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Abstract

This article studies the existence, degenerate regularity and limit behavior of
the trajectory statistical solution for a three-dimensional incompressible microp-
olar fluids flows with a damping term. The authors first prove the existence of
the trajectory attractor and use it to construct the trajectory statistical solution.
Then they establish that the trajectory statistical solution possesses partial reg-
ularity provided that the associated Grashof number is small enough. Finally,
they investigate the limiting behavior of the trajectory statistical solution as the
damping term vanishes.
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1 Introduction

We study the following equations

up — (v + k)Au+ (u-Vu + olul’Lu+ Vp =2V x w + f, (1.1)
V-u=0, (1.2)
wr — YAw + (u - V)w — nVdivw + 4kw = 26V X u + g, (1.3)
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with the initial and boundary conditions

u(:c,t)‘tzo = uy, w(x,t)|t:0 = wo, (1.4)

u =0, w(x,t =0, (1.5)

(x’ t) }8Q><(0,oo) )}QQX(0,00)

where (z,t) € Q x Ry, and Q is a bounded domain in R? with smooth boundary 9.
In equations (|1.1))-(1.3]), the unknown functions

u = (ul(x7t)7u2(x7t)’u3(xvt))v w = (Wl(xvt)aw2(xvt)7w3(xvt))a b :p(a:,t),

denote, respectively, the velocity vector, the angular velocity of rotation of parti-
cles, and the pressure of the fluid, the functions f = (fi(x), f2(x), f3(x)) and g =
(91(z), g2(z), g3(x)) denote the external force and the angular momentum, respectively,
and the positive constant o is the damping coefficient. In addition, the parameters v,
v, K, n are positive constants.

Equations (L.1)-(L.3) describe the motion of micropolar fluids [24], which were first
introduced to describe the micro-rotational motion and rotational inertia of fluids. In
physics, micropolar fluids can represent fluids composed of rigid, randomly oriented (or
spherical particles) suspended in a viscous medium. The theory of micropolar fluids
was first introduced by Eringen in [13]. If K = 0 = 0, w = g = (0,0,0) in and
, then equations — turn to be the classical incompressible Navier-Stokes
equations.

There are some references studying the incompressible micropolar fluids. For the
case that there is no damping term, the global well-posedness and the existence of
uniform attractor of two-dimensional (2D) micropolar fluids equations was proved in |7,
12]; initial and boundary-value problem for 2D micropolar equations with only angular
velocity dissipation was investigated in [22]; the regular criteria of weak solutions for the
3D case was investigated in [10,[11}20]; the existence and homogenization of trajectory
statistical solution for the 3D case was established in [34,42]. When equation ([1.1)
contains a damping term, the global existence of strong solution to the 3D case was
verified in [35] for § = 3 and 40(v + k) > 1 or B > 3, and the existence of global
attractor was proved in [33] with the assumption 5 € (3,5).

The original motivation of this article is to investigate the existence of the tra-
jectory statistical solution and its limiting behavior for equations — when
B € (1,3]. We are interested in the probability distribution of solutions within the
temporal-spatial space. The invariant measure and statistical solution for evolution
equations have been extensively studied. One can refer, for deterministic equations,
to [4+6, (14419, 23, [25-27, |31, |32} 138 |39, |43}, 46| 49,|50] the well-posed systems and to
[2,121,140, 42, 44,45] the ill-posed systems, and to [48] the invariant sample measure
and random Liouville type theorem for the two-dimensional stochastic Navier-Stokes

equations. For the impulsive differential equations, we can consult [28,29,47] for the



existence of the statistical solutions. Especially, Zhao, Li and Caraballo [41] estab-
lished, via the approach of trajectory attractor, some sufficient conditions ensuring the
existence of trajectory statistical solution for general evolution equations, including
those systems which possess global weak solutions but without a known result of global
uniqueness. Recently, the abstract result of |[41] was applied to equations —
without damping term to construct the trajectory statistical solution [42].

The first result of this article is the existence of trajectory statistical solution for
the 3D micropolar fluids with a damping term. We assume that 5 € (1, 3]. In this case
we can obtain the existence of a weak solution to problem — corresponding to
each initial value. However, it is not known whether the weak solution is unique or not.
Therefore, here we cannot use the approach of classical semigroup [33] to investigate
the asymptotic behavior of the solution for equations — because of the possible
non-uniqueness of the weak solution. We will first prove the existence of the trajectory
attractor A% for equations — via the natural translation semigroup. Then
we use the abstract results [41, Theorem2.1] to obtain the existence of the trajectory
statistical solution fis 4, , hereinafter w, is an element within .Af,r and o is the constant
from equation (|L.1).

The second goal of this article is to investigate the partial degenerate regularity of
the trajectory statistical solution fis ., . The regularity of the trajectory statistical solu-
tion means that it is supported by a set in which all weak solutions are strong solutions.
When constructing fis..,, We observe that it is supported by the trajectory attractor
AY. Thus, we naturally consider the degenerate regularity of the trajectory statistical
solution via investigating the degenerate regularity of the trajectory attractor. Notice
that psq, is a probability measure defined on the trajectory space of equations (|1.1))-
and AY itself consists of weak, bounded and complete trajectories of equations
—. According to these facts, we use the following form of generalized Grashof

number

A+1 A
Gi:[T(

A

DI+ S gl (16)
to discuss the partial degenerate regularity of ps .. We will prove that if the Grashof
number G given by is properly small, then the trajectory attractor AY degenerates
to a single complete trajectory, that is AY = {w(t) € K, : t > 0}, where w(¢) is the
unique complete and bounded weak solution of equations — and K, is the kernel
of equations —. Further, we will prove that i, 5, possesses partial degenerate
regularity of the Lusin type in the following sense: Ve > 0, there is a subset R4 (¢) C R4
with Lebesgue measure mes(R (€) < €, such that i, 4, is regular on Ry \ Ry (e€).

The third result of this article is to prove that the trajectory statistical solution

How, converges to 1o, as o — 0T, where o, is the trajectory statistical solution of



the following classical micropolar fluids flows equations

ur — (V+Kk)Au+ (u-V)u+ Vp =2V x w + f, (1.7)
V-u=0, (1.8)
wr — YAw + (u - V)w — nVdivw + 4kw = 26V X u + g, (1.9)

which have been constructed in [42]. To this end, we prove that the solution of equations
— converges to that of equations —, and that A% converges to Af as
o — 0T, where A{ is the trajectory attractor of equations (L.7)-(1.9). In (3], Bronzi
and Rosa proved the convergence of statistical solutions of the 3D Navier-Stokes-a
model as « vanishes. The main tools used in 3| are topological analysis and measure
theory. Here we investigate the convergence of trajectory statistical solutions of the
3D incompressible micropolar fluids flows with damping term as the damping term
vanishes, via the approach of trajectory attractor. Our result reveals that the trajectory
statistical information obtained from the 3D incompressible micropolar fluids flows with
damping term are good approximations of the trajectory statistical information of the
classical micropolar fluids flows.

The article is organized as follows. In the next section we prove the existence
of the trajectory attractor and trajectory statistical solution. In Section 3 we prove
the degenerate regularity of Lusin type for trajectory statistical solution. Section 4
is devoted to the convergence of the trajectory statistical solution iy, to po. as
o—0T.

2 Existence of trajectory attractor and trajectory statis-
tical solution

In this section we first introduce the mathematical setting for problem —
and then prove the existence of the trajectory attractor and trajectory statistical
solution.

As usual, LP(Q) = (LP(2))3 and W™P(Q) = (W™P(2))3 stand for the 3D vector
Lebesgue space and Sobolev space with norms ||- ||, and ||- || p, respectively. We denote
by Wg"F(Q) the closure of {¢ : ¢ = (1,2, p3) € (C§(R))3} in W™P(Q) with norm
| - [lm,p. We write W("P(Q) = H, W™(Q) = H™ and || - ||, = || - || for p = 2. We also
use the following spaces:

V= {¢ = (p1,02,03) € (C5°())* : V- ¢ = 0},

H = the closure of V in L%(Q) with norm |||z = | -|| and inner product (-,-),

V = the closure of V in HY(Q) with norm |- ||y = || - [[1.2,

H = H x L2(Q) with the inner product (-,-) and norm || - || defined as

g =1

(®,0) = (¢,9) + (,€), &= (p,0), ¥=(,6) € H,
2] = ([l + lo*)/2, @ = (¢.¢) € H,



V=Vx H(Q2) with the norm || - ||y, defined as

I®lly = (el +18132)"% @ = (p,0) € V.

In addition, we use H*, V*, H* = H* x L2(Q) and Vi =V*x H~1(Q) to denote the
dual spaces of H, V, H and V, respectively, where L2(Q)* = L2(Q) and H*(€) is the
dual space of H}(2). Then we have V < H = H* — V*, Ve H=H*< V*and all

the embedding is compact. Note that we have used the same notation (-, -) to denote

the inner product in the spaces L2(Q2), H and H. We will also use the same notation
(-,-) to denote the dual pairing between the spaces V and V* V and V*, H* (2) and
H~1(2) provided that there is no confusion.

Define the strong and weak distance in H by

L |w; — @

Ly deH,
oW1+ |wy— @5

dS(waq)) = ||w_(1)||7 dw(w7q)) = Z

jez3

where wj and ®; are Fourier coefficients of w and ®, respectively. We next denote by
(H,ds) (e = s or w) the strong or weak metric in H. Let C([a,b]; H,) be the space of

d. continuous H-valued functions on [a, b] endowed with the metric

d. (w,®) = sup de(w(t), P(t)).

([a.bl: 1) o

We also denote by C([a,oo);ﬁ.) the space of do continuous H-valued functions on

[a, 00) endowed with the metric

1 sup{de(w(t),®(t)):a <

t
dC([avoO);ﬁ-)(w’ ) = ]%;I 27 1+ sup{de(w(t), ®(t)) : a <

fa+j} (2.1)

<a+j}

Next, we introduce some operators. We first define the linear operators Ay : V. — V*
and Ay : H{(Q) - H71(Q) as

(Aru, @) = (v + £)(Vu, Vo), Yu,p €V,
<A2W7 90> = 7(vw7 VQO), Vw, p e H(l)(Q)

It is not difficult to check that A; = (v + k)PA and Ay = yA both with Dirichlet
boundary condition, hereinafter P is the Leray projector from L2(Q) into H. We can
check that D(A;) =V NH3(Q) and D(As) = H () NH3(Q)

Secondly, we define the following trilinear forms b1 (-, -, ) and ba(,-,-) as

3
i) = 3 [ w5 ode, Vu,v 6.
=1 [¢) 8x]~

3
ba(u,w, p) = Z / ujg?fapdx, Vu €V, w, ¢ € H)(Q).
jk=17% J



We can check that the trilinear forms by (-, -, ) and ba(+, -, -) are continuous on V-xV xV

and V x H}(Q) x H}(9), respectively. By some simple computations, we have

{ bl(U,U,QZ)) = *bl(ua ¢,U), bl(uvv’v) = 07 V’LL, v, ¢) € ‘/a

bo(u,w, ) = —ba(u, p,w), be(u,w,w) =0, Vu €V, w, p € H{(Q). (2.2)

For every u,v € V, the operator Bi(u,v) : V x V = V* defined as

<B1(u’ U)7¢> = bl(uava¢)a \V/d) ev,

is continuous. Similarly, for every u € V and w € H}(Q), the operator Bs(u,w) :
V x H{(Q) — H~1(Q) defined via

<BQ(uvw)’§0> = b2(u7wv‘p)7 Voe H(l)(Q)a

is continuous.
Using above operators, equations (1.1))-(1.3) can be written as

du

7+A1u+B1(u,u)—l—a]u\ﬁ*lu:Q/iV><w+Pf, 23
2.3
d—{': + Asw + Bo(u,w) — nVdivw + dkw = 26V X u + g.
Further, we set for w = (u,w) € V that
Aw = (Alu, Agw),
Bw = (Bl(u7u)a32(uvw))a (24)

Nyw = (o|u[’~1u,0),
Lw = ( — 26V X w,4kw — 2KV X u — anivw).

Using the above notations and setting F' = (Pf,g), we can write the weak form of

problem ({.1)-(1.5) as

dﬁit) + Aw(t) + Bw(t) + Nyw(t) + Lw(t) = F, in D'((0,00),V*),  (2.5)
w(0) = wo = (ug, wo)- (2.6)

To handle with the nonlinear term o|u|?~u, we denote by
LAHQ) = {(u,0) € R® x R?: / lu|?Tdz < +oo}.
Q

Definition 2.1. A weak solution of problem (2.5))-(2.6) on [0,00) is an H -valued func-
tion w(t) = (u(t),w(t)) defined on [0,00) with w(0) = wy = (ug,wo), such that

% < Lﬁ)/g([o, 00); ‘7)7 w(-) € C([0, 00); ﬁW) n Ll2oc([0’ 00); ‘7) N LB+1([O’ OO);Lﬂ-&-l(Q))
(G @)+ (A, 8] + (Bu. ®) + (Now, @) + (L, @) = (F.8), V@ T,



hold in the distribution sense D'(0,00), and w(t) satisfies the following energy inequality
1 t t t
Sl + [ (). w(e)ds + [ (New(s)w(s)ds + [ (Lu(s),w()ds
0 0 0
1 5 t
Sl + [ (Fw(s)ds

0
in the sense that

=5 | @R as + [ (auls)u(s)c(as
n /0 (Nyw(s), w(s))C(s)ds + /0 (Lu(s), w(s))((s)ds (2.7)

g/o (F,w(s))¢(s)ds, V¢(-) € C§°[0,¢] with ¢(-) >0, Vt>0.

If there exists some interval I C Ry = [0,00) such that w(t) € L®(I; V) for the weak

solution w(t), then we call that the weak solution w(t) possesses “partial” regularity.

Lemma 2.1. Suppose that F € H. Then for each wy = (ug,wp) € ﬁ, problem (2.5))-
(2.6]) corresponds at least one weak solution w(t) = w(t;wg). Moreover, there exists a
time t, > 0 such that

w(t) € X 2 {weﬁ: ] <R},W>t*, (2.8)
where R = (B2 f]1> + %HgHQ])lﬂ, § = min{v + k,v} and X is a positive constant
depending only on €.

Proof. Let wy = (up,wp) € H be given. For the existence of a global weak solution
w = w(t;wp), one can refer to [24, Theorem 1.6.1, Pjog] or to [35]. Here we omit the
details and establish ([2.8] . Taking the inner product (-, ) of w with equation (2.5|) gives

2d75||w( I* + (v + &) [Vu@)[* + 7 Ve @) - 2/’»/ V xw(t) - u(t)dz

- 77/ Vdivw(t) - w(t)dx — 2/1/ V xu(t) - w(t)de +4/<L/Qw (t)dz + ofju(t )Hﬁ;ﬁ}l
/ fru(t)de —I—/ g - w(t)dz. (2.9)
Now using the following Poincaré’s inequality
loll> < M|V, Ve € HY(Q), X is a constant depending only on €, (2.10)
we have by some direct computations and estimates that
/ Y x w(t) - u(t)dz = / V % u(t) - w(t)de < W] + [Vu(t)|?,
—77/ Vdivw(t 1‘:77/Q|dlvw t)|?dz,

/ (t)da AHVw()HZ,
A A
/ Fou(t)de + / w(t)de < IV + VO + 117 + 3 Lol




Substituting this into (2.9) gives

d ) 1
allw(t)ll2 + XHU}U)IP + 20||U(t)|!€§+1(g *IIfHQ VH9H2,
d 2 2 B+1 2 Ay (2.11)
@I+ Vw)” + 20lu®) I 5 g ;Ilfll + ;HQH :
hereinafter § = min{v + k,~v}. Applying Gronwall’s inequality to (2.11)); yields
st A A
@I < lw(©)]*e™> + SIF1%+ Zlgl*)- (2.12)
Y
We end the proof by setting R = \/%[%HfHQ + %HgHQ] O

We next select some definitions concerning the trajectory attractor. Define the
trajectory space T," and kernel K, of equation (2.5]) respectively as

T.H ={w(-): w(-) is a weak solution of (2.5) and w(t) € X for all t € R},
Ko ={w(:) :w(:) is a weak solution of (2.5) and w(t) € X for all ¢t € R}.
We also set
~F+ = C]OC([O,OO);XW)

be the space of continuous functions from [0, 00) to Xy, where X, = (X,dy) denotes

the space X endowed with the weak distance. Define the weak distance in FT as

Zl sup{dx, (w(t), ®(#)) : 0 <t < j}

dr+ (w, @) = dg((0,00); ) (W, P) = 2 T+ sup{dx. (w(D), @(t)) 0 t<j}

which is compatible with the compact-open topology (denoted by @106) of F*. Note
that (FT, @l'g .) is a Hausdorff topological space. Define the natural translation operator
{T(s)}s=0 on FT as

T(s)w(t) = w(t+ s }[0 , weFt. (2.13)

Because that the trajectory space 7, includes all bounded weak solutions of @, we
have T'(s)T,; C T, for any s > 0. For a set P C F' and some r > 0, we set

B(P,r) ={ue F"| dg+(w,P) = (I'l)relgjdf%w,@) <r}.

Definition 2.2. A set P C F7' is said to uniformly attract a set Q C T+ if for any
€ > 0 there is at. > 0 such that T(t)Q C B(P,¢),Vt > t.. A set P C F* is said to be a
trajectory attracting set if it uniformly attracts T+. A setU C FT is called a trajectory
attractor if U is the minimal compact trajectory attracting set and T(t)U = U for all
t>0.



To prove the existence of a trajectory attractor for {T'(s)}s>0 in FT, we next estab-
lish two lemmas. In the sequel, we will use the notation a < b (also a 2 b) to mean that
< ¢b (also a > ¢b) for a universal constant ¢ > 0 that only depends on the parameters

coming from the problem.

Lemma 2.2. Let w = (u,w) € L=([0,T]; H)NL2([0,T]; V)N LAL([0, T]; L)) for
all T > 0, then

t — Aw(t) € L*([0,T); V*), (2.14)
t — Buw(t) € L*3([0,T); V*), (2.15)
t — Lw(t) € L*([0,T); V"), (2.16)
t — Nyw(t) € LPHY" (o, T); LD (), (2.17)

hereinafter (5 + 1)* = (8 + 1)/ is the conjugate exponent of B+ 1.

Proof. Consider given T' > 0. For a.e. ¢t € [0,T], we see from the definitions of
operators A, B, N, and L that Aw(t), B(u(t), w(t)), Lw(t) and N,w(t) belong to v
for w(t) € L>([0,T); H) N L2([0,T); V) N L#1([0, T]; LA1(2)). The measurability of
the functions t — Aw(t), t — Bw(t), t — Lw(t), t — Nyw(t) is not difficult to
check.

Now, for any ® = (¢, ¢) € V we have, by using Cauchy’s inequality,

[(Aw(t), @)| S[(Vu(t), VE)| + [(Vw(t), Vo) S [Vu@) Vel + [V @[ Vell

Sllu@lviiglly + llw(?)
SUu@IF + lw@)1F 22Ul + llellF )2 S lw@®) gl (218)

At the same time, by using Gagliardo-Nirenberg’s inequality and the embedding Ve
L5(Q2) x L5(2), we have

(Buw(t), ®)| Sllu()]2[Vu@®)[V*(IVu®)] + V@) DI

3/2 N (2.19)
Slw®IM @) 22| 0]lp, ¥ @ € V.
It is also clear that
(Lw(t), )| Slw)p oy, Vo eV, (2.20)
(Vow(e), 0] <o [ uPloide < olful o oy o]0 o
Sl 51y 16l ) (2:21)

SHw( )HLﬁ+1 )H(I)H]fﬁ+1(g)7 Vo= (¢a (P) S ]f,/B‘H(Q)



Then inequalities (2.18))-(2.21)) give, respectively,

JAw®lp. S lw(®)lp- (2.22)
3/2
1Bu®)l. S @I w2, (2.23)
1Lw(®) 5 S )l (2.24)
INow(t) g sy S IO (2.25)
Therefore,
T T
| law@p.aes [ (2.26)
0 0
T 473 T
[ 1Bua s [ ju@Pe o)z
0 v 0 v
2/3 r 2
SO o [ w13 @20
T 2 r 2
| ime@iz.ars [ e (2.28)
4 (B+1)* T B+1
| I OIS g s [ e g, (2:29)
The proof is complete. O

Lemma 2.3. Let {wy(t)}n>1 be a sequence of weak solutions of equation ([2.5))
such that wy(t) € X for allt > 0. Then

(1) For allT >0,

{wn}nz1 is bounded in L2((0,T); V) N L((0, 7] H) 0 L0, TH LA (92),
d _ . -
{&wn}n>1 1s bounded in L4/3([0,T];V ).
(2.30)

(2) There exists a subsequence {wy, (t) }n,;>1 which converges in C([0,T7; Hy) to some
weak solution w(t) of (2.5)), that is,

(wn; (1), @) — (w(t), @) uniformly on[0,T], n; — oo, V& € H. (2.31)

Proof. Let {wy(t)}n>1 be a sequence of weak solutions of (2.5) such that w,(t) € X
for all t > 0. Similar to (2.11))2, we have

d
3O + 8l Vwa O + 20 Ju(t )Hﬁ;ll S+ llgl®, ¢ > 0. (2.32)

Consider any T > 0. Integrating (2.32)) over [0, 7] implies

a1 6 [ 1ol +20 [ I, o
a0 + (LI + 191P). t € [0.7), (2:33)

10



which implies that
{wp}n>1 is bounded in L2([0,T); V)N L®([0,T); H) N LA ([0, T); LAH1(€)). (2.34)

Note that 5 € (1,3]. We have (5 + 1)* = % € [3,2) and thus

LB ([0, T; LW () < LY3((0, T]: V™).
We then conclude from equation (2.5, Lemma 2.2 and the embedding L?([0, T7; ‘7*) —
LA3(]0,T); V*) that

dwy, (t)
HTHLM?’( [0,T7]; V*)

<l Awn ()]l s o175 + 1Bwa®)l /a0 11,00,

T INown (Ol a2 ozy,0e) + 10Ol aragozyoe) + 1Fll ooy

1/2 3/2
gHwn(t)HLZ([o,T];‘A/) + [Jwa(t )HL/OO(OT] H) leon(t )HL/2( [0,7;V)
+ lwn (Ol 20,719 + lwn Ol v+ (o, ys6+07 @)y T TIFI- (2.35)

Note that F € H. We conclude from (2.34) that the right hand side of (2.35) is bounded
by a constant independent of n. (2.30)) is proved.
We next prove (2.31). By (2.30) and the diagonal procedure, we claim that there

~ ~ . d
exist some w(t) € L>°([0,T); H) N L*([0,T]; V) N LA+1([0, T); LPT1(Q)) with Tgi) €
L*3([0,T); V*) and a subsequence {wn; () }n;>1 of {wn(t)}n>1 such that
wp, (t) = w(t) weakly star in LOO([O T); H) as n; — 00
Wn; (t) = w(t) weakly in L*([0,TT]; V) as nj — 00 536
wn, (t) = w(t) weakly in LAH1([0,T];LT1(Q)) as nj — oo (2.36)
dwzi(t) — —dﬁgt) weakly in L4/3([0,T];V ) as nj — 00

We now denote by

Y= {CI)(t) 1 O(t) € LQ([O,T];{/}) A L0, T); LAY (Q)), di};(t)

e L3(0,7); V) }
and endow it with the norm
[®lly = ||‘I>”L2([07T];17) + Hq)||LB+1([o,T};u:ﬂ+1(Q)) + ”(I)||L4/3([07T];\7*)-
Then [24, Lemma 2.3.1, Ps5] has proved that
Y c C([0,T); Hy) and Y < L*([0,T); H) with compact embedding. (2.37)

Since 8 € (1, 3] and the embedding Ve LS (Q) is compact, we can check by interpo-
lation that

Y < LT[0, T); L)) with compact embedding. (2.38)

11



It then follows from ([2.36))-(2.37)) that

Wy, (t) — w(t) in C([0,T]; Hy) as nj — oo. (2.39)

We shall prove that w(t) satisfies and (2.7). Firstly, from (2.36) and the
definitions of the operators A, N, and L, we derive that

Awp,(t) = Aw(t) weakly in L2([0,T); V*) as nj — 00,
Luwn, (t) = Lw(t) weakly in L*([0,T];V*) as n;j — 0o, (2.40)
Nown, (t) = Now(t) weakly in LBV ([0, T|; LBATD(Q)) as n; — oo.

For the nonlinear term Bwy,,(t), we can use the derivations similar to those of [30] to

deduce
Bwy, (t) = Bw(t) weakly in LY3([0,T); V*) as nj — 00. (2.41)

Now, for a.e. t > 0 we have in L*/3([0,T); V*) that

dwy,, (t
gz( ) + Awp, (t) + Bwp, (t) + Nowy, (t) + Lwy, (t) = F, n=1,2,---.
Taking (2.37) and (2.39)-(2.40) into account, we have in L4/3([0, T]; V*) that
dw(t)

BT Aw(t) + Bw(t) + Now(t) + Lw(t) = F, ae. t>0.

Notice that L*3[0,T] € D'[0,T]. Thus, w(t) satisfies in the sense of distribution
in D'([0, T); V*). Secondly, we check that w(t) fulfills (2.7 By (2:31), (2.37) and (2.38)

we have that

wn, (t) — w(t) strongly in L*([0,T); H) as n; — 00, (2.42)
wn; (D> — [w(@®)|? for ae. t€[0,T] as nj — oo, (2.43)
1 1
e, (¢ )llf§+1 — w5 @ for ae te[0.T] asn; = occ. (2.44)

For given &(+) € C3°([0,T]) with £(t) > 0. It is clear that |lwn,(-)[|?¢'(-) € L*([0,T]).
([2.36)1 implies that |[wy,(t)||*¢'(t) has essential upper bound and thus possesses an
integrable dominated function. Using Lebesgue’s Dominated Convergence Theorem
and , we obtain that

T

T
lim IIwnj(t)HQf’(t)dtZ/ lw(t) %€’ (£)dt. (2.45)
0 0

n;—00

Similarly, we have that [[wy, (- )Hﬁ;ﬂ €' () € L'((0,7)). (2365 implies that |y, (¢ e
has essential upper bound and thus possesses an integrable dominated function. Again,

using Lebesgue’s Dominated Convergence Theorem and (2.42)), we arrive at

T T
tim [, (5, € (510t = / L@, o €0t (2.46)

n;j—>00
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At the same time, from ([2.36])1, (2.36)2 and the lower semicontinuity of the norm we
infer that

T T
| Ie@Bemdr< [ o, 0 @
0 J 0 T

T
/O (Lw(t),w(t))¢ (t)dt < lim (Lwn, (t), wn, (t))€'(t)dt.

nj—00 0

(2.47)

Notice that (cf. [37, Lemma 2.1]) \/(A®, ®) + (L®, ®) induces a norm which is equiv-
alent to [|®|;. Thus,
T

T
| e w0 @+ [ o vme o
T T
<liminf / (Awy, (t), wn, (1)) (t)dt + lim inf / (Lwn, (), wn; (£))E' (t)dt.  (2.48)
nj—r00 0 nj—r00 0
Now, {wy, (t)}n,;>1 is a sequence of weak solutions satisfying

1

T T
2¢1
—5 | T P @+ [ (w00, O)0a1

T T
n /0 (N, (8), 1, (£)€(£)dlE + /0 (Lt (£), wn, (0)E(E)

T
<[ (P, @) vew € CF0.T) with g 20, (249
0
we pass to the limit in (2.49)), using (2.45))-(2.46) and (2.48)), and demonstrate that w(t)
satisfies (2.7). This ends the proof. O

Next, we use I1; to denote the restriction operator (with respect to time variable) to
the semi-infinite interval R . At this stage, we can prove the existence of the trajectory

attractor.

Theorem 2.1. The natural translation semigroup {T'(t)}i=0 possesses a trajectory at-

tractor AY in FT satisfying
AF =TI Ko = {w(-)|p00)| veEKs}CTT. (2.50)

Proof. According to |9, Theorem 7.4], it is sufficient to prove that 7" is compact in
F*T. Factually, 7,5 C F* is obvious. Now, for any sequence {wy,},>1 in T, we see
from Lemma that there is a subsequence (still denote by {wy,},>1) that converges
to some w() € T-F in C([0, 1]; }AIW) as n — 00. Passing to a subsequence and dropping
the subindex again, we find that there exists w(? e T yielding

w, — w? in C([0,2]; Hy) as n — .

Obviously, w(t) = w®(t) on [0,1]. Continuing this diagonalization process, we

obtain a subsequence {wy, }n,>1 of {wy,}n>1 and some w € T such that
Wy, — W in Ft as np — oo.

The proof is complete. O
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We next introduce the definition of trajectory statistical solution for equation ([2.5)).

Definition 2.3. A Borel probability measure p on F* is a T, -trajectory statistical
solution over [0,00) (or simply a trajectory statistical solution) for equation (2.5)) if

(1) p is tight in the sense that for any B € B(FT) (the collection of Borel sets of
FT),
u(B) = sup {W(E)|E € B(F*) and E C B};

(2) p is supported by a Borel subset of F contained in T".

To state the existence of the trajectory statistical solution, we first recall the defi-

nition of generalized Banach limit.

Definition 2.4. ( [27]) A generalized Banach limit, which we denote by LIM;_4 o, is
any linear continuous functional defined on the space of all bounded real-valued functions
on [0,00) that satisfies

(1) LIM;—400p(t) = 0 for nonnegative functions p(-) on [0, 00);

(2) LIMy—400p(t) = lm p(t) if the usual limittlim p(t) exists.
—

t——+o0 +oo

The main result of this section reads as follows.

Theorem 2.2. Let LIM;_, 4 be a given generalized Banach limit. Then for any w, €

T+, there corresponds a unique Borel probability measure iy, on FT such that

t
C(2)dpow, (2) = LIMtHJrooi/ C(T(s)w)ds, V¢ e C(F™). (2.51)
F+ 0

Moreover, i, is supported by AY and is a trajectory statistical solution for equation
(2.5), and g, is invariant under the acting of {T'(t)}+>o0 in the following sense

(T(t)z)dpow, (2) = (2)dgw, (2), Vt=0, V¢ e C(FT). (2.52)

¢ ¢
Ft F+

Proof. Let Mt . = Cioc([0, +00); Xy ) be the space of continuous functions from [0, +00)
to Xy, where we have denoted by X, the space X endowed with the weak topology
inherited from H,. We endow Ml'g . also with the topology @fgc. Since X is a fixed

bounded subset of the Banach space H, the topology O _in M is metrizable (cf. [1]).

loc
Then, by Theorem and the abstract result [41, Theorem 2.1], we obtain the results
of Theorem The proof is complete. O
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3 Lusin type degenerate regularity of the trajectory sta-
tistical solution

In this section, we will prove that if the Grashof number G given by (1.6) is
sufficiently small, then the trajectory statistical solution fis,., obtained in Theorem [2.2]
possesses Lusin type degenerate regularity.

For brevity, we set
kE2A+ 1) A

9=06"1A"1 M) = 5

CIFI*+ *HQHQ)jk:EN.

Lemma 3.1. Let F € H. Then, for any < > 0 and any w € AY, the Lebesgue measure
of the set {1 € [¢,s + U : |Vw(7)||? < M(k)} satisfies

mes({7 € [¢,c + V] : [|[Vw(r)|? < M(k)}) = —9. (3.1)

Proof. For any glven ¢ >0, let we AY with initial value w(s) = wc at time . Then

we can derive from ([2.8)) and - that

(@)l = lwol < 2

21512+ ngu% (3.2)

which, together with (| 2, gives for any t > ¢ that

@I +5 [ 1vulPdar < 21+ 27 + G+ 2ol - o). 63

Consequently,
t 22X A A A
5/ IVw(r)|*dr < 50 1£11% + ||g||2) + I+ ;HQHQ)(t — <) (3.4)
S
Picking t = ¢ + ¢, we arrive at
s+ (2 + l) A A
[ Ivunitar < SRR + 2P (35)
S v

Inequality (3.5)) shows that the Lebesgue measure of the set {7 € [¢,c+9] : ||[Vw(7)||* >
M (k)} satisfies

mes({7 € [¢,¢ + 7] : HVUJ(T)H2 M(k)})
1 (2 +3) A 9
<G+ 2l = 7.
Otherwise, if p
mes({7 € [s,s + 9]+ [Vw(n)|* > M(k)}) > 1,

then

s+9 (2A+3) A A
/ IVe(n)[Pdr > =22 CIF17 + Zlgl)-
s g

This contradicts equation (3.5). The proof of Lemma 3.1 is therefore complete. O

15



From we can conclude that each weak solution w(-) within AY is “nearly”
regular on [¢,s + 9] for each ¢ € R,. But we cannot say that each w(-) within AY is
a.e. regular on [¢,¢ + ¥]. This is much like Lusin’s Theorem describing the relations
between measurable functions and continuous functions: each measurable function on

3

an interval I is “nearly” continuous on I. This “nearly” regular result of the elements

within AY is stated as follows.

Corollary 3.1. For any ¢ > 0, denote E(s) = [¢,c +¥]. Then, for any ¢ > 0 and each

w € A, there corresponds a subset Ee,, . C E(s) and a positive constant C. such that
(1) The Lebesgue measure of Ee. ¢ satisfies mes(Ee ) < €;
2) w(n)lf < Ce; V7€ E(s)\ Eeug-

Proof. Note that the norms ||Vw|| and ||wl| are equivalent. For any given e > 0, there
is some k. € N such that 9/k. < e. For each w € A" and above ¢, we set

Eews=H{0 € ls;s+ 9] : [w(n)llg = M(ke)}-

2
v
Then from (3.1)) we have that

ke—1

€

mes(Eewe) =9 —mes({0 € [,¢ + ] = [lw(O)[]f; < M(ke)})

N

9 — Y < e.

2
5
Item (2) obviously holds true. The proof is complete. O

We next prove that if the Grashof number G given by ([1.6) is sufficiently small,

then the trajectory attractor A% degenerates to a single bounded complete trajectory.
Lemma 3.2. Let that the Grashof number G given by (1.6|) satisfy

778 c296+2452 1,841 5
255 84 2 5 (1+5) Gt < = (3.7)

)\7
where ¢1 and c3 are positive constants depending only on 2. Then, the trajectory
attractor AY given by (2.50) degenerates to a single bounded complete trajectory:

AT = {i(t) € Ky 1 t >0}, (3.8)

Proof. Let w(t) = (u(t),w(t)) and ®(t) = (p(t),¢(t)) lie in A¥. Then shows
that both w(t) and ®(¢) belong to K. Set z(t) = w(t) — ®(¢). Then z(t) satisfies

0z

ot
Taking the dual pairing (-, ) between z and equation (3.9) yields

+Az+ Bw—B®+ Nyw— N, &+ Lz=0, teR (3.9)

1d

5 3 1212 + (Az, 2) + (Lz, 2) + (Bw — B®, 2) + (N,w — N,®,2) = 0. (3.10)
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Similar to [37, (2.7)], we have
(Az,z) + (Lz,z) = 61]|2]|y, where 61 = min{y, v}. (3.11)

We shall handle the nonlinear terms (Bw — B®, z) and (N,w — N,®, z). Firstly,
by (2.2)) and (2.4)2, we obtain
<Bw - B(I)a Z> :<Bl(u7u) - B1<¢7 ¢)7 U= (ZS) + <B2(u7w) - B2<¢7 @)7(") - §0>

(3.12)
=bi(u— ¢, p,u— @)+ ba(u — ¢, p,w — ).

At the same time, from the classical estimation (see [14, (A.26f)]) we see that there is

a positive constant ¢; depending only on 2 such that

b1 (u — ¢, ¢y u — @) < erlu — |4 lu — ¢|r7/4||¢||1/4||¢||3¢/4

7 C? 2 6 4 o1 2
5 P22 1V ®)° + L2112, (3.13)
]s
01
b2 (u — ¢, p,w — )| < 857 P2 v el© + HZH%/-
It then follows from (3.12) and (3.13)) that
9 | 01, 12
[(Bw — B®, z)| < 457 H [ielIR:2[ES o =1 (3.14)
Secondly,
(Now = No®, 2) = (o (Jul""'u = [¢|°¢),u - )
B=1 _ _
=ol[u] = |u - ¢ +a/Q (It =11 (u — ¢)pda. (3.15)

Set o(y) = |y|®~1, y = (y1,92,y3) € R3. Then o(y) is differentiable for y # 0, and

B-=3 B3 £-3 B-1
Vo(y) = (lyl 2 y1, |yl 2 y2, 1yl Z ws3), [Voly)| <yl = .

By the differential mean value theorem we see that there exists 6 € (0,1) such that

[lul?~t =117 = |o(u) — o(¢ ()I |V9(¢+9(u— P)fu = ¢|
<1 =06+ 00T [u—¢| <277 6] fu—o|+(20)F [u—ollul’T . (3.16)

Taking (3.15)-(3.16) into account and using Hoélder’s and Cauchy’s inequalities, we
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arrive at

7 [ (Pt =16 - 6o
>—fﬁa/Ww@Wu—m%m—ffa/me%Wu—m%x
Q
> = 2% 0ol By _ w0l — dlisiey
)

- 61
—ZTﬁWMGHWﬁWWWW—MM@M—¢H
= 1
> =27 o9 S = ol — ol 2T cxol@lplwle? Izl

22852 1 1 o1
> = 25— (12157 + I Il )21 = =1 (3.17)
where we have also used Cauchy’s inequality, the embedding V — L%(Q), V —
L3(f8_1)(§2) and V — L e )(Q), and co is a positive embedding constant depending

only on €. It then follows from (3.10)), (3.11)), (3.14) and (3.17)) that

d 778 c22P+1 52 1 1
—lz1? + 1l < NP (S 121 IVe)® + 2Z——— (@12 + |22 w2 ).
dt v 207 o1 v v

(3.18)

For any 7 € R with 7 < ¢, we integrate (3.18)) over [, ] and use (2.10) to obtain

lz@)I* = ll=(7)II?

77 22ﬁ+102 B 5
<ﬂ( LlolP[ve]® + —7;*m@@*+w%ww§5—§wmmwﬁ.@w>

Since w(t) and ®(t) are bounded complete trajectories of equation ([2.5), we obtain

from that
A

()2 + /W@ NP0 < RGP + G IA1? + S gl 7).

J(e)]2 + &/uv IPa0 < oI + G+ 2ol =), (3:20)
A

0@ +51 [ V00100 < o)1 + AP + 2lol)e 7).

Therefore,
1 t A A
' ®(0)]12d0 < = (217112 + ZlgI?
13352(1375_7[ [2(0)|| 5 (VHfII + Hgll ),
lim su 1/Wwwww<AumP 2 lg]1?)
T%—og)t_T T - 6 v g 7
1 t 1 A /\
. P 200 < —(2 2 . M2
\ lgsggt_T/T Ve(9)[]“de 5 I +,YH9H ),
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which implies for s € (—o0,t] that

( 1 t A A A
B(s)|2 < Ii P 200 < 2 (21712 + 2 g2
J2(5)IP < timsup -—— / 2@)7a0 < 5 I+ 2P
t A A A
/ IVu(6)I%d0 < SIS + 5ol (3.21)

/ IV (6)[2d6 < (||f||2 ng2>.

[Ve(s)|[* < limsup -
T—>—00

Ve (s)||? < lim sup
T——00

Now if (3.7) holds true, we infer from (3.21)) for 6 € [r,¢] that

e e T T
<Lhieonver + 0 3 jvampr
B0 1 ve )l - 2
727;71 G8 + 26(;%2(1 + i)ﬂ“Gﬁ+1 i =a<0. (3.22)

Inserting (3.22) into (3.19)) and then using Gronwall’s inequality, we have
2O < =) P, ¢ > 7.

Letting 7 — —oo gives w(f) = ®(0) for 0 € (—oo,t]. Particularly, w(f) = ®(0) for
0 € [0,t]. The proof of Lemma 3.2 is complete. O

Recall that the partial regularity of the trajectory statistical solution means that it is
carried by a set in which all weak solutions are “partially” regular. Combining Corollary
3.1 and Lemma [3.2] we conclude that the statistical solution iy is “nearly” regular
(but not a.e. regular) on each interval R ;. This Lusin type degenerate regularity result

of the statistical solution is stated as follows.

Theorem 3.1. Let F € H and assumption hold. Then, the trajectory statistical
solution g 5 guaranteed by Theorem 2.2 and Lemma 3.2 possesses the following Lusin’s
type degenerate regularity: for any e > 0, there exists a subset Ry(e) C Ry such that
mes (R4 (€)) < € and pig 5 is reqular on Ry \ Ry (e€).

Proof. Let w(t) be the unique complete and bounded weak solution from Lemma 3.2.
For each j € Z, = {0,1,2,---} and for any ¢ > 0, we see from Corollary 3.1 and
Lemma 3.2 that there exists an interval E(e, j) C I; = [j9, (j + 1)¥] and a positive
constant C ; such that mes (E(e, j)) < -5 and

2

2J

[@(0)[1% < Cej, VO € I; \ E(e, j). (3.23)

19



Set Ry(e) = |J E(e,7). We obviously have
JELy

. €
mes (R4 (€)) < Y mes(E(e,§)) < Y — <e
JELy jeZy 2
At the same time, we have Ry = |J I;, and by (3.23)),
JELy

[5(8)]2 < +oo, V6 € Ry \ Ry (o).

This ends the proof. O

4 Convergence of the trajectory statistical solution to that
of the 3D incompressible micropolar fluids flows

Let w, € AY and w, — w in the topology @fgc as ¢ — 07, we will prove
that w is a bounded complete trajectory of the classical 3D incompressible micropolar
fluids flows (see equation below), and that the trajectory statistical solution fis 4,
converges to the trajectory statistical solution fig ., of equation as o — 0.

Firstly, we select some known results concerning the following 3D incompressible
micropolar flows (see e.g. [42]):
u— (V4 Kk)Au+ (u-V)u+ Vp =2V X w+ f,
V-u=0,
wr — YAw + (u - V)w — nVdivw + 4dkw = 2KV X u + g, (4.1)
u(z,t)|,_o = uo, u(x’t)‘BQX(O,oo) =0,
w(w,t)!tzo = wp, w(x, t)‘aQX(O,oo) =0.

Excluding the pressure p, we can write, using the notations as in Section 2, the weak
form of problem (4.1)) as

a@—f—i—Aw—}—Bw—}—Lw:F, in D'((O,oo);‘/}*), (4.2)
w(0) = wo = (ug, wo). (4.3)

Definition 4.1. ( [42]) A weak solution to problem (4.2))-(4.3) on [0,00) is an H -valued
function w(t) = (u(t),w(t)) defined on [0,00) with w(0) = wy = (ug,wyp), such that

d = o~
W ¢ L0, V), () € €0, 0 F) (1 LR(0.50): )
(%,@) + (Aw, @) + (Bw, ®) + (Lw, ®) = (F,®), V& € v,

holds in the distribution sense D'(0,00), and w(t) satisfies the following energy inequal-

ity

1U) 2 t wis),wls S t ws),w\s S 1’11)2 t wlSs S
IO+ [ (. w)as+ [ (Do) u()ds < gluol® + [ (Fo(s)a
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in the sense that

1 t wis 2¢ S)as t wis), wis s)as t w(s),w(s s)as
~ 5 | P+ [ aus)ueeas + [ G, w)ed
g/o (F,w(s))€(s)ds, V() € C((0,4])  with £(t) > 0,V > 0. (4.4)

Lemma 4.1. ( [42]) Let wy = (up,wp) € H and suppose F € H. Then, problem (4.2))-
(4.3) possesses at least one weak solution w(t) = w(t;wgy) corresponding to the initial

value wg. Moreover, there exists a time t', > 0 yielding
w(t) e X,Vt >t (4.5)
where X is given by (2.8).

The trajectory space T," and kernel Ky of equation (4.2)) is defined respectively as

={w():w(-) is a weak solution of (4.2) and w(t) € X for all t € Ry},
Ko ={w(:) : w(-) is a weak solution of (4.2) and w(t) € X for all t € R}.

Lemma 4.2. ( [{2]) Let F € H.

(a) The translation semigroup {T'(t)}i>0 defined by (2.13) possesses a trajectory at-
tractor A C Ty" with respect to the topology O :

loc*

A =T Ko = {u(-)]jp.00)| u € Ko} C Tyt (4.6)

(b) For a given generalized Banach limit LIMy_ 1o and for each w € ’76+, there

corresponds a unique Borel probability measure g, on F1 such that

t
/ C(z)dpo,w(z) = LIMtHH)ozl&/ C(T(s)w)ds, V¢ e C(F™). (4.7)
F+ 0

Moreover, . is supported by AY and is a trajectory statistical solution for
equation (4.2), and 1o 4 s invariant under the acting of {T(t) }+>o in the following

sense

C(T'(t)z)dpo,w(= / C(2)dpow(z), Yt=0, ¥CeO(FF).  (4.8)
F+

We now prove the convergence of solution of equation (2.5)) to that of equation (4.2)
as o — 0T,

Lemma 4.3. Let a sequence wy, () € 7;+n, n € N, satisfy the following conditions:
(1) o, = 0" asn— oo; (1) wy, (-) — w(-) in the topology O asn — oco.

Then, w € 76+.

loc
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Proof. We first prove that w satisfies (4.2). In fact, since wy, () € T,©

on? won(') satisfies
for each T' > 0 that

oW,
ot
From (2.35) we infer that both the nonlinear terms Bw,, and N,, w,, are uniformly
(with respect to n € N) bounded in L*3([0,T]; V*). Hence, by (2.36) and condition
(IT), we have as o, — 07 that

+ Aw,, + Bwy, + Ny wo, + Lw,, = F, in D'(0,T;V*). (4.9)

811]0” N 8'[1) . 4/3 X A*
T 5 weakly in L*°(0,T;V™),

Aw,, — Aw weakly in L?(0,T; 17*),

Buw,, — Bw weakly in L*3(0,T;V*), (4.10)
Ny, wy, — 0 weakly in L%(0,T; ‘7*),

Lw,, — Lw weakly in L*/3(0,T; 17*)

(1:9) and (L10) imply
ow

5 +Aw+ Bw+ Lw=F, in D'(0,T; V). (4.11)

The fact that w(-) meets (4.4) can be proved by using (2.49)) and (4.10]). By (4.11) and
the same derivations of Lemma we conclude that w(-) satisfies (4.5)). The proof is

complete. ]

Next we set By = {wy | wo € T,", |Jwolly, < c(R), for all w, € By}, where c(R)

is a positive constant which depends only on R and can be chosen for our purpose, and
t+1 t+1 3/4 A

ek, = sup [ (O] +sup( [ (®)]206)2 +-sup( [ v ()] a0y

0 =0 Jt 0 Jt

=

Lemma 4.4. Let o € (0,1]. Then

T(t)B, — AY in the topology O as t — 4+oo and o — 0T, (4.12)

loc

where (4.12)) is interpreted in following sense: for {ws}o<o<1 With wy € B, there is

ngC ast — +oo and o — 0.

some w € AY such that T(t)w, — w in the topology ©

Proof. We prove (4.14)) by contradiction. Assume that there is a neighbourhood O(Af)
of AY in the topology @fgc and two sequences o, — 0T, £, — 400 as n — oo, such
that

T(t)Bs, ¢ O(AY). (4.13)
Then there is a solution w,, € B, such that

2o (1) 1= T (tn)w,, (t) & O(A). (4.14)
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Notice that z,, (t) is a solution of equation ({2.5) with o = o, on the interval [—¢,,, +00)
and z,, (t) is the backward time shift of the solution wy,, (t) by ¢,. By the definition of
B, we have that

t+1
([ lew (0)120)
t

sup ||zo, (t)[| + sup
—t

27tn ES n

t+1

3/4

+ sup ( / 10020, ()2 200)/* < c(R). (4.15)
t=2—tn Jt

For every T' > 0, we consider o, with the index n such that t,, > T. Then (4.15))

implies that we can extract a subsequence (still denote by) {z,,(-)} and a function

z(t), t € (=T,T), such that

~

25, — 2z weakly star in L°([0,T]; H) as n — oo,
Zy, — z weakly in L2([0,T];V) as n — oo, (4.16)
2o, — % weakly in LY3([0,T];V*) as n — oo.

n

Using the standard diagonal procedure, we can construct a function z(¢), t € R, such
that

+
loc

Zo, () = 2(+) in the topology ©  as n — oo. (4.17)

By Lemma we see that z(-) € Tj". This fact, together with (4.15)) and (4.17),
implies that z € Ky. Now, by (4.6 we have II; 2 € II,. Ky = Aff. Eq. (4.17) shows that

Iz, — I,z in the topology O

loc @S n — oQ.

Therefore, we have for large enough n that
H+Zon S O(H+Z) C O(ABT),
which contradicts (4.13]). The proof is complete. O

Lemmaimplies the convergence of the trajectory attractor AY to A as o — 0.
The convergence of this type was investigated in [36] for the convective Brinkman-
Forchheimer equations.

At this stage, we can state and prove the main results of this section.

Theorem 4.1. Suppose that F € H. Let AY and AY be the trajectory attractors

guaranteed by Theorem and Lemma (I), respectively. Let that w, € AY and

we — w in the topology @igc as o — 01, and that pg., and po. be the trajectory

statistical solutions guaranteed by Theorem and Lemma (b), respectively. Then

AT — AT in the topology Gfgc as 0 — 0T, (4.18)
lim, [ s () = [ G0z, € CLFY) (4.19)
o—0t Jr+ F+
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Proof. From ([2.8]), , (2.35) and the definition || - ||s,, we see that the family
{A%}o<r<1 is uniformly (with respect to o € (0,1]) bounded when we choose ¢(R)

large enough. Applying Lemma with B, = AY and the invariant property of AY,
we obtain by letting ¢ — +oo that

AT = T(t)AY — A in the topology ©;

that is, (4.18]) is proved.

Now, let w, € AY such that w, — w in the topology @fgc as 0 — 07. By Lemma
we see that w € AY. Then, Theorem [2.2] and Lemma [4.2{b) show that there exist

trajectory statistical solutions fig ., and pg . corresponding respectively to w, and w,

+
e a8 0 =07,

and that for a given generalized Banach limit LIM;_, 1, and for any ¢ € C(FT) there
holds

C(Z)dﬂa,wg( ) LIMt%+oo / < ) S,
F+

(4.20)
/ C(z)dﬂo,w ) LIM; oo~ /C
F

Since that LIM;_, |« is a linear continuous functional, ¢ € C(F*) and that w, — w in
the topology ©,"_ as o — 0T, by (4:20) we have

t
lim [ C(2)dtu, (=) = lim LMoo / ((T(s)w,)ds
=0t Jr+ o—0+t
=LIM; 1 oo~ /C 111%1 wy)ds
—LIM o0y / C(T(s)w)ds
0

= [ C(z)dpow(2),
F+

where we have also used the continuity of the translation semigroup 7'(-) on F* with

respect to the topology @loc (cf. [8]). The proof is complete. O
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