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OPTIMIZATION AND CONVERGENCE OF NUMERICAL
ATTRACTORS FOR DISCRETE-TIME QUASI-LINEAR LATTICE
SYSTEM*

YANGRONG LIf, SHUANG YANG T, AND TOMAS CARABALLO *

Abstract. Existence and connection of numerical attractors for discrete-time p-Laplace lattice
systems via the implicit Euler scheme are proved. The numerical attractors are shown to have an
optimized bound, which leads to the continuous convergence of the numerical attractors when the
graph of the nonlinearity closes to the vertical axis or when the external force vanishes. A new type
of Taylor expansion without Fréchet derivatives is established and applied to show the discretization
error of order two, which is crucial to prove that the numerical attractors converge upper semi-
continuously to the global attractor of the original continuous-time system as the step size of the
time goes to zero. It is also proved that the truncated numerical attractors for finitely dimensional
systems converge upper semi-continuously to the numerical attractor and the lower semi-continuity
holds in special cases.

Key words. discrete-time equation, numerical attractor, p-Laplace lattice, finite-dimensional
approximation; semi-continuity of attractors
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1. Introduction. We study the numerical scheme of attractors as well as solu-
tions for the p-Laplace lattice dynamical system (LDS)

(1) W) o A0+ 1)) + g1, i€ 2,

where v > 0, p > 2, u = (u;);ez, and the discrete p-Laplace operator is defined by
(Apu)l = |’U,i+1 — ui|p_2(ui+1 — ul) - |’U,i - ui_1|p_2(ui - ’U,i_l),i € 7.

As one knows, a LDS has many applications in fluid dynamics, chemistry and
neural networks, see [3, 5, 18, 32]. The p-Laplace LDS (1.1) is the space-discretization
of the corresponding p-Laplace partial differential equation (defined on the real line),
while the dynamics of the (deterministic or stochastic) p-Laplace PDE was studied in
[ ) ’ ’ s ) ) ) ) ) ) ) .

As preliminaries, we show in Section 2 that the LDS (1.1) has a positively invariant
ball B,-(0) and a global attractor A in ¢2, where the dissipative condition of f €
C(R,R) is different from those in [10, 14, 15, 36] and given by

f(s)

1.2 = inf —
(1.2) o= Inf —

> 0.
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2 Y. LI, S. YANG AND T. CARABALLO

In this paper, we mainly consider the numerical scheme in the discrete-time sense.
Using the step size € := t,,11 — t,, of the time to discretize the LDS (1.1), we obtain
the p-Laplace implicit Euler scheme (IES)

(1.3) Uy ; = Uy 1 ; +ev(Apuy)i +ef(uy, ;) +egi, Yn €N, i € Z
As pointing out by Han, Kloeden, Sonner [17], the IES (1.3) with p = 2 is not

globally solvable for a common step size (see Lemma 5.3 for the reason if p > 2).
Instead the global solvability, we will prove in Theorem 3.1 that, for sufficiently small
step sizes, the IES (1.3) is uniquely solvable when the initial datum belongs to the
positively invariant ball B,«(0). In the recursive proof of Theorem 3.1, we use a new
method of enlarging the radius to overcome the difficulty that the ball B,.-(0) is no
longer a positively invariant set under the operator defined by the right-hand side of

(1.3). The proof is more careful and technical than in [17] even for the case of p = 2.
For the later purpose, we have to consider the numerical approximation of so-
lutions as € — 0. In this respect, Kloeden and Lorenz [25] (see also Jentzen et al.

[4, 20, 21, 22]) have introduced the method of the Taylor expansion by using the
Fréchet derivatives of the linear Laplacian A, (p = 2) and f. However, the nonlinear
operator A, (p > 2) has not a Fréchet derivative.

To overcome the above difficulty, we establish a new type of Taylor expansions
without Fréchet derivatives and give the continuous-time error of solutions for the
LDS (1.1) (see Lemma 4.1). Using this continuous-time error, we can show the dis-
cretization error of order two for the solutions between LDS (1.1) and IES (1.3), see
Theorem 4.2. Our method is suitable for a wider class of discrete-time equations even
if the operators are not Fréchet differential.

From Section 5, our main purpose is to study the numerical scheme of attractors,
which is a relative new subject (introduced by Han, Kloeden, Sonner [17], see also
[38]) in both Numerical Analysis and Dynamical Systems [31]. More precisely, we
study the discrete approximation of the global attractor A for LDS (1.1) in terms of
numerical attractors for IES (1.3) and its finitely dimensional truncated system.

We prove in Theorem 5.2 that the discrete semigroup, generated from the IES
(1.3), possesses a unique connected numerical attractor A, for sufficiently small step
sizes. In the proof, we need to recursively estimate the tail of solutions for all n € N,
where the usual cut-off function technique (see [1, 2, 6, 7, 16, 19, 35, 39, 40]) is still
valid in the discrete-time case.

Furthermore, we prove in Theorem 5.4 that A, has an optimized bound given
by |lg||/e. This bound is crucial to prove that the numerical attractor converges
continuously (upper and lower) to zero as the graph of f closes enough to the y-axis
and as g — 0, respectively. This subject of optimization and convergence of numerical
attractors is new in the literature.

In Theorem 6.1, we establish the upper semi-continuity from the numerical attrac-
tor A, to the global attractor A as € — 0, where the discretization error of solutions
in Theorem 4.2 plays a crucial role in the proof.

In Section 7, we study the finitely dimensional approximation of the numerical
attractor. For this end, we truncate the IES (1.3) on the (2m + 1)-dimensional Euclid
space to obtain the truncated numerical scheme with the periodic boundary condition,
see the model (7.2). We then prove in Theorem 7.4 that the truncated IES (7.2) has
an attractor denoted by A ., and that A ,,, converges upper semi-continuously to
the numerical attractor A, as m — oo. If the viscosity is zero, i.e. v = 0, the lower
semi-continuity from A, ,, to A, still holds as proved in Theorem 7.6.

This manuscript is for review purposes only.
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Opt. bound =
= llll /e

Fic. 1. Convergence paths and bounds of attractors.

In a word, we have established a convergence path from A, to the global at-
tractor A through A.. In fact, there is another convergence path from A ,, to A
through A,,, where A4,, is the global attractor for the truncated system of the LLDS
(1.1) on the (2m + 1)-dimensional Euclid space. All convergence paths and optimized
bounds of attractors are displayed in FIG. 1.

2. Positively invariant ball and global attractor for p-Laplace lattice.
The discrete p-Laplace operator A4, (p > 2) can be formally written as

Apu = —B*(|Bu|p723U)a (Bu)i := wig1 — ug, (B u); := uj—1 — uy,

where u = (u;)icz, [u|? = (Jui|?)icz and uv = (u;v;)icz. By [14], we have (Apu,u) =
—|[|Bulp, where ||-[|; (omitting the subscript if ¢ = 2) denotes the norm in the Banach
space

0= {u=(uiez: Jullj =Y hul? <oo}, = 1.
i€EZ

We assume that g = (g;)iez € €2 and f : R — R is locally Lipschtz continuous,
i.e. for each r > 0, there is L, > 0 (increasingly in r) such that

(2.1) £ (s1) = f(s2)| < Lefs1 = sal, V]s1| <7, [so| <1,
and the dissipative condition (1.2) holds. Note that both (2.1) and (1.2) imply that
(2.2) f(s)s < —as? VseR, f(0)=0,

and the Nemytskii operator F': 2 — (2, F(u) = (f(u;))icz is bounded and locally
Lipschtz continuous.
Now, the p-Laplace LDS (1.1) is rewritten as an abstract form
du(t)

(2.3) i vAyu(t) + F(u(t)) + g, t >0, u(0) =uy € (2,
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4 Y. LI, S. YANG AND T. CARABALLO

where v > 0, p > 2. Although the dissipative condition ((1.2) or equivalently (2.2))
is different from those in [10, 14], one can similarly prove that the p-Laplace LDS
(2.3) has a unique solution u € C([0, 00), £?), which generates a continuous semigroup
(semi dynamical system) defined by

S(t): 2 = 02, S(t)up = u(t;ug), Vt >0, ug € £2.
LEMMA 2.1. The semigroup S(-) has a positively invariant absorbing ball
B+ (0) = {z € €+ |laf| <7 := /1 + [lg]?/a?}.
Proof. By the inner product of (2.3) with w(¢), using (2.2) we obtain
d

£HUHQ = —2v||Bullb - QaZf(ui)ui +2(g,u) < —a|ul]® +
i€Z

lgll?
-

The Gronwall lemma yields
_ llgll® —at
(2.4) lu(®)]* < e fuo|I* + T2 d—em), vt >0,
For all uy € B,.(0) with arbitrary radius r > 0, we have

||u(t u0)||2 < efothQ 4 ”9”2(1 _ efat) <14+ HgH2 _ (’I’*)2
’ = 2 = 2
if t > 2logr. Hence B,+(0) is an absorbing ball.
By (2.4) again, for all ug € B,«(0) and ¢ > 0,

2 2 2 2
Jutt, wo) |2 < et (1+ ”Z—!) + %(1 —e) =y ”i! <1+ ”Z! = ()2,
Hence B,~(0) is also positively invariant under S(-). |
We remark here that the larger radius /1 + 2||g||2/a? was used in [17] for p = 2.
By the technique of a cut-off function (see e.g. [1, 39]), one can give the uniform
estimates of the tail of the solution on the ball B,.«(0), which leads to the existence of
a global attractor. The proof is similar to the one given in [14].
THEOREM 2.2. The semigroup S(-), generated from the p-Laplace lattice, pos-
sesses a unique global attractor A C By« (0).

3. Numerical solutions and discrete semigroup on a ball. The implicit
Euler scheme for the p-Laplace LDS (2.3) with the step size € > 0 can be read as

(3.1) ul, = ul_y + evAyul, + eF(ul) +eg,  u§=ug € (2

Note that there does not exist a common step size such that (3.1) is solvable for
all initial data (see Lemma 5.3 later or see [17, 31] in the case of p = 2). So, we will
restrict (3.1) on the ball B,«(0) to ensure the existence of a discrete-time dynamical
system for at least one step size.

We need to use the local Lipschitz continuity of the discrete p-Laplace operator

32)  [[Apu = Apv|| < Ly rllu — vl and [[Apul| < Ly r|ull, Yu,v € B,(0),

where L, := (p — 1)22PrP=2 depends increasingly on r > 0, see [34] for the proof.

This manuscript is for review purposes only.
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THEOREM 3.1. There is €* > 0 such that, for each e € (0,€*] and ug € B,~(0),
the IES (3.1) has a unique solution such that

us, (ug) € By+(0), Yn € N, where r* = /1 + ||g]]2/a?.

Proof. We recursively prove the theorem in four steps.
Step 1. In the case of n = 1, we find an €* > 0 such that the IES (3.1) has a
solution

ui(’UJo) S BT*_H(O), Ve € (0,6*], ug € B+ (O),

where the radius is temporarily enlarged (from r* to r* + 1).
For each € > 0 and ug € B,+(0), we define an operator M, : (* — (* by

(3.3) M, (7) = ug + evApr + eF(x) +eg, Vo € 2

We prove that Mg, maps B,-11(0) into itself if € is small enough. Since A, is
bounded, it follows from the second inequality of (3.2) that

Al < vEpesallall < (1 + 10 Lpei1, ¥ € Byeya (0)
By the local Lipschitz continuity (2.1) and f(0) = 0, we obtain
IF@I| < Lozl < (¢ + 1Ly s1, ¥ € Bres1(0).
Hence, for all ug € B,«(0) and = € B,«11(0), we have
M (@I < luoll + e(Wl[ Apz[| + || F' ()] + llg]])
<1 (" + DLy i1+ Lesa) + lgl)-

We define an essential constant by

1
(r* + 1>(VL;DJ‘*+1 + Lyeq1) + |9l '

Then ||Ms, (z)]] <r* +1 for all € € (0, €], up € B,+(0) and x € B,~11(0).

We then prove that, for each € € (0,€¢*] and ug € B,-(0), the mapping M, :
B.+11(0) = B«+1(0) is contractive. Indeed, by the local Lipschitz continuity in (2.1)
and (3.2), for all z,y € B,«11(0),

(3.4) €=

(3.5) M (2) = M, ()l < e[ Apz — Apyll + [[F'(z) = F(y)l))

<
< Lppess + Les)lla — -
If € € (0, €*], where €* is the constant defined by (3.4), then

E(VLp,r*+1 + Lyey1) <€ (VLp,T*+1 + Ly~y1)
I/Lp’r*+1 + LT*+1 < 1
(r* + 1) (vLpre41 + Leey1) gl — r*+1

<1

By the contraction mapping principle, for each € € (0,€*] and ug € B,«(0), the
mapping Mg, : Bpx1(0) = B,-11(0) has a unique fixed point

uj € Bp-41(0) such that M;, (uf) = uf,

This manuscript is for review purposes only.



6 Y. LI, S. YANG AND T. CARABALLO

which is the unique solution of the IES (3.1) for n = 1 in B,-11(0).
Step 2. We further prove that the unique solution in Step 1 satisfies

uf(ug) € By« (0), Ve € (0,€], ug € Br(0).

For this purpose, we take the inner product of the equation (3.1) for n = 1 by u§
to obtain

(3.6) [uf||* = (uo, uf) + ev(Apuf, ui) + e(F(ug), uf) + e(g, uf).
By (2.2),

e(F(uf),uf) = ey fluf Jui,; < —eallui|®.
€7

The Young inequality implies
1 1 € ex
(0, u5) < & uo” + & s ” and (g, ) < o gl + 2
Since (Apug,ui) = — || Bui||h < 0, it follows from (3.6) and the above estimates that
(3.7) luglf* <

€
< 77 (ol + ~1igl?)-

Since ug € B,+(0), it follows from (3.7) that

ué 2<
Jus 2 < ——

2 . 2
(1 L0 gy <oy B g
which means that u$ € B,-(0) as desired.

Step 3. We show that the solution is unique globally. Let ¢ € (0,€*] and ug €
B,«(0). By Step 1, the solution u§(ug) is unique in B,«41(0). By Step 2, there is
not a solution outside B, (0) and thus the solution u$(ug) is unique in ¢2. So far, the
theorem for n = 1 has been proved.

Step 4. Suppose the theorem holds for a certain n, that is, for each € € (0, €]
(where €* is still the constant given by (3.4)) and ug € B,«(0), the n-th IES (3.1) has
a unique solution u$,(ug) € By«(0). We then define a mapping by
oo () = uf, + evApx + eF(x) + €9, Vo € Br-y1(0),

€
Uy,

where u¢ € B,~(0) instead of ug € B,«(0) in (3.3). Repeating the process in Step
1, we know that, for each ¢ € (0,€*], the mapping MS. : Brx11(0) — Br«y1(0) is
well-defined and contractive, which implies the existence of a unique fixed point uj,
in BT* +1(0).

Repeating the estimates in Step 2, we obtain an analogue inequality of (3.7)

€ 1 € €
(3:8) et I < 7o (lhucl + = lgl?)-

T l+ea

By the recursive hypothesis us, € B, (0), we infer from (3.8) that us, ., € B,«(0), which
is the unique solution of the (n + 1)-th IES (3.1). The recursive proof is complete. O

Remark 3.2. The above proof is more careful than the proof of [17, Lemma 2]
even in the case of p = 2 . In fact, B,-(0) may not be positively invariant under the
operator M, (although it is invariant under the solution mapping, see [I7, Lemma
1]). To overcome this difficulty, we enlarge the radius r* to r* + 1 such that B,«11(0)
is positive invariant under Mg, ~with a possible maximal size €*.

This manuscript is for review purposes only.
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OPTIMIZATION AND CONVERGENCE OF NUMERICAL ATTRACTORS 7

The following result shows the generation of a discrete-time dynamical system (see
[24]), which has better properties than the continuous system. The proof is standard.

COROLLARY 3.3. For each ¢ € (0,€*], where €* is given by (3.4), the unique
solution of the IES (3.1) in B« (0) generates a discrete semigroup given by

Se(n) : By (0) = By« (0), Se(n)ug = us,(ug), Vn € Ny, ug € B, (0).

LEMMA 3.4. Fore € (0,€*] and n € N, the operator Sc(n) is Lipschitz continuous
mn BT* (0)

Proof. Let n = 1 and ug,vp € B,«(0). By (3.5), the solutions u§ = S¢(1)up and
v§ = Se(1)vg satisfy

[ug = il < [luo = voll + (vl Apui = Apvill + [[F(ui) = F(ui)]])
< |luo — voll + €(VLp,r+41 + L= 41)us — vi]l;

which further implies that for all € € (0, €*],

[[uo — ol [[uo — voll
€(WLppesr + Lpey1) = L= € (WLppesr + Lyega)’

€ €
8 <
[uf —vill < 1_

where €*(vLp =41 + Ly=41) < 1 in view of (3.4). By the semigroup property,

lluo — vo|
(1= e (vLpreq1 + L= 1))

[|Se(n)ug — Se(n)vo|| <

for all n € N. The proof is complete. ]

4. Generalized Taylor expansion and discretization error. To study the
convergence of attractors, we need to estimate the discretization error of solutions,
for which we need to develop a generalized Taylor expansion.

4.1. Generalized Taylor expansion for continuous-time error. According
to the method in [17, 25], one must consider the Taylor expansion of LDS (2.3) starting
from u(t,41;u0) and going back to u(t,;ug) as follows:

ultn) = ultns2) + (~PHp(utn 1)) + 5 (~0)* DHy(u(6.))

where t,, 411 — t, =€, 0c € (tn,tni1), the operator H, : (2 — (% is given by
(4.1) Hy(v) = vAyz + F(x) + g, Yo € 2

and DH, denotes the Fréchet derivative (perhaps formal) of H,. If p = 2, then
A := A, is a bounded linear operator, which has a Fréchet derivative given by itself,
and thus, by the method as in [21], one can clearly write the Fréchet derivative as
DH(x) = (vA + diag(f'(x;))H(x) for = € £2. However, if p > 2, then the nonlinear
operator A, has not a Fréchet derivative (even the original function y = |s|P~2s is not
differential in R).

To overcome the difficulty, we give an alternative for the second order Taylor
expansion of LDS (2.3) without Fréchet derivatives, which will be useful for estimating
the discretization error in the next subsection.

LEMMA 4.1. Let u(-;ug) be the solution of LDS (2.3), tp41 —tn =€ >0, t, > 0.
Then, for each ug € B,.(0) with any radius r > 0, there is M.(ug) € £* such that

(4.2) w(tn;uo) = u(tny1;uo) — €Hp(u(tnyi; uo)) + eMe(ug),
(4.3) [Me(up)|| < €C,, Vug € B,(0),

This manuscript is for review purposes only.
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where C,. is increasing in r (but independent of €) and the operator H, : (> — €% is
well-defined by (4.1).
Proof. The first order Taylor expansion of LDS (2.3) can be read as

ult) = ults1) — € () = ultn 1) — Hy(u(®))

= u(tnt1) — Hp(utni1)) + e(Hp(ultnir)) — Hp(u())),
where 6 € (t,,t,+1). Hence (4.2) follows if we put
M (ug) := Hp(u(tny1;u0)) — Hp(u(f; uo))-

To prove (4.3), we assume without loss of generality that r > ||g||/a (otherwise,
one can use r + ||g||/« instead of r), and claim that B,.(0) is a positively invariant set
for the semigroup S(-). Indeed, by (2.4), for all ¢ > 0 and uo € B,.(0),

(44) ||u(t;u0)||2 < 67at||u0||2 + ”9”2(1 _ efat) < efozt(r2 _ ||g||2) + Hg||2 < T2.
- a? - a? a? =

By the local Lipschitz continuity of A, and F', we obtain

[Me(uo)ll = v (Apu(tnir) — Apu(8)) + (F(u(tni1)) — F(u(0)))]l
< (WLpr + L) |ultng) — u(0)]-

By the first order Taylor expansion again, we have

u(tni1) —u(0) = (tn1 — 9)%(9) = (to+1 — 0)H,(u(6))
= (tos1 — 0)(vApu(9) + F(u(d)) +g)

for some 6 € (0,tn+1). By the local Lipschitz continuity of A, and F again, it follows
from (4.4) that

||u(tn+1) - u(9)|| < |tn+1 - 9|((VLP,T + LT)Hu(é)H + ||9H) < G(T(VLP,T + L)+ HQH)7
which further implies that for all ug € B,(0),
|Mc(uo)ll < e(r(vLps + Lo)? + gl Ly + L)) =: €C,

where C,. is obviously increasing in r. The proof is complete. ]

4.2. Discretization error of order two. We now use the generalized Taylor
expansion in Lemma 4.1 to estimate the discretisation error of solutions when the
initial data are restricted on the ball B, (0).

THEOREM 4.2. Let u(t;ug) and uS, (ug) be the solutions of LDS (2.3) and IES
(3.1) respectively, where ug € B,«(0). We have the discretisation error of order 2:

(4.5) |u(e; us, (uo)) — uly 41 (uo)|| < €Crr, Ve € (0,€*], n € N.
Furthermore, for each T > 0, there is a Cr - > 0 such that

(4.6) |u(tn; o) — us,(uo)|| < €Crpe, Vt, :=en € [0,T], € € (0,€"].

This manuscript is for review purposes only.



333

334

OPTIMIZATION AND CONVERGENCE OF NUMERICAL ATTRACTORS 9

Proof. Both (4.2) and (3.1) can be rewritten as
u(tng1) = u(tn) + eHp(u(tnyr)) — eMe(ug) and uy, = ujy, + €H(uy, ),

where H,, = vA, + F + gI as given in (4.1). From the difference between the above
two equalities, we know that the discretisation error AS (ug) = wu(tn;ug) — us,(uo)
satisfies the following equation:

AL =A%+ e(Hp(ultng1)) — Hplupiy)) — eMe(uo).
Taking the inner product with Ay, ,; yields
1A% 117 = (AT + e(Hp(ultnrr)) — Hp(ug ) — eMe(uo), ATy y)
< (AL el Hp(ultnga)) — Hp(ug )l + el Me(uo) DIAT 41,
which further implies
(4.7) AL 1l S NAGH A+ el Hp(u(tng1) — Hp(upga)|| + €l Me(uo)l-

Since B,«(0) is positively invariant under both S(t) and S.(n) (see Lemma 2.1 and
Theorem 3.1), it follows that u(t,4+1),us € By+(0), and thus we see from the local
Lipschitz continuity of A, and F' that

[Hp(ultni1)) = Hp(ug )l < vI[Aputngr) — Apug || + 1F(w(tngr)) — Fug )|l
< (WLpr + L) Jutng1) — wpga | = WLp e + Lo )| AL 1 |-
By Lemma 4.1, || Mc(uo)|| < eCy~ for all ug € B,«(0), and thus (4.7) yields
1A%l < IALN + €@WLp e + L) |AL 1 ]| + €2Cre

Denote by Ly« := vLp .+ + Ly-. By (3.4), for all € € (0,€*], €L« < L« <1 and
thus

1
(48) ||A +1|| < ﬁHA;H +€20T*7 vn S NOa €c (an*]7

-
where Cy is 1/(1 — €* L, )-times bigger than the original constant. Since A§ = 0,
we infer from (4.8) that ||u(e;uo) — u§(up)|| = [|A]]| < €C,+. Using uf, as an initial
datum in the above formula, we obtain the discretization error (4.5) of order 2.

On the other hand, for all ¢,, = en € [0,T], by the recursive inequality (4.8) and
A§ = 0, we have

1

4.9 ALl £ e°C- —_—
(4.9 lag) < é ZHL)

Since €L~ <1 and n < T/e, it follows that

n—1 -

. 1 1—(1—eL,-)" s

eLT*E: . = ") < (1=l )" < (1 — el TL
S (l—elp)  (1—elpe)nt = ) = ( )t

as € | 0, where the last limit is deduced from the basic limit (14 1/k)* 1 e as k — oo.
By (4.9),

n—1 2
S 1 oL
1a5) < e ek &
Ly — (1 —€eLy~) L,
j=
for all € € (0,€*], t, = en € [0,T] and ug € B,+(0). Hence (4.6) holds true. 0
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5. Numerical attractors: existence, optimized bound and continuity. In
this section, we derive the existence, optimized bound and continuity of a numerical
attractor for IES (3.1).

5.1. Estimates for tails of numerical solutions. We need to give the esti-
mate of tails of the solutions in B,«(0).

LEMMA 5.1. Lete € (0,€*]. Then, for each § > 0, there are () € N (independent
of €) and N.(5) € N such that the solution of IES (3.1) satisfies

(5.1) Hse(n)U0||§2(\i|21(5)) = Z |Ufm‘|2 <4, Vn > Ne(6), uo € B,+(0).
li|>1(3)

Proof. As usual, we consider a cut-off function ¢ € C1(R¥, [0, 1]) such that £(s) =
0 for all s € [0,1/2] and £(s) =1 for all s € [1,+00). For each k > 0, we define

(5.2) € = (€ni)icz, Where &, = (‘]J) Vi € Z.

Since the IES (3.1) is well-defined in 2 and &uf, = (§xiuf, ;)icz € €2, we can use the
inner product of (3.1) with &ug, to obtain

(5.3) > ilug

1€Z

= (up—1, &ty + W Apuy, + F(uy) + g, §puy)-

We now estimate all terms on the right-hand side. First,
€ € 1 € |2 1 € 2
(wp—1, k) < 5 > &ralus* + 5 > Gralug, %
€L €L
Second, since A,z = —B*(|Bz[P~?Bz) and B(zy) = 2By + yBuz, it follows that
(Apuy,, Eruy) = —(|Bug, [P~ Buy,, B(&wuy,))
~(|Bug, [P~2Buy,, & Buy,) — (|Buj, [P~ Buj, , uj, B&)

= = 3 Gl (Bug)iP — (1Bug P~ Bug, ut, B&) < |(1Bus
€L

P ZBuna nBSk)|

nl

Since |€/(s)| < C for all s > 0, it follows from the mean-valued theorem that

|(B&) k\f('””) g('lm T VkeN, icZ

By Theorem 3.1, uf, € B,«(0) and thus |(Bus,);| < ||Bug|| < 2|Jus,|| < 2r*. Therefore,
e(vApus,, Epuy,) < ev|(|Bus, [P~ Buj,, uy, BE)|

€ — € ¢ C *
< ey [(B&)ll(Bug,)ilP~ ug, ;| < e (TP gl < e2 )P
i€EZ

Third, by (2.2), we have

E(F(Ufl)—i-g,fku <_7Z€kl|unz| +7Z£k191

S/ €7

This manuscript is for review purposes only.
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100 Substituting the three estimates into (5.3) we find

1 € C 1
101 (5.4 Jus 2 < us ]2 (J s L _2)‘
( ) ng, |un,z| = 1+6(XZ£I€7 |un7171| + 1+ea\ k (T ) + a Z g;
402 S/ S/ [i|>—1+4k/2
403 Given ¢ > 0, there is I(4) € N (independent of €) such that
Cp 1 .
404 —(r")? 4+ — < =6, VE>1(0
LePEs Y g <55 VR I0)
405 |i|>—1+k/2
406 which together with (5.4) implies that for all & > I(9),
1 € «
2 2

407 Jus 12 < s _ - 5.

Z&k, |un,z| = 1+€O[Z§k, |un l,zl + 14+ ea?
408 i€Z i€Z
409 Iterating the above inequality yields
410 ka-m6 -|2<¥Z§k-|uo-|2+§iL

; = (1 4 eq)n 4 e 24~ (1+ea)
1E€EZ 1E€EZ j=1

411 <M+é<ﬁ+f—>fasn—>oo.
112 - (1+€Oé)n 2 - (1+60Z)n 2 2
113 Hence, there is N(d) € N such that for all n > N.(6) and k& > I(J),
414 Z |“§m|2 < ka,i|uz,z‘|2 <.
415 li|>k i€
416 Setting k = I(J) we obtain (5.1) as desired. ad
417 5.2. Existence and connection of numerical attractors. Recall that a com-

418 pact subset A, of B, (0) is call a (numerical) attractor of the discrete-time dynamical
419 system {S¢(n)}nen, for the IES (3.1) if A, is invariant and attracting

120 Se(n)Ae = Ac (Vn € N), and lim disty2(Sc(n)B,+(0), Ac) = 0.

492 n— 00

422 THEOREM 5.2. For each € € (0,€*], the discrete semigroup {Se(n)}nen, on By« (0)
123 has a unique numerical attractor A. such that A. is topologically connected in (?.
424 Proof. We prove that the semigroup S.(-) is asymptotically compact on B, (0).

425 Tt suffices to prove that the sequence {S.(n)uj : n € N} is relative compact for any
126 sequence {ug : n € N} in B, (0).

127 Given § > 0, we see from Lemma 5.1 that there are N(6),I(d) € N such that
458 1Se(r)ug llz2qisr) = lug (ug) 2251 < % Y= N.

430 By Theorem 3.1, {Sc(n)ul : n € N} C B,~(0), which is bounded in ¢2. In particular,
433 (Se(n)ud)jij<r is bounded in ¢*(|i| < I) = R2+L

433 where the space is finitely dimensional. Then the sequence {(S(n)ug)|ij<r}n>n has
434 a finite d-net with centers xq,xa,- - , 11, € R2T1. We define the null-expansion 3 of
135 an element y € R?/*1 by

436 Ui =i, V]i| < I and y; = 0,V|i| > I.

This manuscript is for review purposes only.
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12 Y. LI, S. YANG AND T. CARABALLO

Hence, for each n > N, there is x;, € R?/*! where k € {1,2,--- , ko}, such that
1Se(m)ug — Zx||* = |Se(n)ug 251y + 1Se(n)ug — wkllZa<r) < 26%

which means that the sequence {S.(n)uf} : n > N} has a finite v/26-net in 2. Since
the finite set {Sc(n)ul : n < N} is compact, it follows that the whole sequence
{Sc(n)up : n € N} has a finite v/26-net too and thus relatively compact in £2.

Therefore, since the state space B,«(0) is bounded, it follows that the discrete
semigroup Se(-) has a unique numerical attractor denoted by A..

Suppose that A. is not topologically connected. Then there are two open sets
01,05 C £? such that

0O1U0O, D A, OlﬂAe#@, 020«4575@.

Let K. be the closed convex hull of A, in ¢2. Then K. is pathwise connected and
thus topologically connected in £2. As the ball B,«(0) is closed and convex, we have
Ke C B+(0) and thus the set S¢(n)K. is well-defined. By the invariance of A, we
have Ac = Sc(n)A. C Sc(n)K. and thus

(5.5) 01N Sc(n)Ke #0, 02N Se(n)Ke # 0, ¥n € N.

By Lemma 3.4, the operator Sc(n) : By« (0) — B,«(0) is (Lipschitz) continuous. Since
K. is topologically connected, S¢(n)K. is topologically connected too, which together
with (5.5) implies that O; U Oz cannot cover S¢(n)K.. In particular, for each n € N
there is x,, € Sc(n)K, so that z, € O; U Os. Since A, attracts the bounded set K.,
it follows that dgp2(z,,Ac) — 0. as n — oco. By the compactness of A, passing to
a subsequence, x, — x for some z € A.. Hence x € O7 U Oy, which contradicts
xn € 02\ (01 UOs) (a closed set). n]

5.3. Optimized bound and continuity of attractors on f,g. To give an
optimized bound of the numerical attractors, we consider the restriction of the IES
(3.1) on arbitrary balls.

LEMMA 5.3. For each ro > ||g||/c, there is €., > 0, given by

1
€ry 1= ’
" 0+ WLy 1 + L) + 9]

such that, for all € € (0,¢,,] and ug € B,,(0), the IES (3.1) has a unique solution
{uf Ynen C B, (0), which generates a discrete semigroup

Sero(n) 2 Bry(0) = By (0),  Sero(n)uo = us,(ug), Ve € (0, €p,]-

Proof. By the same method as in Step 1 of Theorem 3.1, one can prove that,
for each ug € B, (0) and € € (0,¢,,], the operator M5, : By, 11(0) — Bry11(0) is
well-defined and contractive. Hence the IES (3.1) with n = 1 has a unique solution
u§ € Byy+1(0). By the method in Step 2, we have u§ € B,,(0). Suppose the solution
uf, € By, (0) for some n € N. Then we see from (3.8) in Step 3 and ry > ||g||/« that

. 1 1
Jug, 112 < g, || + *||g|| *HQH
1+ ea 1+e
_ 1 (Tz HQHQ) ( 9||2 ||9||2)
1+ e o? o?
o NallPy | lal® —
= (TO a2 ) T T

Hence the recursive proof is available. 0
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OPTIMIZATION AND CONVERGENCE OF NUMERICAL ATTRACTORS 13

Note that €., | 0 as 7o — 0o and €« = €*, where €* is defined by (3.4).

THEOREM 5.4. For each v > ||g||/c, there is €., > 0 such that, for each € €
(0, €], the discrete semigroup Se r, () has a unique attractor Ac ,, in By, (0). More-
over, the numerical attractor A. in Theorem 5.2 fulfills

Ae = Acry, Ve € (0,min{e,, €},
7l

(5.6) lAc]| := sup |z < ==, Ve € (0,€"].
z€A. Q@

Proof. By the same method as in Theorem 5.2, one can prove the existence of a
unique attractor A, ,,. To prove the equality between two attractors, we let ro < 7
and ro,79 € (||g|l/a, +00) (note that r* belongs to this interval). Since ro — €, is
decreasing, we have min{e, , €5, } = €5, .

Next, we prove that B, (0) is an absorbing set of the semigroup S 7, () on By, (0)
for all € € (0,€z,]. Given any ball B,.(0) with the radius r € (0,7y]. For each ug €

B, (0) C Bz, (0), it is similar to prove the recursive formula as in (3.8), given by

1
1+ ex

€
IS (Yol < T (11Seiro (n = Dol + = [lg]2). ¥ € No.

Iterating it yields

r? lgll?

1 € - 1
Se i 2 — 24 —g? . < )
IScantmull® < (o cgalol® + (oIS s < yeap * a2

Since r2/(1 + €)™ — 0 as n — oo and ro > ||g||/c, there is N = N(r) such that for
alln > N,

2 2 2 2
N ] P 17 N e

(I+ea)r ' a2 =0 a2 a2 "

[[Se.0 (n)uo||* <

Hence B,,(0) is a bounded absorbing set for Se 7, (+).
Since an attractor is the omega-limit set of any bounded absorbing set, it follows
that

Ae,fo = mkGNUnZkSE,% (n)Bro (0) = mkENUnZkSe,ro (n)Bro (O) = »Ae,rov

where we have used the uniqueness of solutions to ensure S, 7, (n) = Se ,, (1) on B, (0).
In particular, since A = A+, it follows that

Ae = Ay, V0 < € <min{e,,, e}, ro > @.

If ro € (||lgll/cv, 7*], then €,, > €*. The above equality implies

A, C B, (0), Vrg € (@,r*], e € (0,€"].

Letting ro — ||g||/a we obtain Ac C By g|/o(0) for all € € (0, €*]. |
Example. The bound ||g||/a of || Ac|| in (5.6) seems to be optimized. Let v = 0
and f(s) = —as (satisfying (2.2)). Then the IES (3.1) is read as

Up = Up—1 — EQUy, + €G.

This manuscript is for review purposes only.
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14 Y. LI, S. YANG AND T. CARABALLO

It has an entire solution u,, = g/« for all n € Z, which belongs to the attractor and
lunll = llgll/

To close this section, we deduce the continuity (upper and lower semi-continuity)
of the numerical attractors depending on the nonlinearity f or the external force g.
The Hausdorff metric between two subsets X,Y C ¢2 is defined by

distp (X,Y) = max(d(X,Y),d(X,Y)), d(X,Y) := sup inf ||z — y||.
r€X YEY

COROLLARY 5.5. Denoting the numerical attractor A. by Ac(«, g), depending on
the constant o in (1.2) and the force g, we have

lim disty,(Ac(a, g),{0}) =0 and li_r% distp,(Ae(a, g),{0}) = 0.
9

a—00

In particular, if f1 and fo satisfy (2.2) with the same constant «, then
ah—{r;o disty,(Ae(f1), Ac(f2)) = 0.

Proof. By (5.6) we have

dmeWMPMmMS@HO

as a — oo or g — 0. By (5.6) again,

distn (A, (£1), A (f2)) < A + 1A ()] < 2@ 0

as a — 00. ]

Remark 5.6. A continuous function f : R — R satisfies the dissipative condition
(2.2) if and only if the curve y = f(s) falls in the area surrounded by two straight
lines y = —as and s = 0, In particular, the graph of y = f(s) closes to the vertical
axis as a — 0o, see FIG. 2.

=7

y——cxs

x>t

Fic. 2. Graph and limit of f

6. Convergence from numerical attractor to global attractor. We are in
a position to establish the upper semi-continuity of the numerical attractors.

This manuscript is for review purposes only.
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OPTIMIZATION AND CONVERGENCE OF NUMERICAL ATTRACTORS 15

THEOREM 6.1. Let A, and A be the numerical attractor and the global attractor
for IES (3.1) and Eq.(2.3) respectively. Then it holds the upper semi-continuity under
the Hausdorff semi-metric

(6.1) lim dgz( Ao, A) = 0.

Proof. Suppose (6.1) is false, then there are €; | 0 (as k — 4+00), z, € A, and
do > 0 such that

(6.2) dy2 (mk,.A) > g, Vk € N.

Since the global attractor A attracts B,.«(0), we can find a T > 0 such that
do
dpz (u(t; B+ (0)),A) < 5 Vie>T.

We can assume €, < 1 for all £ € N. Then, for each k € N, there exists n; € N such
that exny € [T, T + 1] and thus

)
de2 (u(epny; By« (0)),.A) < 507 vk e N.

By the invariance of each attractor A, , we have x = S, (ng)yx for some y, € A, C
B,-(0). Now, the discretization error (4.6) in Lemma 4.5 implies

[1Se, (g )y — ulernu; ye)l| < exCry1 v,
where the constant depends on T+ 1 in view of exni < T + 1. Since € | 0, there is
an kg € N such that
do
[1Se, (na)yr — wlerni; yr) | < 2 Vk > ko.
Therefore, for all k& > kg,

dé2 (xkv A) = diStZQ (Sek (nk)ykv A)

do O
< 11Se, ()i = ulernns yi) | + dez (ulernis By (0)), 4) < 3 + 3 = bo,

which gives a contradiction to (6.2). |

COROLLARY 6.2. The union Ucc (o, Ae is relatively compact in 2.

Proof. Let {xr}ren be a sequence taken from the union. Then there is {ex} C
(0, €*] such that x, € A.,. We prove that {z;}ren has a convergent subsequence in
two cases.

Case 1: infeg > 0. Then ¢ € [eg, €] for some ¢y > 0. By Lemma 5.1, the
tail estimate of solutions is uniform for all €. More precisely, for § > 0, there is
N(9),1(d) € N such that for all n > N,

||Sek(n)u0||gz(‘i|>1) <0, Vn>N, k€N, ug € B.-(0).
The invariance implies z, = S, (IV)yx for some y; € B,«(0) and thus

(6.3) ||1'k||£2(\i|>1) < 5, Vk € N.

This manuscript is for review purposes only.
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16 Y. LI, S. YANG AND T. CARABALLO

Since {z} is bounded in ¢?, its truncation on ¢%(|i| < I) = R2/*! is also bounded.
Hence the truncated sequence of {x;} has a finite é-net in R?/*! which together
with (6.3) implies that the sequence {x} has a finite 26-net and thus it is relatively
compact in £2.

Case 2: infe, = 0. Passing to a subsequence, we assume ¢, — 0. By the upper
semi-continuity as in Theorem 6.1, we have

de2 (zg, A) < dp2 (A, A) = 0 as k — oo.

Since A is compact, we see from [9, lemma 2.3] that the sequence {x)} has a convergent

subsequence. O

Remark 6.3. The uniform compactness of attractors is usually applied to prove
the upper semi-continuity, see [28, 37]. For the numerical attractors, the situation is
reversed.

7. Finitely dimensional approximation of numerical attractors . How to
truncate the IES (3.1) on a finite-dimensional space? For each m € N, the operator
F : 2 — 2 has a natural truncation given by

F, R2m+1 R2m+1, Fm(IL') = (f(xz))mém, Vo = (xl)h‘gm S R2m+L

However, it is not easy to truncate the discrete p-Laplace operators A, because
Apx (x = (2;))ij<m) involves two unknown components Z,,1 and x_,, 1 outside
R?m+1 To overcome it, we use the periodic boundary conditions (see [2, 17])

Tmtl = Tom a0d 1 = Tpy.
So, the truncation A, : R?"*1 — R*™+1 of 4, can be defined by
(Apm®)—m = [Tt = Tom P2 (@it = Tom) = |[Tom = TP (@ — ),
(Apmx)i = (Apz)s, Vli] <m,
(Ap,mx)m = |55*m - xm|p_2($fm - xm) - ‘xm - xmfllp_2($m —Tmo1)

for all x = (2;))5j<m € R2™+1 For p > 2, the truncated operator Ay is nonlinear
and thus it is not a matrix. But A, ,, is a function of matrixes

Apmr = —BL(|Bpx|P 2 Byx), Vo € R

where BY is the transport matrix of B,, and

—1 1 0 0
0 -1
B, = o | € @®mthH2
0 -1 1
1 0 0 -1

As in (3.2), Ay, : RZ™FL 5 R2mFL jg Jocally Lipschitz continuous:
(7.1) [Ap,m® — Apmy|l < Lprllx — yl| and [|Ap pz|| < Ly, l|lzll, Y2,y € B"(0),

where B (0) is the ball in R*"*! and L,,, := (p — 1)2%rP~2
Then the IES (3.1) can be truncated as follows:

(7.2) uS™ = ul" A e Ay us™ + €F (uS™) + €glm, uf™ = ult € RFTL
where gl = (gi)jij<m € R¥"*! is the truncation of g € ¢2, and the unknown is
denoted by ug™ = (u;)7")jjj<m € RZ™HL.

This manuscript is for review purposes only.
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7.1. Existence and bound of truncated numerical attractors. As in the
infinite dimension case, we show that the truncated IES (7.2) with small step size is
solvable when the initial datum belongs to some suitable balls.

LEMMA 7.1. For each ro > |g|m|/a and m € N, there is €,, > 0, such that,
for all € € (0,¢,,] and uf® € B2(0), the truncated IES (7.2) has a unique solution
{u&™}en which satisfies

1 e,m (|2 € 2)
(P + S lglal?)-
In particular, for alln € N, ug;™ € B2 (0).

Proof. We recursively prove it as done in Theorem 3.1. Consider the case n = 1.
For € > 0 and ug* € B?(0), we denote by

(7.3) g™ <

n

M (z) = ug' + evApm® + €Fm(z) + €glm, Vo € By 1(0).
By the local Lipschitz continuity of A, ,, and Fy,, we have
Mg @I < lug"[| + el Apm|| + [[Fm ()] + [lg]m])
< 7o+ ¢((r0 + D@ Lpurgr1 + Lrgsa) + lglull)-

Using ||g|| instead of ||g|m| we put

1

7.4 ITES ,
74 © = ot D Lprems + Lroga) + 191

which is independent of m. Since [|g|m| < ||g||, it follows that for all € € (0, €],

(ro + 1) (¥Lp rg+1 + Lrgt1) + [|glmll
S To + ]-7
(ro + 1)(VLp7ro+1 + Lygy1) + 9l

which means that M{n : Bl 1(0) — By (0) is well-defined. By the local Lipschitz
continuity of A, ,,, and F,, again, for all € € (0,¢,,] and z,y € B” (0),

Mg () = M ()| < €Wl Apmz — Apmyll + [ Fm(z) = Fn(y)])

||Mng (@) <ro+

< e(Whprot1 + Lega)llz =yl < [l = yll

ro+ 1

Then the contraction mapping principle implies that the first equation of (7.2) has a
unique solution ui™ € By ,;(0) for all € € (0, €y,].

Now, we take the R*™*Linner product of the truncted IES (7.2) with u{™, the
result is

(7.5) [luy™|* = (ug", uy™) + ev(Apmuy™, up™) + €(Fa(uy™), uy™) + €(glm, up™).
Since A, is the function of the matrix B,,, it follows that for all z € R¥™T1

(Apmz, @) = (| B’ *Bma, Bpz) = — Y |(Bpa)il? < 0.

li|<m

Hence, by estimating other three terms in (7.5) and using the method in Theorem
3.1, we obtain

luy™ |1* <

€
< 15 (g1 + Zllglal?)-

This manuscript is for review purposes only.
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675 Since 1o > ||glm||/a and ug* € By (0), it follows that

1 €

676 ™ < 1 (78 + ~llglnl?)

L (o ||g|m||2) 1 (H9|m||2 € 2)
677 = - —
! 1+ e (TO a? + l+ex\ a2 +04Hg|mH

L (2 ||9|m||2) lglmll? _ -
678 = - =
679 1+ ea (TO 2 )t ST
650 which means uy™ € BJ?(0) for all € € (0,€¢,,]. Repeating the above process with
651w, € B(0) instead of ug® € BJ(0), the recursive proof is available. O
682 Note that the radius r* and step size €* in the previous sections satisfy

2

683 r*=4/1+ ||g! > M, and €* = €+,

684

685 where €, is defined as in (7.4). By Lemma 7.1, for each € € (0,€¢*] and m € N, we
686 can define a discrete semigroup by

68% Se.m(n) : Bl (0) = B(0), Sem(n)ug’ =uy™(ug'), ¥n € No.

689 THEOREM 7.2. For each € € (0,€*] and m € N, the discrete semigroup Se m(-)
690 has a (numerical) attractor A. r, such that

f9: (7.6) Aem C Bﬂrglmll/a(o) and Ae m is connected.

693 Proof. The existence of a unique attractor A ,,, follows from the compactness of
691 the state space B} (0) immediately. The connection of A, ,, follows from the same
695 method as in Theorem 5.2.

696 To prove the bound of the attractor, we put v € (||g|m||/c,r*) and prove that
697 BJ2(0) is an absorbing set for the semigroup S ., (-). It suffices to prove that B (0)
698 absorbs the whole state space BJ%(0). Iterating (7.3) in Lemma 7.1, we have for all
699 ufr € BIL(0),

700 em|12 <
{ ||un H _ 1 €
llug H2 € 2 - 1 (r*)Q H9|mH2
- - 4+ = E - < + .
(I1+ea)  « Iglmll = (1+ex)) = (14 ea) o?

€
(a5 2 + llghnll?)

1
IN

703 Since rg > ||g|m||/, it follows that there is N € N such that for all n > N,

o ,m|2 2 Hg|mH2 Hg|mH2 )
%g it < (- 1) sl _ g
706 Since ro < r*, we see from (7.4) that €., > ¢*. By Lemma 7.1, B;(0) is positively

707 invariant under S ,,,(-) for all 0 < € < €* (and thus € < ¢, ). Therefore,

705 Acsm = MwenUnzkSe,m (n)By(0) C B (0)

710 for all e € (0,€¢*] and ro € (||g|m||/c, r*). Taking the limit as ro — ||g|m||/c, we obtain
711 the inclusion in (7.6). 0
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7.2. Convergence from truncated attractor to numerical attractor. The
following result states that the tail of any element in A ,, is uniformly small in
€ (0,e*] as m — oo.
LEMMA 7.3. For each 6 > 0, there exists I1(0) € N such that for all m € N and
e € (0,¢"],

(7.7) Sl <6 Y(@i)i<m € Acm,

() <|i[<m

where the sum is zero if m < I(9).
Proof. Taking the inner product of the truncated IES (7.2) with £ u$™ in R
where & = (ki) |i|<m, We obtain

3 Gl P = (g™

[i]<m
+ev(A pom Uy U n) A €(Fon(up™) + glm, § un ™).

Since A, and A, have the same local Lipschitz constants, we can similarly obtain

(73) V(A ™, 1 0 u™) < S2 ()P,

where the constant C), is independent of m. Hence, by other same arguments as in the
proof of Lemma 5.1, it follows that, for each § > 0 and € € (0, €*], there are N.(0) € N
and I(6) € N such that

S ugTP <68, i > N(9).

I(&)<|i|<m

Given now = € A, ,, with arbitrary € € (0, ¢*] and m € N. The invariance implies
that

)

& = Sem(Ne(0))ug" = uy (5 (ug'), for some ug" € B2 (0),

and thus
Yoo = X gt <o
I(6)<lil<m I(&)<[i|<m
which implies (7.7) as desired. d

Any z € R?™*! has a null-eztension & € £? defined by
z; =0, V|Z| >m, T; =, \V/|’L| < m.
Then a set D in R2™+1 gtill has a null-eztension set in ¢ denoted by D. In this
viewpoint, both attractors A, ,, and A, can be contained into the same ball B, (0)
of £2.
THEOREM 7.4. For each e € (0,€*], the numerical attractor A. , of the truncated
IES (7.2) upper semi-converges to the attractor A. of the IES (3.1), i.e

(7.9) A2 (Acm, Ac) i= dp2(Acm, Ac) = 0, as m — oo,
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Proof. Suppose (7.9) is false for a fixed ¢ € (0,¢*]. Then there are 9 > 0, a
subsequence {m;} of {m} and 2™ € A ,; such that the null-extension ™ of x"
satisfies

(7.10) (@™, A > no, Vj € N.
The solution of (7.2) with the initial data 2™ is given by
ug™ = ug™ (™) = Se m, (n)x™7, ¥n € Ny, j € N.

Since 2" € A, mys 1t follows that the solution uy;"? can be expanded as an entire
solution, i.e. deﬁned for all n € Z.

Since uy,," € Ac.m, for all n € Z, it follows from Lemma 7.3 that, for each § > 0,
there is I(d) € N such that

(7.11) Z s 2 _ Z s 24452 VneZ, jeN,
[i]>1(5) I1(8)<|i|<m,

where @ is the null-extension of u. By the previous discussion, all attractors are
contained in those balls of radius r* and thus the double sequence

{(@,7 ) ji1<1(6) : 1 € Z, j € N}

is bounded in R?/(®)=1 and thus it has a finite 6-net, which together with (7.11) implies
that the double sequence

{ag;™ :nelZ, jeN}

has a finite 28-net and thus it is relatively compact in ¢2. By a diagonal argument,
there are {u} : n € Z} C £? and an index subsequence (denoted by itself) of {j} such
that

(7.12) |la;™ —uy|| — 0as j — oo, Vn € Z.

We then prove that {u’ : n € Z} is an entire solution of the IES (3.1). As an
entire solution, {uy,""? : n € Z} satisfies the truncated IES (7.2) for all n € Z:

em; __ , €M €,m €,mj
up™ =, ]+ Ay ug™ 4 €Fp (u™) 4 €glm, -

We now fix ¢ € Z, then there is j; € N such that for all j > j; we have m; > |i|+1,
and thus

€,m; ~€,m

w, =057 (Apmyuy™ )i = (Apty™ )iy (glmy)i = gi

for all j > j; and n € Z. Hence, the ith-component of the entire solution uy,

satisfies

(7.13) =0, 4 e (At ™) + ef () + €gi

n,i U1 ,
for all n € Z and j > j;. By the local Lipschitz continuity of A, and F', we have

((Apay™ )i = (Apug )il < (| Apa™ = Apug || < Ly p[[ag™ = ugy
(a5 57) = fun )| < N F@g™) = Fup)|| < Le-J|ag™ — ).

Thi: iscript s fi cVIEeW PUTPOSE:
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Letting j — oo (thus m; — oo) in (7.13) and using (7.12), we obtain

Up i = Up 1 ; +ev(Apuy)i +ef(uy, ;) +egi, Yn € Z.

n,s

Since ¢ € Z is arbitrary, it follows that {u} : n € Z} is a (bounded) entire solution of
the truncated IES (7.2). Hence, ug € A., which together with

T = 1g" — uf as j — o0
gives a contradiction to (7.10). d

7.3. Lower semi-continuity of numerical attractors for viscosity zero.
We denote the restrictions of an element 2 € ¢? and a subset D C £ on R?™*! by

Tl = (24)}5j<m and D|,,, = {y € R 32 € D, sit. y = |m}.

PROPOSITION 7.5. For each € € (0,€*], the numerical attractor A. of the IES
(3.1) satisfies the following lower semi-continuity:

(7.14) lim_dp (Ac, Acm) = 0.

Proof. By Lemma 5.1, for each 6 > 0, there are I(d) € N and N(6) € N such
that the solution of the IES (3.1) satisfies

||Se(n)u0||gz(|i‘21(5)) < 5, Vn > NE(J), Ug € B, (0)

Given any = € A.. By the invariance, we have x = S.(N.(d))y for some y € A..
Hence, for all m > I(9),

2 = @lmll* = 212 i1 5m) = 118e(Ne(@)y 12 (iy2m) < 6%
Since ;|,vn € .Z:|,/n, it follows that for all m > I(0) and x € A,
des(2, Aclm) < & = ) < 6,

which further implies

——

Ao (Aes Acln) = sup dia (2, Adm) < 0,
rEA.

for all m > I(4). Hence the lower semi-continuity (7.14) holds as desired. d

However, A¢ , # Ac|m generally, where A, is the truncated numerical attractor
for the truncated TES (7.2). We only prove the lower semi-continuity in a special case
of viscosity zero.

THEOREM 7.6. Suppose v = 0 in both IES (3.1) and (7.2). Then, for each € €
(0, €*], we have the following lower semi-convergence:
(7.15) lim dp2(Ae, Aem) = 0.

m—roo

Proof. Given x € A.. We know that the solution w, := uf(z) = Sc(n)z can be
expanded into an entire solution defined for all n € Z. Hence, the entire solution
{un : n € Z} satisfies

(7.16) Up = Up—1 + €F(up) + €9, Yn €Z, ug = z.
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The component form of (7.16) can be read as
(717) Un,; = Up—1,4 + ef(umi) +€g;, Yne€Z, i € Z.

Considering the truncation of (7.17) for those components |i| < m, it follows that
Unp|m satisfies

Un|m = Un—1|m + €Fm(Un|m) + €g™, ¥Yn € Z,

u(]‘m = x|m S R2m+17
which means {uy|m : n € Z} is an entire solution of the truncated IES (7.2) with

v = 0. Due to the positively invariance, we know u, |, € B (0) and thus the entire
solution is bounded in R?™+! which implies

x|m = u0|m S Ae,m~

Denote by z|,, the null-expansion of z|,,, by = € ¢?, we have
. - . T 2 _
@n Jm el =2l = Jip, 3 jaf =0
1|>m

Suppose now the lower semi-convergence (7.15) is false. Then there is a subse-
quence {m;} of {m} and §y > 0 such that

de2(Acy Acn) > 6, ¥j €N,

where the tilde denotes the null-expansion of the set. Furthermore, for each 7 € N,
there is y; € A, such that

P

(7.19) dy2 (yw.Ae’mj) >4, Vj €N

Since A, is compact in 2, there is an index subsequence {ji,} of {j} such that y;, — =
for some z € A..
By the previous proof, we know x|, € A, such that (7.18) holds. In particular,

klgr;o [%|m;, — 2l =0, and 2|m;, € Aem,, -
Hence,
ez (Yjis Aesms, ) < i = @l + |12 = 2|m,, ||
+ dp2 ($|m].k,A€,mjk) — 0, as k — oo,
which contradicts (7.19). 0

7.4. Final Conclusions. As displaying in FIG. 1, we have established a path
of upper semi-convergence from the truncated numerical attractor Ac ,, to the global
attractor A through the numerical attractor A, see Theorems 7.4 and 6.1.

On the other hand, we can establish another path of upper semi-convergence from
Ae.m to A through A,,, where A,, is the attractor of the following truncated LDS of
LDS (2.3):

du(t)

T vA, mu(t) + Fp(u(t)) + glm, u(0) € R2m+L
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In fact, by the similar method as in Theorem 6.1, one can prove the upper semi-
convergence from A ., to A, while the upper semi-convergence from A,, to A
follows from the same method as in [2].

Only in the special case of v = 0, we can establish the two classes of lower semi-
convergence as in FIG. 1. Lower semi-convergence in other cases remains open.
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