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Surface stimulation of any physical origin (electrohydrodynamic, thermocapillary, etc.)
has the goal of generating localized perturbations on the free surface or the velocity
field of a capillary jet. Among these perturbations, only the axisymmetric ones
are determinant for the jet breakup. Often, the stimulation is weak enough for a
linear model to be applicable. Then, the stimulation can be described by means of
the Green functions for stresses, both normal and tangential to the interface, the
calculations of which are, in addition, uncoupled from the hydrodynamic variables. If
a harmonic forcing is applied, these Green functions are combinations of the spatial
modes whose associated poles lie inside the appropriate integration contour of the
complex wavenumber plane. This is the motivation for a comprehensive enumeration
and description of the spatial modes, which has not been done up to now. Modes
familiar from a temporal analysis, the dominant and subdominant capillary modes and
the hydrodynamic modes, are present, along with modes specific to a spatial analysis.
Most of the latter have already been mentioned in the literature for inviscid jets, but
not analysed. A mode not previously found is reported. In addition, a description of
the velocity field associated with each mode is provided, as a tool to understand their
physical origin and behaviour. The relative importance of each mode in both normal-
and tangential-stress stimulations is discussed. Finally, the well-known merging of
poles below a critical jet velocity, leading to absolute instability, is analysed in the
light of the modal description.
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1. Introduction
The stimulation of capillary jets issuing from a nozzle for controlled production of

drops is nowadays widely applied in many industrial and technological processes,
such as ink-jet printing, microfluidics, combinatorial chemistry, biological assays,
combustion science and aerosol science. For a perspective of the relevance and
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variety of stimulation techniques the reader can consult the work of Lee (2003).
For our purpose, we can classify all these techniques in two groups: stimulation at
the nozzle and surface stimulation. By stimulation at the nozzle we mean devices
acting on any part of the reservoir of the liquid to be ejected, i.e. piezoelectric and
bubble-jet setups. On the other hand, by surface stimulation we mean any stimulation
mechanism acting on the surface of the jet once it has been formed. Consequently,
it is, in general, independent of the reservoir and nozzle features, especially if the
stimulation region is at a distance for which the initial velocity profile has relaxed to
a uniform one. At the same time, this distance has to be short enough in order that
the amplitude of stimulation is significantly greater than the noise-induced amplitude
of the most rapidly growing mode. The independence of nozzle and stimulation is the
main advantage of these devices, as it makes possible multi-jet assemblies stimulated
without acoustic coupling between the individual jets. Electrohydrodynamic (EHD)
and thermocapillary stimulations are the best-known implementations of this kind of
stimulation.

In EHD stimulation (Goedde & Yuen 1970; Crowley 1983; Barbet 1997), an
electric field is usually set by means of an electrode placed very close to the jet
surface, not too far from the nozzle. Shielding by other grounded electrodes is
convenient (González & Garcı́a 2009) to keep the region of electrostatic influence
on the jet narrow. In this way, an electric stress is applied over that region.
For perfect conductors, we only have a normal electrostatic stress, but for finite
electrical conductivity we also have a modest tangential stress as the jet is no longer
equipotential.

In thermocapillary stimulation (Nahas & Panton 1990; Barbet 1997), a laser beam
with modulated intensity heats the surface of the jet, yielding a spatial distribution
of temperature on it. As the surface tension depends on the temperature, we have
two physical effects: (i) a decrease of capillary pressure in the hot region, where the
surface tension is lower; and (ii) a Marangoni tangential stress, given by the gradient
of the surface tension. We refer the reader to the work of Barbet (1997) where, in
the chapter devoted to the thermal stimulation, we can find estimates of the relative
importance of pressure and tangential-stress contributions, and the typical length at
which the temperature gradients persist on the jet surface. Under his experimental
conditions, he concluded that the stimulation due to the Marangoni effect is one order
of magnitude stronger than that arising from the differences in capillary pressure, and
that the rise in surface temperature is restricted to a short length (one to five times the
jet diameter).

A common feature of these two surface stimulations is the low amplitude of
deformation achieved after the stimulation, compared with those obtainable by nozzle
stimulation. As an example, EHD stimulation of submillimetric jets typically produces
initial perturbations of the order of 10−3 times the jet radius, to be compared with
a typical noise level of 10−5 (Barbet 1997); electric breakdown limits that initial
perturbation factor to 10−2 in experiments reported in González & Garcı́a (2009).
Furthermore, these perturbations yield an impulse rather than a deformation. The
main consequence is that the jet can be considered as virtually cylindrical over the
whole stimulation region, provided that it remains reasonably local (by using the
above-mentioned shielding electrodes in one case or having a sufficiently high thermal
conductivity in the other). This enables us to apply two important simplifications
from a mathematical point of view (Crowley 1983, 1986; Spohn & Atten 1993):
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(i) the stimulation problem is linear; and (ii) the stresses can be calculated under the
assumption that the jet is a cylinder, so they are uncoupled from the hydrodynamic
variables. Strong or very extended stimulations, which are not the usual cases, will be
disregarded.

As the problem is linear and the surface stresses are inputs independent of
the hydrodynamic variables, the Green function formalism is the best approach.
Specifically, we are interested in the Green function for an infinite jet with uniform
velocity profile, with the surface stresses as the inhomogeneous terms. This provides
a useful tool to characterize either EHD, thermocapillary or any kind of surface
stimulation. In doing so, we will find expressions where the spatial modes are
superposed. This is the motivation for a systematic characterization of the modes,
prior to the understanding of the Green function itself.

In spite of the impressive number of works (Eggers 1997; Lin 2003; Eggers &
Villermaux 2008) published on capillary jets since the pioneering research of Plateau
(1873) and Rayleigh (1945), the modal analysis of the basic model is not still
complete. This is perhaps due to the success in the description of the instability
by means of merely considering the only mode which is unstable, for wavelengths
greater than 2πR (R is the unperturbed radius of the jet). This analysis has been
recently carried out from a temporal-instability point of view in Garcı́a & González
(2008). There, as Lord Rayleigh proposed, the unperturbed jet is considered to be an
infinitely long column at rest. The authors state that, in addition to the two well-known
capillary modes, one being the previously mentioned unstable mode, there called the
dominant capillary mode, and the other that is always stable, called the subdominant
capillary mode, there exists an infinite number of decaying modes, the hydrodynamic
modes. Capillary modes are originated by competition between capillary forces and
inertia (and eventually viscosity); they have a significant free-surface deformation and
their combination is sufficient to describe any perturbation in both the jet shape and
the mean axial velocity. On the other hand, hydrodynamic modes have their origin
in a balance between inertia and viscous forces, and are essentially described as
having recirculating velocity flows and small surface deformations. They have been
previously described in liquid bridges (Nicolás & Vega 2000) but ignored in jets. The
two capillary modes and the hydrodynamic family form a complete basis for any
axisymmetric perturbation of the infinite viscous jet.

Since the work of Keller, Rubinow & Tu (1973) on inviscid capillary jets, the
temporal approach has been viewed as the limit for large jet velocities of the
more realistic description provided by the spatial analysis, for which the jet exits
from a nozzle and perturbations are allowed to evolve spatially. In addition to two
spatial modes related to the temporal capillary modes, Keller and co-workers found
another family, infinitely numerous, with striking features: growth much greater than
the dominant capillary mode and very long wavelength. They are specific to the spatial
analysis, with no counterpart in the temporal analysis. There is little description of
these modes in Keller’s article, as their behaviour was considered rather unphysical.
Based on their long wavelength, they were discarded as not observable in experiments.
Alternatively, Bogy (1978) gave radiation arguments to make the same conclusion.
Also, there was another inviscid mode mentioned by Busker & Lamers (1989) and not
found by Keller and co-workers, which was originally reported by Boersma (private
communication). However, all we knew about this mode was its mere existence and
its asymptotic location in the complex wavenumber plane (hereafter referred to as
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the k-plane) for large jet velocities. More recently, the same mode was taken into
account in the search for global modes of falling capillary jets by Le Dizès (1997).
Finally, a new mode with similar origin as Boersma’s mode, not reported up to now,
must be added to the list, as we shall show.

Not long after Keller’s work, the concepts of convective and absolute instabilities
(Briggs 1964; Bers 1983; Huerre & Monkewitz 1990) were applied to the capillary
jet by Leib & Goldstein (1986a). In this first article, the authors considered inviscid
liquids and a Hagen–Poiseuille velocity profile, including the plug profile as a limit.
The detection of the existence of absolute instability, i.e. amplifying waves in the
whole jet, does not need a complete description of the spatial modes arising from
the dispersion relation. They only had to show the merging of two of these modes
coming from different half-planes in the complex k-plane as the imaginary part of
their complex frequency goes to zero. As a consequence, the characterization of the
whole set of modes was not addressed in that work. The same happened in later
extensions to viscous capillary jets (Leib & Goldstein 1986b). The task of determining
and describing the spatial modes has been systematically omitted.

In general, the location in the complex k-plane of the zeros and branch cuts of
a dispersion relation corresponding to any physical system does not give all the
relevant information about stability. The dispersion relation arises in a natural way as
the denominator of the spatio-temporal Fourier transform of the Green function for
any specific boundary conditions. The Green function is obtained by means of the
inversion formula with appropriate Bromwich paths in the complex ω- and k-planes
satisfying causality conditions (Briggs 1964). It is necessary to monitor the movement
of these zeros as we let the imaginary part of the complex frequency go to zero.
This procedure defines a clear separation of the zeros (poles of the transform of the
Green function) into two sets affecting the flow upstream and downstream, respectively.
Only then do the poles reveal the growing or decaying nature of their associated
modes (in Gordillo & Pérez-Saborid 2002 we can find an alternative procedure for
this mode-assignment task). The perplexity generated by the unphysical solutions in
Keller’s work is due to his analysis being limited to the dispersion relation, without
consideration of the complete physical problem.

The problem formulation and formal solutions for the spatial Green functions of
surface stimulation, for both normal and tangential stresses, are presented in the next
section. By spatial Green functions we mean those arising when we assume the same
harmonic temporal dependence as the stimulation stresses. In § 3 we classify and
describe the location of poles and their associated velocity field for the full set of
spatial modes involved in the general solution previously obtained. Section 4 analyses
the two Green functions in terms of their modal structure. With a practical purpose,
their stimulation performances are compared. Section 5 pays particular attention to
the generation of absolute instability from two specific spatial modes, not always
well-determined in previous works (Yakubenko 1997). In § 6, we discuss several
consequences: the physical interpretation of each mode, their relative participation
in both kinds of stimulation, their role in the generation of absolute instability, the
relation of some modes to the phenomenon of static corrugations observed upstream
of a jet impinging on an obstacle or fluid surface (Awati & Howes 1996; Hancock &
Bush 2002) and, finally, practical consequences regarding stimulation.
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2. Problem formulation
Consider a jet infinitely extended both upstream and downstream from a stimulation

zone, made of a viscous liquid, with unperturbed radius R and uniform axial velocity
v0. The liquid has density ρ, dynamic viscosity µ and surface tension γ . The outer
medium is a gas and it is assumed to have negligible dynamics, a realistic assumption
for not too large relative velocities between the jet and the outer medium (Gordillo &
Pérez-Saborid 2005; González & Garcı́a 2009).

The dynamics of the jet is governed by the Navier–Stokes equations for
incompressible fluids, with no bulk forces (gravity is neglected). In terms of small
perturbations with respect to the basic flow we can write in dimensionless form:

∇ ·v= 0, (2.1)(
∂

∂t
+ β ∂

∂z

)
v=−∇p+ C∇2v, (2.2)

where we define, using cylindrical coordinates, the axisymmetrically perturbed
velocity field v(r, z, t) = u(r, z, t) er + w(r, z, t) ez (er and ez being the radial and
axial unit vectors) and the perturbed pressure field p(r, z, t). Here we have scaled
lengths with R, time with tc ≡ (ρR3/γ )

1/2 (capillary time), velocity with R/tc and
pressure with γ /R. Two non-dimensional numbers arise: the non-dimensional jet
velocity, β = v0 (ρR/γ )1/2 (hereafter called jet velocity), and the Ohnesorge number,
C = µ/ (γρR)1/2.

Let us describe the jet shape by the equation r = 1 + f (z, t), where f (z, t) will be
called the surface deformation. The boundary conditions at the free surface are the
kinematic condition and the normal and tangential stress balances. In linearized form
these are, respectively,

∂f

∂t
+ β ∂f

∂z
− u= 0, (2.3)

−f − ∂
2f

∂z2
− p+ 2C

∂u

∂r
= Tn, (2.4)

C

(
∂u

∂z
+ ∂w

∂r

)
= Tt, (2.5)

where all magnitudes are evaluated at r = 1. Here we need to define the normal, Tn,
and tangential, Tt , stresses, of any origin (electric, magnetic, thermocapillary), acting
on the free surface. Stresses are consistently scaled with γ /R and their signs are
defined in accordance with the positive direction of the radial and axial coordinates.
In what follows, we shall assume that the stresses are inputs uncoupled from the
hydrodynamic problem. As an example, in EHD stimulation both kinds of stresses
can be calculated from the Maxwell stress tensor by independently solving the
quasi-electrostatic problem defined by the jet, assumed cylindrical, and the external
electrodes.

The adopted non-dimensionalization, based on capillary forces, is not the usual one
found in the literature based on advective inertia that introduces the Weber number,
We ≡ β2, and the Reynolds number, Re ≡ ρv0R/µ, instead of the Ohnesorge number,
the relation being C = β/Re. The main advantage of our choice is to have only one
control parameter, β, in experiments. Also, capillary forces are the best reference to
measure forces and external stresses, as inertia is related more to the wavelength
selection of perturbations than to their amplitudes. In fact, this is the reason for the



Spatial modes of capillary jets, with application to surface stimulation 359

success of the temporal approach, to which the spatial analysis is related in the most
natural way as the limit β� 1.

We are interested in harmonic stimulation, so we consider a temporal harmonic
dependence for the two stresses Tn(z) exp(iωt) and Tt(z) exp(iωt), where ω is the
imposed non-dimensional angular frequency (we have maintained the symbols Tn and
Tt as functions of z alone because there is no ambiguity). Let us assume for the
function Q(r, z, t)≡ {p(r, z, t), u(r, z, t),w(r, z, t), f (z, t)},

Q(r, z, t)= Re[q(r, z) exp(iωt)], (2.6)

with q a complex function, and define the Fourier transform in the axial variable as

q̃(r, k)=
∫ ∞
−∞

q(r, z) exp(−ikz) dz, (2.7)

with k = kr + iki complex in general. The bulk equations (2.1) and (2.2) subject to
regularity conditions at r = 0 are formally solved by standard methods (Chandrasekhar
1961) to give for the transformed magnitudes,

p̃(k, r)=−A
i(ω − βk) I0(kr)

k I1(k)
, (2.8)

ũ(k, r)=A
I1(kr)

I1(k)
−B

I1(kvr)

I1(kv)
, (2.9)

w̃(k, r)=A
i I0(kr)

I1(k)
−B

ikv I0(kvr)

k I1(kv)
, (2.10)

where we have used standard notation for the intervening modified Bessel functions.
A and B are constants to be determined from the remaining boundary conditions.
We must also define k2

v ≡ k2 − i(ω − βk)/C, or, by introducing as a new parameter
ktemp ≡ ω/β, we can alternatively write k2

v = k2 − iRe(ktemp − k). The parameter ktemp
would be the wavenumber (real) in a temporal formulation, which is more meaningful
than the frequency itself to determine when the jet is unstable.

Substitution of the solutions (2.8)–(2.10) into (2.3)–(2.5) gives, in matrix form:
−i(ω − βk) −1 1

−1+ k2 −i
ω − βk

k

I0(k)

I1(k)
+ 2kC

I′1(k)
I1(k)

−2kvC
I′1(kv)
I1(kv)

0 2ikC −iC
k2
v + k2

k


 f̃

A

B

=
 0

T̃n

T̃t

 ,
(2.11)

where primes denote derivatives with respect to the argument and T̃n and T̃t are the
transforms of the corresponding stresses. Let L be the 3 × 3-matrix in (2.11), which
has to be inverted to solve the system. Owing to linearity, we can treat the effects of
normal and tangential stresses independently by obtaining specific solutions for T̃t = 0
and T̃n = 0, respectively. Substituting the solution of (2.11) in (2.8)–(2.10), we can
express the result as

q̃= q̃nT̃n + q̃t T̃t,

(
q̃n
q̃t

)
=
(

p̃n ũn w̃n f̃n
p̃t ũt w̃t f̃t

)
, (2.12)
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with (
p̃n

p̃t

)
=
(
{L−1}22

{L−1}23

)
i(ω − βk)

I0(kr)

k I1(k)
, (2.13)(

ũn

ũt

)
=
[(
{L−1}22

{L−1}23

)
I1(kr)

I1(k)
+
(
{L−1}32

{L−1}33

)
I1(kvr)

I1(kv)

]
, (2.14)(

w̃n

w̃t

)
=
[(
{L−1}22

{L−1}23

)
i I0(kr)

I1(k)
+
(
{L−1}32

{L−1}33

)
i kvI0(kvr)

k I1(kv)

]
, (2.15)

(
f̃n
f̃t

)
=
(
{L−1}12

{L−1}13

)
, (2.16)

where {L−1}ij is the ijth element of the inverse of L. These elements have a common
factor D (ω, k)−1, with D(ω, k)= det(L). The so-called dispersion relation, D(ω, k)= 0
is known to play a fundamental role in the structure of the solution. It is important to
realize that the only singularities come from D(ω, k) = 0 and not from the remaining
parts of these expressions.

By the convolution theorem, it is possible to express the solution in the form

q(r, z)=
∫ ∞
−∞

dz′[Gn(r, z− z′)Tn(z
′)+ Gt(r, z− z′)Tt(z

′)] (2.17)

where we can identify Gn and Gt as two vector Green functions associated with
normal and tangential stresses, respectively:(

Gn(r, z)
Gt(r, z)

)
= 1

2π

∫ ∞
−∞

dk exp(ikz)

(
q̃n(r, k)
q̃t(r, k)

)
. (2.18)

These Green functions are the responses of the system in terms of pressure, radial
and axial velocities, and deformation, to spatial δ-Dirac pulses and harmonic time-
dependence for the normal and tangential stresses. Although the formulation is better
presented simultaneously, as done, it is more clear to study the effect of each stress
separately.

2.1. The inviscid case

For future reference and owing to its peculiarity in the above formalism, we present
here the particular case of inviscid liquids. The limit C→ 0 makes the boundary
condition for the tangential stress meaningless, i.e. (2.5), in accordance with the
mandatory requirement of null imposed tangential stress in a well-posed problem for
perfect fluids. We thus omit (2.5), restrict ourselves to an imposed normal stress and
set the integration constant B to zero in the solutions (2.9) and (2.10) and subsequent
expressions. Instead of (2.11) we write−i(ω − βk) −1

−1+ k2 −i
ω − βk

k

I0(k)

I1(k)

( f̃n
A

)
=
(

0
T̃n

)
. (2.19)



Spatial modes of capillary jets, with application to surface stimulation 361

The transformed magnitudes explicitly become

p̃n = (ω − βk)2

D(ω, k)

I0(kr)

k I1(k)
, (2.20)

ũn =− i(ω − βk)

D(ω, k)

I1(kr)

I1(k)
, (2.21)

w̃n = (ω − βk)

D(ω, k)

I0(kr)

I1(k)
, (2.22)

f̃n = 1
D(ω, k)

, (2.23)

where

D(ω, k)= (ω − βk)2
I0(k)

k I1(k)
+ (1− k2). (2.24)

3. Spatial modes
According to the standard analysis of signalling problems in open flows (Briggs

1964; Bers 1983; Huerre & Monkewitz 1990), the Green function just determined is
the asymptotic or steady-state response of our system to a stimulation defined by a
delta spatial distribution and a harmonic temporal dependence. The poles of the Green
function are divided in two sets and the Green function itself is constructed for z
positive or negative as a sum of the residues at the poles corresponding to each set.
Under convective stability conditions, we can consider each term of any of either sums
as the contribution of a specific spatial mode of the system. The first characterization
of the modes comes from their location in the complex plane and their assignment to
the upper or the lower region, according to Briggs’ criterion, described in the above
references. While the sign of kr simply determines the phase velocity, the stability
depends on both the sign of ki and the assignment of the pole to the upper or the
lower region. We have in principle as many as eight cases describing the direction of
phase velocity, growth or decay and positive or negative z (Ashpis & Reshotko 1990).

3.1. Pole locations

With all that in mind, in figure 1 we present an example of the distribution of the
poles in the complex k-plane, with the indentation of the integration path appropriate
to assign them to the correct region: upstream or downstream. We can observe several
sets of modes, for which we shall introduce a nomenclature to be explained in § 6.

(a) Capillary modes. There are two and are located in the upper region of the k-plane
(z > 0). The sketch of figure 1 shows them for ktemp < 1 but, as they qualitatively
change their location when ω is varied, we also show in figure 2 their branches
in the complex k-plane for a significant range of frequencies, along with branches
corresponding to other modes. We call them dominant (Cdom) and subdominant
(Csub) because, in the unstable range, one of them always has a lower value
of ki than the other, the former thus determining the asymptotic behaviour of
the jet. The dominant capillary mode is responsible for the capillary instability
(ki < 0), occurring for ktemp < 1, whereas the subdominant capillary mode always
decays downstream because ki > 0 (Keller et al. 1973; Leib & Goldstein 1986b).
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Csub kr

ki

Capillary
Hydrodynamic
Inertial
Capillary advective

ktemp

Cdom

ktemp

FIGURE 1. Sketch of the poles of the Green functions for values of C and β leading to
convective instability, just for a frequency in the unstable range (ktemp < 1). The upper and
lower integration contours respectively enclose the regions labelled z > 0 (downstream) and
z< 0 (upstream, relative to the stimulation point). Symbols used for each family of modes are
shown. Rough location indications are also included.

For ktemp > 1 both of them are either decaying (due to viscosity) or neutral (in
the inviscid case). They both propagate downwards and have non-dimensional
wavenumbers very close to ktemp.
We can estimate their location when C � 1 and take it as a numerical
seed when increasing C up to a prescribed value. To this end, consider the
inviscid approximation, as found in Keller et al. (1973) in the axisymmetric
case, D(ω, k) = 0, with D(ω, k) given by (2.24). If we assume, for small k,
I0(k)/I1(k) ' 2/k, the dispersion relation becomes a quartic equation in this
variable. The only two roots consistent with this approximation give the estimates
for the capillary modes. The other ones having |k|> 1 are discarded.

(b) Capillary advective modes. There are two, both in the lower region, as shown
in figure 1 (thus affecting points with z < 0), both decaying but propagating in
opposite directions, CAdown downwards (kr > 0) and CAup upwards (kr < 0), both
with small wavelengths, of the order of β−2, as we will see in § 6. The branches
obtained by varying the frequency are also shown in figure 2, where we can
observe that these poles have opposite real parts and the same imaginary part for
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I1
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I–7

–0.2

0
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0.6
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1.0

1 2 3 4 5 6

kr

0 7

(a)

(b)

FIGURE 2. (a) Spatial branches corresponding to some representative modes, obtained for
β = 4.47, C = 0.03 and varying frequency ω. Modes are identified by letters: Cdom, dominant
capillary; Csub, subdominant capillary; CAup, capillary advective directed upwards; CAdown,
capillary advective directed downwards; Ii, inertial; Hi, hydrodynamic (indexes in both
families indicate order of proximity to the origin, with negative values for modes defined
upstream). (b) Details of the branches near the origin. On each branch, the circles indicate
values of k obtained for integer values of ktemp ≡ ω/β, starting from 1 on the left, marked
to identify corresponding points on different branches. Note that we do not have merging of
hydrodynamic and the dominant capillary poles, although the branches intersect.

ω = 0 but have unrelated k for ω 6= 0. The consequences will also be discussed
in § 6.

The downward mode was already reported by Busker & Lamers (1989). The
upward mode is reported here for the first time. They can be approximately
located by considering |k| � 1 and substituting I0(k)/I1(k) ' sgn(kr) in (2.24).
The result is another algebraic equation leading again to two consistent solutions
among four.

(c) Inertial modes. There are two infinite sets of modes, one lying in the upper
(z > 0) and the other in the lower region (z < 0). We denote them by means
of the symbols Ii, with positive indexes for the upper region and negative for
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the lower one, ordered by distance to the origin. We obtain estimates for β � 1
from the purely imaginary zeros of I0(k), as seen also from (2.24). Consequently,
they represent virtually evanescent modes. The locations of the modes closest to
the origin are quite insensitive to variations of any parameter, as illustrated in
figure 2(a) for varying frequency. This behaviour relaxes as we consider modes of
higher order, even leading to eventual degeneracy (only suggested in that figure)
between one inertial mode and the capillary advective mode directed downwards.

(d) Hydrodynamic modes. We find two infinite sets, lying in the upper and lower
regions, respectively (see again figure 1). They are shown as Hi, with indexes
meaning the same as for the inertial modes. Their real parts are close to ±ktemp
(positive for the upper family and negative for the lower one). Their locations
are estimated from the zeros of I1(kv), because this function appears in the
denominator of some of the viscous terms of D(ω, k), thus producing large
variations near these zeros and making possible a balance with the remaining
terms in the dispersion relation. As k2

v = k2 − iRe(ktemp − k), by putting kv = ix1n,
with x1n the nth zero of the Bessel function J1(x), we have two roots, originating
the two respective families. For large Re and small or moderate ktemp, we find
zeros close to kn = (ktemp + ix2

1n)/Re; this implies damped modes propagating in
the downward direction and defined for z> 0. The estimation for the lower family
(defined for z< 0) gives an imaginary part approximated by −Re− x2

n/Re, i.e. they
are strongly damped for high Reynolds numbers.

Although a rigorous proof of having obtained all the poles of the Green function
will not be provided, we have plausible arguments to believe this to be so. For this
task, we have made use of the argument principle applied to a rectangular contour to
evaluate the number of zeros of an analytic function enclosed in it (Johnson & Tucker
2009). The rectangular geometry facilitates a systematic search by tessellation over a
wide domain. The method also gives the location of each zero. Trivial care must be
taken to avoid the two branch cuts of D(ω, k) defined by the condition kv = 0, which
are not true branch cuts of the Green functions due to the way in which the variable
kv enters the complete integrands in (2.13)–(2.16). The absence of branch cuts for the
definition of the Green function makes the spectrum of spatial modes discrete. This is
the usual case when dealing with systems bounded in the spanwise direction (Huerre
& Monkewitz 1985).

3.2. Velocity field
Once the poles of the Green functions are located, we can complete the
characterization of the spatial modes by examining the corresponding velocity fields
and surface deformation. The poles are the values kj(ω) of the variable k for which
the matrix L, with coefficients defined in (2.11), is singular. The spatial modes are
determined, except for an arbitrary amplitude, from the null space of this matrix,
yielding a relation between the integration constants A and B, and the transform of
the deformation, f̃ . We choose a normalization based on the amplitude of deformation
for reasons to be discussed later. Assuming f̃ = 1, (2.13)–(2.16) give the functions p, u,
w and f with a structure summarized as

Qj(r, z, t)= Re{q̃j(kj, r) exp[i(ωt − kj(ω)z)]}. (3.1)

Note that the spatial modes have nothing to do with normal or tangential stresses
separately since they are common to both cases.
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Cdom Csub

FIGURE 3. Velocity fields for the dominant capillary mode, Cdom, and subdominant capillary
mode, Csub. The axial coordinate and the axial velocity component are scaled with the
wavelength of each mode. The flow goes downwards. Parameters are set to ktemp = 0.7,
C = 0.03 and β = 4.47.

We now describe the salient features of the velocity field associated with each
spatial mode.

(a) Capillary modes. The velocity fields for these two modes are significant over the
whole radial profile, have net flow across any section and are clearly associated
with the surface deformation. For the dominant mode, f and u are essentially
in phase, which implies a net transport of fluid from valleys to crests of the
deformation. The opposite occurs for the subdominant mode, which is stable. All
these features are apparent in figure 3.

(b) Capillary advective modes. The velocity field is only significant near the free
surface, with strong decay towards the jet axis, as shown in figure 4. There is net
flow across any section of the jet. f and u have a phase shift close to π/2.

(c) Inertial modes. Modes I1 and I2 in figure 5 represent the first two modes of
the infinite numerable family in the upper region z > 0. The family in the
lower region has virtually the same behaviour, so it is not included in the
figure. To interpret these figures correctly we must notice that: (i) the free
surface and velocity fields are represented without their strong axial decay, which
makes these modes virtually evanescent; and (ii) the z coordinate runs over a
very long wavelength. Consequently, this figure is most useful as a temporal
evolution at a fixed station, rather than a spatial representation, by appealing to the
proportionality relation z = (ω/kr)t giving constant phase. The movement of the
fluid is radially organized in regions with alternating orientation; the number of
these regions agrees with the order of the zero of the Bessel function associated
with each mode. The radial velocity in the region closer to the free surface is
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CAdown CAup

FIGURE 4. Velocity fields for the capillary advective downward mode, CAdown, and capillary
advective upward mode, CAup. The axial coordinates and the axial velocity components are
scaled with the wavelength of each mode. The spatial decay has been omitted by dividing the
velocity components by exp(−kiz). Parameters are set to the same values as in figure 3.

in phase opposition relative to the surface deformation. There are no recirculating
rolls.

(d) Hydrodynamic modes. We have seen in the previous subsection that two very
different families are included in this item. They have in common a non-
dimensional wavelength close to 2πβ/ω and a location in the complex k-plane
associated with the zeros of I1(kv). The modes belonging to the family in the
upper region (represented in figure 6) have significant velocity in the whole jet
but negligible deformation. The velocity field is radially organized in rolls, and
the number of rolls is indicated by the index of the zero with which the mode
is associated. The lower family (not represented in the figure) is very strongly
damped.

The above description has been limited to unstable jets and particular values
of the jet velocity and the Ohnesorge number, but a complete parametric study
would necessarily offer a richer behaviour. For instance, for ktemp > 1 the dominant
capillary mode becomes stable. Accordingly, a continuous transition from in-phase to
anti-phase between deformation and radial velocity takes place as we increase the
forcing frequency beyond the Plateau limit ktemp = 1. Other changes are also expected
whenever large variations in the position in the k-plane take place, including merging
of poles. The well-known case leading to absolute instability will be reported in § 5.

4. Application to surface stimulation
A quantitative evaluation of the importance of each mode in the two Green functions

is given by the amplitudes which, according to our deformation-based normalization



Spatial modes of capillary jets, with application to surface stimulation 367

I1 I2

FIGURE 5. Velocity fields for the first two inertial modes defined downstream, I1 and I2. The
axial coordinates are scaled with their wavelengths, very long. The spatial decay has been
omitted by dividing the deformation and the velocity components by exp(−kiz). Parameters
are set to the same values as in figure 3.

and (2.16), are the residues (
fn,j

ft,j

)
= Resk→kj

(
{L−1}32

{L−1}33

)
. (4.1)

As an illustration of the relative importance in terms of deformation of each mode
for both kinds of stimulation, in table 1 we present the amplitudes obtained through
(4.1). Downstream, as a rule, the capillary modes are the most relevant. For the
same applied stress, the amplitude is greater for tangential stresses. Concerning the
hydrodynamic family, for tangential stresses the first mode has an amplitude of
the same order as the capillary modes and as the index of the mode increases
the amplitudes decrease. For normal stresses, even the first hydrodynamic mode is
negligible with respect to the capillary modes. Although hydrodynamic modes make
a modest contribution to the deformation for these particular values of the parameters,
we have to keep in mind that their contribution to the velocity field is much greater.
Turning now to the inertial family, we find that these modes are more important than
hydrodynamic modes for normal stress, while we find the opposite for tangential stress.
Upstream, the capillary advective modes take the place of the capillary modes and the
hydrodynamic modes are not relevant.

Table 1 can be used to build the Green functions as a sum of spatial modes, each
with determined amplitudes and phase shifts relative to the stimulation. However, the
number of modes required to give a precise evaluation for a given axial position z
increases as z goes to zero. In other words, we have non-uniform convergence. The
reader interested in these details, as well as how the superposition of spatial modes
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H1 H2

FIGURE 6. Velocity fields for the first two hydrodynamic modes defined downstream, H1 and
H2. The axial coordinates and the axial velocity components are scaled with the wavelength of
each mode. For H2, the spatial damping is important and it has been omitted by dividing the
deformation and the velocity components by exp(−kiz). Parameters are set to the same values
as in figure 3.

describes the expected downstream relaxation of the radial velocity profile to that of
the capillary dominant mode, can consult Guerrero (2011).

We now focus on the amplitude of the dominant capillary mode, fCdom. Figure 7
shows its modulus as a function of ktemp (proportional to the frequency) for fixed jet
velocity and various C. The amplitude of the mode typically presents a peak, more or
less pronounced, which is located at ktemp = 1 for an inviscid jet and shifts to greater
values as C increases. At the same time, the maximum decreases as C increases. The
position and value of the maximum are determined by the minimum distance between
the two capillary poles in the k-plane, as we can observe in figure 2(b). In this respect,
we recall that we can express the meromorphic function giving the amplitude as a
sum of simple fractions with the differences between the dominant capillary pole and
all the other poles as denominators (Titchmarsh 1939). In the inviscid case the two
poles merge and we find an infinite amplitude. From figure 7 we can conclude that
the tangential-stress stimulation is the more efficient one, at least in terms of our
stress-amplitude formulation. This is particularly apparent for low frequencies. The
cases ω→ 0 give non-zero amplitudes for normal-stress stimulation, but we have
checked that the subdominant capillary mode gives just the opposite deformation, thus
preventing the unphysical result of a change in radius over the whole jet. For strictly
ω = 0 the amplitude is null, in accordance with the degeneracy of the two capillary
modes.

If we want to study the effect of the increase of β on the stimulation efficiency, we
have to notice that, as we increase the velocity, we diminish the time during which the
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Normal stress Tangential stress
Mode Modulus Phase Modulus Phase

z> 0
Cdom 0.07803 1.38251 0.21565 1.49315
Csub 0.07382 −1.36113 0.14081 −1.59479
H1 0.00450 −0.73230 0.07557 −1.12441
H2 0.00003 1.06889 0.00303 −0.23520
H3 0.00001 3.02601 0.00135 0.74217
I1 0.01760 −2.03957 0.00574 −1.82033
I2 0.00700 −1.77400 0.00353 −1.22685
I3 0.00390 −1.67669 0.00234 −1.11187

z< 0
CAdown 0.05696 0.07403 0.03912 0.67876
CAup 0.04450 −3.14119 0.02994 −0.62410
I−1 0.01975 −1.08667 0.00275 0.20926
I−2 0.00916 −1.38398 0.00104 −0.29875
I−3 0.00560 −1.49103 0.00037 −1.15982
I−4 0.00365 −1.55363 0.00041 −2.44503
I−5 0.00241 −1.59362 0.00057 −2.82490
I−6 0.01584 −1.61838 0.00063 −2.96618

TABLE 1. Modules and phases of the amplitudes of the modes that contribute most in
normal- and tangential-stress stimulations. Phases, measured in radians, are relative to
the stimulation. The modes are classified according to the region where they are defined.
Parameters are set as in figure 3.

stimulation is acting over a fixed wavelength. Therefore, fCdom is expected to decrease
as β increases. This is why in figure 8 we represent the product βfCdom, which makes
more sense than the amplitude alone when varying β. As expected, βfCdom depends
only very weakly on β for ktemp far from the peak. Near the peak we observe a
monotonic increase of this function, in accordance with a shorter distance between the
dominant and subdominant capillary poles. In the limit of infinite jet velocity, the peak
becomes infinitely large and narrow.

5. Absolute instability revisited
It is well-known that for each value of the Reynolds number we have a critical

value of the Weber number Wec(Re) below which the system becomes absolutely
unstable (Leib & Goldstein 1986b). The critical curve is reproduced in figure 9(a), in
terms of our non-dimensional numbers, β and C. Exactly at the critical value, there is
marginal absolute instability, characterized by a mode of definite real frequency ωc(C)
and complex wavenumber kc(C). These magnitudes are represented in figure 9(b). The
sketch of figure 1 corresponds to frequencies lower than unity and jet velocities greater
than the critical value, i.e. a typical situation manifesting convective instability. The
change in the jet velocity would produce a change in the location of the poles. If, for
a given C and β > βc(C), we select the frequency ωc(C), all the poles will be simple,
but two of them will tend to merge at the position kc(C) as β→ βc(C). This process,
represented in figure 10(a), determines which spatial modes are responsible for the
absolute instability of capillary jets. We recognize the dominant capillary mode and
the capillary advective mode with downward propagation as the merging poles. They



370 J. Guerrero, H. González and F. J. García

 

0.6

0.4

0.2

1.0 2.0

ktemp

ktemp

0.5 1.5

0.8

0

0.5 1.0 1.5 2.0

FIGURE 7. Modulus and phase (as an inset) of the amplitude of the dominant capillary mode
as a function of ktemp = ω/β, for normal (solid line) and tangential stresses (dashed line), with
jet velocity β = 4.47 and different values of the Ohnesorge number.
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FIGURE 8. Modulus of the product βfCdom as a function of ktemp, for normal stress. The
Ohnesorge number is set to C = 0.1. Three values of β, 3, 10 and 30, are considered. The
factor β in the represented function renders this parametric study more significant.

both have positive phase velocity. The velocity field is the same for both at merging,
and is represented in figure 10(b). Note that this velocity field differs from those of the
dominant capillary and the capillary advective modes represented in figures 3 and 4
respectively: the dominant capillary mode changes the phase shift of the radial velocity
relative to the surface deformation, roughly speaking from zero to π/2, while the
capillary advective mode gains in radial extension, now affecting the whole section of
the jet. The group velocity of these two modes have opposite signs and tend to zero as
their corresponding poles merge.
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FIGURE 9. (a) Curve giving the critical jet velocity as a function of the Ohnesorge number
separating the region of convective instability (upper) from that of absolute instability (lower),
equivalent to that found by Leib & Goldstein (1986b) in terms of Weber and Reynolds
numbers. For values exactly on the curve the system has marginal absolute instability. (b)
Curves of frequency ωc (real), wavenumber kc,r and the parameter kc,i (spatial growth rate
when changed in sign) for neutral absolute instability conditions.
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FIGURE 10. (a) Merging process of the dominant capillary mode with the downward
capillary advective mode as we decrease the jet velocity to its critical value βc, for a fixed
frequency ω = ωc = 1.2398 corresponding to the neutral state, and C = 0.03. (b) Common
velocity field for the dominant capillary and the downward capillary advective mode for
parameters at the merging point.

6. Discussion
6.1. Modes

Although the Green functions obtained in this work are specific to surface stimulation,
the spatial modes involved in their construction are universal, in the sense of being
potentially present in any other configuration of capillary jets, provided the basic flow
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is the same (cylindrical shape and plug velocity profile). It is then expected that if we
are interested in a jet issuing from a circular orifice, the problem could be formulated
in terms of an appropriate combination of the above-described spatial modes satisfying
the conditions at the orifice. This point is relevant to the formulation of boundary
conditions for the semi-infinite jet, on which there has been some discussion in the
literature (Bogy 1978; Eggers 1997). Criteria for discarding some modes based on
their unphysical behaviour are not necessary, once these modes are assigned to the
correct region (z> 0 or z< 0).

The two capillary modes, one of them responsible for the instability of capillary
jets, are the best known. Consider first the inviscid case. These two modes are real
(purely oscillatory) for ktemp > 1 and complex conjugate with kr ' ktemp for ktemp < 1
(so one of them growing and the other decaying). The work of Keller et al. (1973)
states in this case the relation between the temporal and the spatial analysis when
the jet velocity is large through an expansion in β−1. Retaining only the first two
terms, the two wavenumbers can be expressed (in our non-dimensionalization) as
k1 ' ktemp + ωR/β and k2 ' ktemp − ωR/β, with ωR(ktemp) the complex frequency given
by Rayleigh’s temporal analysis of the dispersion relation. In the oscillatory regime
they interpreted this as the Doppler shift of two oppositely directed waves when we
change to a reference system moving with the velocity of the jet. In the range ktemp < 1
these same modes are interpreted as purely growing or decaying (according also to
Rayleigh’s formula) if we change to the system in which the jet is quiescent. Spatial
effects other than the bare Doppler shift manifest themselves only for quite small jet
velocities because the next terms in the expansions of the two wavenumbers go as
β−2. Viscosity does not qualitatively change any of these features. As a conclusion,
capillary modes are well understood in the high-jet-velocity limit as a consequence of
a Galilean transformation applied to the temporal modes. In this sense, the velocity
fields described in figure 3 should be compared with the velocity fields for the
temporal modes shown in Garcı́a & González (2008). However, when we approach
absolute instability conditions, significant changes arise, as shown in figure 10(b).

The dominant and subdominant capillary modes are not the sole modes having their
origin in a balance between capillarity and inertia. Those that we have called capillary
advective modes can also be interpreted in this way, although there is an important
difference: in the spatial modal analysis we have an additional inertial term due to
advection. For the capillary advective modes, the relevant terms in the balance are
the capillary forces and the advective inertia, hence the adopted nomenclature. That is
why these modes exist even for static forcing (ω = 0). Its advective origin is also the
reason for being absent in the temporal analysis. Busker & Lamers (1989) mentioned
the existence of a mode additional to those found by Keller et al. (1973) and gave his
asymptotic expansion in terms of powers of We (equivalently β2 for us). Among the
two modes corresponding to both signs,

k± =±β2 + 1
2
− 2ω ±

(
9
8
+ ω − 3ω2

)
1
β2
+ O(β−4), (6.1)

they reported k+, but failed to discover k−. Unfortunately, they had a lapsus, as they
assigned to k+ a large wavelength and discarded it as difficult to observe. Also without
explicit discussion of its significance, Le Dizès (1997) took into account a third
solution of the dispersion relation to construct global modes in falling capillary jets.
The additional mode is actually k+.

Capillary advective modes are nothing other than the well-known capillary waves
arising in the interface between two immiscible fluids. Note that these modes typically
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have small wavelengths compared to R, since |k| ∼ β2, so they are essentially the same
as in planar geometry. Their velocity field reinforces the analogy, as it is restricted
to a depth of the order of the wavelength of the surface perturbations. Pursuing this
idea, let us recall that we have in planar geometry a classical problem known as
the fishing line problem, describing the presence of static capillary waves ahead of
an obstacle placed at the surface of a stream (Lamb 1932). Furthermore, anyone can
find direct evidence of the existence of similar waves in jets by simply putting a
finger under a jet issuing from a tap, in the laminar regime and at low velocity;
we can readily observe static corrugations that rise several wavelengths upstream.
The same phenomenon has been reported on jets gently entering a horizontal liquid
surface (Awati & Howes 1996; Hancock & Bush 2002). These works find qualitative
agreement between the measured wavelengths and that arising from a formula that
equates the jet velocity to the phase velocity of capillary waves according to
Rayleigh’s theory. Now we can interpret this formula as the dispersion relation in
the inviscid case for spatial modes having ω = 0, and the modes describing this
phenomenon as the capillary advective modes. As in the fishing line problem, we
have demonstrated that the capillary advective modes exist only in the region upstream
the forcing. Having two modes with opposite kr and equal ki for ω = 0 allows the
construction of static waves of arbitrary initial phase. In this sense, we can clearly see
the need for the existence of the pole not reported until now, as we must be able to
fit the deformation at z = 0 to the requirements of the forcing. On the other hand, no
other standing wave is possible for ω 6= 0 in view of the asymmetric location of the
poles in this case (see figure 2a).

Another important role of the downward capillary advective mode takes place in the
origin of the absolute instability, as demonstrated in figure 10. There, we have pursued
the intervening modes up to the critical value of the jet velocity, below which we are
no longer allowed to call them spatial but instead spatio-temporal modes. Surprisingly,
none of the authors who have dealt with absolute instability of capillary jets have
clearly identified which spatial modes merge. Leib & Goldstein (1986b) just stated
the existence of a saddle point of the dispersion relation in the complex k-plane, with
zeros originated in opposite half-planes. Yakubenko (1997) associated the structure
of iso-lines of complex values of ω′ near the merging point in the k-plane with the
location of a mode that we now recognize as the first inertial mode, I−1. Finally, Le
Dizès (1997), also in the inviscid case, refers to three spatial branches as intervening
in the global mode responsible for transition from jetting to dripping. These three
branches are the two capillary modes and the downward capillary advective mode.
However, as the conclusion of his work is that the transition is governed by a global
rather than an absolute instability, he does not discuss the role of these branches in the
absolute instability.

The determination of the spatial modes that lead to absolute instability can help to
understand the underlying physics. The clues are: (i) the instability can be viewed as
a resonance between two modes defined for separate regions, namely, the capillary
advective mode in the upstream region and the dominant capillary mode in the
downstream region, reaching the same wavelength at criticality; (ii) the merging modes
have opposite group velocities leading to evacuation of energy from the stimulation
point z = 0, but these velocities go to zero at criticality; (iii) it is well-known that
an absolute instability is always attached to a distinguished reference: that of the
laboratory. In our case, the merging modes are the dominant capillary, unstable in any
reference, and one capillary advective, with origin in advection, i.e. genuinely spatial
and attached to the laboratory framework.
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Let us complete the discussion about the spatial modes by making reference to the
remaining, infinite families. Hydrodynamic modes defined for z > 0 are understood,
like the two capillary modes, in terms of a Galilean transformation of modes existing
in the temporal analysis (Garcı́a & González 2008). That is why kr ' ktemp for all of
them and their ki are very close to the damping rate of the temporal hydrodynamic
modes divided by β. The reader interested in the detailed description of these modes
should consult the above reference. Here we only want to emphasize the three main
features of these modes, which are their damping due to viscous dissipation, their
negligible associated deformation of the free surface and their recirculating velocity
field. Perhaps the most appealing changes when adopting a spatial approach are a
non-null mean axial velocity (although still small compared with the recirculation) and
the suppression of the interaction described in Garcı́a & González (2008) between the
hydrodynamic family and the subdominant capillary mode. As a final remark, notice
that the Reynolds number plays its classical role in determining the typical axial length
scale for radial diffusion of axial momentum (Sevilla 2011), being proportional to it.
The other hydrodynamic family, defined for z < 0, has damping rates ki at least of the
order of the Reynolds number, so their main feature is that they are highly damped.

The remaining modes are the inertial ones, defined both for z > 0 and for z < 0,
which are increasingly decaying as their distance from the origin of the complex
k-plane increases. They are evanescent and have a very long wavelength, so we have
removed their strong decay from both the velocity field and the deformation, and the
z coordinate is normalized with their wavelength to represent them in figure 5; we
should emphasize that the figure could be misleading if interpreted as a true spatial
picture of these modes. We have adopted the word inertial because capillarity and
viscosity do not intervene directly in the location of the poles. In fact, they are even
roughly independent of the imposed frequency ω (static modes are possible), as the
pole is determined by the geometric condition I0(k) = 0, with a correction of order
β−2 (Keller et al. 1973). As viscosity is not essential for these modes, we can refer to
(2.24) in order to understand their origin. There, for the inertial modes, the capillary
term is nearly fixed because k does not vary appreciably. Even if we consider a null
surface tension (which is equivalent to an infinite value of β) these modes can exist,
having zero pressure at the free surface.

As a final remark, we can consider the inertial modes as an illustration of the
importance of a stability analysis based on the study of the Green function, rather
than directly on the dispersion relation. Indeed, the features of the inertial modes
intrigued Keller and co-workers as they did not realize that the family with apparent
growing behaviour should be assigned to the upstream region as decaying modes, thus
becoming unrelated to the downstream evolution of the jet.

6.2. Stimulation
The main result of § 4 is the amplitude of the dominant capillary mode as given by
(4.1) for normal- and tangential-stress stimulations. As the jet evolution and breakup
is determined by the surface deformation, the best choice for the normalization of
modes is that based on the surface deformation. As a counterpart, some modes,
like the hydrodynamic modes, have very small associated deformation in relation
to the amplitude of the velocity field, so their amplitudes may give a misleading
interpretation of their contribution to the whole velocity field. This is not a problem
and we simply have to be aware of it. In any case, the velocity field associated with
each mode is interesting from a physical interpretation point of view, but not for an
evaluation of the ability of a stimulation device to break the jet into drops.
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The comparison between amplitudes of the dominant capillary mode for both kinds
of stimulation provided by figure 7 is in all cases favourable to the tangential-
stress stimulation. It is suggestive to have found the same conclusion as that of
the experiments in Barbet (1997) about thermocapillary stimulation, but of course
an analysis closer to the experimental conditions is necessary to claim agreement
between theory and experiments. In any case, we have already said in § 4 that the
superiority apparent in figure 7 cannot be directly interpreted as a higher efficiency of
the tangential-stress stimulation in terms of power required for the stimulation.

Results concerning the amplitude of the dominant capillary mode are mathematically
understood in terms of distance in the complex k-plane between the pole associated
with this mode and the remaining poles, as the residue can be cast as a sum of partial
fractions, each inversely proportional to one of these distances. That peak merely
reveals the remarkable proximity between the two capillary poles. Consequently, we
also have a similar peak for the amplitude of the subdominant capillary mode. In this
situation, it is more significant to consider the superposition of both modes. The same
applies to the case of imposed frequencies tending to zero.

7. Conclusions
In this work we have carried out a systematic description of the spectrum of

spatial axisymmetric modes of the capillary jet. Modes partially described in the
literature (like those we have called capillary advective modes), incorrectly interpreted
(like the inertial modes) or even fully omitted (hydrodynamic modes), have been
taken into account. The description covers aspects like: (a) region (upstream or
downstream) where the modes are defined; (b) propagation and growth features; (c)
velocity-field features; and (d) physical origin. Their relevance has been discussed in
relation to several phenomena: static deformation of the jet surface upstream of an
obstacle, individual contribution to normal and tangential harmonic surface stimulation
(signalling problem) and, finally, the role of some of these modes in the existence
of absolute instability. Capillary advective modes are interpreted as the modes in the
jet analogous to the capillary waves arising in planar interfaces before an obstacle
(fishing line problem). One capillary advective mode is also responsible for the
merging with the dominant capillary mode, leading to absolute instability. Results
concerning stimulation provide useful information about the linear evolution of the
jet subjected to either normal or tangential stresses, through the amplitude of the
dominant mode in the Green function.
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GORDILLO, J. M. & PÉREZ-SABORID, M. 2002 Transient effects in the signaling problem. Phys.

Fluids 14 (12), 4329–4343.
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