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Abstract. The limiting stability of invariant probability measures of time homogeneous transition
semigroups for autonomous stochastic systems has been extensively discussed in the literature. In this
paper we initially initiate a program to study the asymptotic stability of evolution systems of probability
measures of time inhomogeneous transition operators for nonautonomous stochastic systems. Two
general theoretical results on this topic are established in a Polish space by establishing some sufficient
conditions which can be verified in applications. Our abstract results are applied to a stochastic lattice
reaction-diffusion equation driven by a time-dependent nonlinear noise. A time-average argument and
an extended Krylov-Bogolyubov method due to Da Prato and Röckner [11] are employed to prove the
existence of evolution systems of probability measures. A mild condition on the time-dependent diffusion
function is used to prove that the limit of every evolution system of probability measures must be an
evolution system of probability measures of the limiting equation. The theoretical results are expected
to be applied to various stochastic lattice systems/ODEs/PDEs in the future.

1. Introduction

1.1. Statement of problems. A basic approach to look at the asymptotic stability of stochastic

systems with noise perturbations is to consider the limiting stability of their invariant probability

measures with respect to the noise intensity. Recently, this kind of the limiting stability of invariant

probability measures of time homogeneous transition semigroups was discussed in the literature for

autonomous stochastic lattice systems/ODEs/PDEs, see e.g., [5, 6, 7, 14, 15]. As far as the authors

can find, currently, there are no results reported in the literature on the limiting stability of an

evolution system of probability measures (an extension of invariant measures from autonomous to

nonautonomous developed by Da Prato and Röckner [10, 11]) of time inhomogeneous transition

operators for nonautonomous stochastic systems.

1.2. General framework and theoretical results. The goal of the present work is to initiate

a program of studying limiting stability of evolution systems of probability measures of time in-

homogeneous transition operators. We will establish a general setting on the limiting stability of

evolution system of probability measures for an abstract time inhomogeneous transition operator

on a Polish space. More specifically, we will show, under certain conditions, that the limit of ev-

ery evolution system of probability measures (if exists) must be an evolution system of probability

measures of the limiting transition operator.
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Let (X, ‖ · ‖X) be a Polish space, P(X) be the set of all probability measures on X, B(X) be the

Borel σ-algebra on X, and Bb(X) (Cb(X)) the space of all bounded Borel (continuous) functions on

X. Assume {Xε(t, τ, x), t > τ ∈ R} on X is a unique noise driven stochastic process with initial

value x ∈ X and the noise intensity ε ∈ (0, ε̇) for any ε̇ > 0. For ϕ ∈ Bb(X), Λ ∈ B(X) and η ∈ P(X),

we define a transition operator (P ετ,t)t>τ by (P ετ,tϕ)(x) = E[ϕ(Xε(t, τ, x))], a transition probability

function P ετ,t(x,Λ) = P{ω ∈ Ω : Xε(t, τ, x) ∈ Λ} and the adjoint operator (Qετ,t)t>τ of (P ετ,t)t>τ by

Qετ,tη(Λ) =
∫
X P

ε
τ,t(x,Λ)η(dx). As in Da Prato and Röckner [10, 11], we say {ηεt}t∈R ⊆ P(X) is an

evolution system of probability measures of (P ετ,t)t>τ if Qετ,tητ = ηt for all t > τ ∈ R.

For some technical reasons, the following assumption is needed when we discuss the limiting

stability of evolution systems of probability measures of time inhomogeneous transition operators.

CIP(Convergence in Probability). For each compact set K ⊆ X, τ ∈ R, t > τ , ε0 ∈ (0, ε̇]

and δ > 0,

lim
ε→ε0

sup
x∈K

P
({
ω ∈ Ω : ‖Xε(t, τ, x)−Xε0(t, τ, x)‖X > δ

})
= 0. (1.1)

Theorem 1.1. (Theoretical result I) Assume CIP holds and (P ε0τ,t)t>τ is Feller. Let {ηε0t }t∈R
be a family of probability measures on X for ε0 ∈ [0, ε̇], and {ηεnt }t∈R be an evolution system of

probability measures of (P εnτ,t)t>τ on X with εn → ε0. If ηεnt → ηε0t weakly for each t ∈ R, then

{ηε0t }t∈R must be an evolution system of probability measures of (P ε0τ,t)t>τ .

Remark 1.2. (i) We only require (P ετ,t)t>τ is Feller at ε = ε0. (ii) The convergence in probability

in (1.1) is not necessary to be uniform for t. But for most stochastic systems, (1.1) can be proved

uniformly for t: limε→ε0 supx∈K P
({
ω ∈ Ω : supt∈[τ,τ+T ] ‖Xε(t, τ, x)−Xε0(t, τ, x)‖X > δ

})
= 0.

In applications, εn in Theorem 1.1 may depend on t, we also provide the following results.

Theorem 1.3. (Theoretical result II) Assume CIP holds and (P ε0τ,t)t>τ is Feller. Let {ηε0t }t∈R
be a family of probability measures on X for ε0 ∈ [0, ε̇], and {ηεnt }t∈R be an evolution system of

probability measures of (P εnτ,t)t>τ on X with εn → ε0. For each t ∈ R, if there exists a subsequence

{εnk(t)}∞k=1 of {εn}∞n=1 such that η
εnk (t)
t → ηε0t weakly, then {ηε0t }t∈R must be an evolution system

of probability measures of (P ε0τ,t)t>τ .

Theorems 1.1 and 1.3 can be viewed as extension versions of limiting stability of invariant mea-

sures of time homogeneous transition operators from the autonomous framework to the nonau-

tonomous setting.

1.3. Application of theoretical results. Our abstract results in Theorems 1.1 and 1.3 are ex-

pected to be applied to various stochastic ODEs/PDEs/lattice systems with noise perturbations. In

particular, we apply these abstract results to a stochastic lattice reaction-diffusion equation driven

by a nonlinear noise on Z for t > τ with τ ∈ R:

duεi(t) + λuεi(t)dt− ν
(
uεi(t)− 2uεi−1(t) + uεi+1(t)

)
dt+ |uεi(t)|p−2|uεi(t)|dt = εσ(t, uεi(t))dW (t), (1.2)
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with initial condition uεi(τ) = u0,i, where λ, ν > 0, p > 2, ε > 0, W is a two-sided, real-valued

Wiener process on (Ω,F , {Ft}t∈R,P) the complete filtered probability space, and the nonlinear

function σ(t, ·) : R→ R is locally Lipschitz such that |σ(t, s)| 6 δ|s|+ g(t) for a constant δ > 0 and

a time-dependent deterministic function g satisfying certain conditions. We say the noise in (1.2)

is a time-dependent nonlinear noise just because the diffusion function σ depends on time t, and is

nonlinear in the unknown function uεi .

Note that lattice systems can be regarded as space discretization versions of PDEs that have many

applications in the real world such as electric circuits, pattern formation, propagation of nerve pulse,

chemical reaction and others. The existence and limiting stability of invariant probability measures

for autonomous stochastic lattice systems has been considered recently in [5, 6, 14, 15, 16]. The

reader is referred to [1, 2, 3, 4, 12, 13, 18, 19] for other mathematical topics such as random attractors

for stochastic lattice systems. In this paper we study existence and limiting stability of evolution

systems of probability measures for the nonautonomous stochastic lattice system (1.2). To our

knowledge, it seems that this is the first time to study evolution systems of probability measures

for stochastic lattice systems.

Theorem 1.4. (Existence of evolution systems of probability measures) If
∫ 0
−∞ e

λr‖g(r)‖2dr <
∞, then the transition operator (P ετ,t)t>τ for (1.2) has an evolution system of probability measures

{µεt}t∈R on `2 for any ε ∈
[
0,
√
λ

2δ

]
.

Let Eεt =
{
µεt : {µεt}t∈R is an evolution system of probability measures of (P ετ,t)t>τ for (1.2)

}
for

t ∈ R and ε ∈
[
0,
√
λ

2δ

]
. Then we discuss the tightness of

⋃
ε∈
[
0,
√
λ

2δ

] Eεt and limiting stability of any

sequences of Eεt .

Theorem 1.5. (Application of theoretical results) If
∫ t
−∞ e

λr‖g(r)‖2dr < ∞ for each t ∈ R,
then we have the following two results.

(i) The union
⋃
ε∈
[
0,
√
λ

2δ

] Eεt is tight on `2 for each t ∈ R.

(ii)For each t ∈ R, if µεnt ∈ E
εn
t with εn → ε0 ∈

[
0,
√
λ

2δ

]
, then there exists µε0t ∈ E

ε0
t and a

subsequence {εnk(t)}∞k=1 of {εn}∞n=1 such that µεnt → µε0t weakly for each t ∈ R.

2. Proof of Theorems 1.1 and 1.3

Proof. We only prove Theorem 1.3. Given τ ∈ R, s > τ and ϕ ∈ Cb(X), it is sufficient to show∫
X
ϕ(x)(Qε0τ,sη

ε0
τ )(dx) =

∫
X

(P ε0τ,sϕ)(x)ηε0τ (dx) =

∫
X
ϕ(x)ηε0s (dx). (2.1)

The first equality is obvious. By the condition for t = s, there exists a subsequence {εnk(s)}∞k=1 of

{εn}∞n=1 such that η
εnk (s)
s → ηε0s weakly. Then, for every γ > 0, there exists N1 ∈ N such that∫

X
ϕ(x)η

εnk (s)
s (dx)−

∫
X
ϕ(x)ηε0s (dx) 6 γ for all k > N1. (2.2)

Since εnk(s)→ ε0 and
{
η
εnk (s)
t

}
t∈R

is an evolution system of probability measures of
(
P
εnk (s)
τ,t

)
t>τ

,

by the condition again for t = τ , there exists a subsequence {εnkj (s, τ)}∞j=1 of {εnk(s)}∞k=1 such that
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η
εnkj

(s,τ)

τ → ηε0τ weakly. This implies that for every γ > 0, there exists N2 ∈ N such that

∫
X

(P ε0τ,sϕ)(x)η
εnkj

(s,τ)

τ (dx)−
∫
X

(P ε0τ,sϕ)(x)ηε0τ (dx) 6 γ for all j > N2. (2.3)

where we have used the Feller property of P ε0τ,s. By the assumption CIP we know that for every

γ > 0 and δ > 0, there exists N3 ∈ N such that

sup
x∈K

P
({

ω ∈ Ω : ‖Xεnkj
(s,τ)

(s, τ, x)−Xε0(s, τ, x)‖X > δ
})
6 γ for all j > N3. (2.4)

Since η
εnkj

(s,τ)

τ → ηε0τ weakly, by Prohorov theorem (see [8, 9]) we know
{
η
εnkj

(s,τ)

τ

}∞
j=1

is tight on

X. This means that for every γ > 0, there exists a compact set K(γ, s, τ) ⊆ X such that

η
εnkj

(s,τ)

τ (X/K(γ, s, τ)) < γ for all j ∈ N. (2.5)

By ϕ ∈ Cb(X) and the compactness of K(γ, s, τ) we know that for every γ > 0, there exists η > 0

such that

|ϕ(y)− ϕ(z)| < γ for all y, z ∈ K(γ, s, τ) with ‖y − z‖X 6 η. (2.6)

Indeed, if (2.6) is false, then there exist γ0 > 0, yn, zn ∈ K(γ, s, τ) with ‖yn − zn‖X 6 1/n such

that |ϕ(yn) − ϕ(zn)| > γ0. Since K(γ, s, τ) is a compact subset of X, there exist x ∈ K(γ, s, τ)

and a subsequence {nk}∞k=1 ⊆ {n}∞n=1 such that limk→∞ ‖ynk − x‖X = 0 . Then one can verify

limk→∞ ‖znk − x‖X = 0. Since ϕ is continuous, letting k → ∞ in γ0 6 |ϕ(ynk) − ϕ(znk)| 6
|ϕ(ynk)− ϕ(x)|+ |ϕ(znk)− ϕ(x)|, we find a contradiction γ0 6 0.
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Since
{
η
εnkj

(s,τ)

t

}
t∈R

is an evolution system of probability measures of
(
P
εnkj

(s,τ)

τ,t

)
t>τ

on X, by

(2.4)-(2.6) we find that for all j > N := max{N1, N2, N3},∫
X

(P ε0τ,sϕ)(x)η
εnkj

(s,τ)

τ (dx)−
∫
X
ϕ(x)η

εnkj
(s,τ)

s (dx)

=

∫
X
E
[
ϕ(Xε0(s, τ, x))

]
η
εnkj

(s,τ)

τ (dx)−
∫
X
E
[
ϕ(X

εnkj
(s,τ)

(s, τ, x))
]
η
εnkj

(s,τ)

τ (dx)

6
∫
X
E
[
|ϕ(X

εnkj
(s,τ)

(s, τ, x))− ϕ(Xε0(s, τ, x))|
]
η
εnkj

(s,τ)

τ (dx)

6
∫
K(γ,s,τ)

E
[
|ϕ(X

εnkj
(s,τ)

(s, τ, x))− ϕ(Xε0(s, τ, x))|
]
η
εnkj

(τ)

τ (dx) + 2 sup
x∈X
|ϕ(x)|η

εnkj
(s,τ)

τ (X/K(γ, s, τ))

6
∫
K(γ,s,τ)

E
[
|ϕ(X

εnkj
(s,τ)

(s, τ, x))− ϕ(Xε0(s, τ, x))|
]
η
εnkj

(s,τ)

τ (dx) + 2γ sup
x∈X
|ϕ(x)|

6
∫
K(γ,s,τ)

∫{
ω∈Ω:‖X

εnkj
(s,τ)

(s,τ,x)−Xε0 (s,τ,x)‖X>η
} ∣∣ϕ(X

εnkj
(s,τ)

(s, τ, x))− ϕ(Xε0(s, τ, x))
∣∣P(dω)η

εnkj
(s,τ)

τ (dx)

+

∫
K(γ,s,τ)

∫{
ω∈Ω:‖X

εnkj
(s,τ)

(s,τ,x)−Xε0 (s,τ,x)‖X<η
} ∣∣ϕ(X

εnkj
(s,τ)

(s, τ, x))− ϕ(Xε0(s, τ, x))
∣∣P(dω)η

εnkj
(s,τ)

τ (dx)

+ 2γ sup
x∈X
|ϕ(x)|

6 2 sup
x∈X
|ϕ(x)|η

εnkj
(s,τ)

τ (K(γ, s, τ))P
({

ω ∈ Ω : ‖Xεnkj
(s,τ)

(s, τ, x)−Xε0(s, τ, x)‖X > η
})

+ γη
εnkj

(s,τ)

τ (K(γ, s, τ))P
({

ω ∈ Ω : ‖Xεnkj
(s,τ)

(s, τ, x)−Xε0(s, τ, x)‖X < η
})

+ 2γ sup
x∈X
|ϕ(x)|

6 γ(1 + 4 sup
x∈X
|ϕ(x)|). (2.7)

In order to prove the second equality in (2.1), we consider the following equality:∫
X

(P ε0τ,sϕ)(x)ηε0τ (dx)−
∫
X
ϕ(x)ηε0s (dx) =

∫
X

(P ε0τ,sϕ)(x)ηε0τ (dx)−
∫
X

(P ε0τ,sϕ)(x)η
εnkj

(s,τ)

τ (dx)

+

∫
X

(P ε0τ,sϕ)(x)η
εnkj

(s,τ)

τ (dx)−
∫
X
ϕ(x)η

εnkj
(s,τ)

s (dx)

+

∫
X
ϕ(x)η

εnkj
(s,τ)

s (dx)−
∫
X
ϕ(x)ηε0s (dx). (2.8)

Thus, as a result of (2.2)-(2.3) and (2.7)-(2.8) we have∫
X

(P ε0τ,sϕ)(x)ηε0τ (dx)−
∫
X
ϕ(x)ηε0s (dx) 6 γ(3 + 4 sup

x∈X
|ϕ(x)|).

Since γ > 0 is arbitrary, we thus complete the proof. �

3. Proof of Theorem 1.4

Let us consider the Banach space `q =
{
u = (ui)i∈Z :

∑
i∈Z |ui|q < +∞

}
endowed with the norm

‖u‖q =

{ (∑
i∈Z |ui|q

)1/q
, if q ∈ [1,∞),

supi∈Z |ui|, if q =∞.
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In particular, we write ‖ · ‖ = ‖ · ‖2. It is known from Wang [16] that for each τ ∈ R and

u0 ∈ L2(Ω,Fτ ; `2), equation (1.2) has a unique solution which is continuous `2-valued Ft-adapted

Markov process u(·, τ, u0) ∈ L2(Ω, C([τ,∞), `2)) ∩ Lp(Ω, Lp(τ,∞); `p)). Then we can prove that

the transition operator (P ετ,t)t>τ for u(t, τ, u0) with u0 ∈ `2 is Feller, and the process laws hold:

P ετ,t = P ετ,rP
ε
r,t and Qετ,t = Qεr,tQ

ε
τ,r, −∞ < τ 6 r 6 t < +∞.

Next, we derive different uniform estimates of time average of the solutions.

Lemma 3.1. If
∫ t
−∞ e

λr‖g(r)‖2dr <∞ for each t ∈ R, then we have the following results.

(i) For any t > τ ∈ R and
[
0,
√
λ

2δ

]
,

E
[
‖uε(t, τ, u0)‖2

]
+
λ

2

∫ t

τ

eλ(r−t)E
[
‖uε(r, τ, u0)‖2

]
dr 6 eλ(τ−t)E

[
‖u0‖2

]
+ c

∫ t

−∞
eλ(s−t)‖g(s)‖2ds, (3.1)

where c > 0 is a constant independent of ε, t and u0.

(ii) For any t ∈ R and N 3 k > −t and ε ∈
[
0,
√
λ

2δ

]
,

1

k + t

∫ t

−k
E[‖uε(t, τ, u0)‖2]dτ +

1

k + t

∫ t

−k

∫ t

τ
eλ(r−t)E

[
‖uε(r, τ, u0)‖2

]
drdτ

6
c

(k + t)
E
[
‖u0‖2

]
+ c

∫ t

−∞
eλ(r−t)‖g(r)‖2dr, (3.2)

where c > 0 is a constant independent of ε, t, k and u0.

(iii) For each t ∈ R and bounded set B of `2, the solutions satisfy

lim
n→∞

lim
τ→−∞

sup
ε∈
[
0,
√
λ

2δ

] sup
u0∈B

∑
|i|>n

E[|uεi(t, τ, u0)|2] = 0.

(iv) For each t ∈ R and compact set K of `2, the solutions satisfy

lim
n→∞

sup
ε∈
[
0,
√
λ

2δ

] sup
N3k>−t

sup
u0∈K

1

k + t

∫ t

−k

∑
|i|>n

E[|uεi(t, τ, u0)|2]dτ = 0.

Proof. (i)-(ii) Applying Itô’s formula to (1.2), we infer that for any ε ∈
[
0,
√
λ

2δ

]
,

d

dt
E
[
‖uε(t)‖2

]
+

3

2
λE
[
‖uε(t)‖2

]
6 c‖g(t)‖2. (3.3)

Multiplying (3.3) by eλt and integrating over (τ, t), we deduce (3.1). Integrating (3.1) with respect

to τ over (−k, t), we obtain (3.2).

(iii)-(iv) By a cut-off technique as used by Wang [16, Lemma 4.2] (see also [17]) one can derive,

for any ε ∈
[
0,
√
λ

2δ

]
,

E
[ ∑
|i|>2n

|uεi(t, τ, u0)|2
]
6 eλ(τ−t)

∑
|i|>n

|u0,i|2 + c

∫ t

τ
eλ(r−t)

∑
|i|>n

|gi(r)|2dr

+
c

n

∫ t

τ
eλ(r−t)E

[
‖uε(r, τ, u0)‖2

]
dr. (3.4)

This along with
∫ t
−∞ e

λr‖g(r)‖2dr <∞ and (3.1) completes the proof of (iii).
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Integrating (3.4) with respect to τ over (−k, t), we have

1

k + t

∫ t

−k
E
[ ∑
|i|>2n

|uεi(t, τ, u0)|2
]
dτ 6

1

λ(k + t)

∑
|i|>n

|u0,i|2 + c

∫ t

−∞
eλ(r−t)

∑
|i|>n

|gi(r)|2dr

+
c

n(k + t)

∫ t

−k

∫ t

τ
eλ(r−t)E

[
‖uε(r, τ, u0)‖2

]
drdτ.

This along with
∫ t
−∞ e

λr‖g(r)‖2dr <∞ and (3.2) completes the proof of (iv). �

Proof. Proof of Theorem 1.4. The proof is completed by an extended Krylov-Bogolyubov method

proposed by Da Prato and Röckner [11]. For n ∈ N, we let χ[−n,n] be the characteristic function of

[−n, n]. Then uε(t, τ, u0) = ũεn(t, τ, u0) + ûεn(t, τ, u0) with ũεn(t, τ, u0) =
(
χ[−n,n](|i|)uεi(t, τ, u0)

)
i∈Z

and ûεn(t, τ, u0) =
(
(1−χ[−n,n](|i|))uεi(t, τ, u0)

)
i∈Z. Given δ > 0, l ∈ N and m, k ∈ N with m 6 k, by

(ii) and (iv) of Lemma 3.1 there exist nδl (m) ∈ N and C(m) > 0 independent on ε and k such that

sup
ε∈
[
0,
√
λ

2δ

] 1

k −m

∫ −m
−k

E
[
‖uε(−m, τ, 0)‖2

]
dτ 6 C(m),

and

sup
ε∈
[
0,
√
λ

2δ

] 1

k −m

∫ −m
−k

E
[
‖ûε

nδl (m)
(−m, τ, 0)‖2

]
dτ <

δ

24l
.

Define

Yδl (m) =

{
u ∈ `2 : ui = 0 for |i| > nδl (m) and ‖u‖ 6

2l
√
C(m)√
δ

}
and

Zδl (m) =
{
u ∈ `2 : ‖u− v‖ 6 1

2l
for some v ∈ Yδl (m)

}
.

Define a probability measure ηεk,m = 1
k−m

∫ −m
−k P

{
ω ∈ Ω : uε(−m, τ, 0) ∈ ·

}
dτ on `2. Then by

Chebychev’s inequality one can verify

ηεk,m(`2 \ Zδl (m)) 6
δ

22lC(m)

1

k −m

∫ −m
−k

E
(
‖uε(−m, τ, 0)‖2

)
dτ

+
22l

k −m

∫ −m
−k

E
[
‖ûε

nδl (m)
(−m, τ, 0)‖2

]
dτ 6

δ

22l−1
. (3.5)

Let Zδ(m) =
⋂∞
l=1Zδl (m). Since one can verify that Zδ(m) is closed and totally bounded in `2,

it is compact in `2. By (3.5) we know ηεk,m(`2 \ Zδ(m)) 6
∑∞

l=1 η
ε
k,m(`2 \ Zδl (m)) < δ. Then

{ηεk,m}N3k>m is tight on `2 for each fixed m ∈ N. Then there exists ηεm ∈ P(`2) and a subsequence

(not relabeled) such that ηεk,m → ηεm weakly as k → ∞. For each fixed t ∈ R, we choose m ∈ N
such that −m 6 t, and define µεt := Qε−m,tη

ε
m. By [11] one can verify that this definition is

independent of the choice of m. Then for every fixed t ∈ R and for any N 3 m > −τ > −t, we have

Qετ,tµ
ε
τ = (P ε−m,τP

ε
τ,t)
∗ηεm = Qε−m,tη

ε
m = µεt. This complete the proof. �
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4. Proof of Theorem 1.5

Proof. Proof of Theorem 1.5. (i) For every δ > 0, t ∈ R, ε ∈ [0,
√
λ

2δ

]
and µεt ∈ Eεt , we shall find

a compact set Zδ(t) ⊆ `2 independent of ε such that µεt(Zδ(t)) > 1− δ. Given t ∈ R and l ∈ N, by

(i) and (iii) of Lemma 3.1 there exists nδl (t) ∈ N, Tδl (t) 6 t and C(t) > 0 independent of ε and u0

such that

sup
ε∈
[
0,
√
λ

2δ

] sup
τ6t

sup
u0∈`2

E
[
‖u(t, τ, u0)‖2

]
dτ 6 C(t), (4.1)

sup
ε∈
[
0,
√
λ

2δ

] sup
τ6Tδl (t)

sup
u0∈`2

E
[
‖ûε

nδl (t)
(t, τ, u0)‖2

]
<

δ

24l
. (4.2)

Define Yδl (t) :=

{
u ∈ `2 : ui = 0 for |i| > nδl (t) and ‖u‖ 6 2l

√
C(t)√
δ

}
, Zδl (t) :=

{
u ∈ `2 :

‖u − v‖ 6 1
2l

for some v ∈ Yδl (t)
}

and Zδ(t) :=
⋂∞
l=1Zδl (t). Note that Zδ(t) is compact in `2.

In what follows we prove µεt(Zδ(t)) > 1 − δ. Denote by X δn(t) :=
⋂n
l=1Zδl (t) for n ∈ N. Then

µεt(Zδ(t)) = µεt
(⋂∞

n=1X δn(t)
)

= lim
n→∞

µεt
(
X δn(t)

)
, and hence there exists N = N(δ, t) ∈ N such that

0 6 µεt(X δn(t))− µεt(Zδ(t)) 6 δ/3 for all n > N .

Note that by (4.1)-(4.2) we have, for all τ 6 Tδl (t),∫
`2
P
({

ω ∈ Ω : uε(t, τ, x) /∈ X δN (t)
})

µετ (dx)

6
N∑
l=1

δ

22lC(t)

∫
`2
E
[
‖ũε

nδl (t)
(t, τ, x)‖2

]
µετ (dx)

+

N∑
l=1

22l

∫
`2
E
[
‖ûε

nδl (t)
(t, τ, x)‖2

]
µετ (dx)

6
N∑
l=1

δ

22l−1
6

2δ

3
. (4.3)

By (4.3) and the definition of {µεt}t∈R of (P ετ,t)t>τ , we find that for all τ 6 Tδl (t),

µεt(X δN (t)) =

∫
`2
P
({

ω ∈ Ω : uε(t, τ, x) ∈ X δN (t)
})

µετ (dx)

= 1−
∫
`2
P
({

ω ∈ Ω : uε(t, τ, x) /∈ X δN (t)
})

µετ (dx)

> 1− 2δ

3
. (4.4)

This concludes the proof of (i).

(ii) For every τ ∈ R, t > τ δ > 0, ε0 ∈
[
0,
√
λ

2δ

]
and compact set K of `2, since we can prove that

all uniform estimates of the solutions are uniform for ε ∈
[
0,
√
λ

2δ

]
, by a stoping time argument, we

can prove

lim
ε→ε0

sup
u0∈K

P
({

ω ∈ Ω : ‖uε(t, τ, u0)− uε0(t, τ, u0)‖ > δ
})

= 0. (4.5)
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The proof of (4.5) is quite similar to the autonomous case as in [5, 6, 14, 15], the details are omitted

here. Then by (i), (4.5), Theorem 1.3 and Prohorov’s theorem, we complete the proof of (ii). �
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