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Abstract

We extend the study of the random Hermite second-order ordinary dif-
ferential equation to the fractional setting. We first construct a random
generalized power series that solves the equation in the mean square sense
under mild hypotheses on the random inputs (coefficients and initial con-
ditions). From this representation of the solution, which is a parametric
stochastic process, reliable approximations of the mean and the variance are
explicitly given. Then, we take advantage of the Random Variable Trans-
formation technique to go further and construct convergent approximations
of the first probability density function of the solution. Finally, several nu-
merically simulations are carried out to illustrate the broad applicability of
our theoretical findings.
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1. Introduction

The extension of many classical results to the context of Fractional
Calculus has allowed their successful application to a number of practi-
cal problems. In particular, fractional-order derivatives have demonstrated



2 C. Burgos, T. Caraballo, J.C. Cortés, L. Villafuerte, R.J. Villanueva

to be powerful tools to better describe systems, media and fields charac-
terized by non-local and memory of power-law type often met in models
that appear in Physics, Control, Signal and Image Processing, Mechanics
and Dynamic Systems, Biology, Environmental Science, Materials, Eco-
nomic and Multidisciplinary in Engineering Fields [1]. The aforementioned
extension is often done from relevant models formulated via classical differ-
ential equations that have been generalized using different fractional-order
derivatives. Examples in this regard include the linear, logistic, Riccati,
Gompertz, etc. [2, 3, 4, 5], just to mention a few models.
On the other hand, the applications of fractional differential equations to
modeling the dynamics of complex phenomena using real-world data in-
volve the rigorous treatment of randomness coming from the combination
of epistemic and aleatoric uncertainties [6]. Epistemic (or systematic) un-
certainty appears because inaccurate measurements or because the model
simplifies the true complexity of the phenomena under study neglecting
certain effects, while aleatoric (or stochastic) uncertainty comes from the
fact that different outcomes are obtained when we run or observe the same
experiment. These facts lead to stochastic or random fractional differential
equations. As it is accurately pointed out in [7, p.96], it is important to
underline that there is a growing trend in the Uncertainty Quantification
community to treat stochastic and random differential equations as synony-
mous terms, when in fact they require completely different approaches for
analysis and approximation. In dealing with stochastic differential equa-
tions (SDEs), uncertainties are forced by an irregular process, such as the
Brownian motion or, more generality, a Wiener process. SDEs are typ-
ically represented in terms of stochastic differentials, but they must be
interpreted as Itô or Stratonovich stochastic integrals [7, p.97], [8]. The
role of uncertainty is essentially different in random differential equations
(RDEs). Indeed, in the setting of these equations, random effects are di-
rectly manifested through coefficients, initial/boundary conditions, and/or
source term that are assumed to be well-behaved (e.g., continuous) with
respect to time and/or space [7, p.97], [9]. As pointed out in [10, p.258],
overall the theory of RDEs is much less advanced than that for SDEs. This
fact is even more noticeable in the case of RDEs formulated by means of
fractional-order derivatives.

The aim of this paper is to continue contributing the realm of Fractional
Calculus by extending the analysis of the Hermite differential equation in a
two-fold sense, namely, introducing both fractional derivatives and uncer-
tainties in its formulation. For the former goal, the mean square Caputo
fractional derivative will be used, while for the later we will rely on the
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RDE approach.

On the one hand, the fractional Hermite differential equation, based on
Caputo operator, has been studied to introduce fractional Hermite poly-
nomials and with applications to design special filters [11]. On the other
hand, the random Hermite equation

Y ′′(t)− 2tY ′(t) + λY (t) = 0, Y (0) = Y0, Y ′(0) = Y1, (1.1)

where Y0, Y1 and λ are random variables, has been studied in [12] using
the so called mean square calculus [9]. In this latter contribution, one
constructs a power series solution for the randomized classical Hermite dif-
ferential equation and, then both the expectation and the variance of the
solution are approximated. Apart from these above-mentioned contribu-
tions, and to the best of our knowledge, none contribution has dealt yet
with the study of the random fractional Hermite differential equation. So,
in some sense, the present paper is aimed at extending the results that are
available so far. Even more, as it shall be seen, we will also give a method
to calculate the first probability density function of the solution, that is a
more ambitious goal.

Hereinafter, we will work on the Lebesgue spaces Lp(D) ≡ Lp(D, dµ),
1 ≤ p < ∞, whose elements are real-valued measurable functions h : D −→
R with the norm ∥h∥Lp(D) =

(∫
D |h|pdµ

)1/p
< ∞. In the case that p = ∞,

recall that the norm is defined as ∥h∥L∞(D) = inf{sup{|h(t)| : t ∈ D \ N} :
µ(N ) = 0} < ∞. For p = ∞, elements in the space L∞(D) are essentially
bounded functions. Classically, D = T ⊂ R is an interval and dµ = dt is
the Lebesgue measure. Throughout the paper, as we shall also work with
random variables and stochastic processes, we will implicitly take D = Ω
(sample space) and µ = P (probability measure), and D = T × Ω and
dµ = dt×dP, respectively. Notice thatX ∈ Lp(Ω) if and only if ∥X∥Lp(Ω) =

(E[|X|p])1/p < ∞, where E[ ] denotes the expectation operator, and, X ≡
X(t) ∈ Lp(T ×Ω) if and only if ∥X∥Lp(T ×Ω) =

(
E
[∫

T |X(t)|p dt
])1/p

< ∞.
Any stochastic process X(t) in Lp(T × Ω) can be interpreted as a set of
random variables in Lp(Ω) indexed by t ∈ T . An important result in the
above probabilistic Lebesgue spaces is the so-called Liapunov’s inequality

(E[|X|r])1/r ≤ (E[|X|s])1/s, 0 < r ≤ s,

provided the expectation E[|X|s] < ∞. This result indicates that Ls(Ω) ⊂
Lr(Ω), 0 < r ≤ s, and as a consequence, in the probabilistic setting, it
is preferred to establish results in the biggest space L2(Ω) whose elements
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are real-valued random variables, X : Ω −→ R, with finite second-order
moment E[X2] < ∞ (equivalently, finite variance). The elements of L2(Ω)
are usually called second-order variables. It can be proven that L2(Ω) is
a Hilbert space with the following inner product ⟨X,Y ⟩ = E[XY ], from

which one infers the so called 2-norm: ||X||2 =
√
⟨X,X⟩ = E[X2]

1
2 . Given

a sequence of second-order random variables, {Xn : n ≥ 0 integer}, is said
to be mean square convergent to a random variable X ∈ L2(Ω) if and
only if ||X − Xn||2 −→ 0 as n → ∞. In the case that the collection of
second-order random variables is indexed with reference to an interval, say
T ⊂ R, then {X(t) : t ∈ T } is called a second-order stochastic process. The
concepts of continuity, differentiability and integrability in the mean square
sense are naturally inferred from the 2-norm. When trying to prove the
mean square convergence of a sequence of second-order stochastic processes
that defines the solution of a random fractional differential equation often
is required to bound products of random variables. Unfortunately, the
following inequality ∥XY ∥2 ≤ ∥X∥2∥Y ∥2, X,Y ∈ L2(Ω) does not hold, in
general. However, Hölder inequality

||XY ||r ≤ ||X||p||Y ||q, 0 < p, q, r ≤ ∞,
1

r
=

1

p
+

1

q
, (1.2)

applied to r = p = 2 and q = ∞ leads to ∥XY ∥2 ≤ ∥X∥2∥Y ∥∞. This result,
that relates the Lebesgue spaces L2(Ω) and L∞(Ω) will be very useful in
our subsequent analysis to properly majorizing some quantities and then
establishing the mean square convergence. After doing that, we will be
interested in computing reliable approximations of the main moments of
the solution, such as the expectation and the variance. To achieve this
important goal, the following property of the mean square convergence will
play a key role.

Proposition 1.1. [9, Th 4.4.3] Let {Xn : n ≥ 0} be a sequence of
second-order random variables such that Xn −→ X as n → ∞ in the mean
square sense. Then,

E [Xn] −−−→
n→∞

E [X] , V [Xn] −−−→
n→∞

V [X] .

In this paper, we shall study the following random fractional initial
value problem (RFIVP), that extends, to the fractional setting the random
(classical) Hermite equation previously introduced in (1.1),

(CD2α
0 Y )(t)− 2tα(CDα

0 Y ) + λY (t) = 0, Y (0) = Y0, Y
′(0) = Y1.

(1.3)
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Here, (CDα
0 Y )(t) stands for the Caputo mean square derivative of order α >

0 of the second-order stochastic process Y (t), and λ, Y0 and Y1 are second-
order random variables defined on a complete probability space (Ω,F ,P).
Let us recall that, given a second-order stochastic process, the random
Caputo operator is defined by [13]

(CDα
0 Y )(t) :=

1

Γ(n− α)

∫ t

0
(t− u)n−α−1Y (n)(u)du, (1.4)

where n = −[−α], being [·] the ceiling function. As the classical setting the
Hermite equation is a second-order differential equation, hereinafter we will
assume that α ∈]0, 1] in (1.3). It is important to remark that throughout
this paper, we take (CD2α

0 Y )(t) := (CDα
0 (

CDα
0 Y ))(t).

This paper is organized as follows. Section 2 is addressed to construct
a mean square convergent solution of the RFIVP (1.3). In Section 3, we
take advantage of Proposition 1.1 together with the results established in
Section 2 to construct reliable approximations of mean and of the stan-
dard deviation (equivalently, the variance) functions for the solution of the
RFIVP (1.3). To complete our probabilistic study, in Section 4 we will go
further and, firstly, we will construct formal approximations of the prob-
ability density function of the solution in Subsection 4.1 and, secondly, in
Subsection 4.2 we will rigorously prove they are convergent. In Section 5
we illustrate all our theoretical findings by means of two numerical exam-
ples, where a wide range of probability distributions for model parameters
is considered to better illustrate the applicability of the results.

2. Obtaining a mean square convergent solution for the Hermite
random fractional differential equation

This section is devoted to construct a convergent solution of the random
IVP (1.3) in the so called mean square sense [9]. The solution, which is a
stochastic process, will be constructed, by means of a generalized random
power series, by applying the extension of classical Fröbenius method to the
stochastic setting. To guarantee the mean square convergence of the above-
mentioned series, we will impose some conditions, that will be specified
later, on the random coefficient λ, and on the random initial conditions, Y0
and Y1.

According to the random Fröbenius method, let us assume that the
solution, Y (t), can be expanded via a generalized random power series,

Y (t) =

∞∑
m=0

Xmtαm, (2.5)
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where {Xm} is a sequence of random variables in L2(Ω) to be determined.
To calculate Xm, using the random Fröbenius method, we will impose that
(2.5) is a solution of the random IVP (1.3). To this end, we need to de-
termine the mean square Caputo fractional derivatives, (CDα

0 Y )(t) and
(CD2α

0 Y )(t), of the stochastic process given in (2.5). We first deal with
(CDα

0 Y )(t) that, according to (1.4), is defined in terms of the first-order
mean square derivative of Y (t), denoted by Y ′(t). To rigorously do that,
we will apply [32, Theorem 3.1]. Let us first denote Um(t) := Xmtαm,
applying [9, Property 4.126] with the following identification: f(t) = tαm

and X(t) = Xm (constant), one gets that Um(t) is mean square differen-
tiable and U ′

m(t) = αmXmtαm−1. Furthermore, by the assumption {Xm} ∈
L2(Ω), Um(t) and U ′

m(t) are mean square continuous for each m ≥ 0.
Later, once the coefficients Xm had been explicitly determined, we will jus-
tify that Y (t) =

∑∞
m=0 Um(t) is mean square convergent for all real t > 0

and
∑∞

m=0 U
′
m(t) is mean square uniformly convergent on [−K,K] for any

positive K. Then

Y ′(t) =

∞∑
m=0

U ′
m(t) =

∞∑
m=1

αmXmtαm−1 (2.6)

will be justified, in the mean square sense, by [32, Theorem 3.1].
Now, we shall calculate the mean square Caputo derivative of the sto-

chastic process Y (t), (CDα
0 Y )(t), 0 < α ≤ 1. Recall that the Caputo

derivative of the deterministic power function tν is given by

(CDα
0 )(t

ν) =

{
Γ(ν+1)

Γ(ν+1−α) t
ν−α if ν > 0,

0 if ν = 0,
(2.7)

see [33, Example 3.1]. Then, taking into account (2.6) and (2.7), one gets

(CDα
0 Y )(t) =

1

Γ(1− α)

∫ t

0
(t− u)−αY ′(u)du

=
1

Γ(1− α)

∫ t

0
(t− u)−α

( ∞∑
m=0

Um(u)

)′

du

=
∞∑

m=0

1

Γ(1− α)

∫ t

0
(t− u)−α

(
U ′
m(u)

)
du

=

∞∑
m=0

CDα
0 (Um(t))
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=
∞∑

m=0

Xm
CDα

0 (tαm)

=

∞∑
m=1

Xm
Γ(αm+ 1)

Γ(α(m− 1) + 1)
tα(m−1)

=
∞∑

m=0

Xm+1
Γ(α(m+ 1) + 1)

Γ(αm+ 1)
tαm. (2.8)

Notice that we have used that
∑∞

m=0 U
′
m(t) converges uniformly in the

mean square sense to legitimate the commutation between this series and
the integral.

Now, we proceed to compute (CD2α
0 Y )(t) by applying one more time

Caputo’s fractional operator to (2.8),

(CD2α
0 Y )(t) = CDα

0 (
CDα

0 Y )(t) = CDα
0

( ∞∑
m=0

Xm+1
Γ(α(m+ 1) + 1)

Γ(αm+ 1)
tαm

)

=

∞∑
m=0

Xm+1
Γ(α(m+ 1) + 1)

Γ(αm+ 1)
CDα

0 (t
αm)

=
∞∑

m=1

Xm+1
Γ(α(m+ 1) + 1)

Γ(αm+ 1)

Γ(αm+ 1)

Γ(αm+ 1− α)
tαm−α

=

∞∑
m=1

Xm+1
Γ(α(m+ 1) + 1)

Γ(α(m− 1) + 1)
tαm−α

=
∞∑

m=0

Xm+2
Γ(α(m+ 2) + 1)

Γ(αm+ 1)
tαm

= X2
Γ(2α+ 1)

Γ(1)
+

∞∑
m=1

Xm+2
Γ(α(m+ 2) + 1)

Γ(αm+ 1)
tαm

= X2Γ(2α+ 1) +
∞∑

m=0

Xm+3
Γ(α(m+ 3) + 1)

Γ(α(m+ 1) + 1)
tα(m+1).

(2.9)

Once (CDα
0 Y )(t) and (CD2α

0 Y )(t) have been computed, we formally
plug expressions (2.8), (2.9) and (2.5) in the RFIVP (1.3), this gives
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0 =(CD2α
0 Y )(t)− 2tα(CDα

0 Y ) + λY (t)

=X2Γ(2α+ 1) +

∞∑
m=0

Xm+3
Γ(α(m+ 3) + 1)

Γ(α(m+ 1) + 1)
tα(m+1)

− 2
∞∑

m=0

Xm+1
Γ(α(m+ 1) + 1)

Γ(αm+ 1)
tα(m+1) + λX0 + λ

∞∑
m=0

Xm+1t
α(m+1)

=Γ(2α+ 1)X2 + λX0

+
∞∑

m=0

(
Γ(α(m+ 3) + 1)

Γ(α(m+ 1) + 1)
Xm+3 − 2

Γ(α(m+ 1) + 1)

Γ(αm+ 1)
Xm+1 + λXm+1

)
tα(m+1).

This relation fulfils choosing Xn such that

X2 = − λ

Γ(2α+ 1)
X0,

and

Xm+3 =
Γ(α(m+ 1) + 1)

Γ(α(m+ 3) + 1)

(
2Γ(α(m+ 1) + 1)

Γ(αm+ 1)
− λ

)
Xm+1, m ≥ 0.

(2.10)
Note that the terms X0 and X1 are obtained from the initial conditions

given in (1.3), X0 = Y (0) = Y0 and X1 = Y ′(0) = Y1. As it can be observed
from equation (2.10), odd and even terms, Xm, are independently defined.
By recursion, it is easy to check that they can be explicitly expressed as
follows

Xm =
Γ(α+ 1)

Γ(mα+ 1)

m−3
2∏

k=0

(
2
Γ((2k + 1)α+ 1)

Γ(2kα+ 1)
− λ

)
X1, m ≥ 3, m odd,

and

Xm =
Γ(2α+ 1)

Γ(mα+ 1)

m−2
2∏

k=1

(
2

Γ(2kα+ 1)

Γ((2k − 1)α+ 1)
− λ

)
X2, m ≥ 4, m even,

respectively.
Then the solution (2.5) can be rewritten as

Y (t) =X0 +X1t
α +X2t

2α +

∞∑
m=1

X2m+1t
(2m+1)α +

∞∑
m=2

X2mt2mα, (2.11)
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where

X0 =Y0,

X1 =Y1,

X2 =− λX0

Γ(2α+ 1)
= − λY0

Γ(2α+ 1)
,

X2m+1 =
Γ(α+ 1)

Γ((2m+ 1)α+ 1)

m−1∏
k=0

(
2
Γ((2k + 1)α+ 1)

Γ(2kα+ 1)
− λ

)
X1

=
Γ(α+ 1)

Γ((2m+ 1)α+ 1)

m−1∏
k=0

(
2
Γ((2k + 1)α+ 1)

Γ(2kα+ 1)
− λ

)
Y1,

X2m =
Γ(2α+ 1)

Γ(2mα+ 1)

m−1∏
k=1

(
2

Γ(2kα+ 1)

Γ((2k − 1)α+ 1)
− λ

)
X2

=− 1

Γ(2mα+ 1)

m−1∏
k=1

(
2

Γ(2kα+ 1)

Γ((2k − 1)α+ 1)
− λ

)
λX0

=− 1

Γ(2mα+ 1)

m−1∏
k=1

(
2

Γ(2kα+ 1)

Γ((2k − 1)α+ 1)
− λ

)
λY0.

(2.12)

Substituting (2.12) into (2.11) and rearranging the terms yields

Y (t) =Y0 + Y1t
α − λY0

Γ(2α+ 1)
t2α

+ Y1

∞∑
m=1

[
Γ(α+ 1)

Γ((2m+ 1)α+ 1)

m−1∏
k=0

(
2
Γ((2k + 1)α+ 1)

Γ(2kα+ 1)
− λ

)]
t(2m+1)α

− λY0

∞∑
m=2

[
1

Γ(2mα+ 1)

m−1∏
k=1

(
2

Γ(2kα+ 1)

Γ((2k − 1)α+ 1)
− λ

)]
t2mα

=Y0Ŷ1(t) + Y1Ŷ2(t), (2.13)

where

Ŷ1(t) := 1− λ
∞∑

m=1

[
1

Γ(2αm+ 1)

m−1∏
k=1

(
2

Γ(2kα+ 1)

Γ((2k − 1)α+ 1)
− λ

)]
t2mα

(2.14)
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and

Ŷ2(t) := tα+
∞∑

m=1

[
Γ(α+ 1)

Γ((2m+ 1)α+ 1)

m−1∏
k=0

(
2
Γ((2k + 1)α+ 1)

Γ(2αk + 1)
− λ

)]
t(2m+1)α.

(2.15)

Notice that in the definition of Ŷ1(t) we have used the usual convention∏j
k=i pk = 1 for i > j in the particular case that i = 1 > 0 = j.

Hereinafter, we shall assume that:

• H1: The coefficient λ is a bounded random variable, i.e. there are
real numbers b1 and b2 such that b1 < λ(ω) < b2, for all ω ∈ Ω.
Notice that this is equivalent to write that λ ∈ L∞(Ω).

• H2: The initial conditions Y0, Y1 ∈ L2(Ω) and λ ∈ L∞(Ω) are
independent random variables.

In the sequel, we will show that Y (t) in (2.13) is a rigorous solution of
the RFIVP (1.3). To this end, we show that Y (t) in (2.13) is mean square

convergent for all real t > 0 and Y ′(t) = Y0Ŷ
′
1(t) + Y1Ŷ

′
2(t) (derived from

(2.13) and H2) is uniformly mean square convergent for all real t > 0.

To establish the mean square convergence of Y (t), let us first observe

that each Ŷi(t), i = 1, 2, only depends on the random variable λ. By
hypothesis H2, Y0, Y1 and λ are independent random variables. Thus,
(2.13) implies

∥Y (t)∥2 ≤ ∥Y0∥2∥Ŷ1(t)∥2 + ∥Y1∥2∥Ŷ2(t)∥2.

Since Y0 and Y1 belong L
2(Ω), considering the previous inequality, the mean

square convergence of Y (t) follows from the mean square convergence of

series Ŷi(t), i = 1, 2, defined in (2.14) and (2.15), respectively. Hence, we

begin by proving the mean square convergence of Ŷi(t), i = 1, 2. First, we

find a bound for
∥∥∥Ŷ1(t)∥∥∥

2
. The triangle inequality and the Hölder inequality

(1.2) with r = p = 2 and q = ∞ imply
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∥∥∥Ŷ1(t)∥∥∥
2
=

∥∥∥∥∥1− λ

∞∑
m=1

[
1

Γ(2αm+ 1)

m−1∏
k=1

(
2

Γ(2kα+ 1)

Γ((2k − 1)α+ 1)
− λ

)]
t2mα

∥∥∥∥∥
2

≤ 1 +

∞∑
m=1

∥∥∥∥∥
[

λ

Γ(2αm+ 1)

m−1∏
k=1

(
2

Γ(2kα+ 1)

Γ((2k − 1)α+ 1)
− λ

)∥∥∥∥∥
2

|t|2mα

]

≤ 1 +
∞∑

m=1

[
∥λ∥∞

Γ(2αm+ 1)

m−1∏
k=1

∥∥∥∥(2 Γ(2kα+ 1)

Γ((2k − 1)α+ 1)
− λ

)∥∥∥∥
∞
|t|2mα

]

≤ 1 +
∞∑

m=1

[
∥λ∥∞

Γ(2αm+ 1)

m−1∏
k=1

(
2

Γ(2kα+ 1)

Γ((2k − 1)α+ 1)
+ ∥λ∥∞

)
|t|2mα

]
.

By setting

δm(t) =
∥λ∥∞

Γ(2αm+ 1)

m−1∏
k=1

(
2

Γ(2kα+ 1)

Γ((2k − 1)α+ 1)
+ ∥λ∥∞

)
|t|2mα,

we only need to show that
∑∞

m=1 δm(t) converges for all real t, to ensure
the mean square convergence of Y1(t) for all real t. Taking advantage of
the Stirling formula, Γ(x+ 1) ≈ xxe−x

√
2πx as x → ∞, we have

lim
m→∞

δm+1(t)

δm(t)
= lim

m→∞

Γ(2αm+ 1)

Γ(2α(m+ 1) + 1)

(
2

Γ(2αm+ 1)

Γ((2m− 1)α+ 1)
+ ||λ||∞

)
|t|2α

= lim
m→∞

(2mα)2mαe−2mα
√
4mαπ

(2(m+ 1)α)2(m+1)αe−2(m+1)α
√
4π(m+ 1)α

·

(
2

(2mα)2mαe−2mα
√
4mαπ

((2m− 1)α)(2m−1)αe−(2m−1)α
√
2(2m− 1)πα

+ ||λ||∞

)
|t|2α

= lim
m→∞

(
2mα

2(m+ 1)α

)2mα( 1

2(m+ 1)α

)2α

e2α
√

m

m+ 1

·

(
2

(
2mα

(2m− 1)α

)(2m−1)α

(2mα)αe−α

√
2m

2m− 1
+ ||λ||∞

)
|t|2α

= lim
m→∞

(
2mα

2(m+ 1)α

)2mα( 1

2(m+ 1)α

)2α

e2α
√

m

m+ 1

· 2
(

2mα

(2m− 1)α

)(2m−1)α

(2mα)αe−α

√
2m

2m− 1
|t|2α

+ lim
m→∞

(
2mα

2(m+ 1)α

)2mα( 1

2(m+ 1)α

)2α

e2α
√

m

m+ 1
||λ||∞|t|2α



12 C. Burgos, T. Caraballo, J.C. Cortés, L. Villafuerte, R.J. Villanueva

= lim
m→∞

2

(
2mα

2(m+ 1)α

)2mα( 2mα

(2m− 1)α

)(2m−1)α

·
(

1

2(m+ 1)α

)α( 2mα

2(m+ 1)α

)α

eα
√

m

m+ 1

√
2m

2m− 1
|t|2α

+ lim
m→∞

(
2mα

2(m+ 1)α

)2mα( 1

2(m+ 1)α

)2α

e2α
√

m

m+ 1
||λ||∞|t|2α

= 0,

because
(

2mα
2(m+1)α

)2mα m→∞−−−−→ e−2α,
(

2mα
(2m−1)α

)(2m−1)α m→∞−−−−→ eα,
(

1
2(m+1)α

)kα m→∞−−−−→

0 for k = 1, 2 and
(

2mα
2(m+1)α

)α m→∞−−−−→ 1. By the ratio test, the series∑∞
m=1 δm(t) converges for all real t. Hence, Y1(t) defined in (2.14), is mean

square convergent for all real t > 0. Similarly, for all real t, it can be
proved the mean square convergence of Y2(t) given by (2.15). Moreover,
by using similar arguments, one can prove that their corresponding mean
square derivatives, Ŷ ′

1(t) and Ŷ ′
2(t), are uniformly mean square convergent

on [−K,K] for any positive K. Summarizing, the following result has been
established:

Theorem 2.1. If the random variables Y0, Y1 and λ satisfy hypotheses
H1 and H2, then

Y (t) =Y0

(
1− λ

∞∑
m=1

[
1

Γ(2αm+ 1)

m−1∏
k=1

(
2

Γ(2kα+ 1)

Γ((2k − 1)α+ 1)
− λ

)]
t2mα

)

+ Y1

(
tα +

∞∑
m=1

[
Γ(α+ 1)

Γ((2m+ 1)α+ 1)

m−1∏
k=0

(
2
Γ((2k + 1)α+ 1)

Γ(2αk + 1)
− λ

)]
t(2m+1)α

)
,

(2.17)

is a mean square convergent solution of the RFIVP (1.3) for all t > 0.

3. Obtaining approximations for the mean and standard
deviation of the solution

Theorem 2.1 ensures the mean square convergence of the solution pro-
cess Y (t) in 2.17. Hence, Proposition 1.1 guarantees the convergence of
its mean and standard deviation. This section is devoted to find explicit
expressions for these relevant statistical functions. To this end, we first
introduce the following technical result that simplifies the subsequent cal-
culations.
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Lemma 3.1. Let f(k) be a real function and let λ be a random variable.
Then

m∏
k=1

(f(k)− λ) =
m∑
i=0

λi(−1)iGm,i, for all m ∈ N, (3.18)

where

Gm,i =


∑

j1<j2<···<jm−i
f(j1)f(j2) · · · f(jm−i) if i < m,

1 if m = i,
0 otherwise.

(3.19)
In other words, for i < m, Gm,i is defined as the sum taken over all subsets
of m− i indexes j1, . . . , jm−i from the set {1, . . . ,m}.

Proof. We proceed by induction on m. Clearly, (3.18) is true for
m = 1. Indeed, observe that G1,0 = f(1) and G1,1 = 1 and the right side
of (3.18) is

λ0(−1)0G1,0 + λ1(−1)1G1,1,

which is equal to the left side of (3.18). The equation (3.18) holds for m = 2
since the left side of (3.18) is

(f(1)− λ)(f(2)− λ) = λ2 − (f(1) + f(2))λ+ f(1)f(2),

and the right side of (3.18) is

λ0(−1)0G2,0+λ1(−1)1G2,1+λ2(−1)2G2,2 = f(1)f(2)−λ(f(1)+f(2))+λ2.

By definition of Gm,i it follows

Gm+1,i = f(m+ 1)Gm,i +Gm,i−1.

Let m ∈ N such that m ≥ 2 and suppose that

m−1∏
k=1

(f(k)− λ) =

m−1∑
i=0

λi(−1)iGm−1,i. (3.20)

By induction hypothesis 3.20 we have
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m∏
k=1

(f(k)− λ) = (f(m)− λ)
m−1∏
k=1

(f(k)− λ) = (f(m)− λ)
m−1∑
i=0

λi(−1)iGm−1,i

=f(m)
m−1∑
i=0

λi(−1)iGm−1,i − λ
m−1∑
i=0

λi(−1)iGm−1,i

=

m−1∑
i=0

λi(−1)i (f(m)Gm−1,i) +

m−1∑
i=0

λi+1(−1)i+1Gm−1,i

=λ0(−1)0 (f(m)Gm−1,0) +

m−1∑
i=1

λi(−1)i (f(m)Gm−1,i)

+

m−1∑
i=0

λi+1(−1)i+1Gm−1,i.

Using the equalitiesGm,0 = f(m)Gm−1,0 and f(m)Gm−1,i+1 = f(m)Gm−1,i+1+
Gm−1,i (derived from (??)) yields

=λ0(−1)0 (Gm,0) +

m−2∑
i=0

λi+1(−1)i+1 (f(m)Gm−1,i+1)

+
m−2∑
i=0

λi+1(−1)i+1Gm−1,i + λm(−1)mGm−1,m−1

=λ0(−1)0Gm,0 +
m−2∑
i=0

λi+1(−1)i+1 (f(m)Gm−1,i+1 +Gm−1,i)

+ λm(−1)mGm,m

=λ0(−1)0Gm,0 +

m−2∑
i=0

λi+1(−1)i+1Gm,i+1 + λm(−1)mGm,m

=

m∑
i=0

λi(−1)iGm,i.

By the principle of mathematical induction, we conclude that (3.18) is true
for all m.

2

Now, we apply Lemma 3.1 to simplify the products involved in (2.13).

Let f(k) = 2 Γ(2kα+1)
Γ((2k−1)α+1) . Then
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m−1∏
k=1

(
2

Γ(2kα+ 1)

Γ((2k − 1)α+ 1)
− λ

)
=

m−1∏
k=1

(f(k)− λ) =

m−1∑
i=0

λi(−1)iGm−1,i,

being Gm−1,i as in (3.19).

Next, setting f̂(k) = 2Γ((2k−1)α+1)
Γ((2k−2)α+1) , one gets

m−1∏
k=0

(
2
Γ((2k + 1)α+ 1)

Γ(2αk + 1)
− λ

)
=

m∏
k=1

(
f̂(k)− λ

)
=

m∑
i=0

λi(−1)iĜm,i

where

Ĝm,i =


∑

j1<j2<···<jm−i
f̂(j1)f̂(j2) · · · f̂(jm−i) if i < m,

1 if m = i
0 otherwise.

(3.21)
As a consequence, the solution given in (2.13) can be represented free

of products by the following expression

Y (t) =Y0

(
1 +

∞∑
m=1

[
t2mα

Γ(2αm+ 1)

(
m−1∑
i=0

λi+1(−1)i+1Gm−1,i

)])

+ Y1

(
tα +

∞∑
m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑
i=0

λi(−1)iĜm,i

)])
,

(3.22)

where Gm,i and Ĝm,i are defined in (3.19) and (3.21), respectively.
Now, we shall obtain reliable approximations for the mean and the

variance functions of the solution. To achieve this goal, we first consider
the truncation of order M , YM (t), of the solution given in (3.22):

YM (t) :=Y0

(
1 +

M∑
m=1

[
t2mα

Γ(2αm+ 1)

(
m−1∑
i=0

λi+1(−1)i+1Gm−1,i

)])

+ Y1

(
tα +

M∑
m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑
i=0

λi(−1)iĜm,i

)])
.

(3.23)

By independence of Y0, Y1 and λ, see assumption H1, one gets

E[YM (t)] =E[Y0]

(
1 +

M∑
m=1

[
t2mα

Γ(2αm+ 1)

(
m−1∑
i=0

E[λi+1](−1)i+1Gm−1,i

)])
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+ E[Y1]

(
tα +

M∑
m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑
i=0

E[λi](−1)iĜm,i

)])
.

(3.24)

Recall that the standard deviation of YM (t), σ[YM (t)], is defined by

σ[YM (t)] =
√

E[Y 2
M (t)]− (E[YM (t)])2. (3.25)

Note that

Y 2
M (t) =Y 2

0

(
1 +

M∑
m=1

[
t2αm

Γ(2αm+ 1)

(
m−1∑
i=0

λi+1(−1)i+1Gm−1,i

)])2

︸ ︷︷ ︸
:=A

+ Y 2
1

(
tα +

M∑
m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑
i=0

λi(−1)iĜm,i

)])2

︸ ︷︷ ︸
:=B

+ 2Y0Y1

(
1 +

M∑
m=1

[
t2αm

Γ(2αm+ 1)

(
m−1∑
i=0

λi+1(−1)i+1Gm−1,i

)])
︸ ︷︷ ︸

C

·

(
tα +

M∑
m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑
i=0

λi(−1)iĜm,i

)])
︸ ︷︷ ︸

:=C

.

(3.26)
Now, for the sake of clarity, we separately compute the above three terms,
denoted by A, B and C.
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A :=

(
1 +

M∑
m=1

[
t2αm

Γ(2αm+ 1)

(
m−1∑
i=0

λi+1(−1)i+1Gm−1,i

)])2

=1 + 2

M∑
m=1

[
t2αm

Γ(2αm+ 1)

(
m−1∑
i=0

λi+1(−1)i+1Gm−1,i

)]

+

(
M∑

m=1

[
t2αm

Γ(2αm+ 1)

(
m−1∑
i=0

λi+1(−1)i+1Gm−1,i

)])2

=1 + 2

M∑
m=1

[
t2αm

Γ(2αm+ 1)

(
m−1∑
i=0

λi+1(−1)i+1Gm−1,i

)]

+

 M∑
m=1

M∑
n=1

 t2α(m+n)

Γ(2αm+ 1)Γ(2αn+ 1)

m−1∑
i=0

n−1∑
j=0

λi+j+2(−1)i+j+2Gm−1,iGn−1,j

 ,

B :=

(
tα +

M∑
m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑
i=0

λi(−1)iĜm,i

)])2

=t2α + 2tα
M∑

m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑
i=0

λi(−1)iĜm,i

)]

+

(
M∑

m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑
i=0

λi(−1)iĜm,i

)])2

=tα + 2tα
M∑

m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑
i=0

λi(−1)iĜm,i

)]

+
M∑

m=1

M∑
n=1

 Γ(α+ 1)2t(2n+2m+2)α

Γ((2m+ 1)α+ 1)Γ((2n+ 1)α+ 1)

 m∑
i=0

n∑
j=0

λi+j(−1)i+jĜm,iĜn,j


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and

C :=

(
1 +

M∑
m=1

[
t2αm

Γ(2αm+ 1)

(
m−1∑
i=0

λi+1(−1)i+1Gm−1,i

)])

·

(
tα +

M∑
m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑
i=0

λi(−1)iĜm,i

)])

=tα + tα
M∑

m=1

[
t2αm

Γ(2αm+ 1)

(
m−1∑
i=0

λi+1(−1)i+1Gm−1,i

)]

+
M∑

m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑
i=0

λi(−1)iĜm,i

)]

+
M∑

m=1

M∑
n=1

 Γ(α+ 1)t2αmt(2n+1)α

Γ((2n+ 1)α+ 1)Γ(2αm+ 1)

m−1∑
i=0

n∑
j=0

λi+j+1(−1)i+j+1Gm−1,iĜn,j

 .

Substituting A, B and C in (3.26), YM (t)2 can be expressed as

Y 2
M (t) =Y 2

0

(
1 + 2

M∑
m=1

[
t2αm

Γ(2αm+ 1)

(
m−1∑
i=0

λi+1(−1)i+1Gm−1,i

)]

+

 M∑
m=1

M∑
n=1

 t2α(m+n)

Γ(2αm+ 1)Γ(2αn+ 1)

m−1∑
i=0

n−1∑
j=0

λi+j+2(−1)i+j+2Gm−1,iGn−1,j


+ Y 2

1

(
tα + 2tα

M∑
m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑
i=0

λi(−1)iĜm,i

)]

+

M∑
m=1

M∑
n=1

 Γ(α+ 1)2t(2n+2m+2)α

Γ((2m+ 1)α+ 1)Γ((2n+ 1)α+ 1)

 m∑
i=0

n∑
j=0

λi+j(−1)i+jĜm,iĜn,j


+ 2Y0Y1

(
tα + tα

M∑
m=1

[
t2αm

Γ(2αm+ 1)

(
m−1∑
i=0

λi+1(−1)i+1Gm−1,i

)]

+

M∑
m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑
i=0

λi(−1)iĜm,i

)]

+
M∑

m=1

M∑
n=1

 Γ(α+ 1)t2αmt(2n+1)α

Γ((2n+ 1)α+ 1)Γ(2αm+ 1)

m−1∑
i=0

n∑
j=0

λi+j+1(−1)i+j+1Gm−1,iĜn,j

 .

(3.27)
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Applying the expectation operator on (3.27), one gets

E[Y 2
M (t)] =E[Y 2

0 ]

(
1 + 2

M∑
m=1

[
t2αm

Γ(2αm+ 1)

(
m−1∑
i=0

E[λi+1](−1)i+1Gm−1,i

)]

+

 M∑
m=1

M∑
n=1

 t2α(m+n)

Γ(2αm+ 1)Γ(2αn+ 1)

m−1∑
i=0

n−1∑
j=0

E[λi+j+2](−1)i+j+2Gm−1,iGn−1,j


+ E[Y 2

1 ]

(
tα + 2tα

M∑
m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑
i=0

E[λi](−1)iĜm,i

)]

+

M∑
m=1

M∑
n=1

 Γ(α+ 1)2t(2n+2m+2)α

Γ((2m+ 1)α+ 1)Γ((2n+ 1)α+ 1)

 m∑
i=0

n∑
j=0

E[λi+j ](−1)i+jĜm,iĜn,i


+ 2E[Y0]E[Y1]

(
tα + tα

M∑
m=1

[
t2αm

Γ(2αm+ 1)

(
m−1∑
i=0

E[λi+1](−1)i+1Gm−1,i

)]

+

M∑
m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑
i=0

E[λi](−1)iĜm,i

)]

+

M∑
m=1

M∑
n=1

 Γ(α+ 1)t2αmt(2n+1)α

Γ((2n+ 1)α+ 1)Γ(2αm+ 1)

m−1∑
i=0

n∑
j=0

E[λi+j+1](−1)i+j+1Gm−1,iĜn,j

 .

(3.28)

From the previous expressions, it is interesting to observe that the ap-
proximation of order M of the mean, E[YM (t)], depends on E[Y0], E[Y1] and
E[λm], m = 1, . . . ,M , while the approximation of the second order moment,
E[Y 2

M (t)] (and hence, by (3.25), of σ[YM (t)])), depends on the above quan-
tities together with E[Y 2

0 ], E[Y 2
1 ] and E[λm], m = 1, . . . , 2M , as expected.

Finally, notice that Theorem 2.1 ensures the mean square convergence of
YM (t), and according to Proposition 1.1, E[YM (t)] and E[Y 2

M (t)] converge
to their corresponding exact values, E[Y (t)] and E[Y 2(t)], respectively.

4. Convergent approximations for the 1-PDF of the solution

So far, convergent approximations for the mean, E[YM (t)], and for the
standard deviation, σ[YM (t)], of the solution, Y (t), given in (3.22) have
been computed from its truncation of order M , YM (t), given in (3.23).
Nevertheless, sometimes it is required further statistical information of
Y (t). On the one hand, computing higher-order one-dimensional statis-
tical moments, E[(YM (t))k], allow us to approximate additional statistical
properties, such as the asymmetry, the kurtosis, etc., of Y (t) that are useful
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functions to better describing the solution from a probabilistic standpoint.
On the other hand, the probability that the solution lies within an interval
of interest is, obviously, a relevant information in practice. Approxima-
tions for both quantities can be calculated by integrating the so called first
probability density function (1-PDF) of YM (t), say fYM (t)(y),

E[(YM (t))k] =

∫ ∞

−∞
ykfYM (t)(y) dy, k = 1, 2, . . . ,

and

P[l1 ≤ YM (t) ≤ l2] =

∫ l2

l1

fYM (t)(y)dy.

Of course the above approximations will be legitimated provided fYM (t)(y) −→
fY (t)(y) as M → ∞, where fY (t)(y) stands for the 1-PDF of the exact so-
lution Y (t), given in (3.22). In this section, we first formally construct the
approximations fYM (t)(y) and, then, we establish sufficient conditions so
that the foregoing convergence fulfils.

4.1. Constructing formal approximations for the 1-PDF. In the ex-
tant literature there exist different approaches to obtain, exact or approx-
imately, the 1-PDF of a stochastic process. Most of these methods are
natural extensions of their corresponding counterpart for calculating the
PDF of a random variable. As we have previously obtained approximations
for the two first moments of the solution, a natural approach would be to
apply the principle of maximum entropy (PME). This method constructs
the PDF taking into account the available information of the random vari-
able (in our case, the two first moments) by maximizing the concept of
Shannon’s entropy, which defines the lack of knowledge of a random vari-
able [34]. In the setting of ordinary and fractional differential equations
with randomness, this approach has been recently applied in [29] and [35],
respectively. Although, the method provides well-founded approximations
to calculate the 1-PDF, the results heavily depend on the accuracy of the
approximations of the first statistical moments. Moreover, according to
the PME method, the approximations of the 1-PDF are limited to certain
specific classes of densities depending on the number of statistical moments
that have been pre-calculated. For example, if it is only known the mean
and that the solution is positive, the PDF will be an exponential distri-
bution; if both the mean and the variance are known, the approximation
of the PDF will be Gaussian; etc. [34]. Non-standard distributions can
be achieved at expenses of pre-calculating higher statistical moments that
could be cumbersome, as can be guess from the expressions of the two first
moments (see expressions (3.24) and (3.28)).
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To avoid these drawbacks, we here propose to obtain the 1-PDF by
an alternative method termed the Probabilistic Transformation Method
(PTM), which is based on the following result.

Theorem 4.1 (PTM). [9, p. 25]. Let us consider Z = (Z1, . . . , Zk)
and X = (X1, . . . , Xk) two k-dimensional absolutely continuous random
vectors defined on a common complete probability space (Ω,FΩ,P). Let
r : Rk → Rk be a one-to-one deterministic transformation of Z into X, i.e.,
X = r(Z). Assume that r is continuous in Z and has continuous partial
derivatives with respect to each Zi, 1 ≤ i ≤ k. Then, if fZ(z) denotes
the joint probability density function of random vector Z, and s = r−1 =
(s1(x1, . . . , xk), . . . , sk(x1, . . . , xk)) represents the inverse mapping of r =
(r1(z1, . . . , zk), . . . , rk(z1, . . . , zk)), the joint probability density function of
random vector X is given by

fX(y) = fZ (s(x)) |J | ,

where |J |, which is assumed to be different from zero, is the absolute value
of the Jacobian defined by the following determinant

J = det

(
∂s

∂x

)
= det


∂s1(x1,...,xk)

∂x1
· · · ∂sk(x1,...,xk)

∂x1
...

. . .
...

∂s1(x1,...,xk)
∂xk

· · · ∂sk(x1,...,xk)
∂xk

 .

In our setting the key idea to take advantage of the above results is
to note that, for t > 0 fixed, the approximate solution, YM (t), given in
(3.23) is described by means of a transformation, r, of the input param-
eters Y0, Y1 and λ, whose PDFs, fY0 , fY1 and fλ are known. Observe
that, according to hypothesis H1, the joint PDF of (Y0, Y1, λ) is given by
fY0,Y1,λ = fY0fY1fλ. Applying Theorem 4.1 to YM (t), we first shall ob-
tain the approximations, fYM (t)(y) and, later, we will establish sufficient
condition so that fYM (t)(y) −→ fY (t)(y) as M → ∞.

The PTM (also referred to as RVT-Random Variable Transformation)
method has been successfully applied to obtain the 1-PDF of the solution of
some classes of differential equations with uncertainties. In [36] the authors
have obtained the 1-PDF of the solution of a logistic random differential
equation. In [37], the PTM method is applied to approximate the 1-PDF of
the solution of a delay random differential equation. The PTM method has
also been applied to numerically solve PDEs [38]. In [39], some of the au-
thors of this contribution, approximate the 1-PDF of a linear autonomous
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random fractional differential equation, whose order of fractional differen-
tiation is 0 < α ≤ 1, by taking advantage of the PTM technique.

Let us apply Theorem (4.1) with the following identification, k = 3 and
Z = (Z1, Z2, Z3) = (Y0, Y1, λ). The vector X = (X1, X2, X3) is defined
by the following deterministic transformation r = (r1, r2, r3), of Z, i.e.
X = r(Z), where

x1 =r1(y0, y1, λ) = y0

(
1 +

M∑
m=1

[
t2mα

Γ(2αm+ 1)

(
m−1∑
i=0

λi+1(−1)i+1Gm−1,i

)])
,

+ y1

(
tα +

M∑
m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑
i=0

λi(−1)iĜm,i

)])
,

x2 =r2(y0, y1, λ) = y1

x3 =r3(y0, y1, λ) = λ.

It can be seen that the inverse mapping of r, s = r−1, is given by

y0 =s1(x1, x2, x3) =

x1 − x2

(
tα +

M∑
m=1

[
Γ(α+1)t(2m+1)α

Γ((2m+1)α+1)

(
m∑
i=0

xi3(−1)iĜm,i

)])
1 +

M∑
m=1

[
t2αm

Γ(2αm+1)

(
m∑
i=0

xi+1
3 (−1)i+1Gm−1,i

)] ,

y1 =s2(x1, x2, x3) = x2,

λ =s3(x1, x2, x3) = x3.

The absolute value of the Jacobian of the transformation s is given by

|J | =
∣∣∣∣∂s1(x1, x2, x3)∂x1

∣∣∣∣ = 1∣∣∣∣1 + M∑
m=1

[
t2αm

Γ(2αm+1)

(
m−1∑
i=0

xi+1
3 (−1)i+1Gm−1,i

)]∣∣∣∣ .
Applying Theorem (4.1), the PDF of the random vector X = (X1, X2, X3)
is given by

fX1,X2,X3(x1, x2, x3)

= fY0,Y1,λ


x1 − x2

(
tα +

M∑
m=1

[
Γ(α+1)t(2m+1)α

Γ((2m+1)α+1)

(
m∑
i=0

xi3(−1)iĜm,i

)])
1 +

M∑
m=1

[
t2αm

Γ(2αm+1)

(
m−1∑
i=0

xi+1
3 (−1)i+1Gm−1,i

)] , x2, x3


· 1∣∣∣∣1 + M∑

m=1

[
t2αm

Γ(2αm+1)

(
m−1∑
i=0

xi+1
3 (−1)i+1Gm−1,i

)]∣∣∣∣ .
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Marginalizing with respect X2 = Y1 and X3 = λ, we can obtain the 1-PDF
of the approximate solution, YM (t),

fYM (t)(y) = fX1(y) =

∫ ∞

−∞

∫ ∞

−∞
fX1,Y1,λ(y, y1, λ) dy1 dλ

=

∫ ∞

−∞

∫ ∞

−∞
fY0


y − y1

(
tα +

M∑
m=1

[
Γ(α+1)t(2m+1)α

Γ((2m+1)α+1)

(
m∑
i=0

λi(−1)iĜm,i

)])
1 +

M∑
m=1

[
t2αm

Γ(2αm+1)

(
m−1∑
i=0

λi+1(−1)i+1Gm−1,i

)]


· fY1(y1)fλ(λ)
1∣∣∣∣1 + M∑

m=1

[
t2αm

Γ(2αm+1)

(
m−1∑
i=0

λi+1(−1)i+1Gm−1,i

)]∣∣∣∣ dy1 dλ.
(4.29)

4.2. Convergence of approximations of the 1-PDF. This subsection
is addressed to show that fYM (t)(y) −→ fY (t)(y) as M → ∞ under mild
conditions. Note that fYM (t)(y) is given by (4.29), while the limit is given
by

fY (t)(y) =

∫ ∞

−∞

∫ ∞

−∞
fY0


y − y1

(
tα +

∞∑
m=1

[
Γ(α+1)t(2m+1)α

Γ((2m+1)α+1)

(
m∑
i=0

λi(−1)iĜm,i

)])
1 +

∞∑
m=1

[
t2αm

Γ(2αm+1)

(
m−1∑
i=0

λi+1(−1)i+1Gm−1,i

)]


· fY1(y1)fλ(λ)
1∣∣∣∣1 + ∞∑

m=1

[
t2αm

Γ(2αm+1)

(
m−1∑
i=0

λi+1(−1)i+1Gm−1,i

)]∣∣∣∣dy1dλ.
(4.30)

For the sake of clarity in the subsequent development, we first introduce
the following notation.
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SM
0 (t) = 1 +

M∑
m=1

[
t2αm

Γ(2αm+ 1)

(
m∑
i=0

λi+1(−1)i+1Gm−1,i

)]
,

S0(t) = 1 +
∑
m≥1

[
t2αm

Γ(2αm+ 1)

(
m∑
i=0

λi+1(−1)i+1Gm−1,i

)]
,

SM
1 (t) = tα +

M∑
m=1

[
Γ(α+ 1)

Γ((2m+ 1)α+ 1)

(
m∑
i=0

λi(−1)iĜm,i

)]
,

S1(t) = tα +
∑
m≥1

[
Γ(α+ 1)

Γ((2m+ 1)α+ 1)

(
m∑
i=0

λi(−1)iĜm,i

)]
.

(4.31)

Then, expressions (4.29) and (4.30) read

fYM (t)(y) =

∫
R2

fY0

(
y − y1S

M
1 (t)

SM
0 (t)

)
fY1(y1)fλ(λ)

∣∣∣∣ 1

SM
0 (t)

∣∣∣∣ dy1 dλ,
fY (t)(y) =

∫
R2

fX0

(
y − y1S1(t)

S0(t)

)
fY1(y1)fλ(λ)

∣∣∣∣ 1

S0(t)

∣∣∣∣ dy1 dλ. (4.32)

Before proceeding with the proof, it is important to remark the following
observations. Note that with the notation of (4.31), the solution (3.22) is
given by Y (t) = Y0S0(t) +X1S1(t). If Y0 ̸= 0 then

Y0 = Y (0) = Y0S0(0) + Y1S1(0) = Y0S0(0),

and S0(0) = 1 with probability 1, because S1(0) = 0. Taking into account
that S0(t) is a power series evaluated at t2α and consequently continuous,
we can guarantee that

∃δ0 > 0 : 0 < ms,0 ≤ min{|SM
0 (t)|, |S0(t)|}, ∀t : |t| ≤ δ0, ∀ integer M ≥ 0.

(4.33)
Moreover, by the definition of equations (4.31), it is known that SM

0 (t)
and SM

1 (t) are convergent series in the whole real line. Thus, these series
are almost surely uniform convergent in every compact subset of R. This
guarantees that, for j = 0, 1,

∃Ms,j > 0 : max{|SM
j (t)|, |Sj(t)|} ≤ Ms,j , ∀t : |t| ≤ δ0, ∀ integer M ≥ 0.

(4.34)
Finally, it is note that SM

0 (t) and SM
1 (t) converge uniformly to S0(t)

and S1(t) on [−δ0, δ0], respectively. So, taken εj > 0, j = 0, 1, arbitrarily
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but fixed, there exists M j
0 > 0 integer, so that

|SM
j (t)− Sj(t)| < εj , ∀M ≥ M j

0 integer and ∀t : |t| ≤ δ0. (4.35)

To complete the proof, we fix t assuming that it lies within a neigh-
bourhood about t0 = 0, where the RFIVP is formulated and the bounds
(4.33) and (4.34) fulfil. To proof that fYM (t)(y) −→ fY (t)(y) as M → ∞,
besides assuming hypotheses H1 and H2, we will assume that

• H3: The PDF, fY0 , of the initial condition Y0 is Lipschitz on the
whole real line, R, i.e. there exists L0 > such that

|fY0(x)− fY0(z)| ≤ L0|x− z|, ∀x, z ∈ R.

To prove the convergence, we fix t and calculate the difference
∣∣fY (t)(y)− fYM (t)(y)

∣∣
using (4.32).

∣∣fY (t)(y)− fYM (t)(y)
∣∣

=

∣∣∣∣∫
R2

(
fY0

(
y − y1S1(t)

S0(t)

)
1

|S0(t)|
− fY0

(
y − y1S

M
1 (t)

SM
0 (t)

)
1

|SM
0 (t)|

)
fY1(y1)fλ(λ) dλ dy1

∣∣∣∣
≤
∫
R2

∣∣∣∣fY0

(
y − y1S1(t)

S0(t)

)
1

|S0(t)|
− fY0

(
y − y1S

M
1 (t)

SM
0 (t)

)
1

|SM
0 (t)|

∣∣∣∣ fY1(y1)fλ(λ) dλdy1

=

∫
R2

∣∣∣∣fY0

(
y − y1S1(t)

S0(t)

)
1

|S0(t)|
− fY0

(
y − y1S

M
1 (t)

SM
0 (t)

)
1

|S0(t)|

+fY0

(
y − y1S

M
1 (t)

SM
0 (t)

)
1

|S0(t)|
− fY0

(
y − y1S

M
1 (t)

SM
0 (t)

)
1

|SM
0 (t)|

∣∣∣∣ fY1(y1)fλ(λ)dλdy1

≤
∫
R2


∣∣∣∣fY0

(
y − y1S1(t)

S0(t)

)
− fY0

(
y − y1S

M
1 (t)

SM
0 (t)

)∣∣∣∣︸ ︷︷ ︸
(I)

1

|S0(t)|︸ ︷︷ ︸
(II)

+

∣∣∣∣fY0

(
y − y1S

M
1 (t)

SM
0 (t)

)∣∣∣∣︸ ︷︷ ︸
(III)

∣∣∣∣ 1

|S0(t)|
− 1

|SM
0 (t)|

∣∣∣∣︸ ︷︷ ︸
(IV)

 fY1(y1)fλ(λ) dλ dy1.

(4.36)

Now we proceed to bound the terms (I)–(IV) in (4.36). Let us start with
term (III). Firstly, let us denote F0 := fY0(0), then using hypothesis H3
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and bounds (4.33) and (4.34) for SM
0 and SM

1 , respectively, one gets

(III) =

∣∣∣∣fY0

(
y − y1S

M
1 (t)

SM
0 (t)

)∣∣∣∣ = ∣∣∣∣fY0

(
y − y1S

M
1 (t)

SM
0 (t)

)
− fY0(0) + F0

∣∣∣∣
≤
∣∣∣∣fY0

(
y − y1S

M
1 (t)

SM
0 (t)

)
− fY0(0)

∣∣∣∣+ F0

≤ L0

∣∣∣∣y − y1S
M
1 (t)

SM
0 (t)

∣∣∣∣+ F0

≤ L0

ms,0
(|y|+ |y1|Ms,1) + F0. (4.37)

Using the bound (4.33) for SM
0 and (4.35) for j = 0, the term (IV) can be

majorized by

(IV) =

∣∣∣∣ 1

|S0(t)|
− 1

|SM
0 (t)|

∣∣∣∣ =
∣∣|SM

0 (t)| − |S0(t)|
∣∣

|S0(t)||SM
0 (t)|

≤
∣∣SM

0 (t)− S0(t)
∣∣

|S0(t)||SM
0 (t)|

≤ ε0
m2

s,0

(4.38)

The bound of the term (II) straightforwardly follows from the applica-
tion of (4.33)

(II) =
1

|S0(t)|
≤ 1

ms,0
. (4.39)

Finally, we proceed to bound the term (I). To this end, we first apply
hypothesis H3

(I) =

∣∣∣∣fY0

(
y − y1S1(t)

S0(t)

)
− fY0

(
y − y1S

M
1 (t)

SM
0 (t)

)∣∣∣∣
≤ L0

∣∣∣∣y − y1S1(t)

S0(t)
− y − y1S

M
1 (t)

SM
0 (t)

∣∣∣∣
≤ L0

∣∣∣∣ySM
0 (t)− y1S1(t)S

M
0 (t)− yS0(t) + y1S0(t)S

M
1 (t)

S0(t)SM
0 (t)

∣∣∣∣
= L0

∣∣∣∣∣y
(
SM
0 (t)− S0(t)

)
+ y1

(
S0(t)S

M
1 (t)− S1(t)S

M
0 (t)

)
S0(t)SM

0 (t)

∣∣∣∣∣
≤ L0

(
|y||SM

0 (t)− S0(t)|+ |y1||S0(t)S
M
1 (t)− S1(t)S

M
0 (t)|

|S0(t)||SM
0 (t)|

)
= L0

(
|y||SM

0 (t)− S0(t)|+ |y1||S0(t)S
M
1 (t)− S0(t)S1(t) + S0(t)S1(t)− S1(t)S

M
0 (t)|

|S0(t)||SM
0 (t)|

)
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≤ L0

(
|y||SM

0 (t)− S0(t)|+ |y1|
(
|S0(t)||SM

1 (t)− S1(t)|+ |S1(t)||S0(t)− SM
0 (t)|

)
|S0(t)||SM

0 (t)|

)

≤ L0

(
|y|ε0 + |y1|(Ms,0ε1 +Ms,1ε0)

m2
s,0

)
,

(4.40)

where in the last step we have applied (4.35) and (4.34), both for j = 0, 1,
and (4.33) for Sm

0 and S0.
Substituting (4.40), (4.39), (4.37) and (4.38), in (4.36) to bound the

terms (I)–(IV), respectively, one gets

∣∣fY (t)(y)− fYM (t)(y)
∣∣

≤
∫
R2

{∣∣∣∣fY0

(
y − y1S1(t)

S0(t)

)
− fY0

(
y − y1S

M
1 (t)

SM
0 (t)

)∣∣∣∣ 1

|S0(t)|

+

∣∣∣∣fY0

(
y − y1S

M
1 (t)

SM
0 (t)

)∣∣∣∣ ∣∣∣∣ 1

|S0(t)|
− 1

|SM
0 (t)|

∣∣∣∣} fY1(y1)fλ(λ) dλdy1

≤
∫
R2

L0

{(
|y|ε0 + |y1|(Ms,0ε1 +Ms,1ε0)

m2
s,0

)
1

ms,0

+

(
L0

ms,0
(|y|+ |y1|Ms,1) + F0

)
ε0
m2

s,0

}
fY1(y1)fλ(λ)dλdy1

Let us denote M = max{Ms,0,Ms,1} and ε = max{ε0, ε1}, then,
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∣∣fY (t)(y)− fYM (t)(y)
∣∣

≤
∫
R2

{
L0

(
|y|ε+ 2Mε|y1|

m3
s,0

)

+

(
L0

ms,0
(|y|+ |y1|M) + F0

)
ε

m2
s,0

}
fY1(y1)fλ(λ) dλdy1

=

∫
R2

{
L0ε

m3
s,0

|y|+ 2L0Mε

m3
s,0

|y1|+
L0ε

m3
s,0

|y|

+
L0Mε

m3
s,0

|y1|+
F0ε

m2
s,0

}
fY1(y1)fλ(λ) dλ dy1

=

(
2L0ε

m3
s,0

|y|+ F0ε

m2
s,0

)∫
R2

fY1(y1)fλ(λ) dy1 dλ

+

(
3L0Mε

m3
s,0

)∫
R2

|y1|fY1(y1)fλ(λ) dy1 dλ

=

(
2L0ε

m3
s,0

|y|+ F0ε

m2
s,0

)
+

(
3L0Mε

m3
s,0

)
E[|Y1|]

= ε

(
2L0

m3
s,0

|y|+ F0

m2
s,0

+
3L0M
m3

s,0

E[Y1]

)
.

Since by hypothesis H2, Y1 ∈ L2(Ω), by Schwarz’s inequality E[|Y1|] ≤
E[|Y1|2] < ∞. Then, as a consequence of the previous development, we
conclude that fYM (t)(y) −→ fY (t)(y) as M → ∞.

5. Numerical Examples

This section is devoted to illustrate the theoretical findings established
in the previous sections by means of two numerical examples. These ex-
amples are devised with regard to the probability distribution of model
parameter λ, which, according to hypothesis H1, is assumed to be an es-
sentially bounded random variable. In the first example, we will assume
that λ has a bounded distribution. In the second example, we will illustrate
how the case where λ is an unbounded random variable can be treated via
its approximation using truncated random variables for which hypothesis
H1 fulfils. In this latter case, we will graphically show the correct con-
vergence of the approximations of the 1-PDF of the solution stochastic
process.
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Example 5.1. In this first example let us consider that the order of the
fractional derivative is α = 0.5. We will assume the following probability
distributions for the model input parameters: Y0 has a Gamma distribution
with parameters (1, 1), i.e. Y0 ∼ Ga(1, 1) (hence, E[Y0] = 1 E[Y 2

0 ] = 2);

Y1 has a Gaussian distribution with mean 2 and standard deviation
√
2,

i.e. Y1 ∼ N(2, (
√
2)2) (hence, E[Y1] = 2 E[Y 2

1 ] = 6); and, λ has a Beta
distribution with parameters (2, 3), i.e. λ ∼ Be(2, 3). According to (3.24)
and (3.28), in order to compute the mean and the second order moment
of the solution besides knowing the two first moments of Y0 and Y1, it is
also required to pre-calculate the higher moments E[λk], k ∈ N, which are
explicitly known in the case for λ ∼ Be(2, 3),

E[λk] =
k−1∏
r=0

2 + r

2 + 3 + r
.

In Figure 1 we can observe, along the time t ∈ [0, 1], the mean and the
standard deviation of the solution considering different order of truncation
M ∈ {5, 7, 10, 12, 15}. To illustrate clearly the convergence as M increases,
in each subfigure a zoom has made at the time instants, t, close to 1, which
is where the graphs can be perceived separately.

In Figure 2 the 1-PDF, fYM
(y), of the solution, given in (4.29), for

different orders of truncation, M ∈ {2, 3, 4, 5, 6} and times instants, t ∈
{0.25, 0.5, 0.75} have been plotted. We can see graphically the convergence
of the 1-PDFs, studied in Section 4.2, as M increases. To have better visu-
alization of this convergence, in each subplot, a zoom has been performed
around the maximum of these functions. From the symmetry of the 1-PDFs
we can determine that the mean is around the point y where the maximum
of the function occurs. Taking advantage of this zoom we can verify that
the mean estimated in Figure 2 matches the mean obtained in Figure 1.

Example 5.2. As it has been mentioned before, the objective of this
second example is to illustrate an approximation of the case where the ran-
dom variable λ is not bounded. To this end, λ is truncated on an interval
containing a high percentage of probability mass. It is important to re-
mark that this approach approximates the original problem. Nevertheless,
the more probability mass the truncation interval contains the better this
approximation will be.

On the one hand, we have considered that λ has a truncated Gauss-
ian distribution with mean 0 and standard deviation 0.2 on the interval
[−100, 100], i.e. λ ∼ N[−100,100](0, 0.2

2). The truncation of a N(0, 0.22) over
the interval [−100, 100] captures a 99.9999% of the total probability mass.
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Figure 1. Mean and standard deviation of the solution for
different orders of M ∈ {5, 7, 10, 12, 15} in the context of
Example 5.1. Convergence of these two statistical moments
is clearly observed as M increases.

On the other hand, we will assume that the order of the derivative
is α = 0.4. We will assume that Y0 has an Exponential distribution of
parameter 2, i.e. Y0 ∼ Exp(2). For the random variable Y1, we will assume
that it has a Beta distribution of parameters (2, 4), i.e. Y1 ∼ Be(2, 4). The
two first moments of Y0 and Y1, required to compute the mean and the
standard deviation, are then E[Y0] = 1/2, E[X2

0 ] = 1/2, E[X1] = 1/3 and
E[Y 2

1 ] = 1/7. It is also necessary to know the higher order moments of the
random variable λ ∼ N[−100,100](0, 0.2

2). Note that it can be calculated by

E[λk] =

∫ 100

−100
λkfλ(λ) dλ, k = 1, 2, . . . ,

where

fλ(λ) =
e−

1
2(

λ
0.2)

2

∫ 100
−100 e

− 1
2(

λ
0.2)

2

dλ
, −100 ≤ λ ≤ 100.
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Figure 2. 1-PDF of the solution, (4.29), for different t ∈
{0.25, 0.5, 0.75} in the context of Example 5.1, considering
different order of truncation M ∈ {2, 3, 4, 5, 6}.

This calculation approximates the moments

E[N(0, σ)k] =

{
0 if k is odd,

σk(k − 1)!! if k is even,

where (k − 1)!! is defined as the double factorial, which is the product
of all numbers from k − 1 to 1 that have the same parity as k − 1. Here,
σ = 0.2. This approximation is based on the fact that, according to Cheby-
shev’s inequality, the truncated Gaussian random captures 99.9999% of the
probability of the original Gaussian random variable N(0, 0.22).

In Figure (3) we show the approximations of the mean and the stan-
dard deviation of the solution for t ∈ [0, 1] considering different order of
truncation, M ∈ {7, 10, 12, 15, 17}. As in the previous example, to better
show convergence as M increases, we have magnified the plot about t = 1,
where the discrepancies could be greater. We can see that the approxi-
mations are very good. In Figure 4 different plots for the 1-PDF at times
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Figure 3. Mean and standard deviation, (3.24) and (3.28)
respectively, in the context of Example 5.2 considering dif-
ferent order of truncation M ∈ {7, 10, 12, 15, 17} on the in-
terval t ∈ [0, 1].

t ∈ {0.25, 0.5, 0.75} considering different order of truncation have been in-
cluded. A zoom has been added at the maximum of each plot to better
show graphically the convergence proved in Section 4.2.

6. Conclusions

In this paper we have presented a comprehensive analysis of the frac-
tional Hermite differential equation with uncertainties in all its data (coef-
ficient and initial conditions). Our study has been based on the so called
random differential equation approach. To perform the study, we firstly
have constructed a random generalized power series and we have proved
that this solution is mean square convergent by assuming mild hypothe-
ses on the data. Secondly, we have taken advantage of a key property of
the mean square convergence to approximate the mean and the variance of
the solution. Afterwards, we have constructed approximations of the first
probability density function of the solution using the so called Probability
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Figure 4. 1-PDF of the solution, fYM (t)(y), given in (4.29),
for different t ∈ {0.25, 0.5, 0.75} in the context of Example
5.2, considering different order of truncation M ∈
{4, 5, 7, 10, 12}.

Transformation Method. We have also shown that these approximations
are also convergent under some assumptions that fulfill in many practical
applications.
The main spirit of the paper is to continue developing new results in the
setting of Fractional Calculus with uncertainty, where results for random
fractional differential equations are still scarce. In this sense, the results
presented in this paper for the random fractional Hermite equation can in-
spire to extend our analysis to other significant random fractional second-
order differential equations in forthcoming contributions. Furthermore, the
ideas developed in this contribution may help to extend the deterministic
theory for other types of polynomials, such as Chebyshev [40], Humbert
[41], Laguerre [42], and Bernoulli [43], to the fractional random framework.
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Salas funded by the Spanish Ministry of Universities and Next-Generation,
EU.

Conflict of Interest Statement

The authors declare that there is no conflict of interests regarding the
publication of this article.

References

[1] S. Honguang, Z. Yong, D. Baleanu, C. Wen, C. Yangquan. A new
collection of real world applications of fractional calculus in science
and engineering. Communications in Nonlinear Science and Numerical
Simulation. Elsevier 2018, 64, 213-231. https://doi.org/10.1016/j.
cnsns.2018.04.019
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[12] G. Calbo, J.-C. Cortés, L. Jódar. Random Hermite differential equa-
tions: Mean square power series solutions and statistical properties. Ap-
plied Mathematics and Computation. Elsevier, 2011, 218, 8(7), 3654-
3666. https://doi.org/10.1016/j.amc.2011.09.008

[13] C. Burgos, J.C. Cortés, L. Villafuerte, R. J. Villanueva. Extending the
deterministic Riemann–Liouville and Caputo operators to the random
framework: A mean square approach with applications to solve ran-
dom fractional differential equations. Chaos, Solitons Fractals. Elsevier.
2017, 102, 305-318.

[14] Xiao-Jun Yang, Feng Gao, Ju Yang. General fractional derivatives with
applications in viscoelasticity. Elsevier, Academic Press. 2020. ISBN:
9780128172087

[15] C. Cattani, H. M. Srivastava and Xiao-Jun Yang. Fractional Dynamics.
De Gruyter Open Poland. 2016. ISBN: 9783110472080

[16] Y. A. Rossikhin, M. V. Shitikova. Applications of Fractional Calculus
to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of
Solids. Applied Mechanics. Review. ASME. 1997, 50(1), 15–67. https:
//doi.org/10.1115/1.3101682

[17] Y. A. Rossikhin, M. V. Shitikova. Application of fractional calculus for
analysis of nonlinear damped vibrations of suspension bridges. Journal
of Engineering Mechanics. ACSE. 1998, 124(9), 1029-1036. https://
doi.org/10.1061/(ASCE)0733-9399(1998)124:9(1029)

[18] L. Acedo, C. Burgos, J. C. Cortés, R. J. Villanueva. Probabilistic pre-
diction of outbreaks of meningococcus W-135 infections over the next
few years in Spain. Physica A: Statistical Mechanics and its Appli-
cations. Elsevier. 2017, 486, 106-117. https://doi.org/10.1016/j.
physa.2017.05.043

[19] H. Dekker. Classical and quantum mechanics of the damped harmonic
oscillator. Physics Reports. North Holland Publishing Company. 1981,
80(1), 1-110.

https://doi.org/10.1109/ECTICon.2016.7561396
https://doi.org/10.1016/j.amc.2011.09.008
https://doi.org/10.1115/1.3101682
https://doi.org/10.1115/1.3101682
https://doi.org/10.1061/(ASCE)0733-9399(1998)124:9(1029)
https://doi.org/10.1061/(ASCE)0733-9399(1998)124:9(1029)
https://doi.org/10.1016/j.physa.2017.05.043
https://doi.org/10.1016/j.physa.2017.05.043


36 C. Burgos, T. Caraballo, J.C. Cortés, L. Villafuerte, R.J. Villanueva

[20] David J. Griffiths. Introduction to Quantum Mechanics (2nd Ed). Pren-
tice Hall. 2004. ISBN:978-0-13-805326-0

[21] K. Gökhan, H. Sirin. Nonlocal Phenomena in Quantum Mechanics with
Fractional Calculus. Reports on Mathematical Physics. Elsevier. 2020,
86 (2),263-270. https://doi.org/10.1016/S0034-4877(20)30075-6.

[22] E. Capelas-de-Oliveira, J. A. Tenreiro. A Review of Definitions for
Fractional Derivatives and Integral. Mathematical Problems in Engi-
neering. Hindawi. 2014 2014, 1-6 pages. https://doi.org/10.1155/
2014/238459

[23] M. Du, Z. Wang, H. Hu. Measuring memory with the order of fractional
derivative. Scientific reports. 2013, 3(1), 1-3. https://doi.org/10.
1038/srep03431
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Universitat Politècnica de València
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