure!; we will refer to it as the
‘‘capillary lobe’’; the rms part of the electric force is what the
jet mainly ‘‘feels’’ for these perturbations, although some
departure from the dc curve is apparent at the end of the lobe
~the role of the parameterv̄ will be discussed later!. As we
increasek, the real part of the Floquet exponent becomes
negative and its imaginary part increases up to the value
Im~g!5v̄, for which the subharmonic resonance takes place.
This first resonant lobe reaches its maximum for a wave
number close to that one verifying the resonance condition
Im~V!5v̄, i.e., natural dc frequency equal to the imposed
field frequency. Depending on the electric field strength and
the importance of viscous damping, the first resonant lobe
encountered may reach positive values, thus leading to insta-
bility; or, on the contrary, it may lie entirely in the region
below thek axis. The imaginary part remains the same for
the first resonant lobe, which is subharmonic, as discussed.
Increasing furtherk, the dc curve is recovered until a new
resonant lobe is generated, this time with zero imaginary part
~harmonic resonance!. We observe the same sequence re-
peated indefinitely, with resonant lobes growing from the dc
basis line; they decrease in height and width very quickly,
except whenv̄ is low, as it will be later discussed.

FIG. 3. Distribution in the complex plane of the roots of the ac dispersion
relation using the averaged 1-D model. The roots are classified by different
marks according to the numberp of retained terms in the continued frac-
tions. Parameters are fixed to We50, b525,C50.03,x52.5, andv̄51. Two
different situations are depicted:~a! k51.8 ~resonant! and ~b! k51.1 ~non-
resonant!.

FIG. 4. Stability spectrum from the dispersion relation in the case using the
average 1-D model; withC50.03, b525, We50, x52.5, andv̄51. Real
and imaginary parts of the Floquet exponentg have an analogous meaning
asV for the dc case~also represented in the figure with dashed lines, for the
comparable rms valuex51.25!. Resonances are characterized by lobes in
the real part and constants 0~harmonic! or 1 ~subharmonic! in the imaginary
part. Resonances are located in thek-axis in segments containing the coin-
cidence of multiples ofv̄ with the dc natural frequency.
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Figure 4 has been obtained from the 1-D model. The
asymptotic behavior of the curve for increasing values ofk
~beyond the capillary lobe and omitting the resonant regions!
is not consistent with that presented in Fig. 1~dc case!. The
discrepancy must be attributed to the shortcomings of the
1-D model fork not small. The damping factor is, according
to Eq. ~39!, 3Ck2/(11k2/8);24C. Conversely, the varia-
tional model, valid for arbitraryk, predicts the stronger
damping Ck2 for increasingk. Of course, the exact 3-D
model does not present these limitations and agrees with the
variational calculations for very low viscosities~Fig. 9 will
show an example obtained with the 3-D model, and exhibit-
ing a correct behavior for increasingk!.

If we are interested in experimentally detecting a para-
metric resonance, the temporal evolution of the free surface
should be described and the coefficients$ f 0 , f 62 , f 62 ,...%
found. To this end, according to Eq.~36!, we select the ei-
genvector corresponding to the eigenvalue closest to zero of
the matrix

S D2n

D2n11

�

D0

�

Dn21

Dn

D
1

xH

4 S 2 1

1 2 1

� � �

1 1 2 1

� � �

1 2 1

1 2

D ,

where the functionsDi ( i 52n,...,n) are evaluated at the
selected Floquet exponent. In fact, aside from numerical er-
rors, the vector (f 2n , f 2n11 ,...,f n21 , f n) is the only basis
element of the null space of that matrix. The temporal de-
pendence is given by Eq.~34!. The number of retained ele-
ments need not coincide with the truncation orderp, but this
choice suffices to achieve a good approximation. What we
observe as a general rule is: at the capillary lobe, nonoscil-
lating growth; at the first resonant lobe, oscillations with pe-
riodicity T/2, growing or decaying depending on the values
of the parameters; and, at the second resonant lobe, the same
result but with periodicityT. Outside the lobes, the perturba-
tions are decaying, with neither harmonic nor subharmonic
periodicity. Figure 5 illustrates these features for the repre-
sentative cases corresponding to Fig. 4.

1. Comparison with the variational theory

The present results are a generalization of those valid for
low viscosities found in Ref. 9. The mathematical approach
is quite different in both theories, variational and dynamical,

so a comparison of results in the range of validity of the
former is important in order to know its limits. The varia-
tional theory is developed from the basic ansatz that the liq-
uid flow is potential; viscous effects are included via a func-
tion that estimates the dissipation in the bulk of the jet.25

This dominant dissipation is of orderC, as it is stated in the
evolution equation for the amplitude of perturbations found
in Ref. 9, that we transcribe in our present notation form50
as

f̈ 1Cu~k! ḟ 1d~k,x! f 50, ~41!

whereu(k)52@2k221/j0(k)#, d(k,x)52@12k22x(t)H#/
j0(k), and dots mean derivation with respect to time. The dc
case@x(t)5x0# allows us to estimate errors in this formula
from a perturbative expansion in powers ofC of the exact
dispersion relationD050, that we rewrite form50:

V2j0(k)14CVFk2j0(k)2
1

2
1

Ck2

V

3(k2j0~k!2kv
2j0~kv!)G

512k22xH1 r̄~V2 ik AWe!2
K0~k!

kK08~k!
. ~42!

Aside from the gas effect, which is not included, it can be
easily shown that Eq.~41! is the first order expansion in the
parameterC of Eq. ~42!, using the asymptotic expansion of
the modified Bessel functions included inj0(kv) for large
values of the argument. The next term in the expansion in
powers ofC is 24C3/2AVk2/j0(k), a C-dependence consis-
tent with a viscous dissipation due to the boundary layer
adjacent to the free surface.26 Let us compare the maximum
Floquet exponent given by both theories forx52.5, b525,
v̄51, and C50.03. The variational theory gives
(kmax, gmax)5(1.841, 0.290) and the dynamical one
(kmax, gmax)5(1.849, 0.323); if we estimate the shift in
gmax originated by the correction of orderC3/2, we obtain
Dg.4C3/2k2/@Agj0(k)#50.047, which is of the same order
as the difference found between both theories. Note that the
error of the variational model, some 10%, is not negligible,
even for such a low viscosity. As a conclusion, if we seek for

FIG. 5. Temporal evolution of the free surface amplitude for different rep-
resentative wave numbers. The selected parameters are the same as in Fig. 4.
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a quantitative description of parametric resonance in liquids
of non-negligible viscosity, we must use the exact dynamical
theory.

2. Modal competition: Role of viscosity and imposed
frequency

Previous results obtained from the variational model
show that the modem51 exhibits a first resonance clearly
stronger than its capillary lobe and leading to competition
with the axisymmetric mode. We first consider these two
modes for zero viscosity. The relative maxima are repre-
sented in Fig. 6 as a function of the field frequency, in the
range 0.3,v̄,5, for different electric numbersx. The com-
putations are based on initial guesses supplied by the varia-
tional method discussed in the latter reference. As pointed
before, the capillary lobe has its maximum closely located
near the dc limit for the whole range of frequencies. On the
other hand, each resonant lobe of bothm50 and 1 modes
shifts to the right in thek-axis asv̄ increases, an obvious fact
in the light of the above discussion, and them50 andm51
first lobes tend to join. At the same time, we observe in this
figure that their maximum values slightly increase for fre-
quencies not too small. It could be stated that the maximum
Floquet exponents of the first resonant lobe for both modes
are more similar in size,gmax, and location,kmax, as the
imposed frequencyv̄ increases. The competition in noise-
dominated evolution of jets should presumably consist of a
superposition of axisymmetric capillary pinching and deflec-
tion of drops with deflection aperture dependent on the
growth rate of the modem51. If a wave number selection
mechanism is applied to the jet, with a wave number outside
the capillary axisymmetric lobe, axisymmetric nondeflected
breakup could be observed provided that the selected wave

number is very close to the maximum of them50 resonant
lobe and that them51 resonant lobe is shifted enough~i.e.,
for a not very high imposed frequency!.

One could think, regarding Fig. 6, that high imposed
frequencies are desirable to achieve competitive resonances
against the capillary rupture. The real fact is that the selec-
tion of higher resonant wave numbers makes these unstable
modes more affected by viscous damping. To show this, in
Fig. 7 we present again the values and location, as a function
of v̄, of the maxima of the first resonant lobes for the modes
m50 and 1, as well as the capillary maximum, this time for
a nonzero Ohnesorge number~C50.03! andx52.5. Even for
this low viscosity parameter, the increase observed in Fig. 6
is counterbalanced by viscous damping. Both modes are
damped at a similar rate. Saville7 described for the dc case a
stronger viscous damping of capillary perturbations for the
modem51 than form50, but these findings are not contra-
dictory to ours because resonances take place at higher wave
numbers and the range ofC considered in each case is not
the same~typically C.1 in Saville’s paper!. It is worth not-
ing that the range of viscosities explored in this work is very
restricted by the main goal of the determination of physical
conditions under which parametric resonances are observ-
able.

Once the basic properties of the induced parametric in-
stability has been elucidated, we turn now to the obtention of
numerical results from the exact 3-D dispersion relation. The
relevant issue from a practical point of view is again the
determination of the wave number of the most dangerous
perturbation, along with its growth factor, for the resonant
modes. Comparison with the most dangerous capillary mode
should determine if the resonance has any chance to be ex-
perimentally observed. In Fig. 8, we represent a map of val-
ues (kmax,@Re(g)#max) for values of the electric number
~x<2.5! and Ohnesorge numberC leading to instability for
the first resonant lobe. This map has to be essentially com-
pared to that of Fig. 2~dc case!, using there the rms field
value~x/2!, because only a small change for the maximum is
detected in the capillary lobe. To destabilize liquids with
C;0.1, we need electric fields too hard to be experimentally
attained. Only for very low viscosities the resonance has a

FIG. 6. Dependence of the three competing maximum Floquet exponents on
the frequency of the imposed electric field,v̄. These maxima are marked in
the two upper figures as pointsa ~maximum of the capillary axisymmetric
lobe!, b ~maximum of the first resonant axisymmetric lobe!, andc ~maxi-
mum of the first resonant lobe for modem51!. The sweep in frequency goes
from v̄50.3 up tov̄55 in steps ofDv̄50.1. The rest of the parameters are
We50, C50, b525; andx51, 1.5, 2, and 2.5.

FIG. 7. Effect of a nonzero viscosity~C50.03! in the study in frequency of
Fig. 6 for x52.5. The points corresponding tov̄51.3 are indicated for a
later reference.
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growth factor high enough to be observed, provided the cor-
responding wave number is previously selected.

For illustration purposes, let us propose a feasible ex-
periment consisting in a conducting jet with a radiusR5100
mm, densityr51000 kg/m3, dynamical viscositym516.4
31024 Pa s, and surface tensions50.03 N/m, exiting from
a nozzle at a velocityU058.3 m/s; these values give
C50.03 and We5225. If an outer cylindrical electrode of
radius 20R is placed coaxially, it can be considered at infinity
in order to calculate the highest electric field for which di-
electric rupture is prevented. The rupture mechanism in this
geometry is a corona discharge occurring at a field evaluated
at the jet surface,E0max, and governed by Peek’s law27

E0,max(kV/cm!531S 11
0.308

AR~cm!
D ,

giving in our case,E0max5126.5 kV/cm and a potential dif-
ference between jet and outer electrodeV053.79 kV. In
these conditions, the highest electric number without corona
effect isxmax54.72. We may thus safely set the appropriate
voltage to obtainx52.5, a value which has proven, regard-
ing Fig. 7, to generate a first resonance of the order of the
maximum of the capillary lobe, at least for not too high field
frequencies, for which viscous damping is not severe. More
precisely, if we are interested in the generation of an observ-
able resonance leading eventually, after breakup, to drops
sensibly smaller than ordinary drops arising from the capil-
lary mechanism, let us choose a nondimensional wave num-
berk52. Figure 7 gives us a valuev̄.1.3 to have the maxi-
mum growth rate of the first resonant lobe for that wave
number; the corresponding dimensional frequency is 7120
Hz. The question that arises now is about a possible coexist-
ence of resonances for bothm50 and m51 modes. The
maximum of the first resonance of the modem51 is not
placed atk52, but rather atk.1.62, as Fig. 9 shows. Pro-
vided the wave numberk52 is selected by appropriate
stimulation at the nozzle, the only observable resonance is
the axisymmetric one~m50!. Figure 9 has been constructed
with the above calculated values ofC, We, x, and v̄. If a

sweep in the wave number is experimentally performed, it is
expected to observe alternatively lateral and varicose pertur-
bations of the jet, according to the dominance of modesm51
andm50. Also in the same figure, the air effect is measured
from comparison between the curves labeled ‘‘We50’’ and
‘‘We5225.’’ Note that the latter are only slightly increased
and shifted to the right. We insist in the tentative character of
the curvem51, We5225, for which the valueb50.175 is
not justified.

V. CONCLUSIONS

We have presented in this work an exact linear stability
analysis of capillary jets of arbitrary viscosity and we have
compared it to a previous variational one, valid only for low
viscosities. The formulation also included the effect of an
outer viscous gas in a semiempirical way. Although the sta-
bility spectra predicted by both theories are qualitatively
similar, errors in the variational model are significant~about
10%! even for an Ohnesorge number as small asC50.03.
For the axisymmetric mode~m50!, a one-dimensional
model has revealed to be useful to analyze all the roots of the
dispersion relation in the complex plane, a difficult task for
the 3-D exact model. Once the nature of the roots are ana-
lyzed, computations should be performed with the 3-D
model due to the applicability of the 1-D model, restricted to
the modem50 and wave numbers not much greater than 1.
Modal competition takes place between the capillary axisym-
metric ~m50! mode and the first resonances of modesm50
and 1, with significant influence of the imposed frequency in
the last two ones. Finally, we have shown, by means of a
practical case, that experimental evidence of parametric reso-
nances could be pursued.
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r̄50.001; and, for the rest of parameters, the same values as in Fig. 7.
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