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Abstract. In this work we study the continuity and topological structural
stability of attractors for nonautonomous random differential equations ob-

tained by small bounded random perturbations of autonomous semilinear

problems. First, we study the existence and permanence of unstable sets of
hyperbolic solutions. Then, we use this to establish the lower semicontinuity

of nonautonomous random attractors and to show that the gradient structure

persists under nonautonomous random perturbations. Finally, we apply the
abstract results in a stochastic differential equation and in a damped wave

equation with a perturbation on the damping.

1. Introduction5

In this paper we study autonomous attractors under nonautonomous random6

perturbations. Our goal is to provide conditions to conclude continuity and topo-7

logical structural stability of nonautonomous random attractors. We consider an8

autonomous semilinear problem in a Banach space X9

ẏ = By + f0(y), t > 0, y(0) = y ∈ X, (1.1)

and its nonautonomous random perturbations of the type10

ẏ = By + fη(t, θtω, y), t > τ, y(τ) = yτ ∈ X, η ∈ (0, 1], (1.2)

where B generates a C0-semigroup {eAt : t ≥ 0} ⊂ L(X), and θt : Ω → Ω is a11

random flow defined in a probability space (Ω,F ,P).12

We assume that problem (1.1) generates a (nonlinear) semigroup {T (t) : t ≥ 0},13

and that (1.2) generates a (nonlinear) nonautonomous random dynamical system14

(ψη,Θ), for each η ∈ [0, 1], and that all these dynamical systems have attractors,15

see [39, 40, 38] and the references therein for general theory and examples.16

One of our goals is to establish continuity of this family of attractors. This17

is done by proving upper and lower semicontinuity. On the one hand, upper18

semicontinuity means that the perturbed attractors do not become suddenly19

much larger than the limiting attractor (non-explosion). On the other hand, lower20

semicontinuity means that the perturbed attractors do not become suddenly21

much smaller than the limiting attractor (non-implosion). For an introduction to22
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the notion of continuity of attractors see [29, Chapter 3] for global and pullback1

attractors, and [33, Section 4.10] or [6, Chapter 8] for global attractors.2

For nonautonomous (deterministic) dynamical systems the continuity of attrac-3

tors is very well studied, see for instance [11, 30, 28, 37]. In the nonautonomous ran-4

dom setting, the upper semicontinuity was proved in several examples, see [7, 39, 38]5

and the references therein. However, the lower semicontinuity is more difficult to6

attain due to the fact that one has to prove that the inner structure of the limiting7

attractor is “preserved” under perturbation, in order to ensure that the perturbed8

attractor occupies a region ‘as large as’ the region occupied by the limiting attrac-9

tor. More precisely, the typical conditions one has to assume is that the limiting10

attractor is the union of the unstable sets of the equilibria and then give conditions11

to ensure that these equilibria and their unstable sets ‘persist’ under perturbation,12

see [3, 5, 14, 34] for the lower semicontinuity of global attractors, and [28, 30, 37] for13

the lower semicontinuity of pullback attractors and [11] for the lower semicontinuity14

of uniform attractors. In [30] the authors study the permanence of hyperbolic global15

solutions and of their corresponding unstable and stable sets, in the nonautonomous16

setting, and in [28] the authors prove a general result on the lower semicontinuity17

of pullback attractors allowing the limiting pullback attractor to be given as the18

closure of a countable (possibly infinite) union of unstable sets of hyperbolic global19

solutions.20

Thus, to prove lower semicontinuity in a nonautonomous random framework21

we follow this latter method and prove that the inner structure persists under22

perturbations. However, this is not expected to happen for general types of noises.23

Actually, some works show that the presence of an additive noise destroys the24

continuity of the attractors [8, 32], see also [15] for a complementary study of such25

problems. Hence, to obtain our results we will consider small bounded random26

perturbations as the one introduced in [16], where the authors studied the existence27

and permanence of hyperbolic solutions for (1.2) assuming that the perturbations28

are uniformly bounded in time. Now, inspired by the results in [30], we study29

the existence and continuity of the unstable sets associated with this hyperbolic30

solutions, and we use these results to conclude the lower semicontinuity for the31

attractors of {(ψη,Θ) : η ∈ [0, 1]}, see Theorem 5.1. In our proofs, we show how to32

control the random parameter using techniques of deterministic dynamical systems.33

The idea of reproducing the internal structure in the perturbed attractor is not34

only important to show continuity of attractors, but is also crucial to prove that35

the dynamics are preserved under perturbation. For instance, in [27] the authors36

provide conditions (permanence of the inner structure) to prove that dynamically37

gradient semigroups are stable under perturbation. We refer to this property as38

topological structural stability. Gradient dynamical systems were widely stud-39

ied in the past years, see [1, 10, 11, 12, 30, 18] for deterministic dynamical systems,40

and [23, 36] for random dynamical systems. In this work we obtain a result on the41

topological structural stability for nonautonomous random differential equations,42

see Theorem 6.3. This will be also a consequence of the careful study of the internal43

structure of these attractors.44

We also obtain stronger results on the continuity and topological structural sta-45

bility of nonautonomous random attractors for the case when the random pertur-46

bations are uniformly bounded with respect to the random parameter, see Remark47
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5.4 and Remark 6.4 for more details. Moreover, see [9, 25] for examples of this1

types of noises.2

We provide two applications of our abstract results. First, for a family of3

Stratonovich stochastic differential equations with a nonautonomous multiplicative4

white noise5

dy = Bydt+ f0(y)dt+ ηκ(t)y ◦ dWt, t ≥ τ, y(τ) = yτ ∈ X, (1.3)

where η ∈ [0, 1], and κ is a real function that “controls” the growth of the noise in6

time, see Subsection 7.1. Finally, a nonautonomous random perturbation on the7

damping of a damped wave equation with Dirichlet boundary condition8

utt + βη(t, θtω)ut −∆u = f(u), t ≥ τ, η ∈ [0, 1], (1.4)

where {θt : Ω → Ω : t ∈ R} is a random flow in a probability space (Ω,F ,P) and9

βη converges to β as η → 0 for some β > 0, see Subsection 7.2.10

Next, we describe how the paper is organized. In Section 2, we recall some basic11

concepts of the theory of nonautonomous and random dynamical systems. Then,12

in Section 3, we present the results on the permanence of hyperbolic solutions13

and in Section 4, we obtain the existence and continuity of local unstable sets14

associated with these solutions. In Section 5, we prove our result on the continuity15

of nonautonomous random attractors. In Section 6, we provide a result on the16

topological structural stability. Finally, in Section 7, we present applications to17

differential equations.18

2. Preliminaries19

First, we introduce the notion of nonautonomous random dynamical systems in20

a complete separable metric space (X, d).21

Definition 2.1. Let (Ω,F ,P) be a probability space. We say that a family of maps22

{θt : Ω→ Ω : t ∈ R} is a random flow if23

(1) θ0 = IdΩ;24

(2) θt+s = θt ◦ θs, for all t, s ∈ R;25

(3) θt : Ω→ Ω is measurable and Pθ−1
t = P for all t ∈ R.26

Definition 2.2. Let {θt : Ω → Ω : t ∈ R} be a random flow. Define Θt(τ, ω) :=27

(t + τ, θtω) for each (τ, ω) ∈ R × Ω, and t ∈ R. We say that a family of maps28

{ψ(t, τ, ω) : X → X; (t, τ, ω) ∈ R+ × R × Ω} is a nonautonomous random29

dynamical system (co-cycle) driven by Θ if30

(1) the mapping R+ × Ω × X 3 (t, ω, x) 7→ ψ(t, τ, ω)x ∈ X is measurable for31

each fixed τ ∈ R;32

(2) ψ(0, τ, ω) = IdX , for each (τ, ω) ∈ R× Ω;33

(3) ψ(t + s, τ, ω) = ψ(t,Θs(τ, ω)) ◦ ψ(s, τ, ω), for every t, s ≥ 0 in R, and34

(τ, ω) ∈ R× Ω;35

(4) ψ(t, τ, ω) : X → X is a continuous map for each (t, τ, ω) ∈ R+ × R× Ω.36

We usually denote by (ψ,Θ)(X,R×Ω), or (ψ,Θ), the co-cycle ψ driven by Θ.37

Remark 2.3. We will write ωτ := (τ, ω) ∈ R × Ω, and Θt(ωτ ) := (t + τ, θtω) =38

(θtω)τ+t.39
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Throughout this work we will assume that a nonautonomous random dynamical1

system (ψ,Θ) satisfies2

R+ ×X 3 (t, x) 7→ ψ(t, ωτ )x ∈ X is continuous, for each ωτ ∈ R× Ω. (2.1)

This assumption is sensible in the applications, e.g., when the co-cycle is induced3

by a well-posed stochastic/random differential equation. Hence, we can associate4

our co-cycle with a family of evolution processes. Recall that:5

Definition 2.4. Let S = {S(t, s); t ≥ s} be a family of continuous operators from6

X into itself. We say that S is an evolution process in X if S(t, t) = IdX , for7

all t ∈ R, S(t, s)S(s, τ) = S(t, τ), for t ≥ s ≥ τ , and the mapping {(t, s) ∈ R2; t ≥8

s} ×X 3 (t, s, x) 7→ S(t, s)x is continuous.9

Remark 2.5. Let (ψ,Θ)(X,R×Ω) be a nonautonomous random dynamical system
which satisfies (2.1). Then, for each ωτ ∈ R×Ω, we define the following evolution
process

Ψωτ := {ψ(t− s,Θsωτ ) ; t ≥ s}.

Definition 2.6. Let K : Ω → 2X be a set-valued mapping with closed nonempty10

images. We say that K is measurable if the mapping Ω 3 ω 7→ d(x,K(ω)) is11

(F ,BR)-measurable for every fixed x ∈ X.12

In Definition 2.6, we used that X is a complete separable metric space, see [31,13

Chapter III].14

Definition 2.7. Let Â = {A(ωτ ) : ωτ ∈ R × Ω} be a family of nonempty subsets15

of X. We say that Â is a nonautonomous random attractor for (ψ,Θ) if the16

following conditions are fulfilled:17

(1) A(ωτ ) is compact, for every ωτ ∈ R× Ω;18

(2) the set-valued mapping ω 7→ A(τ, ω) is measurable, for each τ ∈ R;19

(3) Â is invariant, i.e., ψ(t, ωτ )A(ωτ ) = A(Θtωτ ) for every t ≥ 0 and ωτ ∈20

R× Ω;21

(4) Â pullback attracts every bounded subset of X, i.e., for every bounded subset
B of X and ωτ ∈ R× Ω,

lim
t→+∞

dist(ψ(t,Θ−tωτ )B,A(ωτ )) = 0,

where dist(A,B) = supa∈A infb∈B d(a, b) is the usual Hausdorff semi-distance;22

(5) Â is the minimal closed family that pullback attracts bounded subsets of23

X, i.e., if {F (ωτ ) : ωτ ∈ R × Ω} is a family of closed subsets of X that24

pullback attracts every bounded subset of X, then A(ωτ ) ⊂ F (ωτ ), for every25

ωτ ∈ R× Ω.26

For existence of nonautonomous random attractors and applications to differen-27

tial equations, see Wang [39] and the references therein.28

Since we will associate our co-cycle (ψ,Θ) with a family of evolution processes29

as in Remark 2.5, we recall the notion of pullback attractors.30

Definition 2.8. Let S = {S(t, s) : t ≥ s} be an evolution process in X and31

{A(t) : t ∈ R} be a family of nonempty subsets of X. We say that {A(t) : t ∈ R}32

is a pullback attractor for S if33

(1) A(t) is compact, for every t ∈ R;34

(2) {A(t) : t ∈ R} is invariant, i.e., S(t, s)A(s) = A(t), ∀ t ≥ s;35
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(3) {A(t) : t ∈ R} pullback attracts every bounded subset of X, i.e., for every
bounded subset B of X,

lim
s→−∞

dist(S(t, s)B,A(t)) = 0;

(4) {A(t) : t ∈ R} is the minimal closed family that pullback attracts bounded1

subsets of X.2

There are several works that deal with the existence and continuity (upper and3

lower semicontinuity) of pullback attractors, we refer the reader to [26, 17, 29, 12],4

where many other references to earlier results can be found.5

Remark 2.9. Let (ψ,Θ) be a nonautonomous random dynamical system with a6

nonautonomous random attractor {A(ωτ ) : ωτ ∈ R× Ω}. Then, for each ωτ fixed,7

the evolution process Ψωτ has a pullback attractor given by {A(Θtωτ ) : t ∈ R}.8

Finally, we recall the definition of the unstable set for a global solution ξ of an9

evolution process, which was introduced in [30].10

Definition 2.10. Let S = {S(t, s) : t ≥ s} be an evolution process, and ξ : R→ X11

be a global solution of S, i.e., S(t, s)ξ(s) = ξ(t), for every t ≥ s. The unstable12

set of ξ is defined as13

Wu(ξ) =

{
(t, z) ∈ R×X : there is a global solution ζ of S such that

ζ(t) = z, and lim
s→−∞

‖ζ(s)− ξ(s)‖X = 0

}
.

The section of Wu(ξ) at time t ∈ R is denoted by Wu(ξ)(t) = {z ∈ X : (t, z) ∈14

Wu(ξ)}.15

Remark 2.11. Let S = {S(t, s) : t ≥ s} be an evolution process with a pullback16

attractor {A(t) : t ∈ R} such that ∪t≤0A(t) is bounded. In this case17

A(t) =
⋃
{Wu(ξ)(t) : ξ is a backwards-bounded solution}, ∀t ∈ R, (2.2)

where ξ is backwards-bounded means that the set ξ(−∞, 0] is bounded. Therefore, it18

is natural to search for the minimal collection of backwards-bounded solutions whose19

unstable sets form the attractor. Of course many backwards-bounded solutions have20

the same unstable set, and thus it is natural to seek for backward-separated solu-21

tions, see [29, Section 3.3] for more details. In Section 6, we will provide conditions22

to obtain a distinguished set of backwards-bounded global solutions that forms the23

nonautonomous random attractor. These conditions rely on the hyperbolicity, which24

we will study in the following sections. It is through this distinguished set that we25

will be able to address the lower semicontinuity of nonautonomous random attrac-26

tors.27

3. Permanence of random hyperbolic solutions28

In this section we recall some results on the existence and continuity of hyperbolic29

solutions for nonautonomous random differential equations obtained in [16]. As we30

will see further, these results are crucial to obtain the lower semicontinuity and31

topological structural stability of attractors.32
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As in [16, Section 3], problems (1.1) and (1.2) can be seen as the following family1

of semilinear differential equations on a separable Banach space X2

ẏ = By + f0(y), y(0) = y0, (3.1)

ẏ = By + fη(Θtωτ , y), y(0) = y0, (3.2)

where {Θt : t ∈ R} is a driving flow given by Θt(ωτ ) := (t + τ, θtω) for every3

ωτ = (τ, ω) ∈ R× Ω.4

We suppose that fη(ωτ , ·) ∈ C1(X), for every η ∈ [0, 1], ωτ ∈ R× Ω, and that5

lim
η→0

sup
(t,x)∈R×B(0,r)

{
‖fη(Θtωτ , x)− f0(x)‖X + ‖(fη)x(Θtωτ , x)− f ′0(x)‖L(X)

}
= 0,

(3.3)
for all r ≥ 0 and ωτ ∈ R×Ω, where (fη)x(ωτ , ·) : X → L(X) is the derivative map6

of fη(ωτ , ·) : X → X. This ensures local well-posedness and differentiability with7

respect to the initial conditions of (3.1) and (3.2), for each ωτ ∈ R × Ω. We also8

assume that for each equilibrium y∗ ∈ X of 3.1, i.e. f0(y∗) = −By∗, there exists9

r0 > 0 such that10

ρ(ε) := sup
x∈Br0 (y∗)

sup
‖h‖≤ε

{
‖f0(x+ h)− f0(x)− f ′0(x)h‖X

‖h‖X

}
→ 0, as ε→ 0. (3.4)

Additionally, we assume global well-posedness, so that (3.1) is associated with a11

semigroup T0 = {T0(t) : t ≥ 0}, and that (3.2) is associated with nonautonomous12

random dynamical system (ψη,Θ), for each η ∈ [0, 1].13

Remark 3.1. The global existence can be obtained by proving that the solutions14

do not explode in finite time, see instance [35, Theorem 3.3.4 and Corollary 3.3.5]15

or [29, Section 6.8]. In particular, this is achieved when we consider dissipative16

nonlinearities, such as the ones in our applications, see (7.7) for the gradient system17

and (7.10) for the damped wave equation. Moreover, these conditions are those used18

to obtain the existence of attractors.19

We say that a map ξ : R× Ω→ X is a global solution for (ψ,Θ) if

ψ(t, ωτ )ξ(ωτ ) = ξ(Θtωτ ), for every t ≥ 0.

Then, for each ωτ fixed, the mapping R 3 t 7→ ξ(Θtωτ ) defines a global solution for20

the evolution process {ψ(t− s,Θsωτ ) : t ≥ s}.21

We are interested in the global solutions that are hyperbolic, and to define hy-22

perbolic solutions we need to recall the concept of exponential dichotomy. First,23

recall the definition of Θ-invariance:24

Definition 3.2. A map M : R × Ω → R is said to be Θ-invariant if for each25

ωτ ∈ R× Ω we have that M(Θtωτ ) = M(ωτ ), for every t ∈ R.26

Definition 3.3. A linear nonautonomous random dynamical system (ϕ,Θ) such27

that ϕ(t, τ, ω) ∈ L(X), for all (t, τ, ω) ∈ R+×R×Ω, is said to admit an exponential28

dichotomy if there exists a subset Ω̃ of Ω which θtΩ̃ = Ω̃ and P(Ω̃) = 1, and a29

family of projections, Πs := {Πs(ωτ ) : ωτ ∈ R× Ω̃} such that30

(1) the map Πs(τ, ·) : Ω̃→ L(X) is strongly measurable, for each τ ∈ R;31

(2) Πs(Θtωτ )ϕ(t, ωτ ) = ϕ(t, ωτ )Πs(ωτ ), for every t ∈ R+ and ωτ ∈ R× Ω̃;32

(3) ϕ(t, ωτ ) : R(Πu(ωτ ))→ R(Πu(Θtωτ )) is an isomorphism, where Πu(ωτ ) :=33

IdX −Πs(ωτ ), for all ωτ ∈ R× Ω;34
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(4) there exist Θ-invariant maps α : R×Ω→ (0,+∞) and M : R×Ω→ [1,+∞)1

such that2

‖ϕ(t, ωτ )Πs(ωτ )‖L(X) ≤ M(ωτ )e−α(ωτ )t, for every t ≥ 0;

‖ϕ(t, ωτ )Πu(ωτ )‖L(X) ≤ M(ωτ )eα(ωτ )t, for every t ≤ 0,

for every ωτ ∈ R× Ω̃.3

In this case the function M is called a bound and α an exponent for the exponen-4

tial dichotomy.5

For nonautonomous random dynamical systems this notion was introduced by6

[16]. Also in [16] the authors proved a robustness result and as an application they7

established the existence and continuity of random hyperbolic solutions for (3.2).8

Recall that y∗0 ∈ X is a hyperbolic equilibrium for (3.1) if the linear operator
A := B+f ′0(y∗0) generates a C0-semigroup {eAt : t ≥ 0} that admits an exponential
dichotomy. We say that ξ is a random hyperbolic solution of (3.2) if the
linearized nonautonomous random dynamical system (ϕ,Θ), given by

ϕ(t, ωτ ) = eBt +

∫ t

0

eB(t−s)Dxfη(Θsωτ , ξ(Θsωτ ))ϕ(s, ωτ )ds,∀ωτ ∈ R× Ω,

admits an exponential dichotomy.9

Now, we present a result on the permanence of hyperbolic solutions, for the proof10

see [16, Theorem 3.9].11

Theorem 3.4 (Existence and continuity of hyperbolic solutions). Let y∗0 be a hy-12

perbolic equilibrium for (3.1) and assume that (3.3) and (3.4) hold. Given ε > 013

suitable small, there exists a Θ-invariant map ηε : R× Ω→ (0, 1] such that:14

(1) for each ωτ ∈ R×Ω fixed, given η ∈ (0, ηε(ωτ )], there exists a global hyper-15

bolic solution R 3 t 7→ ζη(t, ωτ ) of the evolution process {ψη(t − s,Θsωτ ) :16

t ≥ s} satisfying17

sup
t∈R
‖ζ∗η (t, ωτ )− y∗0‖X < ε, (3.5)

and ζη(t, ωτ ) = ζη(0,Θtωτ ), for all t ∈ R.18

(2) for each Θ-invariant function η̄ : R×Ω→ [0, 1] with η̄(ωτ ) ≤ ηε(ωτ ), there
exists a random hyperbolic solution ξ∗η̄ : R× Ω→ X of (ψη̄,Θ) defined by

ξ∗η̄(ωτ ) := ζ∗η̄(ωτ )(0, ωτ ),

and satisfying (3.5).19

Theorem 3.4 is the first step to the study of existence and continuity of unstable20

and stable sets, which are the main tool to conclude lower semicontinuity and21

topological structural stability of attractors.22

Remark 3.5. Suppose that {y∗1 , · · · , y∗p} is a set of hyperbolic equilibria for (3.1).23

Then there exists ε0 > 0 such that y∗i is isolated in B(y∗i , ε0) and B(y∗i , ε0) ∩24

B(y∗j , ε0) = ∅, j 6= i. Theorem 3.4 guarantees that for each i ∈ {1, · · · , p} and25

ε′0 ∈ (0, ε0) suitable small fixed, there exits a Θ-invariant function η0,i : R × Ω →26

(0, 1] satisfying the conclusions of Theorem 3.4.27

Define η0(ωτ ) = min0≤i≤p{η0,i(ωτ )}, for ωτ ∈ R × Ω. Let ωτ be fixed, then
for each η ∈ (0, η0(ωτ )] there exists ζ∗i,η(·, ωτ ) is a hyperbolic solution of {ψη(t −
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s,Θsωτ ) : t ≥ s} such that

sup
t∈R
‖ζ∗i,η(t, ωτ )− y∗i ‖X < ε′0, for every i ∈ {1, · · · , p}.

4. Existence and continuity of unstable sets1

In this section we study the existence and continuity of unstable sets for the2

hyperbolic solutions obtained in Theorem 3.4[Item (1)]. Under the same assump-3

tions as in Section 3, we will apply the techniques of the deterministic case [30] to4

our problem. The idea here is to revisit the proofs to track the dependence on the5

parameter ωτ ∈ R× Ω in the arguments.6

First, inspired by [30], we extend the concept of unstable set for nonautonomous7

random dynamical systems.8

Definition 4.1. Let (ψ,Θ) be a nonautonomous random dynamical system and
ξ∗ : R × Ω → X be a random hyperbolic solution of (ψ,Θ). The unstable set of
ξ∗ is the family

Wu(ξ∗) = {Wu(ξ∗;ωτ ) : ωτ ∈ R× Ω},
where, for each ωτ , Wu(ξ∗;ωτ ) is the unstable set of the hyperbolic solution t 7→9

ξ∗(Θtωτ ) of the evolution process Ψωτ = {ψ(t− s,Θsωτ ) : t ≥ s}. The section of10

Wu(ξ∗;ωτ ) at time t ∈ R is denoted by11

Wu(ξ∗;ωτ )(t) = {z ∈ X : (t, z) ∈Wu(ξ∗;ωτ )}.
Let δ : R× Ω→ (0,+∞) be a Θ-invariant map, a local unstable set is a family12

Wu,δ(ξ∗) = {Wu,δ(ξ∗;ωτ ) : ωτ ∈ R× Ω}, where13

Wu,δ(ξ∗;ωτ ) =

{
(t, z) ∈ R×X : there is a global solution ζ of Ψωτ such that

ζ(t) = z, ‖ζ(s)− ξ∗(Θsωτ )‖X ≤ δ(ωτ ), ∀s ≤ t,

and lim
s→−∞

‖ζ(s)− ξ∗(Θsωτ )‖X = 0

}
,

and the section of Wu,δ(ξ∗;ωτ ) at time t is defined by14

Wu,δ(ξ∗;ωτ )(t) = {z ∈ X : (t, z) ∈Wu,δ(ξ∗;ωτ )}.

For the unstable set we have the following proposition.15

Proposition 4.2. Let (ψ,Θ) be a nonautonomous random dynamical system and16

ξ∗ : R× Ω→ X be a random hyperbolic solution of (ψ,Θ).17

For each ωτ ∈ R× Ω and t ∈ R,18

Wu(ξ∗;ωτ )(t) = Wu(ξ∗; Θtωτ )(0). (4.1)

Moreover, if (ψ,Θ) has a nonautonomous random attractor Â = {A(ωτ ) : ωτ ∈19

R× Ω} and ξ∗ is bounded, then20

Wu(ξ∗;ωτ )(0) ⊂ A(ωτ ), ∀ωτ ∈ R× Ω. (4.2)

Proof. First we prove (4.1). Let z ∈ Wu(ξ∗;ωτ )(t), then there exists a global

solution ζ : R → X of Ψωτ such that ζ(t) = z and ‖ζ(s) − ξ∗(Θsωτ )‖X
s→−∞−→ 0.

Define, ζ̃(s) = ζ(t + s), s ∈ R, thus ζ̃ is a global solution for ΨΘtωτ such that

ζ̃(0) = z and

‖ζ̃(s)− ξ∗(ΘsΘtωτ )‖X = ‖ζ(s+ t)− ξ∗(Θs+tωτ )‖X
s→−∞−→ 0.
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Therefore, z ∈Wu(ξ∗,Θtωτ )(0). By similar arguments, we see that

Wu(ξ∗,Θtωτ )(0) ⊂Wu(ξ∗, ωτ )(t),

which concludes the proof of (4.1).1

For the second claim, let z ∈ Wu(ξ∗;ωτ )(0), then there exists a global solution2

ζ : R → X of Ψωτ such that ζ(0) = z and ‖ζ(s) − ξ∗(Θsωτ )‖X → 0 as s → −∞.3

Since {ξ∗(Θtωτ ) : t ∈ (−∞, 0]} is bounded, the set B = ζ((−∞, 0]) is also bounded.4

Then Â pullback attracts B, i.e.,5

lim
s→−∞

distH(ψ(−s,Θsωτ )B,A(ωτ )) = 0. (4.3)

Note that ζ(s) ∈ B and ψ(−s,Θsωτ )ζ(s) = ζ(0), for every s ≤ 0, thus from (4.3),

d(z,A(ωτ )) = lim
s→−∞

d(ψ(−s,Θsωτ )ζ(s), A(ωτ )) = 0.

Therefore, z ∈ A(ωτ ) and the proof is complete. �6

Proposition 4.2 implies that the attractor contains all the unstable sets of hy-
perbolic solutions. Later, in Section 6, we will give conditions under which the
attractor is equal to the union of these unstable sets. Next, we prove that the local
unstable sets for these hyperbolic solutions are given as a graph, following the same
line of arguments presented in [30]. In fact, if ξ∗η is a random hyperbolic solution

of ψη, we will show that the elements in Wu,δ
η (ξ∗η ;ωτ ) will be those of the form

(t, ξ∗η(Θtωτ ) + Πu
η(Θtωτ )z + Σu(ωτ )(t,Πu

η(Θtωτ )z)) ∈ R×X, and ‖z‖X ≤ δ(ωτ ),

where δ : R × Ω → (0,+∞) is a Θ-invariant map and Σu some Lipschitz map.7

Moreover, we will obtain that as η → 0 these local unstable sets “converges” to the8

unstable sets of the autonomous problem (3.1).9

Let y∗0 be a hyperbolic equilibrium for (3.1), ε0 > 0 be suitable small. Then10

by Theorem 3.4, there exists a Θ-invariant map η0 : R × Ω → (0, 1] such that for11

each fixed ωτ and η ∈ (0, η0(ωτ )], there exists t 7→ ξ∗η(Θtωτ ) a hyperbolic solution12

of {ψη(t − s,Θsωτ ) : t ≥ s} such that supt∈R ‖y∗0 − ξ∗η(Θtωτ )‖X < ε0. Then, the13

change of variables z(t) = y(t)−ξ∗η(Θtωτ ) allows us to concentrate on the existence14

of unstable sets of global hyperbolic solutions around the zero solution for15

ż = Az +Bη(Θtωτ )z + hη(Θtωτ , z), z(0) = z0 ∈ X, (4.4)

where A = B + f ′0(y∗0), Bη(ωτ ) = (fη)x(ωτ , ξ
∗
η(ωτ ))− f ′0(y∗0) and

hη(Θtωτ , z) :=fη(Θtωτ , ξ
∗
η(Θtωτ ) + z)− fη(Θtωτ , ξ

∗
η(Θtωτ ))

− (fη)x(Θtωτ , ξ
∗
η(Θtωτ ))z.

Thus z = 0 is a globally defined bounded solution for (4.4) where hη(ωτ , ·) : X → X16

differentiable with hη(ωτ , 0) = 0, (hη)x(ωτ , 0) = 0 ∈ L(X), for all η ∈ (0, η0(ωτ )].17

Similarly, for η = 0 we see that B0 = 0 ∈ L(X) and h0(z) = f0(y∗0 + z)− f0(y∗0)−18

f ′(y∗0)z, for z ∈ X. Thus (3.3) implies that19

lim
η→0

sup
(t,x)∈R×B(0,r)

{
‖hη(Θtωτ , x)− h0(x)‖X + ‖(hη)x(Θtωτ , x)− h′0(x)‖L(X)

}
= 0,

(4.5)
for all r > 0 and ωτ ∈ R× Ω.20
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In the proof of Theorem 3.4 (see [16, Theorem 3.9] for details) the Θ-invariant1

map η0 : R × Ω → (0, 1] is chosen such that the linear evolution process {ϕη(t −2

s,Θsωτ ) : t ≥ s}, given by3

ϕη(t− s,Θsωτ ) = eA(t−s) +

∫ t

s

eA(t−r)Bη(Θrωτ )ϕη(r − s,Θsωτ ) dr, t ≥ s, (4.6)

admits an exponential dichotomy with bound Mη, exponent αη and family of pro-4

jections {Πu
η(t) : t ∈ R}, for every η ∈ (0, η0(ωτ )]. Moreover, for each Θ-invariant5

function η̄ : R × Ω → [0, 1], with η̄(ωτ ) ≤ η0(ωτ ), the co-cycle (ϕη̄,Θ) admits6

an exponential dichotomy with bound Mη̄, exponent αη̄ and family of projections7

{Πu
η̄(ωτ ) : ωτ ∈ R× Ω}.8

If z is a solution of (4.4) we write zu(t) = Πu
η(t)z(t) and zs(t) = Πs

η(t)z(t), t ∈ R,9

where Πu
η(t) = IdX −Πs

η(t), t ∈ R. Then zu and zs are the solutions of10

żu = Aη(Θtωτ )zu + huη(Θtωτ , z
u(t) + zs(t)),

żs = Aη(Θtωτ )zs + hsη(Θtωτ , z
u(t) + zs(t)),

(4.7)

where Aη(ωτ ) = A+Bη(ωτ ), and hkη(ωτ , ·) = Πk
η(ωτ )hη(ωτ , ·), k = u, s.11

Since, for each ωτ fixed, hkη(Θtωτ , 0) = 0, with (hkη)x(Θtωτ , 0) = 0 and hkη are12

continuous differentiable in X, uniformly with respect to t, we obtain that given13

ρ > 0 there exists δ0(ωτ ) > 0 such that if ‖z‖X , ‖z̃‖X ≤ δ0(ωτ ) then14

sup
t∈R
‖hkη(Θtωτ , z)‖X ≤ ρ,

sup
t∈R
‖hkη(Θtωτ , z)− hkη(Θtωτ , z̃)‖ ≤ ρ‖z − z̃‖X , k = s, u.

(4.8)

Note that, from (4.5), it is possible to choose δ0 : R×Ω→ (0,+∞) as a Θ-invariant15

function. This is one of the main differences to the deterministic case and to work16

with the Θ-invariance is the key to our further results.17

Remark 4.3. For each ωτ fixed, it is possible to extend huη(ωτ , ·), hsη(ωτ , ·) outside18

the ball of radius δ0(ωτ ) such that this extension satisfies both conditions in (4.8)19

for all z, z̃ ∈ X, see [30]. Therefore, we obtain the existence and continuity of20

unstable and stable set, as a graph, for huη and hsη satisfying (4.8), for all z, z̃ ∈ X,21

then, using a localization procedure, we conclude the existence and continuity of the22

local unstable sets, as a graph, for the case when hkη satisfies (4.8) in the ball of23

radius δ(ωτ ), for each ωτ ∈ R× Ω.24

Assuming that (4.8) holds for all z, z̃ ∈ X, we will obtain that, for all suitably25

small ρ, the unstable sets are graphs of Lipschitz maps in the class defined next.26

Let {Πu(s) : s ∈ R} be a family of projections and L > 0. Denote by LB(L) a27

complete metric space of all bounded and globally Lipschitz continuous functions28

Σ : R×X → X such that R×X 3 (s, z) 7→ Σ(s, z) := Σ(s,Πu(s)z) ∈ Πs(s)X and29

sup
{
‖Σ(s,Πu(s)z)‖X ; (s, z) ∈ R×X

}
≤ L,

‖Σ(s,Πu(s)z)− Σ(s,Πu(s)z̃)‖X ≤ L‖Πu(s)z −Πu(s)z̃‖X ,
(4.9)

with distance between Σ, Σ̃ ∈ LB(L) given by30

|||Σ− Σ̃||| := sup
(t,z)∈R×X

‖Σ(t, z)− Σ̃(t, z)‖X . (4.10)
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Theorem 4.4. Let ωτ ∈ R×Ω be fixed, and η ∈ [0, η0(ωτ )]. Suppose that ρ > 0 is1

suitable small such that there is L = L(ρ, αη,Mη) > 0 satisfying2

ρMη

αη
≤ L, ρMη

αη
(1 + L) < 1

ρM2
η (1 + L)

αη − ρMη(1 + L)
≤ L,

ρMη +
ρ2M2

η (1 + L)(1 +Mη)

2αη − ρMη(1 + L)
<
αη
2
.

(4.11)

Then, for each ωτ ∈ R × Ω fixed and η ∈ (0, η0(ωτ )], there exists Σuη = Σuη,ωτ ∈3

LB(L), such that the unstable set of the zero solution of (4.4) is given by4

Wu
η (0) = {(s, z) ∈ R×X : z = Πu

η(s)z + Σuη(s,Πu
η(s)z)}, (4.12)

and, for any r > 0 and s ∈ R,5

sup
t≤s

sup
‖z‖X≤r

{‖Πu
η(t)z −Πu

0z‖X + ‖Σuη(t,Πu
η(t)z)− Σu0 (Πu

0z)‖X}
η→0→ 0. (4.13)

Furthermore, if ζ(t) = ζu(t) + ζs(t), where ζk(t) = Πk
η(t)ζ(t), for k = u, s, is a6

backward-bounded global solution of (4.4), then there is γ > 0 such that,7

‖ζs(t)− Σuη(t, ζu(t))‖X ≤Mηe
−γ(t−s)‖ζs(s)− Σuη(s, ζu(s))‖X , t ≥ s. (4.14)

Theorem 4.4 follows directly from [30, Theorem 3.1].8

From Theorems 3.4 and 4.4, we can obtain the existence and continuity of local9

unstable sets.10

Theorem 4.5 (Existence and continuity of local unstable set). Let η ∈ [0, 1], and11

hη : R × Ω × X → X by such that for each ωτ , the mapping z 7→ hη(ωτ , z) is12

continuously differentiable. Consider13

ż = Aη(Θtωτ )z + hη(Θtωτ , z), ωτ ∈ R× Ω. (4.15)

Assume that hη(ωτ , 0) = 0, (hη)x(ωτ , 0) = 0 ∈ L(X), h0 : X → X, A0(Θtωτ ) = A,14

{hη}η∈[0,1] satisfies (4.5), and that z∗0 = 0 is a hyperbolic solution of (4.15) for15

η = 0. Then given ε0 > 0 suitable small, the following hold:16

(1) There exist a Θ-invariant function η0 : R × Ω → [0, 1] such that z∗η = 017

is a hyperbolic solution of (4.15), for each η ∈ (0, η0(ωτ )]. In particular,18

the linear evolution process {ϕη(t − s,Θsωτ ) : t ≥ s}, associated to the19

linear part of (4.15) (corresponding to the linearization of {ψη(t−s,Θsωτ ) :20

t ≥ s} around ξ∗η(Θtωτ )), admits an exponential dichotomy with family of21

projections {Πu
η(s) : s ∈ R}.22

(2) The families of projections Πu
η = {Πu

η(s) : s ∈ R}, η ∈ (0, η0(ωτ )] satisfy23

lim
η→0

sup
t∈R
‖Πu

η(t)−Πu
0‖L(X) = 0. (4.16)

(3) There exist Θ-invariant function δ0 : R× Ω→ (0,+∞) (independent of η)24

such that for each ωτ and η ∈ [0, η0(ωτ )], and a map25

R×BX(0, δ0(ωτ )) 3 (s, z) 7→ Σuη(s, z) := Σuη(s,Πu
η(s)z), (4.17)
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with the property: given δ ∈ (0, δ0(ωτ )), there exists 0 < δ′′ < δ′ < δ,1

{Πu
η(s)z + Σuη(s,Πu

η(s)z) : ‖z‖X ≤ δ′′} ⊂

Wu,δ′

η (0)(s) ⊂
{Πu

η(s)z + Σuη(s,Πu
η(s)z) : ‖z‖X ≤ δ}.

(4.18)

(4) For each ωτ fixed, the family of graphs of the maps {Ση}η∈(0,η0(ωτ )] behaves2

continuously at η = 0:3

sup
t≤s

sup
‖z‖≤δ0(ωτ )

{‖Πu
η(t)−Πu

0‖L(X) + ‖Σuη(t,Πu
η(t)z)− Σu0 (Πu

0z)‖X}
η→0→ 0, ∀ s ∈ R.

(4.19)

Proof. Item (1) is a corollary of Theorem 3.4 and Item (2) follows from the con-4

tinuous dependence of projections, in the sense of [29, Theorem 7.9] for evolution5

processes (see also [16, Theorem 2.23] for nonautonomous random dynamical sys-6

tems).7

By hypotheses, let ρ > 0 be such that there is L satisfying (4.11). Then there8

exists δ0(ωτ ) such that (4.8) is satisfied for z, z̄ ∈ BX(0, δ0(ωτ )).9

According to Remark 4.3 and Theorem 4.4, by a cut-off procedure, we obtain10

the desired function Σuη : R×BX(0, δ0(ωτ ))→ X, for each η ∈ (0, η0(ωτ )].11

Thus, we only need to check (4.18). We claim that given δ ∈ (0, δ0(ωτ )), there12

exists δ′ < δ such that any global solution ζ : R → X of {ψη(t − s,Θsωτ ) : t ≥ s}13

on the unstable set such that ‖ζ(s)‖ ≤ δ′ must satisfy ‖ζ(t)‖ ≤ δ, for t ≤ s.14

Indeed, from (4.7), ζu(t) = Πu
η(t)ζ(t) satisfies

ζu(t) = ϕη(t− s,Θsωτ )Πu
η(s)ζ0

+

∫ t

s

ϕη(t− r,Θrωτ )Πu
η(r)huη(Θrωτ , ζ

u(r) + Σuη(r, ζu(r)))dr, t ≤ s.

Since {ϕη(t−s,Θsωτ ) : t ≥ s} admits an exponential dichotomy, due to Grönwall’s
inequality, we obtain

‖ζu(t)‖X ≤Mηe
(αη−ρMη(1+L))(t−s)‖ζu(s)‖X , t ≤ s.

Also, since ‖Σuη(t, ζu(t))‖X ≤ L‖ζu(t)‖X , t ∈ R, we have that15

‖ζ(t)‖X ≤M2
η (1 + L)e(αη−ρMη(1+L))(t−s)‖ζ(s)‖X , t ≤ s. (4.20)

Then, taking δ′ = δ/M2
η (1 + L), we see that16

Wu,δ′

η (0)(s) ⊂ {Πu
η(s)z + Σuη(s,Πu

η(s)z) : ‖z‖X ≤ δ}. (4.21)

Finally, by the above argument, we also conclude that there exists δ′′ ∈ (0, δ′) such17

that18

{Πu
η(s)z + Σuη(s,Πu

η(s)z) : ‖z‖X ≤ δ′′} ⊂Wu,δ′

η (0)(s). (4.22)

The proof is complete. �19

Remark 4.6. We observe that, as in Theorem 3.4[Item (2)], using Θ-invariant20

functions η̄ : R × Ω → (0, 1] it is possible to conclude existence of local unstable21

manifolds of the random hyperbolic solutions ξ∗η̄ for the nonautonomous random22

dynamical systems ψη̄.23
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We reinforce that these results on the existence and continuity of local unstable1

sets are the key to obtain lower semicontinuity and topological structural stability,2

as we will see in the following sections.3

Remark 4.7. We can obtain similar results concerning the existence and continuity4

of local stable sets following similar arguments to those presented here and [30] for5

the deterministic case.6

5. Continuity of nonautonomous random attractors7

In this section we prove the continuity of attractors in the situation that the per-8

turbed system is nonautonomous random whereas the limiting is an autonomous9

dynamical system which has an attractor given as union of unstable sets of hyper-10

bolic equilibria.11

First, we recall the definition of continuity of sets in a Banach space X. Let12

{Aη}η∈[0,1] be a family of subsets of a Banach space X. We say that {Aη}η∈[0,1] is13

(1) Upper semicontinuous at η = 0 if limη→0 distH(Aη, A0) = 0.14

(2) Lower semicontinuous at η = 0 if limη→0 distH(A0, Aη) = 0.15

(3) Continuous at η = 0 if it is upper and lower semicontinuous at η = 0.16

Let Λ be a nonempty set. We say that {Aη(λ) : λ ∈ Λ}η∈[0,1] is upper (lower)17

semicontinuous at η = 0 if {Aη(λ)}η∈[0,1] is upper (lower) semicontinuous at18

η = 0, for each λ ∈ Λ, see [29, Chapter 3].19

Now, we present a result on the continuity of attractors, as a consequence of a20

careful study of their internal structure, presented in the previews sections.21

Theorem 5.1 (Continuity of nonautonomous random attractors). Let T0 = {T0(t) :22

t ≥ 0} be the semigroup associated to (3.1) and (ψη,Θ) be the nonautonomous dy-23

namical systems associated to (3.2), and assume that conditions (3.3) and (3.4) are24

satisfied. Additionally, suppose that25

(a) For each η ∈ [0, 1], the co-cycle (ψη,Θ) has a nonautonomous random
attractor {Aη(ωτ ) : ωτ ∈ R× Ω},

K(ωτ ) :=
⋃
t∈R

⋃
η∈[0,1]

Aη(Θtωτ ) is compact, ∀ωτ ∈ R× Ω, and

26 ⋃
η∈[0,1]

⋃
t≥0

ψη(t, ωτ )K(ωτ ) is bounded, ∀ωτ ∈ R× Ω; (5.1)

(b) T0 = {T0(t) : t ≥ 0} is a semigroup with global attractor given by27

A0 =

p⋃
j=1

Wu(y∗j ), (5.2)

for which all the equilibria {y∗j : 1 ≤ j ≤ p} are hyperbolic.28

Then given ε0 > 0 suitable small, there exists a Θ-invariant function η0 : R×Ω→29

(0, 1] such that, for each ωτ fixed, the following hold:30

(1) For any η ∈ (0, η0(ωτ )] and j ∈ {1, · · · , p}, there exists a hyperbolic solution31

ξ∗j,η of {ψη(t− s,Θsωτ ) : t ≥ s} with32

sup
j

sup
t∈R
‖ξ∗j,η(Θtωτ )− y∗j ‖X < ε0, (5.3)
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where the linearized associated evolution process admits an exponential di-1

chotomy with family of projections {Πu
j,η(s) : s ∈ R}.2

(2) There exists δ0(ωτ ) > 0, where δ0 is Θ-invariant and independent of η, such3

that for each ωτ , j ∈ {1, · · · , p}, and η ∈ [0, η0(ωτ )], there exists a map4

R×BX(0, δ0(ωτ )) 3 (s, z) 7→ Σuj,η(s, z) := Σuj,η(s,Πu
j,η(s)z), (5.4)

with the property: given δ ∈ (0, δ0(ωτ )), there exists 0 < δ′′ < δ′ < δ,5

{ξ∗j,η(s) + Πu
j,η(s)z + Σuj,η(s,Πu

j,η(s)z) : ‖z‖X ≤ δ′′} ⊂

Wu,δ′

j,η (ξ∗j,η)(s) ⊂
{ξ∗j,η(s) + Πu

j,η(s)z + Σuj,η(s,Πu
j,η(s)z) : ‖z‖X ≤ δ};

(5.5)

(3) The family of graphs of {Σuj,η}η∈[0,η0(ωτ )] is continuous at η = 0 as in6

Theorem 4.5[Item (4)], for each j ∈ {1, · · · , p}.7

(4) For each ωτ , the family of pullback attractors {Aη(Θtωτ ) : t ∈ R}η∈[0,η0(ωτ )]8

is continuous at η = 0.9

In particular, we have continuity of nonautonomous random attractors in the fol-10

lowing sense: given ε > 0, there exists a Θ-invariant function ηε ≤ η0 such that,11

for every Θ-invariant function η̄, with η̄ ≤ ηε, we have12

sup
t∈R

dH(Aη̄(Θtωτ ),A0) < ε, ∀ωτ ∈ R× Ω, (5.6)

where {Aη̄(ωτ ) : ωτ ∈ R × Ω} is the nonautonomous random attractor of (ψη̄,Θ)13

and dH(A,B) = max{distH(A,B), distH(B,A)}, for A,B ⊂ X.14

Proof. Note that, items (1)-(3) are consequences of Theorem 3.4 and Theorem 4.5,15

thus to conclude the proof we only need to prove Item (4).16

Let ωτ ∈ R×Ω be fixed and take K(ωτ ) as the one in Condition (a). Note that17

18

lim
η→0

sup
t∈[0,c]

sup
`∈R

sup
z∈K(ωτ )

‖ψη(t,Θ`ωτ )z − T0(t)z‖X = 0, (5.7)

for any c > 0, and ωτ ∈ R × Ω. Indeed, let z ∈ K(ωτ ) and t ∈ [0, c]. Then19

subtracting the variation of constants formula for (ψη,Θ) and T0, we have that20

ψη(t, ωτ )z − T0(t)z =

∫ t

0

eB(t−s)[fη(Θsωτ , ψη(s, ωτ )z)− f0(T0(s)z)
]
ds. (5.8)

Then, for some M,α > 0,21

‖ψη(t, ωτ )z−T0(t)z‖X =∫ t

0

Meα(t−s)‖fη(Θsωτ , ψη(s, ωτ )z)− fη(Θsωτ , T0(s)z)‖X ds

+

∫ t

0

Meα(t−s)‖fη(Θsωτ , T0(s)z)− f0(T0(s)z)‖X ds.

(5.9)

Since T0([0, c]×K(ωτ )) is compact, from (3.3), the second integral of the right-hand22

side goes to zero as η → 0, uniformly for t ∈ [0, c] and z ∈ K. For the first integral,23

we use (3.3) and (5.1) to obtain a Lipschitz constant of fη(Θsωτ , ·) independent of24

η and s. Then (5.7) follows by applying a Gröwnwall’s inequality.25

The proof of upper semicontinuity follows from standard arguments using (5.7)26

and Assumption (a), see [29, Chapter 3], for pullback attractors, and [22, 24, 38]27

for random attractors.28



CONTINUITY AND TOPOLOGICAL STRUCTURAL STABILITY 15

Now, we prove lower semicontinuity using a characterization via sequences, see1

[29, Lemma 3.2]. In fact, let ωτ ∈ R × Ω, t ∈ R, and x0 ∈ A0. We will show that2

there exist sequences ηk ∈ (0, η0(ωτ )], with ηk → 0, and xk ∈ Aηk(Θtωτ ) such that3

xk → x0 as k → +∞.4

Indeed, from (5.2), x0 ∈ Wu(y∗j ) for some j ∈ {1, · · · , p}. By Item (3) of5

Theorem 4.5, there exist 0 < δ′′ < δ′ < δ0(ωτ ) such that6

Wu,δ′′

0 (y∗j ) ⊂ {y∗j + Πu
j,0z + Σu0 (Πu

j,0z) : ‖z‖X ≤ δ′}, and

{ξ∗j,η(r) + Πu
j,η(r)z + Σuj,η(r,Πu

j,η(r)z) : ‖z‖X ≤ δ′} ⊂Wu,δ0
η (ξ∗j,η)(r),

(5.10)

for every r ∈ R and η ∈ (0, η0(ωτ )]. Thus there exists a global solution ζ : R→ X7

of T0 such that ζ(0) = x0 and ζ(−s) ∈Wu,δ′′

0 (y∗j ), for some s ≥ 0.8

Since ζ(−s) ∈ {y∗j + Πu
j,0z+ Σuj,0(Πu

j,0z), ‖z‖X ≤ δ′}, by Theorem 4.5[Item (4)],9

there exist {ηk} ⊂ (0, η0(ωτ )] and zk ∈ {ξ∗j,ηk(t − s) + Πu
j,ηk

(t − s)z + Σuj,ηk(t −10

s,Πu
j,ηk

(t− s)z) : ‖z‖X ≤ δ′} with ηk → 0 and zk → ζ(−s) as k → +∞.11

By (5.10) and Proposition 4.2, we see that xk = ψηk(t − (t − s),Θt−sωτ )zk ∈12

Aηk(Θtωτ ), for all k ∈ N. Then, we use (5.7) and that limk zk = ζ(−s), to guarantee13

that limk xk = x0, and the proof is complete. �14

Remark 5.2. Theorem 5.1 can be extended to the case where the limit is nonau-15

tonomous. The key steps for the proof will be again the Θ-invariance of the maps16

involved.17

Remark 5.3. Alternatively, Assumption (a) can be replaced by the following con-18

ditions:19

(a.1) For each η ∈ [0, 1], the co-cycle (ψη,Θ) has a nonautonomous random
attractor {Aη(ωτ ) : ωτ ∈ R× Ω} and⋃

t∈R

⋃
η∈[0,1]

Aη(Θtωτ ) is bounded, ∀ωτ ∈ R× Ω;

(a.2) The family {ψη,Θ}η∈[0,1] is collectively asymptotic compact in X, i.e.,
for all ωτ , the sequence

{ψηn(tn,Θ−tnωτ )xn} has a convergent subsequence in X

whenever ηn → 0, tn → +∞, and {xn} is a bounded sequence in X.20

Additionally, if (5.7) holds for every compact set, then the conclusions of Theorem21

5.1 will still hold true. This will be the case when applying this result for damped22

wave equations, see Subsection 7.2.23

Remark 5.4. Theorem 5.1 is not optimal in the sense that we cannot obtain the24

limit25

sup
ωτ∈R×Ω

dH(Aη(ωτ ),A0)→ 0, as η → 0. (5.11)

To obtain this conclusion one should assume26

sup
ωτ∈R×Ω

sup
x∈B(0,r)

{
‖fη(ωτ , x)−f0(x)‖X +‖(fη)x(ωτ , x)−f ′0(x)‖L(X)

}
η→0→ 0, (5.12)

for all r ≥ 0, instead of (3.3). In this case it is possible to obtain the conclusions of27

Theorem 5.1 with η0 > 0 and δ0 > 0 independent of ωτ , and therefore to conclude28

(5.11). Note that this case is similar to the deterministic case, see [28, Theorem29

3.1].30
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However, in the applications to check condition (5.12) one has to assume that the1

noise is uniformly bounded as in Remark 7.6, see also [9, 19] for more examples of2

uniformly bounded noises. On the other hand, in Section 7 we provide an example,3

see Example 7.3, where conditions of Theorem 5.1 are checked, but we do not know4

if its possible to verify (5.12).5

Now that the continuity of attractors is proved, the next step is to ensure that6

the gradient structure is preserved under nonautonomous random perturbations.7

6. Topological structural stability8

In this section we present a result on the topological structural stability of9

attractors for nonautonomous random dynamical systems. We study co-cycles10

(ψη,Θ) obtained by nonautonomous random perturbations of a gradient semigroup11

{T0(t) : t ≥ 0}.12

First, we recall some basic concepts necessary to define dynamically gradient13

evolution processes. Assume that S = {S(t, s) : t ≥ s} is an evolution process with14

a pullback attractor {A(t) : t ∈ R}.15

Let Ê = {E(t) : t ∈ R} be an invariant family for S. Given a family of open16

sets Û = {U(t) : t ∈ R} such that Ê ⊂ Û (i.e., E(t) ⊂ U(t), for every t ∈ R) we17

say that Ê is the maximal invariant in Û if given an invariant family F̂ in Û ,18

then F̂ ⊂ Ê. If there is an ε0 > 0 such that Ê is the maximal invariant family19

in {Oε0(E(t)) : t ∈ R}, we say that Ê is an isolated invariant family. We say20

that {Ê1, · · · , Êp} is a disjoint collection of isolated invariant families if Êi21

is an isolated invariant family for every 0 ≤ i ≤ p and there is an ε0 > 0 such that22

Oε0(Ej(t)) ∩Oε0(Ei(t)) = ∅, for i 6= j and every t ∈ R. A homoclinic structure23

in {Ê1, · · · , Êp} is a subcollection {Êl1 , · · · , Êlk}, with k ≤ p, and a set of global24

solutions {ζ1, · · · , ζk} of S in A which, setting Êlk+1 = Êl1 , satisfy25

lim
t→−∞

d(ζi(t), Eli(t)) = 0, and lim
t→+∞

d(ζi(t), Eli+1
(t)) = 0, (6.1)

for each 1 ≤ i ≤ k, and there exists an ε > 0 such that26

sup
t∈R

d( ζi(t),

k⋃
i=1

Oε(Eli(t)) ) > 0, ∀ 1 ≤ i ≤ k, and t ∈ R. (6.2)

Remark 6.1. Condition (6.2) has a technical nature and it is used only in the case27

k = 1 to guarantee that the global solution ζ1 is not entirely contained in El1 . In28

other words, we use (6.2) to ensure that if there is a global solution ζ : R→ X such29

that ζ(t) ∈ Ei(t) for all t ∈ R for some i ∈ {1, . . . , n}, the pair (ζ, Ei) does not30

make a homoclinic structure.31

Definition 6.2. Let S = {S(t, s) : t ≥ s} with a pullback attractor {A(t) : t ∈ R}32

which contains a disjoint collection of invariant families {Ê1, · · · , Êp}. We say that33

S = {S(t, s) : t ≥ s} is a dynamically gradient evolution process with respect34

to {Ê1, · · · , Êp} if35

• (G1) given a global solution ζ : R → X of S such that ζ(t) ∈ A(t), for36

each t ∈ R, there exist i, j ∈ {1, · · · , p} so that37

lim
t→−∞

d(ζ(t), Ei(t)) = 0, and lim
t→+∞

d(ζ(t), Ej(t)) = 0; (6.3)

• (G2) {Ê1, · · · , Êp} does not admit any homoclinic structure.38
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This notion of dynamically gradient was studied for random dynamical systems1

in [23, 36]. For topological structural stability of deterministic autonomous or2

nonautonomous dynamical systems, see [1, 10, 27].3

Now, we present our result on the topological structural stability for random4

dynamical systems.5

Theorem 6.3. Assume that hypotheses of Theorem 5.1 are fulfilled and additionally6

assume that T0 = {T0(t− s) : t ≥ s} is a gradient evolution process with respect to7

{y∗1 , · · · , y∗p}, where y∗j is hyperbolic, for every : 1 ≤ j ≤ p.8

Then, there exists a Θ-invariant function η1 : R× Ω→ (0, 1) such that for each9

ωτ fixed the evolution process {ψη(t− s,Θsωτ ) : t ≥ s} is dynamically gradient with10

respect to {ξ∗1,η, · · · , ξ∗p,η}, ∀η ≤ η1(ωτ ). Consequently,11

Aη(Θtωτ ) =

p⋃
j=1

Wu
η (ξ∗j,η;ωτ )(t),∀ η ∈ [0, η1(ωτ )]. (6.4)

Proof. Let ωτ ∈ R × Ω be fixed and η ∈ (0, η0(ωτ )]. Let us prove the following12

claim: there exists δ′ ∈ (0, δ0(ωτ )) such that, if ζη : R → X is a global solution in13

{Aη(Θtωτ ) : t ∈ R} so that14

‖ζη(t)− ξ∗j,η(t)‖X < δ′, ∀ t ≤ t0 (t ≥ t0), for some t0 ∈ R, (6.5)

then ‖ζη(t)− ξ∗j,η(t)‖X
t→−∞−→ 0 (‖ζη(t)− ξ∗j,η(t)‖X

t→+∞−→ 0).15

We prove only the backwards case, the proof of the forward case will be similar16

using the analogous results for the stable sets. First, note that ζ̃(t) = ζη(t)−ξ∗j,η(t),17

for t ∈ R, j ∈ {1, · · · , p}, and η ∈ (0, η0(ωτ )], thus we analyze the dynamics18

around the solution z = 0 of (4.4). From Theorem 4.5[Item (3)], there exists19

0 < δ′ < δ < δ0(ωτ ) such that20

{Πu
j,η(s)z + Σuj,η(s,Πu

j,η(s)z) : ‖z‖X ≤ δ′} ⊂Wu,δ
η (0)(s),∀ s ∈ R. (6.6)

Thus, (6.5) implies that ζ̃(t) is inside the δ0(ωτ )-neighborhood for all t ≤ t0.21

Hence, from (4.14) applied in the δ0(ωτ )-neighborhood of z = 0, we must have22

that ζ̃(t0) ∈ {Πu
j,η(t0)z + Σuj,η(t0,Π

u
j,η(t0)z) : ‖z‖X ≤ δ′}. Therefore, from (6.6),23

ζ̃(t0) ∈Wu,δ
η (0)(t0) and the proof of the claim is complete.24

In this way the proof will be a consequence of [12, Theorem 8.14]. �25

Remark 6.4. Note that, if we assume (5.12) in Theorem 5.1 instead of (3.3),26

we obtain η1 > 0, independent of ωτ , such that {ψη(t − s,Θsωτ ) : t ≥ s} is a27

dynamically gradient evolution process with respect to {ξ∗1,η, · · · , ξ∗p,η}, ∀η ≤ η1.28

In this case this notion of dynamically gradient is compatible with the notion that29

appears in [23, Definition 4.17].30

Remark 6.5. We believe that with the techniques employed in this paper it is31

also possible to obtain geometric structural stability, i.e., to show that Morse-Smale32

is stable under nonautonomous random perturbations and that there will be phase33

diagram isomorphism between the perturbed attractors and the limiting attractor, as34

we see in the deterministic case [12, Chapter 12]. This will be pursued in a future35

work.36
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7. Applications to differential equations1

In this section we present two applications. We first consider a semilinear differ-2

ential equation with a small nonautonomous multiplicative white noise, and then3

we study the effect of a small bounded noise in the damping of a damped wave4

equation.5

7.1. Stochastic differential equations. We consider a family of Stratonovich6

stochastic differential equations in a separable Banach space X with a multiplicative7

noise given by8

dy = Bydt+ f(y)dt+ ηκ(t)y ◦ dWt, t > τ, y(τ) = yτ , (7.1)

where B is a generator of a C0-semigroup {eBt : t ≥ 0} on X, the family {Wt : t ∈9

R} is the standard scalar Wiener process, see [2, 20], κ : R → R is a continuously10

differentiable function, and η ∈ [0, 1]. The assumptions on κ will be specified later,11

see (7.5). Equation (7.1) was considered in [16] to study hyperbolicity. Next, we12

will modify problem (7.1) to see it as a nonautonomous random differential equation13

satisfying the conditions of our results on the continuity and topological structure14

stability of attractors.15

The canonical sample space of a Wiener process is Ω := C0(R) the set of con-
tinuous functions ω : R → R which are 0 at 0 equipped with the compact open
topology. We denote F the associated Borel σ-algebra. Let P be the Wiener proba-
bility measure on F which is given by the distribution of a two-sided Wiener process
with trajectories in C0(R). The flow θ is given by the Wiener shifts

θtω(·) = ω(t+ ·)− ω(t), t ∈ R, ω ∈ Ω.

Lemma 7.1. Consider the following scalar stochastic differential equation16

dzt + zdt = dWt. (7.2)

There exists a θ-invariant subset Ω̃ ∈ F , i.e. θtΩ = Ω for all t ∈ R, such that

P(Ω̃) = 1, limt→±∞
|ω(t)|
t = 0, ω ∈ Ω̃ and, for such ω, the random variable given

by

z∗(ω) = −
∫ 0

−∞
esω(s)ds

is well defined. Moreover, for ω ∈ Ω̃, the mapping (t, ω) 7→ z∗(θtω) is a stationary17

solution of (7.2) with continuous trajectories, and18

lim
t→±∞

|z∗(θtω)|
t

= 0, ∀ω ∈ Ω̃. (7.3)

For the proof of Lemma 7.1 see [21, Lemma 4.1].19

From now on we will restrict the random flow {θt : Ω → Ω : t ∈ R} to the20

probability space (Ω̃,F ,P), where Ω̃ ∈ F is obtained in Lemma 7.1 and F̃ =21

{Ω̃ ∩B : B ∈ F}.22

Let y be a solution for (7.1) and consider v(t, ω) := e−ηκ(t)z∗(θtω)y(t, ω). Hence,23

v satisfies the following nonautonomous random differential equation24

v̇ = Bv + fη(t, θtω, v), t > τ, (7.4)

where fη(t, ω, v) := e−ηκ(t)z∗(ω)f(eηκ(t)z∗(ω)v) + η[κ(t)− κ̇(t)]z∗(ω)v.25
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Throughout this subsection we assume that κ is a continuously differentiable real1

function such that2

sup
t∈R
{|κ(t)z∗(θtω)|} <∞ and sup

t∈R
{|[κ(t)− κ̇(t)]z∗(θtω)|} <∞, ∀ω ∈ Ω̃. (7.5)

Thus, with analysis similar to that in [16, Section 3.3] we prove that the family3

{fη : η ∈ [0, 1]} satisfies (3.3).4

Remark 7.2. The real function κ can be thought as a function that “controls”5

the growth of the Orstein-Uhlenbeck process t 7→ z∗(θtω) for ω ∈ Ω̃. We have the6

following examples for κ:7

(1) Choose any continuously differentiable real function κ with compact support,8

where the support of κ is defined as supp(κ) = {t ∈ R : κ(t) 6= 0}.9

(2) Let c > 0, a ≥ 1 and take κ as any continuously differentiable real function10

such that κ(t) = t−a, for |t| > c.11

More generally, κ can be any continuously differential real function such that t 7→12

tκ(t) and t 7→ t[κ(t)− κ̇(t)] are bounded.13

At this point, one can choose any gradient semigroup associated to ẏ = By+f(y)14

(see [12, Chapter 3] for examples) and consider the perturbation ηκ(t)y ◦ dWt and15

apply our results to the modified differential equation (7.4). In particular:16

Example 7.3. Let F : RN → R be a smooth real-valued function and f(x) =
−∇F (x), x ∈ RN , and consider

ẋ = f(x) + ηκ(t)x ◦ dWt, t > 0.

When η = 0 this is called a gradient system. Then we obtain the nonautonomous17

random differential equations18

ẋ = e−ηκ(t)z∗(θtω)f(eηκ(t)z∗(θtω)x) + η[κ(t)− κ̇(t)]z∗(θtω)x, η ∈ [0, 1]. (7.6)

Assume that there exists R0, σ > 0 such that19

f(x) · x < −σ, for all |x| ≥ R0, (7.7)

and that the set {x ∈ RN : f(x) = 0} is finite and consist only of hyperbolic20

equilibria. Then, ẋ = f(x) is globally well posed and its associated with a semigroup21

{T0(t) : t ≥ 0}, which is gradient with respect to {x∗1, · · · , x∗p}.22

Then, the nonautonomous random dynamical systems associated to (7.6) have23

attractors {Aη(ωτ ) : ωτ ∈ R× Ω̃}, and this family of attractors satisfies the conclu-24

sions of Theorem 5.1 and Theorem 6.3.25

7.2. An application to partial differential equation. Now, we provide an26

application for a damped wave equation.27

Consider the damped wave equation28

utt + βut −∆u = f(u), in D (7.8)

with the boundary condition u = 0, in ∂D, where D is a bounded smooth domain29

in R3, and β ∈ (0,+∞). For f : R→ R we assume that30

f ∈ C2(R), |f ′′(s)| ≤ c(1 + |s|), ∀ s ∈ R, (7.9)

for some c > 0, and31

lim sup
|s|→+∞

f(s)

s
≤ 0. (7.10)
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Now, we consider a small random perturbation on the damping,1

utt + βη(Θtω)ut −∆u = f(u), in D. (7.11)

where βη(ωτ ) := β + η|κ(τ)z∗(ω)|, η ∈ [0, 1], ωτ ∈ R × Ω, and κ : R → R a2

continuous map such that3

sup
t∈R
{|κ(t)z∗(θtω)|} <∞, for all ω ∈ Ω̃, (7.12)

where Ω̃ is given in Lemma 7.1.4

Remark 7.4. The functions κ1(t) = (1 + |t|)−1, κ2(t) = (1 + t2)−1, and κ3(t) =5

e−|t|, for t ∈ R, satisfy (7.12), due to (7.3). See also Remark 7.2 for more examples.6

Thus there exists a Θ-invariant map b1 : R× Ω̃→ (0,+∞) such that7

β ≤ βη(Θtωτ ) ≤ b1(ωτ ), ∀ωτ ∈ R× Ω̃. (7.13)

Indeed, note that βη(ωτ ) ≤ β1(ωτ ) = β + |κ(t + τ)z∗(θtω)| and that b1(ωτ ) :=8

supt∈R β1(Θtωτ ) is finite for every ωτ ∈ R× Ω̃, due to Condition (7.12). Now, since9

10

b1(Θrωτ ) = sup
t∈R

β1(ΘtΘrωτ ) = sup
t∈R

β1(Θt+rωτ ), ∀ r ∈ R, (7.14)

we see that b1 is Θ-invariant and satisfies (7.13).11

Now, from (7.11) we obtain the family of abstract evolutionary equations in12

X = H1
0 (D)× L2(D)13

ẏ = By + Fη(Θtωτ , y), η ∈ [0, 1], (7.15)

where

y =

(
u
v

)
∈ X, B =

(
0 I
−A 0

)
, Fη(ωτ , y) =

(
0

−βη(ωτ )v + fe(u)

)
,

A : D(A) ⊂ L2(D) → L2(D) is −∆ with Dirichlet boundary condition, and fe :14

H1
0 (D) → L2(D) is given by fe(y1)(x) = f(y1(x)) for x ∈ D. Thus, conditions15

(7.9) and (7.10) implies local and global well-posedness and that fe is continuously16

differentiable, see [4] or [29, Chapter 15] for details.17

Consider the functional V : H1
0 (D)× L2(D)→ R given by18

V0(u, v) =
1

2

∫
D

|∇u|2 +
β

2

∫
D

v2 −
∫
D

G(u), (7.16)

where G(u)(x) =
∫ u(x)

0
f(s) ds. Thus V0 is a Lyapunov function relative to the set19

of equilibria for (7.8), which we assume that is finite. The hyperbolic equilibrium20

points of (7.8) are of the form y∗0 = (u∗0, 0) where u∗0 is a solution of−∆u = f(u) such21

that 0 /∈ σ(−∆+Dxf
e(u∗0)IdX). Thus (7.8) is associated with a gradient semigroup22

{T0(t) : t ≥ 0}, see [13] for conditions to obtain that this type of dynamics is generic23

on damped wave equations.24

For each y0 ∈ X, ωτ ∈ R × Ω̃, and η ∈ [0, 1] Equation (7.15) possess a unique25

solution which can be written as26

ψη(t, ωτ )y0 = ϕη(t, ωτ )y0 + φη(t, ωτ )y0, t ≥ 0. (7.17)

where {ϕη(t, ω) : t ∈ [0,+∞), ω ∈ Ω̃} is the solution operator of (7.15) with f = 0,27

and28

φη(t, ωτ )y0 =

∫ t

0

ϕη(t− s,Θsωτ )F (ψη(s, ωτ )y0)ds. (7.18)
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Towards the existence of attractors, we have the following lemma.1

Lemma 7.5. There exists a bounded subset B (independent of (t, ω)) which pullback2

attracts at time τ ∈ R, for each τ ≤ t, every bounded subset of X under the action3

of {ψη(t − s,Θsωτ ) : t ≥ s}. In particular, {ψη(t − s,Θsωτ ) : t ≥ s} is strongly4

pullback bounded dissipative, in the sense of [17, Definition 2.10].5

Furthermore, there are K > 0 and a Θ-invariant function α : R× Ω̃→ (0,+∞),6

both independent of η, such that7

‖ϕη(t, ωτ )‖L(X) ≤ Ke−α(ωτ )t, t ≥ 0, (7.19)

and φη(t, ωτ ) is a compact operator for every (t, ωτ ) ∈ (0,+∞)×R× Ω̃. In partic-8

ular, ψη is pullback asymptotically compact for each η ∈ [0, 1], in the sense of [39,9

Definition 2.14].10

The proof of Lemma 7.5 follows step by step the arguments presented in [17,11

Section 2.1] (or see [29, Chapter 15] for more detailed proofs), thus it will be omitted.12

Thus there are nonautonomous random attractors {Aη(ωτ ) : ωτ ∈ R×Ω̃} for (ψη,Θ)13

for all η ∈ [0, 1] satisfying Condition (a.1) of Remark 5.3, see [39, 17]. Additionally,14

using arguments similar to those in [17], we see that the family {(ψη,Θ)}η∈[0,1] is15

collectively pullback asymptotically compact at η = 0. Therefore, the conditions of16

Remark 5.3 are satisfied and it is possible to apply our results to conclude that the17

family of attractors behaves continuously (using Theorem 5.1) and that we have18

topological structural stability (using Theorem 6.3).19

Remark 7.6. Instead of considering βη(ωτ ) := β + η|κ(τ)z∗(ω)|, we could have20

considered21

β̃η(ω) = β + η
2

π
arctan ◦z∗(ω), ω ∈ Ω, η ∈ [0, 1], (7.20)

and β ∈ (1,+∞). For these perturbations a condition as (5.12) is verified for the22

symbol space Ω instead of R×Ω. See for instance [25] where the authors study this23

type of perturbations.24
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