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A temporal linear modal stability analysis is presented for conducting viscous liquid jets flowing
with nonzero velocity relative to an ambient gas and subjected to an ac radial electric field.
Parametric resonance between natural dc frequencies and the fregolemultiple) of the imposed

ac field eventually leads to destabilization of the jet for perturbations with wave numbers in the
stable domain. In this way, it is possible to obtain drops of smaller size. The main result is the
extension of the stability analysis to liquids of arbitrary viscosity using a dynamical approach,
instead of previous variational models valid for slightly viscous liquids. The effect of the outer gas
in relative motion is taken into account in the framework of currently available semiempirical
theories. A brief discussion of the dispersion relation for dc fields is included as the natural starting
point for the discussion of the ac case. Use of the 1-D averaged model for axisymmetric
perturbations, an alternative to the 3-D approach, allows a complete determination, in this particular
case, of the distribution and nature of roots of the dispersion relation in the complex plane. The
theoretical study presented here is ready to be compared to future experiments in the Rayleigh and
first wind-induced regime, as no relevant instability mechanisms have been excluded; namely,
capillary instability, viscous damping, quasi-electrostatic pressure effects, Kelvin—Helmholtz
instability corrected to account for the gas viscosity, and finally, parametric resonanc200®
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I. INTRODUCTION Melcher® where liquids were restricted to be inviscid and the
o " : : imposed electric potential was supposed constant in time.
The application of electric fields is at present widel . . . R

Pp P yThe effect of viscosity was later included by Savill@his

used in ink jet printing technologies as a method for charginq_ o ; T
and deflecting the ink drops resulting from jet inear stability analysis has been more recently revisited by

disintegratiort: Electric forces may also be applied to selectG.arcavB_ who conducted a thorough study of the resulting
perturbations with a specific wavelength, a mechanism alteidispersion equation in all the relevant parameters; in addi-
native to piezoelectric stimulationFor this purpose, sharp tion, in his work can be found a comparison with one-
electrodes close to the jet surface establish a locally strongimensional models that are validated as a computationally
alternating field; the time-varying quasi-eletrostatic pressur&conomic approach to the nonlinear jet dynamics. Besides,
jump induces a perturbation whose frequency, along with thalternating fields have been considered by Gterzet al® in

jet velocity, determines the selected wavelength. Also, in thehe hope that parametric resonances give new tools for the jet
same configuration, an electric pulse has revealed to be usbreakup control. The main objective was to reduce the size
ful for obtaining isolated drops inside a continuumJet.  of the final drops. In this latter work, a variational approach
These applications, among others, have motivated the intefusing the Lagrangian method introduced by Lord
est of the EHD researchers’ community in electric forcesrayleigh® was employed to formulate the linear stability

acting on conducting jets. Conducting jets in the presence giroblem for the restricted conditions of slightly viscous lig-
radial electric fields have been studied since the work ofjig and a negligible outer medium.

However, the effect of the surrounding gas in relative
dElectronic mail: helio@us.es motion on a jet is not negligible in many experimental situ-
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ations. The first attempt to account for it was done bydiusR; this restriction is not as severe as one could think and
Webet! by introducing the Kelvin—Helmholtz instability the 1-D approach remains useful for a range of wavelengths
mechanism with the assumption of a zero gas viscosity. Stetypical in experiments with periodically stimulated jets
ling and Sleichéel? corrected the resulting dispersion relation (27R/A=1). In any case, the structure of parametric reso-
and included the effect of a small viscosity of the gas in anances as a function of the wavelength of perturbations is
semiempirical way. Based on the results found bywell described; and the simplicity of the dispersion relations
Benjamirt® for a planar geometry, these authors modified thethat we have to handle makes 1-D models an excellent tool
instability mechanism by considering a reduction in the norto understand the role of each parameter.
mal stress exerted by the gas on the free surface. The reduc- The paper is organized as follows. Section Il presents the
tion coefficient does not come from a rigorous derivation,problem formulation along with the basic solution. In Sec.
which still remains as an unaddressed theoretical issue. Al, the stability analysis about this basic state is carried out
recent work* provides the linear stability analysis of liquid in two steps: first for the dc cagstarting with a zero-field
and gas basic flows, characterized by nonuniform velocitysolution and then adding the electric field influenaed later
profiles numerically calculated, for the related problem of afor the ac case. In this same section, we propose an alterna-
jet co-flowing in a gas stream, but there are neither results foiive 1-D treatment to obtain the dispersion relation for the
small aerodynamic Weber numbers nor an explicit compariaxisymmetric case, which is later used to analyze the distri-
son with the results of Sterling and Sleicher, whose modebution of roots in the complex plane. In Sec. IV, we give a
we adopt in this paper. summary of the stability behavior of jets under dc fields; and,
The problem we now formulate may be considered asifter some discussion concerning the choice of nonspurious
the natural end of the sequence that we have just describethots (using the 1-D mode) the same study for jets sub-
ac fields, arbitrary viscosity and surrounding gas dynamicgected to ac fields. Finally we tackle the practical problem of
are all together taken into account. But, for this general probeompetition among capillary and resonant modes, including
lem, the variational method is not suitable because the velo realistic case. Conclusions are drawn in Sec. V.
ity field of a viscous liquid is no longer potential, a necessary
condition to apply it. Instead, the starting point will be the
linearized Navigr—Stokes equatipns, as in Refs.. 7 and 8. _In_ STATEMENT OF THE PROBLEM
fact, a generalization of the dispersion equations therein
found for dc fields for including the effects of the outer gas  Let us consider an infinitely long liquid column of un-
previously derived and used as a reference to better undepgerturbed radiu®kR. The outer medium is a gas flowing lon-
stand the ac case. gitudinally at a relative velocity) . The liquid is assumed to
It is well-known that systems driven by time-varying, be a good conductor, in the sense that its charge relaxation
periodic forces exhibit in general a resonant behavior fottime is much shorter than any other relevant time scale. Con-
selected values of the force strength parameter. For this regequently, the jet is equipotential for an electroquasistatic
son we use expressions such as “parametric instability” orsituation. A cylindrical electrode of radiusR (b>1) is co-
“parametric resonance.” Faraday resonance in a liquid layeaxially placed with respect to the jet and an ac electric po-
subjected to periodic vertical motion as a whole enters in thisential ®, cos(t) is established between them. The liquid
category, as well as our present problem. In fact, the readétas arbitrary dynamic viscosity and densityp. Concerning
can find a parallel between the resolution proposed here arttle gas, its density ipg, but viscosity effects are treated as
recent publications on Faraday resonance in viscoua phenomenological correction to an inviscid model. Both
liquids*>~*"The basic mathematical tool in all these works isfluids are assumed to be incompressible.
a direct application of Floquet's theory to the governing par-  The dynamics of the jet is governed by the continuity
tial differential equations, which leads to a splitting of all and Navier—Stokes equations:
unknowns into an exponential time dependence multiplied
by a periodic function of time, with subsequent Fourier de-  V.V=0, p(aV+V-VV)=—VP+ uV3V, 1)
composition of the latter. Here, solutions are obtained in the
form of rapidly converging continued fractions, whose termswhereV and P are the velocity and pressure fields in the
are directly related to the dispersion equation for the dc probliquid. Note that gravity effects are disregarded. For the sur-
lem. In those references, the authors pay attention only to theunding gas, which we consider as inviscid for the moment,
loci in the parameter space leading to periogiongrowing we have the continuity and Euler equations
solutions, i.e., the marginal stability analysis. However, in

our case, the growth rates of the jet perturbations are essen- V-V =0, pg(dVy+Vy-VVg)=—VPgy, (2
tial information, which we obtain by exploiting the same
technique. with the subscript §” standing for the fields in this medium.

Aside from the three-dimensionés-D) analysis, which  Note that the presence of an electroquasistatic field does not
gives results valid for any wavelength of the jet perturba-manifest in these bulk equations but, as we shall see later, in
tions, one-dimensionall-D) models rigorously developed the boundary conditionsThis electric field is zero in the
by Garca and Castelland$are employed to reobtain these conducting liquid; while, in the outer medium, it satisfies
results. The main assumption of 1-D models is that the wave-
length \ must be much greater than the unperturbed jet ra- E=-V®, V2d=0. 3
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=pR3% o as length and time scales, respectively, and de-
rived scales for the velocity and the pressure fields. Three
nondimensional parameters appear in this scheme; namely,
the Ohnesorge number €u/\/poR, t2he density ratiop

_ =p4/p, and theWeber numbeWe=pUgR/o.
lp-0=®Poc0g0t), "From the fact that botk andv, are Osolenoidal, the pres-
assuming that the outer electrode is grounded, ®¢,,.,r  sure fields are harmonic functions:
=0. Other required boundary conditions are: the kinematic 2 5
conditions of an evolution of the jet shape consistent with the V=0, Vpg=0. )
velocity fields and the equality of their normal componentsThe gas velocity field is easily obtained once the pressure is
(note that jumps in the tangential components are allowedtnown. For the velocity field in the liquid, we find an un-
due to the inviscid treatment of the outer gas coupled equation by applying the opera¥ot to the linear-
ized Navier—Stokes equation, giving

Let us describe the jet shape by the equati(m,t)
=0, and the unit normal vector at each surface poinhas
=VF/|VF| evaluated aF =0. At this locus, the potentiab
is prescribed to

dF+V-VF=0, (V—Vg)-n=0;
2r 9 _ 27y —
and finally, the stress balance at the free surface, Vo= CViv=0.
e E2 We propose a solution split into two termg=v,+v;, re-
(P— Pg)n—,u[VV+(VV)t]-n= oV -n— 02 n, spectively satisfying the equations

. o . _ [9,—CV?]v,=0, V?;=0. (5)

where o is the gas-liquid interfacial tension and the super-
script “t” stands for transposition of the corresponding ten- The fact that the linear operato¥s’ and g, commute guar-
sor. In the last equation, we can recognize the pressure jumphtees that the sum of these partial fields satisfies the original
the viscous stress, the capillary pressure, and the electrostagguation.
pressure terms, respectively. Other general requirements ap- For the electric problem, we have the nondimensional
plied atr =0 andr—c are that all physical magnitudes are perturbation of the electric potentig, also satisfying the
bounded. Laplace equation,

As we are interested in a temporal, modal analysis of the V24=0.
jet dynamics, no initial conditions are considered. The unper-
turbed jet is regarded as an infinite cylindrical column at restThe electric potential has been made nondimensional with
with a surrounding gas flowing with uniform axial velocity the scaleRE,;, whereE,=®,/[RIn(b)]is the field at the jet
with respect to the former. These features describe a solutiopHrface.
of the above equations and boundary conditions, associated The linearized boundary conditions are now considered.
with a perfectly cylindrical shapeR(,=r —R=0). Electric At the z-axis, regularity of the velocity and pressure fields
potential and pressure jump are in this case leads t&°

In(r/bR)
Dey(r,t)=—dgcoq wt) b’

dgulr—0=0vlr=0, dgvlr—0=—Ulr—g, IW|,—o=0,

a02u|r:0:azv|r:01 802U|r:O:_azu|r:0’
o 60q>300§(wt)

YR 2RZIn%b

. dgW .
I oW/, —o=lim——, lim =—0W|,—g,

r—0 r—0

Pey— P

cyl

IIl. STABILITY ANALYSIS . dgp
ar0p|r=o: lim —,

r—0

a0p|r:O: 0,
Any small perturbation of the basic solution satisfies a
linearized set of equations that we shall present in nondimen-
sional form. Letv=(u,v,w) and v4=(ug,v4,Wy) be the
perturbation of the basic velocity fields in the liquid and gas,
respectively, with explicit decomposition in the local basis of The jet shape is described, also in nondimensional form, by

cylindrical coordinates{u, ,uy,U,}. Let alsop andpg be the r=1+1f(6,zt). At that locus, we impose the kinematic con-
perturbations of the pressure fields in the liquid and the gasyitions

respectively. The bulk equations in the liquid and in the gas

become, respectively, u(r,0,z,t)|,-1=af, (6)
V.v=0, dv=-Vp+CV?; Ug(r,0,2,t)| ;=1 =u(r,0,2,0)],—;— \Wed,f, 7
V.vg=0, ;Dvg: ~Vpg, and the stress balance at the free surface,

where C(du+aw)|=1=0, 8
D=g,— JWed,. C(d,v—v+a4u)|,—1=0, 9

In these equations, we have introduced dimensionless

magnitudes using the jet radiés and thecapillary time f;

p|r:l_pg|r:1+2Cﬁru|r:1: _f_&zzf_aaaf_ApE-

(10
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Here Apg is the perturbation of the electrostatic pressure W o P
o Wy + —— | ky+ —= /W, =0,

Ape=—x co(wt)(f+d,¢|,-1), r r

wherey is the electric number, defined as where primes mean derivation with respect tand we de-
fine
€oE3R
X= , 2=k? "
— KZ=k2+ —.

C

and w= wt, is the nondimensional field frequency. It is im- .
@ Wk d y For the gas pressure field we have

portant to note that, since the liquid is perfectly conducting,

electric forces only act on the free surface and in its normal = pg 5 m?\ .
direction, so there is no shear stress of electric origin. Pyt T ke+ 4 py=0. (14
A. The dc case The boundary conditions at=0 reduce to

The dc limit (w=0) of the above problem serves as a  U(0)=0(0)=wW'(0)=p’(0)=0 (for all m),

first stage in the derivation of the general cage#(0) and, PO _ (15)
at the same time, constitutes an obligatory reference for a w(0)=p(0)=0 (for m=0),

discussion of the results. This case was firs’t published bwhile the rest are now written

Saville’ but here we follow the treatment of Gaaé ) .

The electromechanical dc problem may be solved in two u(1)=0f, (16)
steps. Initially we omit the electrostatic pressure term in Eq. -~ D=1 —ik Wef 1
(10) and find the corresponding dispersion relation. Next we Ug(1)=u(D) i e (17
evaluate the electrostatic pressure as a function of the free C[ik(1)+w’(1)]=0, (18
surface shapd, In fact this term enters the dispersion rela- . . A
tion in the same manner as the capillary term, so they are just Clv'(1)—v(1)+imu(1)]=0, (19)
added. Details will be shown later. Ay s (2 2% ,

Let us now consider a modal decomposition of all un- P(1)=Pg(1)=(m"=1+k)T+2Cu'(1). (20
knowns in the form The general solution that satisfies the regularity conditions at

N =0 and
9(r,6,2,t) =R §(r)exg Qt+imo+ikz)], 1y | andrmeae
R QI (kr)
for g=u;,v; W U, ,v,,W,, P, Ug, vg,Wg,Pgy; and p(r)z—Ale—((k), (21)
m
f(6,2,t) =R f exg Qt+imé+ikz)], (12 (k)
~ m
where() is a complex eigenvalue whose real and imaginary Po(r)=—Ag kIZ(k)’ (22
parts are callegrowth factorand oscillation frequencyre- . . R
spectively; m is the azimuthal number(intege) and k u(r)=ui(kr) +uy(kyr)
=2mR/IN is the already mentioned nondimensional wave 1" (kr) 17 (ko) | (kor)
number of the perturbation. Once this modal decomposition = "j ”j v m(Ky , (23)
is substituted in the set of equations and boundary conditions I (K) I m(ky) I m(Ky)
(4)—(10), we obtain the following problem in the radial vari- 51y =0:(Kr) + dy(Kyr)
able: ! Vi
o 2 iml,(kr) imlp(kyr) ikyl o (kyr)
" p 2 m N = ’ - ’ + I}

p'+ =K+ 1=z|p=0, krl/ (k) korl (Ky) mly(k,)

u m2+1 2m @9

~n i 2 ~ H ~ . .

u'+ ——| k°+ ——|Ui—i—v;=0, il (k) iyl m(kyr)

r r r W(r)=Wi(kr) +Wy(k,J)=A —1 LS
A : iy I (K) kI (ky)
s / 2 m?+1 2m. 0 (25)
v - vi—i—U;=0,
' re b where we have used standard notation for the intervening
/ 5 modified Bessel functions; and, Ay, B, andC are con-
W)+ —— | K2+ —z)WFQ (13)  stants to be determined. Substitution of soluti¢2$)—(25)
r into conditions(16)—(20) gives the following algebraic sys-

o B (o ML) am tem: )

Uyt | Kt =z U=z =0, A-B+C-Qf=0, (26)

oy Uy [, mPEL) o 2m ik yWef Ag

0+ | K+ —5— |0y =i —50,=0, A-B+C—-ikyWef= —————, (27)

r r r p(Q—ikyWe)
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Q 1 Ag=p(Q—ikWe)?f,
A_(l—Fm B+ EC_O’ (28 9 (31)
2m(1— &p(K))A—2m(1— & (k) B B=2CKH{1— nn(k)[1—&n(K)]}Gg ',

2

2m?+k2— 2/¢ (k) 2Ck
+ C=0, (29) CZZQ(_ﬂm(kv)[l_fm(k)]"'Tﬂm(kv)

m

{En(K)Q+2C[(K*+m?) (k) — 1]} A

x[§m<k>—§m<kv>]]eol?,

1
—2C[(K2+m?)&n(k,)—1]B+2C ——1)(3
Hrma (i) = HBT2C 8 ) with
Kn(k) N 2
— A+ (K2+m2—-1)f=0, (30 _ m
kKn(k)™ (k) = P k2= 2l (k)
where we have defined the auxiliary function and
I m(K)
§m(k)=k|”7(k)- 2CK?
m Go=1=2nm(k)[1=En(K) ]+ —5— 7m(ky)
From Egs.(26)—(29), we can write all the unknown con-
stants as functions df only: X[Em(K) = Em(ky)].

2

2Ck 12 Substitution of all these integration constants in )
{1= mm(k )L~ Em(k) 1} | Go '
QO — Im(Ky)LL 7~ Em(Ky o r

A=Q| 1+ givesD,f =0, with

Do=Gg {&m(K) Q2 +2COA(— 1+ {2k*+ M — K2 (k) [ 1= (k) 1} €m(K) + 27K )[ L= Em(K) L1 — Liér(k,)])

+ACHK((K2+mM*){ 1= 7KL= Em(k) T m(K) — (K+ M) {1 = (k[ L= Em(K) T} ém(k)
Km(k)
KK(k)

+ (k) [Em(ky) = En(K) T 1= 2/€(k) 1)} — 1+ m2+ k2= p(Q — ik \We)? (32

The dispersion relation in the absence of an applied elec- The next step is the addition of the electrostdtait-
tric field isD¢=0. In the last term of the definition @, we  ward) pressureApg to be previous formulation. It is not
find the expression( — ik yWe)?. The semiempirical intro- difficult to show?® once the electric potential problem is
duction of the gas viscosity in the model of Sterling andsolved, that this new term has the fotpz=— yHf, with
Sleichet? is done by the substitution of this expression by , ,

—Im(kb)K (k) + Ky(kb) 11, (K)

H =k (KD K (K — K(KD) (K)

02— Bk? We— 2ik \We(Q,

with 8 being a new parameter to be experimentally adjusted he new dispersion relation is
and equal to 0.175 in their case. This modification is only Do+ yH=0.
justified for the axisymmetric mode, for which the model has
been theoretically conceived and experimentally telted.
. . . B. The ac case

However, we extend it to nonaxisymmetric modes because
the main fact resulting from the viscosity of the outer gasis  Now we turn to the original problem, for which#0.
to eliminate the velocity jump, responsible for the Kelvin— The electric number is modified by a factor of &@s) and
Helmholtz instability for all modes. This qualitative argu- any of the expression§ll)—(12) are no longer valid. A
ment does not allow us to maintain the same valuggiaso  modal decomposition without any assumption for the tempo-
the results obtained fan# 0 must be considered only ten- ral dependence is in order:
tative. - . .

Taking also into account that the jet velocity must be 9(r.6,20)=Reg(r,hexpimf+ikz)],
much higher than the group velocity of perturbations for the (g, 7z t)= Re[%(t)exp(imgﬂkz)]
temporal analysis to be valid, we have the following simul-

taneous restrictions in the parameter sgdce: (again,g stands for any fluid dynamic magnitude other than

- the free surface of the jetThe general method to deal with
We>8 and pWe<13. problems where periodic coefficients enter the set of govern-
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ing equations is the decomposition in a temporal exponentidFor n>0 we rearrange Eq36) to give
factor and a periodic function of tinfé.In our case, the

periodicity of the time-dependent coefficient 1¥2, with fn — —xH/4

T=27T/5, i.e., fn—l ﬁ ﬁfm—l.

. . T
g(r,t)=Regrp(r,t)e”], f(t)=Refr(t)e”], (33 "

wherey, the so-called~loquet exponents complex in gen-
eral. The functions g;(r,t) and fy(t) being
(T/2)-periodic, we perform a Fourier expansion in the form

Repeated substitution of the ratibg, ;/f, for n increasing
lead to a continued fraction. Following the book of
Abramowitz and Steguff, we define

= b.)= byt 2
Orpolr,t) = > gn(r)eizna, Ci(@n.bn)=bo b+ b+
n=-—cw

B and we have
frp(t) = feiznet H f
T2 n;—m n XTf—lch(—X2H2/16,Dn+XH/2) with by=0.
0
Any of the unknowns has the explicit temporal dependence
Analogously, forn<0,

[

gr,H)= > gu(r)expyt+i2nwt), f, —xH/4
34 foor [ xH xH oy
"t Ty T,

f()= > f exgyt+i2nat).
n=-e and we find
Therefore a temporal derivative has the algebraic equivalent YH f
factor y+i2na. Tf;lch(—XZHZ/la,D,n+XH/2).
Solutions to system of linear differential equations with 0
periodic coefficients may be _subharmo?ﬁclhis distin-  Finally, substitution in Eq(37) gives
guished case correspondsy&iw. .
Note that the substitution of these expansions in EqsPo+ sxH+cq(—x*H%/16D,+ yH/2)
(4)—(9) gives an independent set of equations for each 202 _
. ; +ci(—x°H*/16D _,+ xH/2)=0, 38
n (n=-—x,...,0,...), equivalent to the one in the dc case, ci(~x ntxH/2) (38)
given by Egs.(13—(19), provided () is replaced byy  which is an implicit relation determining the values of the
+2inw. Therefore, for eacm expressionsg21)—(29) and  Floquet exponenty as a function of all the relevant param-
(31), together with the substitutions eters.
- ~ 2 The roots of Eqs(38) are not easy to find. Truncation of
Q—y+i2ne and f1p, (35 the two involved continued fractions determines the number
give us the solution fop,, Pgn, Un, Un, andW, in terms  and distribution of poles and zeros in the complex plane. A
of fn_ general knowledge of these distributions is needed to find
Now, we are ready to apply the remaining condition, Eq.nonspurious roots and to 'study their convergence Wi.th re-
(30), in which the electric pressure term has now a factorsPect to the number of retained terms. A simplified version of

cog(wt). This factor, which can be expressed as the dispersion relation for axisymmetric jéta=0) comes to
o ot ol our assistance in this particular case.
COSZ( wt)= %—l— %eZth+ %e*ZIwI,

couples the equations for different If we introduce the O AXiSymmetric jet: 1-D approach

Fourier expansion fop, pg, U,, andf; and express all the In this subsection we describe the changes in the disper-
coefficients in terms of thé,’s, we can collect the coeffi- sion relation, valid for both the dc and ac cases, when using
cients of terms having'?"! to obtain the infinite set of a 1-D model for the dynamics of an axisymmetric jet=0).
difference equations Among trll% 1-D schemes studied by Garciand
1 Castellanos? the “average model” has proven to be the best
Dnfnt 3 xH (2 n T+ F0-0) =0, (36 choice if accuracy andgsimplicity arepconsidered together.
whereD,, comes from the functio®, once we have made This model performs a Taylor-series expansion of the veloc-
the substitution35). ity field of the liquid in the radial coordinate and retains only
The difference equation86) are solved in terms of con- terms up to the second power of the variable. Consistent
tinued fractiong® To this end, we will consider separately truncation in all the magnitudes and the choice of the free

the cases=0, n>0, andn<0. Forn=0 we have surface and the mean velocity at each section of the jet as the
two sole unknowns lead to a very simple formulation of the
Do+ EXH 24 E+ f;l) —0. (37) et dynamics. Its linearized version allows us to replace Eq.
4 fo  fo (32) by
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2\ 02 5 The existence of hydrodynamic modes has not been reported
Do= 2( 1+ 5|3z T6CQ—1+k until recently? because of two reasons. First, as their roots in
the complex plane lie very close to poles, they are hard to be
— Ko(k found. Second, being purely damped, they do not contribute
—p(Q—ikWe)? oll) (39 Nlouid let into, e

kK4(K) to the rupture of the liquid jet into drops. Thus their role is

o . much less significant and no interesting information is lost if
for the dc problems and the same substitution 138 in they are ignored. In addition, being their eigenmodes real,
this expression for the ac problem. No further changes mu%ey are not able to generate parametric resonance, as it will
be considered. be clear later.

| The llnlte('jrestmg pomt&si this formulal IS tl?art] we havefa The physical mechanisms that play a role in the stability
polynomial dependence di, consequently all the zeros of ¢ o jet against small perturbations are easily identified in

the dispersion relation at any level of truncation of the CONhe dispersion relation. Capillary forces are the reference
tinued fractions are obtained by standard methods. Spurious. <. it ai0ne they make the jet unstable to perturbations
zeros, an effect of numerical truncation, are easily discerned .., i(<1 and’ stable otherwiséRayleigh instability. Vis-
from persisting ones by comparis_on for different truncationsCous forces are measured by the Ohnesorge nu@band
Moreover, the persisting approximate zeros from the 1-Dy oy 45 not modify the Rayleigh stability limit but lower the
mod_el SErve as a convergence gL(rtyplca! number of terms growth rate of any perturbation. The pressure field of the
retained in the continued fractign® obtain accurate values surrounding gas introduces the Kelvin—Helmholtz instability

from the 3-D formulation. All these features are discussed "}nechanism, identified in the dispersion equation by the term

Sec. IVB. affected by the combinationWe. Thus it acts more strongly
for higher jet velocities and fluids with more similar densi-
IV. RESULTS ties; this mechanism is well known to be more efficient for
A de fields greater wave numbers. The nonL_miformity of the gas v_el_ocity
' near the free surface is responsible for the loss of efficiency
The dc problem with negligible influence of an outer of this mechanism? Finally, electric forces acting on the
medium is analyzed by Savilleand with more detail by free surface are measured by the electric numbeior m
Garcr? who discusses the existence of the so-called hydro=0, we must distinguish two opposite mechanfsifion the
dynamic modes. For this reason, the analysis of the role afne hand, we have stabilization due to a relative increase of
the relevant parameters that we present now is brief, and halse outward electrostatic pressure in the valleys of perturba-
the purpose of serving as a reference to understand paramébns (because the field is greater for thinner columns at a
ric resonances when we deal with ac fields. Concernindixed potential; on the other hand, we have destabilization
Saville’s results, it is perhaps worth to advance that our rangeaused by the point effect at the crests. As these two effects
of interest for the Ohnesorge numbé&, not much greater are related to the local mean curvature of the jet surface, their
than 0.1, does not coincide with his, typically greater than 1dominance depends on the wavelength of the perturbations,
In our case,C is limited by experimental conditions for so the electrostatic pressure is globally stabilizing for low
which parametric resonances could be observed, as we shalhd destablizing for higk. The value ok which is the limit
see later. In any case, this fact does not mean any restrictidsetween both situations, i.e., neutral electrical effect, is de-
on the values ofC in our computations. pendent on the parameter(radius of the outer electrode in
The dispersion relation for the modem, units of jet radiug but not greater in any case thk#0.595.
dm(Q,k;C,We,p,x,b)=Dy+ xH=0, implicitly determines Form=1, the cross section is circular and area-preserved and
the functionsQ (k) in terms of all listed parameters. The the stabilizing mechanism related to the radial dependence of
dependence with respectébis transcendental, as it appears the field is not present. Higher azimuthal modes, character-
in the argument of the modified Bessel functions through thézed by a corrugation of the peripheral line of the cross sec-
variablek,. For fixed values of the wave numbkrand the tion, are hard to be destabilized because the capillary forces
azimuthal numbem, a countable, infinite number of roots act more strongly.
can be found. Two of them are associated with the surface Figure 1 shows a typical stability spectrum for=0,
deformation, and their corresponding eigenmodes will bewith the real and imaginary parts &f represented separately
called “capillary modes.” The other eigenmodes have a re-as functions of the nondimensional wave numkeftable
circulating velocity field, whose amplitude is typically much and unstable regions in theaxis are easily identified by the
greater than the one of a capillary mode with the same ansign of RéQ)). If y>1, the outward electrostatic pressure is
plitude of the shape of the interface. These are the “hydrostrong enough with respect to the capillary pressure jump to
dynamic modes,” whose evolution is mostly dominated bystabilize a small region nede=0, where we find slightly
inertia and viscous stresses in the bulk, while capillary andlamped oscillations. In the figure, this region is not notice-
electrical forces usually have a negligible influence. That isable becausg is too close to unity, so it is restricted to 0
why they are always purely damped, i.e., their correspondingsk<0.0077 and the maximum real and imaginary parts of
eigenvalues are real and negative. Capillary modes are by féhe eigenvalues are of the order of 250 ¢ and 5
the relevant ones in most situations. Their behavior deterx 10™*, respectively. Otherwisgy<1), this region has a real
mine the stability limit ink and the typical breakup time, positive root leading to aperiodic growth, like the adjacent
since their eigenvalues usually have the greatest real pai:region, up to a value dk increasing withy and We from
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os5¢ =0 number, giving respectively the breakup length of the jet and
025 b — ¥-125 the size of the resulting drops. A map of these values for
’ different C and xy has been reported by Gaaciand
Re(Q) Castellanog? In Fig. 2 we reproduce a representative part of
A 25 3 355 4 that parametric study for the sake of further comparison with
-0.25¢ ' . ac results. The general behavior shown is an increase of the
capillary modes . . )
_ maximum growth rate and its associated wave numbey for
0S5 TR increasing andC decreasing.
075k first hydrodynamic mode The effect of the surrounding gas has not been consid-
ered in the previous discussion. The effect over any stability
-1 F curve is very similar to that of the electrostatic pressure, i.e.,
8 an increase in height and length of the unstable lobe for
‘ increasing values gbWe.
4 B. ac fields
2 The parametric instability is clearly originated by a cou-
m() . i pling between a natural frequency of the system and the fre-
05 T i ic fieldzor this reason, hydro-
> quency of the |mposed_electrlc field=or this reason, hy _
dynamic modes are discarded as generators of parametric
-4 resonance, since they are purely damped modes. For axisym-
-6 metric modes, no relevant information is lost if we substitute
< the 3-D (transcendental dispersion relation by the 1-D

(polynomia) one. The 1-D approach allows us to analyze the
FIG. 1. Nondimensional growth factor R&) and natural frequency Irf2) distribution of zeros in a simpler manner.

for the axisymmetric modem=0) of a jet subjected to a dc field, as a The Floquet exponent remains multivalued because the
ES&OZ:IL;TO?otr;ltmpe;z';g?ér\gaggmgf ELSS?%@;";J :ige complex numbersy+i2wn, with n integer, are equivalen't.
(dashed lingor y=1.25(solid line). Only the first(most significanthydro- ~ AS a consequence, all roots are ordered in columns, with a
dynamic mode from an infinite series is represented. vertical separationi2o. Moreover, if y is a root, so it is its
complex conjugate’. These properties imply the restriction
of the effective root finding to a stripsOim(y)<w in the
complex plane. If we truncate both continued fractions

S ) present in the 1-D ac dispersion relation at the first term, we
|t<r;isegmenr11t ::?e:]e twi ha\r/ﬁ g%@g%?g?”?@n{(?#\g’n find an expression whose zeros are identical to those of a
S segmentis not presente : X=VVe=0, eve polynomial expression of degree six, namely

for lower values when the electric field and/or the influence

the Rayleigh stability limitk=1 (valid for y=We=0). Be-
yond this region we find aperiodic damping, except for a

of the outer medium are considered. YH YH YH
From a practical point of view, the most interesting fea-| Do+ > (D1+ > D_;+ 7)
ture in the dc dispersion relation is the maximum growth rate
among all possible perturbations and its corresponding wave x2H?
- (D;+D_;+xH)=0. (40
16
0.55 - . .
Similar expressions are found for successive orders of trun-
0.5} cationp, giving polynomials of degree-24p. Although the
0.45¢ corresponding number .of'complex. rqots is alse4p, only
Re() some of them are persisting whens increased, the others
0.4} being equivalent roots lying outside the strip defined above.
035} A typical scenario in the complex plane is shown in Fig)3
where roots fop=1, 2, 3, and 4 are tracked for some values
0.3t of the parameters leading to resonance. Although some ar-
025} rangement of roots in columns is apparent, the rule concern-
ing the indetermination iry is violated due to truncation of

0.2 the continued fractions. Note that the substitution yof
06 07 08 09 1 L1 12 43ig% in the infinite set(36), with g an arbitrary integer,
leads to an equivalent infinite set of equatiowee have
FIG. 2. Maximum growth ratéRe(Q)]maxand corresponding wave number merely to renama’ =n+q); but if we deal with a truncated
kmax for the axisymmetric mode for different values of the paramefeasd set, the equivalence is lost. Fpr=1 the six roots lie in the

x (dc casg The rest of the parameters are fixedte25 and We=0. These vertical line defined by the two roots of the dc case: in fact

magnitudes are the most relevant to determine the unbroken length of a je}1 .
and the size of the resulting drops from a naturaise-driven breakup these roots are also roots fpr=1, as it could be demon-

process. strated from Eq(40). Forp=2, only two conjugate roots lie

G5:8Z:01 €202 AInF ¥1.



Phys. Fluids, Vol. 15, No. 2, February 2003

Stability analysis of conducting jets

:m(y)A Re(y)
op=1 0.4
¥ ZBZ a 75 %
& xR o 5 @ 0.3
& o 25 ® 0.2 }
s ..o . * 5 0.1
- -0.4 -0.2 E 0.2 = Re(y) i
@ o 23 © 05 1
A o -5 ”n -0.1
* A 75 * 0.2
*
Imy
() 4
(@
3
Im
=T @) A
# o2 7.5} *
AD=
& *p:4 5 a2 2t
& n
G 25 & 1t
R ¥ 02 02 04 Rety) / - :
& 25 S 0.5 1 1.5 2 2.5 3 . 3.5
& »
S FIG. 4. Stability spectrum from the dispersion relation in the case using the
& ® average 1-D model; witlC=0.03, b=25, We=0, xy=2.5, andw=1. Real
« -1.5¢ # and imaginary parts of the Floquet exponerthtave an analogous meaning
as() for the dc caséalso represented in the figure with dashed lines, for the
(b) comparable rms valug=1.25. Resonances are characterized by lobes in

the real part and constantgiftarmonig or 1 (subharmonigin the imaginary
FIG. 3. Distribution in the complex plane of the roots of the ac dispersionpart. Resonances are located in kiaxis in segments containing the coin-
relation using the averaged 1-D model. The roots are classified by differentidence of multiples o with the dc natural frequency.
marks according to the numberof retained terms in the continued frac-
tions. Parameters are fixed to W8, b=25,C=0.03, y=2.5, andw=1. Two

different situations are depictets) k=1.8 (resonantand (b) k=1.1(non-  exponent are represented as a function of the nondimensional
resonant wave number for some values of the parameters, forKkow
We find an instability window very similar to the dc ofthe
dashed line in the same figyreve will refer to it as the
in the former vertical line, more separated than those corre“capillary lobe”; the rms part of the electric force is what the
sponding top=1, while the remaining eight migrate to two jet mainly “feels” for these perturbations, although some
new verticals. When the number of terms retained in thedeparture from the dc curve is apparent at the end of the lobe
continued fractions increases, the distribution of roots re{the role of the parametes will be discussed later As we
veals its subsequent tendency: the two roots in the centrahcreasek, the real part of the Floquet exponent becomes
vertical, having increasing imaginary parts, are spurious; th@egative and its imaginary part increases up to the value
remaining roots lie near two vertical lines and are persistenim(y)=w, for which the subharmonic resonance takes place.
with extremely quick convergence to their final values. OnlyThis first resonant lobe reaches its maximum for a wave
the closest roots to the real axis, pointed in the figure, araumber close to that one verifying the resonance condition
relevant, the other being redundant. In this first example, abn(Q))=w, i.e., natural dc frequency equal to the imposed
Im(y) results to be equal te, the instability is subharmonic. field frequency. Depending on the electric field strength and
In Fig. 3(b) a nonresonant situation is shown. The roots arehe importance of viscous damping, the first resonant lobe
also organized in two columns, but now only slightly devi- encountered may reach positive values, thus leading to insta-
ated from the positions of the two real dc roots. The ac rootdility; or, on the contrary, it may lie entirely in the region
closest to the real axis lie on the axis itself, so the instabilitypelow thek axis. The imaginary part remains the same for
is harmonic for them. In view of these facts, we will restrict the first resonant lobe, which is subharmonic, as discussed.
our findings to the closest roots to the real axis o1 Increasing furthek, the dc curve is recovered until a new
(typically we choosg@=5), with Im(y)=0; and, among them, resonant lobe is generated, this time with zero imaginary part
we will choose the one with greatest real part as the domi¢tharmonic resonangeWe observe the same sequence re-
nant Floquet exponent in the stability analysis. peated indefinitely, with resonant lobes growing from the dc
The root selection that we have just discussed is showbasis line; they decrease in height and width very quickly,
in Fig. 4. Real and imaginary parts of the dominant Floqueexcept whernw is low, as it will be later discussed.
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Figure 4 has been obtained from the 1-D model. The f f

. . . . 1

asymptotic behavior of the curve for increasing valuekof 80 0.75
. L . =13 : =1.5

(beyond the capillary lobe and omitting the resonant regions 60 0.5
is not consistent with that presented in Fig(dt casg¢ The 40 0.25
discrepancy must be attributed to the shortcomings of the 5 2025 W‘m s /8n 10m
1-D model fork not small. The damping factor is, according | -0.5

to Eq. (39), 3CK¥(1+k?/8)~24C. Conversely, the varia- s noIm 3n 4m ST

tional model, valid for arbitraryk, predicts the stronger 28 =20

damping Ck? for increasingk. Of course, the exact 3-D 79

model does not present these limitations and agrees with th =S An W en
t

— o W™

variational calculations for very low viscositi€Eig. 9 will -20
show an example obtained with the 3-D model, and exhibit- _gq
ing a correct behavior for increasirig.

If we are interested in experimentally detecting a para+iG. 5. Temporal evolution of the free surface amplitude for different rep-
metric resonance, the temporal evolution of the free surfaceesentative wave numbers. The selected parameters are the same as in Fig. 4.
should be described and the coefficiefifg,f.,,f+5,...}
found. To this end, according to E6), we select the ei-
genvector corresponding to the eigenvalue closest to zero @b a comparison of results in the range of validity of the
the matrix former is important in order to know its limits. The varia-

D, tional theory is developed from the basic ansatz that the lig-
uid flow is potential; viscous effects are included via a func-

-1
2

Don+1 tion that estimates the dissipation in the bulk of the®jet.
This dominant dissipation is of ord€l, as it is stated in the
Do evolution equation for the amplitude of perturbations found
in Ref. 9, that we transcribe in our present notationrfet0
as
D,._ . :
n-1 5 f+Cu(k)f+d(k,x)f=0, (41)
" whereu(k)= 2[2k?—1/&,(K)], d(k,x)= —[1—k?— x(t)H]/
&0(k), and dots mean derivation with respect to time. The dc
1 case| x(t) = xo] allows us to estimate errors in this formula
from a perturbative expansion in powers ©fof the exact
H dispersion relatio,=0, that we rewrite fom=0:
X
+ 2 1 1 2 1 2
4 ' 1 Ck
R O2&0(K) +4CQ| k?&o(K) — >t o
1 2 1
1 2 x(k2§o<k>—k5§o<kv>)}
where the function®; (i=—n,...,n) are evaluated at the Ko (k)
selected Floquet exponent. In fact, aside from numerical er- —1—K2— yH+o(Q—ik VWe)2—2 42
rors, the vector {_,,,f _,:1,....fn_1,fn) IS the only basis xXH+p( ) kK4(k) 42

efrﬂzaigfi;hﬁvg“bsﬁg 4())f 1{';]‘2 rTJi:rtl))é.r E??ettzmggrilleqekside from the gas effect, which is not included, it can be
Enents need ngot coingide With the truncation orgebut this easily shown that E41) is the first order expansion in the

. . . Lo ramet f Eq. (42 ing th mptotic expansion of
choice suffices to achieve a good approximation. What w arameteiC of Eq. (42), using the asymptotic expansion o

observe as a general rule is: at the capillary lobe, nonoscil-he modified Bessel functions included &(k,) for large

lating growth; at the first resonant lobe, oscillations with pe values of the argument. The next term in the expansion in
’ ’ N o — 3/2 2 _ <
riodicity T/2, growing or decaying depending on the valuespowers ofCis —4C¥2/0k /&(k), aC-dependence consis

of the parameters; and, at the second resonant lobe, the :sartﬁnt with & viscous dissipation due to the boundary layer

result but with periodicityl. Outside the lobes, the perturba- a(%acent o the free_surfa&%Let us compare the maiqmum
. . ; . . . Floguet exponent given by both theories fpr2.5, b=25,
tions are decaying, with neither harmonic nor subharmonic—

periodicity. Figure 5 illustrates these features for the repre-w:l’ and C=0.03. The variational theory gives

. . . (Kmaxs Ymay=(1.841, 0.290) and the dynamical one
sentative cases corresponding to Fig. 4. (Kmax: Yma=(1.849, 0.323); if we estimate the shift in

, , - Ymax OFiginated by the correction of ord&®? we obtain
1. Comparison with the variational theory Ay~ 4C3’2k2/[\/;fo(k)]=0.047, which is of the same order
The present results are a generalization of those valid foas the difference found between both theories. Note that the
low viscosities found in Ref. 9. The mathematical approacterror of the variational model, some 10%, is not negligible,
is quite different in both theories, variational and dynamical,even for such a low viscosity. As a conclusion, if we seek for
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0.1 FIG. 7. Effect of a nonzero viscositfC=0.03 in the study in frequency of
: Fig. 6 for y=2.5. The points corresponding t0=1.3 are indicated for a
later reference.
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FIG. 6. Dependence of the three competing maximum Floquet exponents aiumber is very close to the maximum of the=0 resonant

the frequency of the imposed electric field, These maxima are marked in  [obe and that then=1 resonant lobe is shifted enougte.,

the two upper figures as poings(maximum of the capillary axisymmetric for a not verv high imposed freque
lobe), b (maximum of the first resonant axisymmetric I¢ppandc (maxi- o }I/d t?f K P di 4 Fi ﬁc}é that hiah i d
mum of the first resonant lobe for mode=1). The sweep in frequency goes ne cou Ink, regarding Fig. o, that high impose

from ©=0.3 up tow=>5 in steps ofAw=0.1. The rest of the parameters are frequencies are desirable to achieve competitive resonances
We=0, C=0, b=25; andy=1, 1.5, 2, and 2.5. against the capillary rupture. The real fact is that the selec-
tion of higher resonant wave numbers makes these unstable

modes more affected by viscous damping. To show this, in

a quantitati\_/e_ desgriptio_n of paramedric resonance in "qt%id ig. 7 we present again the values and location, as a function
of non-negligible viscosity, we must use the exact dynamica f w, of the maxima of the first resonant lobes for the modes

theory. m=0 and 1, as well as the capillary maximum, this time for
a nonzero Ohnesorge numk&=0.03 andy=2.5. Even for
2. Modal competition: Role of viscosity and imposed this low viscosity parameter, the increase observed in Fig. 6
frequency is counterbalanced by viscous damping. Both modes are
Previous results obtained from the variational modeldamped at a similar rate. Savilldescribed for the dc case a
show that the moden=1 exhibits a first resonance clearly stronger viscous damping of capillary perturbations for the
stronger than its capillary lobe and leading to competitionmodem=1 than form=0, but these findings are not contra-
with the axisymmetric mode. We first consider these twodictory to ours because resonances take place at higher wave
modes for zero viscosity. The relative maxima are reprenumbers and the range @f considered in each case is not
sented in Fig. 6 as a function of the field frequency, in thethe sametypically C>1 in Saville’s paper It is worth not-
range 0.3 w<5, for different electric numberg. The com-  ing that the range of viscosities explored in this work is very
putations are based on initial guesses supplied by the variaestricted by the main goal of the determination of physical
tional method discussed in the latter reference. As pointedonditions under which parametric resonances are observ-
before, the capillary lobe has its maximum closely locatedable.
near the dc limit for the whole range of frequencies. On the  Once the basic properties of the induced parametric in-
other hand, each resonant lobe of batk-0 and 1 modes stability has been elucidated, we turn now to the obtention of
shifts to the right in thé-axis asw increases, an obvious fact numerical results from the exact 3-D dispersion relation. The
in the light of the above discussion, and time=0 andm=1  relevant issue from a practical point of view is again the
first lobes tend to join. At the same time, we observe in thigddetermination of the wave number of the most dangerous
figure that their maximum values slightly increase for fre-perturbation, along with its growth factor, for the resonant
guencies not too small. It could be stated that the maximunmodes. Comparison with the most dangerous capillary mode
Floquet exponents of the first resonant lobe for both modeshould determine if the resonance has any chance to be ex-
are more similar in sizey.,, and location k.., as the perimentally observed. In Fig. 8, we represent a map of val-
imposed frequency increases. The competition in noise- ues Kmax.lRe(Y)Imay for values of the electric number
dominated evolution of jets should presumably consist of g y<2.5 and Ohnesorge numbé leading to instability for
superposition of axisymmetric capillary pinching and deflec-the first resonant lobe. This map has to be essentially com-
tion of drops with deflection aperture dependent on thepared to that of Fig. Zdc casg using there the rms field
growth rate of the moden=1. If a wave number selection value(x/2), because only a small change for the maximum is
mechanism is applied to the jet, with a wave number outsideletected in the capillary lobe. To destabilize liquids with
the capillary axisymmetric lobe, axisymmetric nondeflectedC~ 0.1, we need electric fields too hard to be experimentally
breakup could be observed provided that the selected waatained. Only for very low viscosities the resonance has a
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FIG. 9. Growth rates Re) as a function of the nondimensional wave num-

FIG. 8. Map of the maximum growth raféRe(Q2)],.., and corresponding Per k for the modesm=0 and 1, and We0 and 225. We used=1.3,
wave numbek,,,, for the first resonant lobe of the axisymmetric mode for p=0.001; and, for the rest of parameters, the same values as in Fig. 7.
different values of the paramete@ and y giving positive Floquet expo-

nents. The frequency is set@s=1. The rest of parameters are fixedte 25

and We=0. sweep in the wave number is experimentally performed, it is

expected to observe alternatively lateral and varicose pertur-
bations of the jet, according to the dominance of madesl
growth factor high enough to be observed, provided the corandm=0. Also in the same figure, the air effect is measured
responding wave number is previously selected. from comparison between the curves labeled @ and
For illustration purposes, let us propose a feasible ex*We =225." Note that the latter are only slightly increased
periment consisting in a conducting jet with a radRis100  and shifted to the right. We insist in the tentative character of
um, densityp=1000 kg/n?, dynamical viscosityu=16.4  the curvem=1, We=225, for which the valugdg=0.175 is
X 10" 4 Pas, and surface tensien=0.03 N/m, exiting from  not justified.
a nozzle at a velocityUy,=8.3 m/s; these values give
C=0.03 and We=225. If an outer cylindrical electrode of v, CONCLUSIONS

radius 2@ is placed coaxially, it can be considered at infinity We h din thi K i bil
in order to calculate the highest electric field for which di- € have presented In this work an exact linear stability

electric rupture is prevented. The rupture mechanism in thiélnaIySiS of capillary jets of arbitrary viscosity and we have

geometry is a corona discharge occurring at a field evaluategPMPared it to a previous variational one, valid only for low
at the jet surfaceE, and governed by Peek’s 1&lv viscosities. The formulation also included the effect of an
max»

outer viscous gas in a semiempirical way. Although the sta-
0.308 bility spectra predicted by both theories are qualitatively
VR(cm)

' similar, errors in the variational model are significéabout
10%) even for an Ohnesorge number as smaliCas0.03.
giving in our caseEgma=126.5 kV/cm and a potential dif- For the axisymmetric modgm=0), a one-dimensional
ference between jet and outer electrodg=3.79 kV. In  model has revealed to be useful to analyze all the roots of the
these conditions, the highest electric number without corondispersion relation in the complex plane, a difficult task for
effect is yma=4.72. We may thus safely set the appropriatethe 3-D exact model. Once the nature of the roots are ana-
voltage to obtainy=2.5, a value which has proven, regard- lyzed, computations should be performed with the 3-D
ing Fig. 7, to generate a first resonance of the order of thénodel due to the applicability of the 1-D model, restricted to
maximum of the capillary lobe, at least for not too high field the modem=0 and wave numbers not much greater than 1.
frequencies, for which viscous damping is not severe. Morévlodal competition takes place between the capillary axisym-
precisely, if we are interested in the generation of an observmetric (m=0) mode and the first resonances of modes0
able resonance leading eventually, after breakup, to dropsnd 1, with significant influence of the imposed frequency in
sensibly smaller than ordinary drops arising from the capilthe last two ones. Finally, we have shown, by means of a
lary mechanism, let us choose a nondimensional wave nunpractical case, that experimental evidence of parametric reso-
berk=2. Figure 7 gives us a value=1.3 to have the maxi- nances could be pursued.
mum growth rate of the first resonant lobe for that wave
number; the corresponding dimensional frequency is 712Q cKNOWLEDGMENT
Hz. The question that arises now is about a possible coexist- )
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