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Abstract

This article studies the existence, degenerate regularity and limit behavior of
the trajectory statistical solution for a three-dimensional incompressible microp-
olar fluids flows with a damping term. The authors first prove the existence of
the trajectory attractor and use it to construct the trajectory statistical solution.
Then they establish that the trajectory statistical solution possesses partial reg-
ularity provided that the associated Grashof number is small enough. Finally,
they investigate the limiting behavior of the trajectory statistical solution as the
damping term vanishes.
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1 Introduction

We study the following equations

ut − (ν + κ)∆u+ (u · ∇)u+ σ|u|β−1u+∇p = 2κ∇× ω + f, (1.1)

∇ · u = 0, (1.2)

ωt − γ∆ω + (u · ∇)ω − η∇divω + 4κω = 2κ∇× u+ g, (1.3)
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with the initial and boundary conditions

u(x, t)
∣∣
t=0

= u0, ω(x, t)
∣∣
t=0

= ω0, (1.4)

u(x, t)
∣∣
∂Ω×(0,∞)

= 0, ω(x, t)
∣∣
∂Ω×(0,∞)

= 0, (1.5)

where (x, t) ∈ Ω × R+, and Ω is a bounded domain in R3 with smooth boundary ∂Ω.

In equations (1.1)-(1.3), the unknown functions

u = (u1(x, t), u2(x, t), u3(x, t)), ω = (ω1(x, t), ω2(x, t), ω3(x, t)), p = p(x, t),

denote, respectively, the velocity vector, the angular velocity of rotation of parti-

cles, and the pressure of the fluid, the functions f = (f1(x), f2(x), f3(x)) and g =

(g1(x), g2(x), g3(x)) denote the external force and the angular momentum, respectively,

and the positive constant σ is the damping coefficient. In addition, the parameters ν,

γ, κ, η are positive constants.

Equations (1.1)-(1.3) describe the motion of micropolar fluids [24], which were first

introduced to describe the micro-rotational motion and rotational inertia of fluids. In

physics, micropolar fluids can represent fluids composed of rigid, randomly oriented (or

spherical particles) suspended in a viscous medium. The theory of micropolar fluids

was first introduced by Eringen in [13]. If κ = σ = 0, ω = g = (0, 0, 0) in (1.1) and

(1.3), then equations (1.1)-(1.3) turn to be the classical incompressible Navier-Stokes

equations.

There are some references studying the incompressible micropolar fluids. For the

case that there is no damping term, the global well-posedness and the existence of

uniform attractor of two-dimensional (2D) micropolar fluids equations was proved in [7,

12]; initial and boundary-value problem for 2D micropolar equations with only angular

velocity dissipation was investigated in [22]; the regular criteria of weak solutions for the

3D case was investigated in [10,11,20]; the existence and homogenization of trajectory

statistical solution for the 3D case was established in [34, 42]. When equation (1.1)

contains a damping term, the global existence of strong solution to the 3D case was

verified in [35] for β = 3 and 4σ(ν + κ) > 1 or β > 3, and the existence of global

attractor was proved in [33] with the assumption β ∈ (3, 5).

The original motivation of this article is to investigate the existence of the tra-

jectory statistical solution and its limiting behavior for equations (1.1)-(1.3) when

β ∈ (1, 3]. We are interested in the probability distribution of solutions within the

temporal-spatial space. The invariant measure and statistical solution for evolution

equations have been extensively studied. One can refer, for deterministic equations,

to [4–6, 14–19, 23, 25–27, 31, 32, 38, 39, 43, 46, 49, 50] the well-posed systems and to

[2, 21, 40, 42, 44, 45] the ill-posed systems, and to [48] the invariant sample measure

and random Liouville type theorem for the two-dimensional stochastic Navier-Stokes

equations. For the impulsive differential equations, we can consult [28, 29, 47] for the
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existence of the statistical solutions. Especially, Zhao, Li and Caraballo [41] estab-

lished, via the approach of trajectory attractor, some sufficient conditions ensuring the

existence of trajectory statistical solution for general evolution equations, including

those systems which possess global weak solutions but without a known result of global

uniqueness. Recently, the abstract result of [41] was applied to equations (1.1)-(1.3)

without damping term to construct the trajectory statistical solution [42].

The first result of this article is the existence of trajectory statistical solution for

the 3D micropolar fluids with a damping term. We assume that β ∈ (1, 3]. In this case

we can obtain the existence of a weak solution to problem (1.1)-(1.5) corresponding to

each initial value. However, it is not known whether the weak solution is unique or not.

Therefore, here we cannot use the approach of classical semigroup [33] to investigate

the asymptotic behavior of the solution for equations (1.1)-(1.3) because of the possible

non-uniqueness of the weak solution. We will first prove the existence of the trajectory

attractor Atr
σ for equations (1.1)-(1.3) via the natural translation semigroup. Then

we use the abstract results [41, Theorem2.1] to obtain the existence of the trajectory

statistical solution µσ,wσ , hereinafter wσ is an element within Atr
σ and σ is the constant

from equation (1.1).

The second goal of this article is to investigate the partial degenerate regularity of

the trajectory statistical solution µσ,wσ . The regularity of the trajectory statistical solu-

tion means that it is supported by a set in which all weak solutions are strong solutions.

When constructing µσ,wσ , we observe that it is supported by the trajectory attractor

Atr
σ . Thus, we naturally consider the degenerate regularity of the trajectory statistical

solution via investigating the degenerate regularity of the trajectory attractor. Notice

that µσ,wσ is a probability measure defined on the trajectory space of equations (1.1)-

(1.3) and Atr
σ itself consists of weak, bounded and complete trajectories of equations

(1.1)-(1.3). According to these facts, we use the following form of generalized Grashof

number

G := [
λ+ 1

δ
(
λ

ν
‖f‖2 +

λ

γ
‖g‖2)]1/2, (1.6)

to discuss the partial degenerate regularity of µσ,wσ . We will prove that if the Grashof

number G given by (1.6) is properly small, then the trajectory attractor Atr
σ degenerates

to a single complete trajectory, that is Atr
σ = {w̃(t) ∈ Kσ : t > 0}, where w̃(t) is the

unique complete and bounded weak solution of equations (1.1)-(1.3) andKσ is the kernel

of equations (1.1)-(1.3). Further, we will prove that µσ,w̃σ possesses partial degenerate

regularity of the Lusin type in the following sense: ∀ ε > 0, there is a subset R+(ε) ⊂ R+

with Lebesgue measure mes(R+(ε) < ε, such that µσ,w̃σ is regular on R+ \ R+(ε).

The third result of this article is to prove that the trajectory statistical solution

µσ,wσ converges to µ0,w as σ → 0+, where µ0,w is the trajectory statistical solution of
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the following classical micropolar fluids flows equations

ut − (ν + κ)∆u+ (u · ∇)u+∇p = 2κ∇× ω + f, (1.7)

∇ · u = 0, (1.8)

ωt − γ∆ω + (u · ∇)ω − η∇divω + 4κω = 2κ∇× u+ g, (1.9)

which have been constructed in [42]. To this end, we prove that the solution of equations

(1.1)-(1.3) converges to that of equations (1.7)-(1.9), and that Atr
σ converges to Atr

0 as

σ → 0+, where Atr
0 is the trajectory attractor of equations (1.7)-(1.9). In [3], Bronzi

and Rosa proved the convergence of statistical solutions of the 3D Navier-Stokes-α

model as α vanishes. The main tools used in [3] are topological analysis and measure

theory. Here we investigate the convergence of trajectory statistical solutions of the

3D incompressible micropolar fluids flows with damping term as the damping term

vanishes, via the approach of trajectory attractor. Our result reveals that the trajectory

statistical information obtained from the 3D incompressible micropolar fluids flows with

damping term are good approximations of the trajectory statistical information of the

classical micropolar fluids flows.

The article is organized as follows. In the next section we prove the existence

of the trajectory attractor and trajectory statistical solution. In Section 3 we prove

the degenerate regularity of Lusin type for trajectory statistical solution. Section 4

is devoted to the convergence of the trajectory statistical solution µσ,wσ to µ0,w as

σ → 0+.

2 Existence of trajectory attractor and trajectory statis-
tical solution

In this section we first introduce the mathematical setting for problem (1.1)-

(1.5) and then prove the existence of the trajectory attractor and trajectory statistical

solution.

As usual, Lp(Ω) = (Lp(Ω))3 and Wm,p(Ω) = (Wm,p(Ω))3 stand for the 3D vector

Lebesgue space and Sobolev space with norms ‖·‖p and ‖·‖m,p, respectively. We denote

by Wm,p
0 (Ω) the closure of {ϕ : ϕ = (ϕ1, ϕ2, ϕ3) ∈ (C∞0 (Ω))3} in Wm,p(Ω) with norm

‖ · ‖m,p. We write Wm,p
0 (Ω) = Hm

0 , Wm(Ω) = Hm and ‖ · ‖p = ‖ · ‖ for p = 2. We also

use the following spaces:

V = {ϕ = (ϕ1, ϕ2, ϕ3) ∈ (C∞0 (Ω))3 : ∇ · ϕ = 0},
H = the closure of V in L2(Ω) with norm ‖ · ‖H = ‖ · ‖ and inner product (·, ·),
V = the closure of V in H1(Ω) with norm ‖ · ‖V = ‖ · ‖1,2,
Ĥ = H × L2(Ω) with the inner product (·, ·) and norm ‖ · ‖

Ĥ
= ‖ · ‖ defined as

(Φ,Ψ) = (ϕ,ψ) + (φ, ξ), Φ = (ϕ, φ), Ψ = (ψ, ξ) ∈ Ĥ,

‖Φ‖ = (‖ϕ‖2 + ‖φ‖2)1/2, Φ = (ϕ, φ) ∈ Ĥ,
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V̂ = V ×H1
0(Ω) with the norm ‖ · ‖V̂ defined as

‖Φ‖
V̂

= (‖ϕ‖2V + ‖φ‖21,2)1/2, Φ = (ϕ, φ) ∈ V̂ .

In addition, we use H∗, V ∗, Ĥ∗ = H∗ × L2(Ω) and V̂ ∗ = V ∗ × H−1(Ω) to denote the

dual spaces of H, V , Ĥ and V̂ , respectively, where L2(Ω)∗ = L2(Ω) and H−1(Ω) is the

dual space of H1
0(Ω). Then we have V ↪→ H = H∗ ↪→ V ∗, V̂ ↪→ Ĥ = Ĥ∗ ↪→ V̂ ∗ and all

the embedding is compact. Note that we have used the same notation (·, ·) to denote

the inner product in the spaces L2(Ω), H and Ĥ. We will also use the same notation

〈·, ·〉 to denote the dual pairing between the spaces V and V ∗, V̂ and V̂ ∗, Hm
0 (Ω) and

H−1(Ω) provided that there is no confusion.

Define the strong and weak distance in Ĥ by

ds(w,Φ) = ‖w − Φ‖, dw(w,Φ) =
∑
j∈Z3

1

2|j|
|wj − Φj|

1 + |wj − Φj|
, w,Φ ∈ Ĥ,

where wj and Φj are Fourier coefficients of w and Φ, respectively. We next denote by

(Ĥ, d•) (• = s or w) the strong or weak metric in Ĥ. Let C([a, b]; Ĥ•) be the space of

d• continuous Ĥ-valued functions on [a, b] endowed with the metric

d
C([a,b];Ĥ•)

(w,Φ) = sup
t∈[a,b]

d•(w(t),Φ(t)).

We also denote by C([a,∞); Ĥ•) the space of d• continuous Ĥ-valued functions on

[a,∞) endowed with the metric

d
C([a,∞);Ĥ•)

(w,Φ) =
∑
j∈N

1

2j
sup{d•(w(t),Φ(t)) : a 6 t 6 a+ j}

1 + sup{d•(w(t),Φ(t)) : a 6 t 6 a+ j}
. (2.1)

Next, we introduce some operators. We first define the linear operators A1 : V → V ∗

and A2 : H1
0(Ω)→ H−1(Ω) as

〈A1u, φ〉 = (ν + κ)(∇u,∇φ), ∀u, φ ∈ V,

〈A2ω, ϕ〉 = γ(∇ω,∇ϕ), ∀ω, ϕ ∈ H1
0(Ω).

It is not difficult to check that A1 = (ν + κ)P∆ and A2 = γ∆ both with Dirichlet

boundary condition, hereinafter P is the Leray projector from L2(Ω) into H. We can

check that D(A1) = V ∩H2
0(Ω) and D(A2) = H1

0(Ω) ∩H2
0(Ω).

Secondly, we define the following trilinear forms b1(·, ·, ·) and b2(·, ·, ·) as

b1(u, v, φ) =

3∑
j,k=1

∫
Ω
uj
∂vk
∂xj

φkdx, ∀u, v, φ ∈ V,

b2(u, ω, ϕ) =
3∑

j,k=1

∫
Ω
uj
∂ωk
∂xj

ϕdx, ∀u ∈ V, ω, ϕ ∈ H1
0(Ω).
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We can check that the trilinear forms b1(·, ·, ·) and b2(·, ·, ·) are continuous on V ×V ×V
and V ×H1

0(Ω)×H1
0(Ω), respectively. By some simple computations, we have{

b1(u, v, φ) = −b1(u, φ, v), b1(u, v, v) = 0, ∀u, v, φ ∈ V,
b2(u, ω, ϕ) = −b2(u, ϕ, ω), b2(u, ω, ω) = 0, ∀u ∈ V, ω, ϕ ∈ H1

0(Ω).
(2.2)

For every u, v ∈ V , the operator B1(u, v) : V × V 7→ V ∗ defined as

〈B1(u, v), φ〉 = b1(u, v, φ), ∀φ ∈ V,

is continuous. Similarly, for every u ∈ V and ω ∈ H1
0(Ω), the operator B2(u, ω) :

V ×H1
0(Ω) 7→ H−1(Ω) defined via

〈B2(u, ω), ϕ〉 = b2(u, ω, ϕ), ∀ϕ ∈ H1
0(Ω),

is continuous.

Using above operators, equations (1.1)-(1.3) can be written as
du

dt
+A1u+B1(u, u) + σ|u|β−1u = 2κ∇× ω + Pf,

dω

dt
+A2ω +B2(u, ω)− η∇divω + 4κω = 2κ∇× u+ g.

(2.3)

Further, we set for w = (u, ω) ∈ V̂ that
Aw =

(
A1u,A2ω

)
,

Bw =
(
B1(u, u), B2(u, ω)

)
,

Nσw =
(
σ|u|β−1u,0

)
,

Lw =
(
− 2κ∇× ω, 4κω − 2κ∇× u− η∇divω

)
.

(2.4)

Using the above notations and setting F = (Pf, g), we can write the weak form of

problem (1.1)-(1.5) as

dw(t)

dt
+Aw(t) +Bw(t) +Nσw(t) + Lw(t) = F, in D′((0,∞), V̂ ∗), (2.5)

w(0) = w0 = (u0, ω0). (2.6)

To handle with the nonlinear term σ|u|β−1u, we denote by

L̂β+1(Ω) =
{

(u,0) ∈ R3 × R3 :

∫
Ω
|u|β+1dx < +∞

}
.

Definition 2.1. A weak solution of problem (2.5)-(2.6) on [0,∞) is an Ĥ-valued func-

tion w(t) = (u(t), ω(t)) defined on [0,∞) with w(0) = w0 = (u0, ω0), such that
dw

dt
∈ L4/3

loc ([0,∞); V̂ ), w(·) ∈ C([0,∞); Ĥw) ∩ L2
loc([0,∞); V̂ ) ∩ Lβ+1([0,∞); L̂β+1(Ω))

(
dw

dt
,Φ) + 〈Aw,Φ〉+

〈
Bw,Φ

〉
+ 〈Nσw,Φ〉+ 〈Lw,Φ〉 = (F,Φ), ∀Φ ∈ V̂ ,
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hold in the distribution sense D′(0,∞), and w(t) satisfies the following energy inequality

1

2
‖w(t)‖2 +

∫ t

0
〈Aw(s), w(s)〉ds+

∫ t

0

〈
Nσw(s), w(s)

〉
ds+

∫ t

0
〈Lw(s), w(s)〉ds

6
1

2
‖w0‖2 +

∫ t

0

(
F,w(s)

)
ds

in the sense that

−1

2

∫ t

0
‖w(s)‖2ζ ′(s)ds+

∫ t

0
〈Aw(s), w(s)〉ζ(s)ds

+

∫ t

0
〈Nσw(s), w(s)〉ζ(s)ds+

∫ t

0
〈Lw(s), w(s)〉ζ(s)ds

6
∫ t

0

(
F,w(s)

)
ζ(s)ds, ∀ ζ(·) ∈ C∞0 [0, t] with ζ(·) > 0, ∀ t > 0.

(2.7)

If there exists some interval I ⊂ R+ = [0,∞) such that w(t) ∈ L∞(I; V̂ ) for the weak

solution w(t), then we call that the weak solution w(t) possesses “partial” regularity.

Lemma 2.1. Suppose that F ∈ Ĥ. Then for each w0 = (u0, ω0) ∈ Ĥ, problem (2.5)-

(2.6) corresponds at least one weak solution w(t) = w(t;w0). Moreover, there exists a

time t∗ > 0 such that

w(t) ∈ X ,
{
w ∈ Ĥ : ‖w‖ 6 R

}
, ∀ t > t∗, (2.8)

where R =
(

2λ
δ [λν ‖f‖

2 + λ
γ ‖g‖

2]
)1/2

, δ = min{ν + κ, γ} and λ is a positive constant

depending only on Ω.

Proof. Let w0 = (u0, ω0) ∈ Ĥ be given. For the existence of a global weak solution

w = w(t;w0), one can refer to [24, Theorem 1.6.1, P128] or to [35]. Here we omit the

details and establish (2.8). Taking the inner product (·, ·) of w with equation (2.5) gives

1

2

d

dt
‖w(t)‖2 + (ν + κ)‖∇u(t)‖2 + γ‖∇ω(t)‖2 − 2κ

∫
Ω
∇× ω(t) · u(t)dx

− η
∫

Ω
∇divω(t) · ω(t)dx− 2κ

∫
Ω
∇× u(t) · ω(t)dx+ 4κ

∫
Ω
ω2(t)dx+ σ‖u(t)‖β+1

Lβ+1(Ω)

=

∫
Ω
f · u(t)dx+

∫
Ω
g · ω(t)dx. (2.9)

Now using the following Poincaré’s inequality

‖ϕ‖2 6 λ‖∇ϕ‖2, ∀ϕ ∈ H1
0(Ω), λ is a constant depending only on Ω, (2.10)

we have by some direct computations and estimates that

∫
Ω
∇× ω(t) · u(t)dx =

∫
Ω
∇× u(t) · ω(t)dx 6 ‖ω(t)‖2 + ‖∇u(t)‖2,

−η
∫

Ω
∇divω(t) · ω(t)dx = η

∫
Ω
|divω(t)|2dx,∫

Ω
ω2(t)dx 6 λ‖∇ω(t)‖2,∫

Ω
f · u(t)dx+

∫
Ω
g · ω(t)dx 6

ν

2
‖∇u(t)‖2 +

γ

2
‖∇ω(t)‖2 +

λ

2ν
‖f‖2 +

λ

2γ
‖g‖2.
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Substituting this into (2.9) gives
d

dt
‖w(t)‖2 +

δ

λ
‖w(t)‖2 + 2σ‖u(t)‖β+1

Lβ+1(Ω)
6
λ

ν
‖f‖2 +

λ

γ
‖g‖2,

d

dt
‖w(t)‖2 + δ‖∇w(t)‖2 + 2σ‖u(t)‖β+1

Lβ+1(Ω)
6
λ

ν
‖f‖2 +

λ

γ
‖g‖2,

(2.11)

hereinafter δ = min{ν + κ, γ}. Applying Gronwall’s inequality to (2.11)1 yields

‖w(t)‖2 6 ‖w(0)‖2e−
δt
λ +

λ

δ
[
λ

ν
‖f‖2 +

λ

γ
‖g‖2]. (2.12)

We end the proof by setting R =
√

2λ
δ [λν ‖f‖2 + λ

γ ‖g‖2].

We next select some definitions concerning the trajectory attractor. Define the

trajectory space T +
σ and kernel Kσ of equation (2.5) respectively as

T +
σ = {w(·) : w(·) is a weak solution of (2.5) and w(t) ∈ X for all t ∈ R+},

Kσ = {w(·) : w(·) is a weak solution of (2.5) and w(t) ∈ X for all t ∈ R}.

We also set

F+ = Cloc([0,∞);Xw)

be the space of continuous functions from [0,∞) to Xw, where Xw = (X,dw) denotes

the space X endowed with the weak distance. Define the weak distance in F+ as

dF+(w,Φ) = dC([0,∞);Xw)(w,Φ) =
∑
j∈N

1

2j
sup{dXw(w(t),Φ(t)) : 0 6 t 6 j}

1 + sup{dXw(w(t),Φ(t)) : 0 6 t 6 j}
,

which is compatible with the compact-open topology (denoted by Θ+
loc) of F+. Note

that (F+,Θ+
loc) is a Hausdorff topological space. Define the natural translation operator

{T (s)}s>0 on F+ as

T (s)w(t) = w(t+ s)
∣∣
[0,∞)

, w ∈ F+. (2.13)

Because that the trajectory space T +
σ includes all bounded weak solutions of (2.5), we

have T (s)T +
σ ⊂ T +

σ for any s > 0. For a set P ⊂ F+ and some r > 0, we set

B(P, r) = {u ∈ F+
∣∣ dF+(w,P) = inf

Φ∈P
dF+(w,Φ) < r}.

Definition 2.2. A set P ⊂ F+ is said to uniformly attract a set Q ⊂ T + if for any

ε > 0 there is a tε > 0 such that T (t)Q ⊂ B(P, ε), ∀ t > tε. A set P ⊂ F+ is said to be a

trajectory attracting set if it uniformly attracts T +. A set U ⊂ F+ is called a trajectory

attractor if U is the minimal compact trajectory attracting set and T (t)U = U for all

t > 0.
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To prove the existence of a trajectory attractor for {T (s)}s>0 in F+, we next estab-

lish two lemmas. In the sequel, we will use the notation a . b (also a & b) to mean that

a 6 cb (also a > cb) for a universal constant c > 0 that only depends on the parameters

coming from the problem.

Lemma 2.2. Let w = (u, ω) ∈ L∞([0, T ]; Ĥ)∩L2([0, T ]; V̂ )∩Lβ+1([0, T ]; L̂β+1(Ω)) for

all T > 0, then

t 7−→ Aw(t) ∈ L2([0, T ]; V̂ ∗), (2.14)

t 7−→ Bw(t) ∈ L4/3([0, T ]; V̂ ∗), (2.15)

t 7−→ Lw(t) ∈ L2([0, T ]; V̂ ∗), (2.16)

t 7−→ Nσw(t) ∈ L(β+1)∗([0, T ]; L̂(β+1)∗(Ω)), (2.17)

hereinafter (β + 1)∗ = (β + 1)/β is the conjugate exponent of β + 1.

Proof. Consider given T > 0. For a.e. t ∈ [0, T ], we see from the definitions of

operators A, B, Nσ and L that Aw(t), B(u(t), w(t)), Lw(t) and Nσw(t) belong to V̂ ∗

for w(t) ∈ L∞([0, T ]; Ĥ) ∩ L2([0, T ]; V̂ ) ∩ Lβ+1([0, T ]; L̂β+1(Ω)). The measurability of

the functions t 7−→ Aw(t), t 7−→ Bw(t), t 7−→ Lw(t), t 7−→ Nσw(t) is not difficult to

check.

Now, for any Φ = (φ, ϕ) ∈ V̂ we have, by using Cauchy’s inequality,

|〈Aw(t),Φ〉| .|(∇u(t),∇φ)|+ |(∇ω(t),∇ϕ)| . ‖∇u(t)‖‖∇φ‖+ ‖∇ω(t)‖‖∇ϕ‖

.‖u(t)‖V ‖φ‖V + ‖ω(t)‖1,2‖ϕ‖1,2

.(‖u(t)‖2V + ‖ω(t)‖21,2)1/2(‖φ‖2V + ‖ϕ‖21,2)1/2 . ‖w(t)‖
V̂
‖Φ‖

V̂
. (2.18)

At the same time, by using Gagliardo-Nirenberg’s inequality and the embedding V̂ ↪→
L6(Ω)× L6(Ω), we have

|〈Bw(t),Φ〉| .‖u(t)‖1/2‖∇u(t)‖1/2(‖∇u(t)‖+ ‖∇ω(t)‖)‖Φ‖
V̂

.‖w(t)‖1/2‖w(t)‖3/2
V̂
‖Φ‖

V̂
, ∀Φ ∈ V̂ .

(2.19)

It is also clear that

|〈Lw(t),Φ〉| .‖w(t)‖
V̂
‖Φ‖

V̂
, ∀Φ ∈ V̂ , (2.20)

|〈Nσw(t),Φ〉| 6σ
∫

Ω
|u|β|φ|dx 6 σ‖|u|β‖L(β+1)∗ (Ω)‖φ‖Lβ+1(Ω)

.‖u(t)‖βL(β+1)(Ω)
‖φ‖Lβ+1(Ω)

.‖w(t)‖β
L̂β+1(Ω)

‖Φ‖L̂β+1(Ω), ∀Φ = (φ, ϕ) ∈ L̂β+1(Ω).

(2.21)
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Then inequalities (2.18)-(2.21) give, respectively,

‖Aw(t)‖
V̂ ∗ . ‖w(t)‖

V̂
, (2.22)

‖Bw(t)‖
V̂ ∗ . ‖w(t)‖3/2

V̂
‖w(t)‖1/2, (2.23)

‖Lw(t)‖
V̂ ∗ . ‖w(t)‖

V̂
, (2.24)

‖Nσw(t)‖L̂(β+1)∗ (Ω) . ‖w(t)‖β
L̂β+1(Ω)

. (2.25)

Therefore, ∫ T

0
‖Aw(t)‖2

V̂ ∗
dt .

∫ T

0
‖w(t)‖2

V̂
dt, (2.26)∫ T

0
‖Bw(t)‖4/3

V̂ ∗
dt .

∫ T

0
‖w(t)‖2/3‖w(t)‖2

V̂
dt

. ‖w(t)‖2/3
L∞([0,T ];Ĥ)

∫ T

0
‖w(t)‖2

V̂
dt, (2.27)∫ T

0
‖Lw(t)‖2

V̂ ∗
dt .

∫ T

0
‖w(t)‖2

V̂
dt, (2.28)∫ T

0
‖Nσw(t)‖(β+1)∗

L̂(β+1)∗ (Ω)
dt .

∫ T

0
‖w(t)‖β+1

L̂β+1(Ω)
dt. (2.29)

The proof is complete.

Lemma 2.3. Let {wn(t)}n>1 be a sequence of weak solutions of equation (2.5)

such that wn(t) ∈ X for all t > 0. Then

(1) For all T > 0, {wn}n>1 is bounded in L2([0, T ]; V̂ ) ∩ L∞([0, T ]; Ĥ) ∩ Lβ+1([0, T ]; L̂β+1(Ω)),{ d

dt
wn
}
n>1

is bounded in L4/3([0, T ]; V̂ ∗).

(2.30)

(2) There exists a subsequence {wnj (t)}nj>1 which converges in C([0, T ]; Ĥw) to some

weak solution w(t) of (2.5), that is,

(wnj (t),Φ) −→ (w(t),Φ) uniformly on [0, T ], nj →∞, ∀Φ ∈ Ĥ. (2.31)

Proof. Let {wn(t)}n>1 be a sequence of weak solutions of (2.5) such that wn(t) ∈ X
for all t > 0. Similar to (2.11)2, we have

d

dt
‖wn(t)‖2 + δ‖∇wn(t)‖2 + 2σ‖u(t)‖β+1

L̂β+1(Ω)
. ‖f‖2 + ‖g‖2, t > 0. (2.32)

Consider any T > 0. Integrating (2.32) over [0, T ] implies

‖wn(t)‖2 + δ

∫ T

0
‖∇wn(t)‖2dt+ 2σ

∫ T

0
‖u(t)‖β+1

L̂β+1(Ω)
dt

.‖wn(0)‖2 + T (‖f‖2 + ‖g‖2), t ∈ [0, T ], (2.33)
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which implies that

{wn}n>1 is bounded in L2([0, T ]; V̂ ) ∩ L∞([0, T ]; Ĥ) ∩ Lβ+1([0, T ]; L̂β+1(Ω)). (2.34)

Note that β ∈ (1, 3]. We have (β + 1)∗ = β+1
β ∈ [4

3 , 2) and thus

L(β+1)∗([0, T ]; L̂(β+1)∗(Ω)) ↪→ L4/3([0, T ]; V̂ ∗).

We then conclude from equation (2.5), Lemma 2.2 and the embedding L2([0, T ]; V̂ ∗) ↪→
L4/3([0, T ]; V̂ ∗) that

‖dwn(t)

dt
‖
L4/3([0,T ];V̂ ∗)

6‖Awn(t)‖
L4/3([0,T ];V̂ ∗) + ‖Bwn(t)‖

L4/3([0,T ];V̂ ∗)

+ ‖Nσwn(t)‖
L4/3([0,T ];V̂ ∗) + ‖Lwn(t)‖

L4/3([0,T ];V̂ ∗) + ‖F‖
L4/3([0,T ];V̂ ∗)

.‖wn(t)‖
L2([0,T ];V̂ )

+ ‖wn(t)‖1/2
L∞([0,T ];Ĥ)

‖wn(t)‖3/2
L2([0,T ];V̂ )

+ ‖wn(t)‖
L2([0,T ];V̂ )

+ ‖wn(t)‖L(β+1)∗ ([0,T ];L̂(β+1)∗ (Ω)) + T‖F‖. (2.35)

Note that F ∈ Ĥ. We conclude from (2.34) that the right hand side of (2.35) is bounded

by a constant independent of n. (2.30) is proved.

We next prove (2.31). By (2.30) and the diagonal procedure, we claim that there

exist some w(t) ∈ L∞([0, T ]; Ĥ) ∩ L2([0, T ]; V̂ ) ∩ Lβ+1([0, T ]; L̂β+1(Ω)) with
dw(t)

dt
∈

L4/3([0, T ]; V̂ ∗) and a subsequence {wnj (t)}nj>1 of {wn(t)}n>1 such that
wnj (t) ⇀ w(t) weakly star in L∞([0, T ]; Ĥ) as nj →∞,
wnj (t) ⇀ w(t) weakly in L2([0, T ]; V̂ ) as nj →∞,
wnj (t) ⇀ w(t) weakly in Lβ+1([0, T ]; L̂β+1(Ω)) as nj →∞,
dwnj (t)

dt ⇀ dw(t)
dt weakly in L4/3([0, T ]; V̂ ∗) as nj →∞.

(2.36)

We now denote by

Y =
{

Φ(t) : Φ(t) ∈ L2([0, T ]; V̂ ) ∩ Lβ+1([0, T ]; L̂β+1(Ω)),
dΦ(t)

dt
∈ L4/3([0, T ]; V̂ ∗)

}
and endow it with the norm

‖Φ‖Y = ‖Φ‖
L2([0,T ];V̂ )

+ ‖Φ‖Lβ+1([0,T ];L̃β+1(Ω)) + ‖Φ‖
L4/3([0,T ];V̂ ∗).

Then [24, Lemma 2.3.1, P55] has proved that

Y ⊂ C([0, T ]; Ĥw) and Y ↪→ L2([0, T ]; Ĥ) with compact embedding. (2.37)

Since β ∈ (1, 3] and the embedding V̂ ↪→ L6(Ω) is compact, we can check by interpo-

lation that

Y ↪→ Lβ+1([0, T ]; L̂β+1(Ω)) with compact embedding. (2.38)
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It then follows from (2.36)-(2.37) that

wnj (t) −→ w(t) in C([0, T ]; Ĥw) as nj →∞. (2.39)

We shall prove that w(t) satisfies (2.5) and (2.7). Firstly, from (2.36) and the

definitions of the operators A, Nσ and L, we derive that
Awnj (t) ⇀ Aw(t) weakly in L2([0, T ]; V̂ ∗) as nj →∞,
Lwnj (t) ⇀ Lw(t) weakly in L2([0, T ]; V̂ ∗) as nj →∞,
Nσwnj (t) ⇀ Nσw(t) weakly in L(β+1)∗([0, T ]; L̂(β+1)∗(Ω)) as nj →∞.

(2.40)

For the nonlinear term Bwnj (t), we can use the derivations similar to those of [30] to

deduce

Bwnj (t) ⇀ Bw(t) weakly in L4/3([0, T ]; V̂ ∗) as nj →∞. (2.41)

Now, for a.e. t > 0 we have in L4/3([0, T ]; V̂ ∗) that

dwnj (t)

dt
+Awnj (t) +Bwnj (t) +Nσwnj (t) + Lwnj (t) = F, n = 1, 2, · · · .

Taking (2.37) and (2.39)-(2.40) into account, we have in L4/3([0, T ]; V̂ ∗) that

dw(t)

dt
+Aw(t) +Bw(t) +Nσw(t) + Lw(t) = F, a.e. t > 0.

Notice that L4/3[0, T ] ⊂ D′[0, T ]. Thus, w(t) satisfies (2.5) in the sense of distribution

in D′([0, T ]; V̂ ∗). Secondly, we check that w(t) fulfills (2.7). By (2.31), (2.37) and (2.38)

we have that

wnj (t) −→ w(t) strongly in L2([0, T ]; Ĥ) as nj →∞, (2.42)

‖wnj (t)‖2 −→ ‖w(t)‖2 for a.e. t ∈ [0, T ] as nj →∞, (2.43)

‖wnj (t)‖
β+1

L̂β+1(Ω)
−→ ‖w(t)‖β+1

L̂β+1(Ω)
for a.e. t ∈ [0, T ] as nj →∞. (2.44)

For given ξ(·) ∈ C∞0 ([0, T ]) with ξ(t) > 0. It is clear that ‖wnj (·)‖2ξ′(·) ∈ L1([0, T ]).

(2.36)1 implies that ‖wnj (t)‖2ξ′(t) has essential upper bound and thus possesses an

integrable dominated function. Using Lebesgue’s Dominated Convergence Theorem

and (2.42), we obtain that

lim
nj→∞

∫ T

0
‖wnj (t)‖2ξ′(t)dt =

∫ T

0
‖w(t)‖2ξ′(t)dt. (2.45)

Similarly, we have that ‖wnj (·)‖
β+1

L̂β+1(Ω)
ξ′(·) ∈ L1([0, T ]). (2.36)3 implies that ‖wnj (t)‖

β+1

L̂β+1(Ω)
ξ′(t)

has essential upper bound and thus possesses an integrable dominated function. Again,

using Lebesgue’s Dominated Convergence Theorem and (2.42), we arrive at

lim
nj→∞

∫ T

0
‖wnj (t)‖

β+1

L̂β+1(Ω)
ξ′(t)dt =

∫ T

0
‖w(t)‖β+1

L̂β+1(Ω)
ξ′(t)dt. (2.46)
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At the same time, from (2.36)1, (2.36)2 and the lower semicontinuity of the norm we

infer that
∫ T

0
‖w(t)‖2

V̂
ξ′(t)dt 6 lim

nj→∞

∫ T

0
‖wnj (t)‖2V̂ ξ

′(t)dt,∫ T

0
〈Lw(t), w(t)〉ξ′(t)dt 6 lim

nj→∞

∫ T

0
〈Lwnj (t), wnj (t)〉ξ′(t)dt.

(2.47)

Notice that (cf. [37, Lemma 2.1])
√
〈AΦ,Φ〉+ 〈LΦ,Φ〉 induces a norm which is equiv-

alent to ‖Φ‖
V̂

. Thus,∫ T

0
〈Aw(t), w(t)〉ξ′(t)dt+

∫ T

0
〈Lw(t), w(t)〉ξ′(t)dt

6 lim inf
nj→∞

∫ T

0
〈Awnj (t), wnj (t)〉ξ′(t)dt+ lim inf

nj→∞

∫ T

0
〈Lwnj (t), wnj (t)〉ξ′(t)dt. (2.48)

Now, {wnj (t)}nj>1 is a sequence of weak solutions satisfying

−1

2

∫ T

0
‖wnj (t)‖2ξ′(t)dt+

∫ T

0
〈Awnj (t), wnj (t)〉ξ(t)dt

+

∫ T

0
〈Nσwnj (t), wnj (t)〉ξ(t)dt+

∫ T

0
〈Lwnj (t), wnj (t)〉ξ(t)dt

6
∫ T

0

(
F,wnj (t)

)
ξ(t)dt, ∀ ξ(t) ∈ C∞0 ([0, T ]) with ξ(t) > 0, (2.49)

we pass to the limit in (2.49), using (2.45)-(2.46) and (2.48), and demonstrate that w(t)

satisfies (2.7). This ends the proof.

Next, we use Π+ to denote the restriction operator (with respect to time variable) to

the semi-infinite interval R+. At this stage, we can prove the existence of the trajectory

attractor.

Theorem 2.1. The natural translation semigroup {T (t)}t>0 possesses a trajectory at-

tractor Atr
σ in F+ satisfying

Atr
σ = Π+Kσ = {w(·)|[0,∞)

∣∣ u ∈ Kσ} ⊂ T +. (2.50)

Proof. According to [9, Theorem 7.4], it is sufficient to prove that T +
σ is compact in

F+. Factually, T +
σ ⊂ F+ is obvious. Now, for any sequence {wn}n>1 in T +

σ , we see

from Lemma 2.3 that there is a subsequence (still denote by {wn}n>1) that converges

to some w(1) ∈ T +
σ in C([0, 1]; Ĥw) as n→∞. Passing to a subsequence and dropping

the subindex again, we find that there exists w(2) ∈ T +
σ yielding

wn −→ w(2) in C([0, 2]; Ĥw) as n→∞.

Obviously, w(1)(t) = w(2)(t) on [0, 1]. Continuing this diagonalization process, we

obtain a subsequence {wnk}nk>1 of {wn}n>1 and some w ∈ T +
σ such that

wnk −→ w in F+ as nk →∞.

The proof is complete.
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We next introduce the definition of trajectory statistical solution for equation (2.5).

Definition 2.3. A Borel probability measure µ on F+ is a T +
σ -trajectory statistical

solution over [0,∞) (or simply a trajectory statistical solution) for equation (2.5) if

(1) µ is tight in the sense that for any B ∈ B(F+) (the collection of Borel sets of

F+),

µ(B) = sup
{
µ(E)

∣∣E ∈ B(F+) and E ⊂ B
}

;

(2) µ is supported by a Borel subset of F+ contained in T +
σ .

To state the existence of the trajectory statistical solution, we first recall the defi-

nition of generalized Banach limit.

Definition 2.4. ( [27]) A generalized Banach limit, which we denote by LIMt→+∞, is

any linear continuous functional defined on the space of all bounded real-valued functions

on [0,∞) that satisfies

(1) LIMt→+∞ρ(t) > 0 for nonnegative functions ρ(·) on [0,∞);

(2) LIMt→+∞ρ(t) = lim
t→+∞

ρ(t) if the usual limit lim
t→+∞

ρ(t) exists.

The main result of this section reads as follows.

Theorem 2.2. Let LIMt→+∞ be a given generalized Banach limit. Then for any wσ ∈
T +
σ , there corresponds a unique Borel probability measure µσ,wσ on F+ such that∫

F+

ζ(z)dµσ,wσ(z) = LIMt→+∞
1

t

∫ t

0
ζ(T (s)w)ds, ∀ζ ∈ C(F+). (2.51)

Moreover, µσ,wσ is supported by Atr
σ and is a trajectory statistical solution for equation

(2.5), and µσ,wσ is invariant under the acting of {T (t)}t>0 in the following sense∫
F+

ζ(T (t)z)dµσ,wσ(z) =

∫
F+

ζ(z)dµσ,wσ(z), ∀ t > 0, ∀ζ ∈ C(F+). (2.52)

Proof. LetM+
loc = Cloc([0,+∞);Xw) be the space of continuous functions from [0,+∞)

to Xw, where we have denoted by Xw the space X endowed with the weak topology

inherited from Ĥw. We endow M+
loc also with the topology Θ+

loc. Since X is a fixed

bounded subset of the Banach space Ĥ, the topology Θ+
loc inM+

loc is metrizable (cf. [1]).

Then, by Theorem 2.1 and the abstract result [41, Theorem 2.1], we obtain the results

of Theorem 2.2. The proof is complete.

14



3 Lusin type degenerate regularity of the trajectory sta-
tistical solution

In this section, we will prove that if the Grashof number G given by (1.6) is

sufficiently small, then the trajectory statistical solution µσ,wσ obtained in Theorem 2.2

possesses Lusin type degenerate regularity.

For brevity, we set

ϑ = δ−1λ−1, M(k) =
k(2λ+ 1

λ)

δ2
(
λ

ν
‖f‖2 +

λ

γ
‖g‖2), k ∈ N.

Lemma 3.1. Let F ∈ Ĥ. Then, for any ς > 0 and any w ∈ Atr
σ , the Lebesgue measure

of the set {τ ∈ [ς, ς + ϑ : ‖∇w(τ)‖2 6M(k)} satisfies

mes({τ ∈ [ς, ς + ϑ] : ‖∇w(τ)‖2 6M(k)}) > k − 1

k
ϑ. (3.1)

Proof. For any given ς > 0, let w ∈ Atr
σ with initial value w(ς) = wς at time ς. Then

we can derive from (2.8) and (2.50) that

‖w(ς)‖2 = ‖w0‖2 6
2λ

δ
(
λ

ν
‖f‖2 +

λ

γ
‖g‖2), (3.2)

which, together with (2.11)2, gives for any t > ς that

‖w(t)‖2 + δ

∫ t

ς
‖∇w(τ)‖2dτ 6

2λ

δ
(
λ

ν
‖f‖2 +

λ

γ
‖g‖2) + (

λ

ν
‖f‖2 +

λ

γ
‖g‖2)(t− ς). (3.3)

Consequently,

δ

∫ t

ς
‖∇w(τ)‖2dτ 6

2λ

δ
(
λ

ν
‖f‖2 +

λ

γ
‖g‖2) + (

λ

ν
‖f‖2 +

λ

γ
‖g‖2)(t− ς). (3.4)

Picking t = ς + ϑ, we arrive at∫ ς+ϑ

ς
‖∇w(τ)‖2dτ 6

(2λ+ 1
λ)

δ2
(
λ

ν
‖f‖2 +

λ

γ
‖g‖2). (3.5)

Inequality (3.5) shows that the Lebesgue measure of the set {τ ∈ [ς, ς+ϑ] : ‖∇w(τ)‖2 >

M(k)} satisfies

mes({τ ∈ [ς, ς + ϑ] : ‖∇w(τ)‖2 >M(k)})

6
1

M(k)

(2λ+ 1
λ)

δ2
(
λ

ν
‖f‖2 +

λ

γ
‖g‖2) =

ϑ

k
. (3.6)

Otherwise, if

mes({τ ∈ [ς, ς + ϑ] : ‖∇w(τ)‖2 >M(k)}) > ϑ

k
,

then ∫ ς+ϑ

ς
‖∇w(τ)‖2dτ >

(2λ+ 1
λ)

δ2
(
λ

ν
‖f‖2 +

λ

γ
‖g‖2).

This contradicts equation (3.5). The proof of Lemma 3.1 is therefore complete.
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From (3.1) we can conclude that each weak solution w(·) within Atr
σ is “nearly”

regular on [ς, ς + ϑ] for each ς ∈ R+. But we cannot say that each w(·) within Atr
σ is

a.e. regular on [ς, ς + ϑ]. This is much like Lusin’s Theorem describing the relations

between measurable functions and continuous functions: each measurable function on

an interval I is “nearly” continuous on I. This “nearly” regular result of the elements

within Atr
σ is stated as follows.

Corollary 3.1. For any ς > 0, denote E(ς) = [ς, ς + ϑ]. Then, for any ε > 0 and each

w ∈ Atrσ , there corresponds a subset Eε,w,ς ⊆ E(ς) and a positive constant Cε such that

(1) The Lebesgue measure of Eε,w,ς satisfies mes(Eε,w,ς) < ε;

(2) ‖w(τ)‖2
V̂
6 Cε, ∀ τ ∈ E(s) \ Eε,w,ς .

Proof. Note that the norms ‖∇w‖ and ‖w‖
V̂

are equivalent. For any given ε > 0, there

is some kε ∈ N such that ϑ/kε < ε. For each w ∈ Atr and above ε, we set

Eε,w,ς = {θ ∈ [ς, ς + ϑ] : ‖w(τ)‖2
V̂
>M(kε)}.

Then from (3.1) we have that

mes(Eε,w,ς) = ϑ−mes({θ ∈ [ς, ς + ϑ] : ‖w(θ)‖2
V̂
6M(kε)}) 6 ϑ− kε − 1

kε
ϑ < ε.

Item (2) obviously holds true. The proof is complete.

We next prove that if the Grashof number G given by (1.6) is sufficiently small,

then the trajectory attractor Atr
σ degenerates to a single bounded complete trajectory.

Lemma 3.2. Let that the Grashof number G given by (1.6) satisfy

77c8
1

2δ7
1

G8 +
c2

22β+2σ2

δ1
(1 +

1

λ
)
β+1
2 Gβ+1 <

δ1

λ
, (3.7)

where c1 and c3 are positive constants depending only on Ω. Then, the trajectory

attractor Atr
σ given by (2.50) degenerates to a single bounded complete trajectory:

Atr
σ = {w̃(t) ∈ Kσ : t > 0}. (3.8)

Proof. Let w(t) = (u(t), ω(t)) and Φ(t) = (φ(t), ϕ(t)) lie in Atr
σ . Then (2.50) shows

that both w(t) and Φ(t) belong to Kσ. Set z(t) = w(t)− Φ(t). Then z(t) satisfies

∂z

∂t
+Az +Bw −BΦ +Nσw −NσΦ + Lz = 0, t ∈ R. (3.9)

Taking the dual pairing 〈·, ·〉 between z and equation (3.9) yields

1

2

d

dt
‖z‖2 + 〈Az, z〉+ 〈Lz, z〉+ 〈Bw −BΦ, z〉+ 〈Nσw −NσΦ, z〉 = 0. (3.10)
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Similar to [37, (2.7)], we have

〈Az, z〉+ 〈Lz, z〉 > δ1‖z‖V̂ , where δ1 = min{γ, ν}. (3.11)

We shall handle the nonlinear terms 〈Bw − BΦ, z〉 and 〈Nσw − NσΦ, z〉. Firstly,

by (2.2) and (2.4)2, we obtain

〈Bw −BΦ, z〉 =〈B1(u, u)−B1(φ, φ), u− φ〉+ 〈B2(u, ω)−B2(φ, ϕ), ω − ϕ〉

=b1(u− φ, φ, u− φ) + b2(u− φ, ϕ, ω − ϕ).
(3.12)

At the same time, from the classical estimation (see [14, (A.26f)]) we see that there is

a positive constant c1 depending only on Ω such that
|b1(u− φ, φ, u− φ)| 6 c1‖u− φ‖1/4‖u− φ‖7/4V ‖φ‖1/4‖φ‖

3/4
V

6
77c8

1

8δ7
1

‖z‖2‖Φ‖2
V̂
‖∇Φ‖6 +

δ1

8
‖z‖2

V̂
,

|b2(u− φ, ϕ, ω − ϕ)| 6 77c8
1

8δ7
1

‖z‖2‖Φ‖2
V̂
‖∇Φ‖6 +

δ1

8
‖z‖2

V̂
.

(3.13)

It then follows from (3.12) and (3.13) that

|〈Bw −BΦ, z〉| 6 77c8
1

4δ7
1

‖z‖2‖Φ‖2
V̂

+
δ1

4
‖z‖2

V̂
. (3.14)

Secondly,

〈Nσw −NσΦ, z〉 = 〈σ(|u|β−1u− |φ|β−1φ), u− φ〉

=σ‖|u|
β−1
2 |u− φ|‖2 + σ

∫
Ω

(
|u|β−1 − |φ|β−1

)
(u− φ)φdx. (3.15)

Set %(y) = |y|β−1, y = (y1, y2, y3) ∈ R3. Then %(y) is differentiable for y 6= 0, and

∇%(y) = (|y|
β−3
2 y1, |y|

β−3
2 y2, |y|

β−3
2 y3), |∇%(y)| 6 |y|

β−1
2 .

By the differential mean value theorem we see that there exists θ ∈ (0, 1) such that∣∣|u|β−1 − |φ|β−1
∣∣ = |%(u)− %(φ)| 6 |∇%(φ+ θ(u− φ))||u− φ|

6|(1− θ)φ+ θu|
β−1
2 |u− φ| 6 2

β−1
2 |φ|

β−1
2 |u− φ|+ (2θ)

β−1
2 |u− φ||u|

β−1
2 . (3.16)

Taking (3.15)-(3.16) into account and using Hölder’s and Cauchy’s inequalities, we
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arrive at

σ

∫
Ω

(
|u|β−1 − |φ|β−1

)
(u− φ)φdx

>− 2
β−1
2 σ

∫
Ω
|φ|

β+1
2 |u− φ|2dx− 2

β−1
2 σ

∫
Ω
|φ||u|

β−1
2 |u− φ|2dx

>− 2
β−1
2 σ‖φ‖

β+1
2

L
3(β+1)

2 (Ω)
‖u− φ‖‖u− φ‖L6(Ω)

− 2
β−1
2 σ‖φ‖L6(Ω)‖u‖

β−1
2

L3(β−1)(Ω)
‖u− φ‖L6(Ω)‖u− φ‖

>− 2
β−1
2 σ‖φ‖

β+1
2

L
3(β+1)

2 (Ω)
‖u− φ‖‖u− φ‖V − 2

β−1
2 c2σ‖Φ‖V̂ ‖w‖

β−1
2

V̂
‖z‖‖z‖

V̂

>− c2
22βσ2

δ1

(
‖Φ‖β+1

V̂
+ ‖Φ‖2

V̂
‖w‖β−1

V̂

)
‖z‖2 − δ1

4
‖z‖2

V̂
, (3.17)

where we have also used Cauchy’s inequality, the embedding V ↪→ L6(Ω), V ↪→
L3(β−1)(Ω) and V ↪→ L

3(β+1)
2 (Ω), and c2 is a positive embedding constant depending

only on Ω. It then follows from (3.10), (3.11), (3.14) and (3.17) that

d

dt
‖z‖2 + δ1‖z‖2V̂ 6 ‖z‖2

(77c8
1

2δ7
1

‖Φ‖2‖∇Φ‖6 +
c2

22β+1σ2

δ1

(
‖Φ‖β+1

V̂
+ ‖Φ‖2

V̂
‖w‖β−1

V̂

))
.

(3.18)

For any τ ∈ R with τ < t, we integrate (3.18) over [τ, t] and use (2.10) to obtain

‖z(t)‖2 − ‖z(τ)‖2

6
∫ t

τ

(77c8
1

2δ7
1

‖Φ‖2‖∇Φ‖6 +
c2

22β+1σ2

δ1

(
‖Φ‖β+1

V̂
+ ‖Φ‖2

V̂
‖w‖β−1

V̂

)
− δ1

λ

)
‖z(θ)‖2dξ. (3.19)

Since w(t) and Φ(t) are bounded complete trajectories of equation (2.5), we obtain

from (2.11) that

‖Φ(t)‖2 +
δ1

λ

∫ t

τ
‖Φ(θ)‖2dθ 6 ‖Φ(τ)‖2 + (

λ

ν
‖f‖2 +

λ

γ
‖g‖2)(t− τ),

‖w(t)‖2 +
δ1

λ

∫ t

τ
‖∇w(θ)‖2dθ 6 ‖w(τ)‖2 + (

λ

ν
‖f‖2 +

λ

γ
‖g‖2)(t− τ),

‖Φ(t)‖2 + δ1

∫ t

τ
‖∇Φ(θ)‖2dθ 6 ‖Φ(τ)‖2 + (

λ

ν
‖f‖2 +

λ

γ
‖g‖2)(t− τ).

(3.20)

Therefore, 

lim sup
τ→−∞

1

t− τ

∫ t

τ
‖Φ(θ)‖2dθ 6

λ

δ1
(
λ

ν
‖f‖2 +

λ

γ
‖g‖2),

lim sup
τ→−∞

1

t− τ

∫ t

τ
‖∇w(θ)‖2dθ 6

λ

δ1
(
λ

ν
‖f‖2 +

λ

γ
‖g‖2),

lim sup
τ→−∞

1

t− τ

∫ t

τ
‖∇Φ(θ)‖2dθ 6

1

δ1
(
λ

ν
‖f‖2 +

λ

γ
‖g‖2),
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which implies for s ∈ (−∞, t] that

‖Φ(s)‖2 6 lim sup
τ→−∞

1

t− τ

∫ t

τ
‖Φ(θ)‖2dθ 6

λ

δ1
(
λ

ν
‖f‖2 +

λ

γ
‖g‖2),

‖∇w(s)‖2 6 lim sup
τ→−∞

1

t− τ

∫ t

τ
‖∇w(θ)‖2dθ 6

λ

δ1
(
λ

ν
‖f‖2 +

λ

γ
‖g‖2),

‖∇Φ(s)‖2 6 lim sup
τ→−∞

1

t− τ

∫ t

τ
‖∇Φ(θ)‖2dθ 6

1

δ1
(
λ

ν
‖f‖2 +

λ

γ
‖g‖2).

(3.21)

Now if (3.7) holds true, we infer from (3.21) for θ ∈ [τ, t] that

77c8
1

2δ7
1

‖Φ‖2‖∇Φ‖6 +
c2

22β+1σ2

δ1

(
‖Φ‖β+1

V̂
+ ‖Φ‖2

V̂
‖w‖β−1

V̂

)
− δ1

λ

6
77c8

1

2δ7
1

‖Φ(θ)‖‖∇Φ(θ)‖6 +
c2

22β+1σ2

δ1
(1 +

1

λ
)
β+1
2 ‖∇Φ(θ)‖β+1

+
c2

22β+1σ2

δ1
(1 +

1

λ
)
β+1
2 ‖∇Φ(θ)‖2‖∇w‖β−1 − δ1

λ

6
77c8

1

2δ7
1

G8 +
c2

22β+2σ2

δ1
(1 +

1

λ
)
β+1
2 Gβ+1 − δ1

λ
:= α < 0. (3.22)

Inserting (3.22) into (3.19) and then using Gronwall’s inequality, we have

‖z(t)‖2 6 ‖z(τ)‖2eα(t−τ), t > τ.

Letting τ → −∞ gives w(θ) = Φ(θ) for θ ∈ (−∞, t]. Particularly, w(θ) = Φ(θ) for

θ ∈ [0, t]. The proof of Lemma 3.2 is complete.

Recall that the partial regularity of the trajectory statistical solution means that it is

carried by a set in which all weak solutions are “partially” regular. Combining Corollary

3.1 and Lemma 3.2, we conclude that the statistical solution µσ,w̃ is “nearly” regular

(but not a.e. regular) on each interval R+. This Lusin type degenerate regularity result

of the statistical solution is stated as follows.

Theorem 3.1. Let F ∈ Ĥ and assumption (3.7) hold. Then, the trajectory statistical

solution µσ,w̃ guaranteed by Theorem 2.2 and Lemma 3.2 possesses the following Lusin’s

type degenerate regularity: for any ε > 0, there exists a subset R+(ε) ⊂ R+ such that

mes (R+(ε)) < ε and µσ,w̃ is regular on R+ \ R+(ε).

Proof. Let w̃(t) be the unique complete and bounded weak solution from Lemma 3.2.

For each j ∈ Z+ = {0, 1, 2, · · · } and for any ε > 0, we see from Corollary 3.1 and

Lemma 3.2 that there exists an interval E(ε, j) ⊂ Ij = [jϑ, (j + 1)ϑ] and a positive

constant Cε,j such that mes (E(ε, j)) < ε

22
j and

‖w̃(θ)‖2
V̂
6 Cε,j , ∀θ ∈ Ij \ E(ε, j). (3.23)
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Set R+(ε) =
⋃

j∈Z+

E(ε, j). We obviously have

mes (R+(ε)) 6
∑
j∈Z+

mes(E(ε, j)) 6
∑
j∈Z+

ε

22
j 6 ε.

At the same time, we have R+ =
⋃

j∈Z+

Ij , and by (3.23),

‖w̃(θ)‖2
V̂
< +∞, ∀θ ∈ R+ \ R+(ε).

This ends the proof.

4 Convergence of the trajectory statistical solution to that
of the 3D incompressible micropolar fluids flows

Let wσ ∈ Atr
σ and wσ → w in the topology Θ+

loc as σ → 0+, we will prove

that w is a bounded complete trajectory of the classical 3D incompressible micropolar

fluids flows (see equation (4.1) below), and that the trajectory statistical solution µσ,wσ
converges to the trajectory statistical solution µ0,w of equation (4.1) as σ → 0+.

Firstly, we select some known results concerning the following 3D incompressible

micropolar flows (see e.g. [42]):

ut − (ν + κ)∆u+ (u · ∇)u+∇p = 2κ∇× ω + f,
∇ · u = 0,
ωt − γ∆ω + (u · ∇)ω − η∇divω + 4κω = 2κ∇× u+ g,
u(x, t)

∣∣
t=0

= u0, u(x, t)
∣∣
∂Ω×(0,∞)

= 0,

ω(x, t)
∣∣
t=0

= ω0, ω(x, t)
∣∣
∂Ω×(0,∞)

= 0.

(4.1)

Excluding the pressure p, we can write, using the notations as in Section 2, the weak

form of problem (4.1) as

∂w

∂t
+Aw +Bw + Lw = F, in D′((0,∞); V̂ ∗), (4.2)

w(0) = w0 = (u0, ω0). (4.3)

Definition 4.1. ( [42]) A weak solution to problem (4.2)-(4.3) on [0,∞) is an Ĥ-valued

function w(t) = (u(t), ω(t)) defined on [0,∞) with w(0) = w0 = (u0, ω0), such that
dw

dt
∈ L4/3

loc ([0,∞);V ∗), w(·) ∈ C([0,∞); Ĥw) ∩ L2
loc([0,∞); V̂ )

(
dw

dt
,Φ) + 〈Aw,Φ〉+

〈
Bw,Φ

〉
+ 〈Lw,Φ〉 = (F,Φ), ∀Φ ∈ V̂ ,

holds in the distribution sense D′(0,∞), and w(t) satisfies the following energy inequal-

ity

1

2
‖w(t)‖2 +

∫ t

0
〈Aw(s), w(s)〉ds+

∫ t

0

〈
Lw(s), w(s)

〉
ds 6

1

2
‖w0‖2 +

∫ t

0

(
F,w(s)

)
ds
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in the sense that

− 1

2

∫ t

0
‖w(s)‖2ξ′(s)ds+

∫ t

0
〈Aw(s), w(s)〉ξ(s)ds+

∫ t

0
〈Lw(s), w(s)〉ξ(s)ds

6
∫ t

0

(
F,w(s)

)
ξ(s)ds, ∀ ξ(·) ∈ C∞0 ([0, t]) with ξ(t) > 0, ∀ t > 0. (4.4)

Lemma 4.1. ( [42]) Let w0 = (u0, ω0) ∈ Ĥ and suppose F ∈ Ĥ. Then, problem (4.2)-

(4.3) possesses at least one weak solution w(t) = w(t;w0) corresponding to the initial

value w0. Moreover, there exists a time t′∗ > 0 yielding

w(t) ∈ X, ∀ t > t′∗, (4.5)

where X is given by (2.8).

The trajectory space T +
0 and kernel K0 of equation (4.2) is defined respectively as

T +
0 = {w(·) : w(·) is a weak solution of (4.2) and w(t) ∈ X for all t ∈ R+},

K0 = {w(·) : w(·) is a weak solution of (4.2) and w(t) ∈ X for all t ∈ R}.

Lemma 4.2. ( [42]) Let F ∈ Ĥ.

(a) The translation semigroup {T (t)}t>0 defined by (2.13) possesses a trajectory at-

tractor Atr
0 ⊂ T

+
0 with respect to the topology Θ+

loc:

Atr
0 = Π+K0 = {u(·)|[0,∞)

∣∣ u ∈ K0} ⊂ T +
0 . (4.6)

(b) For a given generalized Banach limit LIMt→+∞ and for each w ∈ T +
0 , there

corresponds a unique Borel probability measure µ0,w on F+ such that∫
F+

ζ(z)dµ0,w(z) = LIMt→+∞
1

t

∫ t

0
ζ(T (s)w)ds, ∀ζ ∈ C(F+). (4.7)

Moreover, µ0,w is supported by Atr
0 and is a trajectory statistical solution for

equation (4.2), and µ0,w is invariant under the acting of {T (t)}t>0 in the following

sense∫
F+

ζ(T (t)z)dµ0,w(z) =

∫
F+

ζ(z)dµ0,w(z), ∀ t > 0, ∀ζ ∈ C(F+). (4.8)

We now prove the convergence of solution of equation (2.5) to that of equation (4.2)

as σ → 0+.

Lemma 4.3. Let a sequence wσn(·) ∈ T +
σn, n ∈ N, satisfy the following conditions:

(I) σn → 0+ as n→∞; (II) wσn(·)→ w(·) in the topology Θ+
loc as n→∞.

Then, w ∈ T +
0 .
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Proof. We first prove that w satisfies (4.2). In fact, since wσn(·) ∈ T +
σn , wσn(·) satisfies

for each T > 0 that

∂wσn
∂t

+Awσn +Bwσn +Nσnwσn + Lwσn = F, in D′(0, T ; V̂ ∗). (4.9)

From (2.35) we infer that both the nonlinear terms Bwσn and Nσnwσn are uniformly

(with respect to n ∈ N) bounded in L4/3([0, T ]; V̂ ∗). Hence, by (2.36) and condition

(II), we have as σn → 0+ that

∂wσn
∂t

⇀
∂w

∂t
weakly in L4/3(0, T ; V̂ ∗),

Awσn ⇀ Aw weakly in L2(0, T ; V̂ ∗),

Bwσn ⇀ Bw weakly in L4/3(0, T ; V̂ ∗),

Nσnwσn ⇀ 0 weakly in L2(0, T ; V̂ ∗),

Lwσn ⇀ Lw weakly in L4/3(0, T ; V̂ ∗).

(4.10)

(4.9) and (4.10) imply

∂w

∂t
+Aw +Bw + Lw = F, in D′(0, T ; V̂ ∗). (4.11)

The fact that w(·) meets (4.4) can be proved by using (2.49) and (4.10). By (4.11) and

the same derivations of Lemma 2.1, we conclude that w(·) satisfies (4.5). The proof is

complete.

Next we set Bσ = {wσ | wσ ∈ T +
σ , ‖wσ‖Bσ 6 c(R), for all wσ ∈ Bσ}, where c(R)

is a positive constant which depends only on R and can be chosen for our purpose, and

‖wσ‖Bσ = sup
t>0
‖wσ(t)‖+ sup

t>0
(

∫ t+1

t
‖wσ(θ)‖2

V̂
dθ)1/2 + sup

t>0
(

∫ t+1

t
‖∂twσ(θ)‖3/4

V̂ ∗
dθ)3/4.

Lemma 4.4. Let σ ∈ (0, 1]. Then

T (t)Bσ → Atr
0 in the topology Θ+

loc as t→ +∞ and σ → 0+, (4.12)

where (4.12) is interpreted in following sense: for {wσ}0<σ61 with wσ ∈ Bσ, there is

some w ∈ Atr
0 such that T (t)wσ → w in the topology Θ+

loc as t→ +∞ and σ → 0+.

Proof. We prove (4.14) by contradiction. Assume that there is a neighbourhood O(Atr
0 )

of Atr
0 in the topology Θ+

loc and two sequences σn → 0+, tn → +∞ as n → ∞, such

that

T (tn)Bσn 6⊂ O(Atr
0 ). (4.13)

Then there is a solution wσn ∈ Bσn such that

zσn(t) := T (tn)wσn(t) 6∈ O(Atr
0 ). (4.14)
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Notice that zσn(t) is a solution of equation (2.5) with σ = σn on the interval [−tn,+∞)

and zσn(t) is the backward time shift of the solution wσn(t) by tn. By the definition of

Bσ, we have that

sup
t>−tn

‖zσn(t)‖+ sup
t>−tn

(

∫ t+1

t
‖zσn(θ)‖2

V̂
dθ)1/2

+ sup
t>−tn

(

∫ t+1

t
‖∂θzσn(θ)‖3/4

V̂ ∗
dθ)3/4 6 c(R). (4.15)

For every T > 0, we consider σn with the index n such that tn > T . Then (4.15)

implies that we can extract a subsequence (still denote by) {zσn(·)} and a function

z(t), t ∈ (−T, T ), such that
zσn ⇀ z weakly star in L∞([0, T ]; Ĥ) as n→∞,
zσn ⇀ z weakly in L2([0, T ]; V̂ ) as n→∞,
zσn ⇀

dz
dt weakly in L4/3([0, T ]; V̂ ∗) as n→∞.

(4.16)

Using the standard diagonal procedure, we can construct a function z(t), t ∈ R, such

that

zσn(·)→ z(·) in the topology Θ+
loc as n→∞. (4.17)

By Lemma 4.3 we see that z(·) ∈ T tr
0 . This fact, together with (4.15) and (4.17),

implies that z ∈ K0. Now, by (4.6) we have Π+z ∈ Π+K0 = Atr
0 . Eq. (4.17) shows that

Π+zσn → Π+z in the topology Θ+
loc as n→∞.

Therefore, we have for large enough n that

Π+zσn ∈ O(Π+z) ⊂ O(Atr0 ),

which contradicts (4.13). The proof is complete.

Lemma 4.4 implies the convergence of the trajectory attractor Atr
σ to Atr

0 as σ → 0+.

The convergence of this type was investigated in [36] for the convective Brinkman-

Forchheimer equations.

At this stage, we can state and prove the main results of this section.

Theorem 4.1. Suppose that F ∈ Ĥ. Let Atr
σ and Atr

0 be the trajectory attractors

guaranteed by Theorem 2.1 and Lemma 2.2(I), respectively. Let that wσ ∈ Atr
σ and

wσ → w in the topology Θ+
loc as σ → 0+, and that µσ,wσ and µ0,w be the trajectory

statistical solutions guaranteed by Theorem 2.2 and Lemma 4.2(b), respectively. Then

Atr
σ → Atr

0 in the topology Θ+
loc as σ → 0+, (4.18)

lim
σ→0+

∫
F+

ζ(z)dµσ,wσ(z) =

∫
F+

ζ(z)dµ0,w(z),∀ζ ∈ C(F+). (4.19)
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Proof. From (2.8), (2.11), (2.35) and the definition ‖ · ‖Bσ , we see that the family

{Atr
σ }0<σ61 is uniformly (with respect to σ ∈ (0, 1]) bounded when we choose c(R)

large enough. Applying Lemma 4.4 with Bσ = Atr
σ and the invariant property of Atr

σ ,

we obtain by letting t→ +∞ that

Atr
σ = T (t)Atr

σ → Atr
0 in the topology Θ+

loc as σ → 0+,

that is, (4.18) is proved.

Now, let wσ ∈ Atr
σ such that wσ → w in the topology Θ+

loc as σ → 0+. By Lemma

4.3 we see that w ∈ Atr
0 . Then, Theorem 2.2 and Lemma 4.2(b) show that there exist

trajectory statistical solutions µσ,wσ and µ0,w corresponding respectively to wσ and w,

and that for a given generalized Banach limit LIMt→+∞ and for any ζ ∈ C(F+) there

holds 
∫
F+

ζ(z)dµσ,wσ(z) = LIMt→+∞
1

t

∫ t

0
ζ(T (s)wσ)ds,∫

F+

ζ(z)dµ0,w(z) = LIMt→+∞
1

t

∫ t

0
ζ(T (s)w)ds.

(4.20)

Since that LIMt→+∞ is a linear continuous functional, ζ ∈ C(F+) and that wσ → w in

the topology Θ+
loc as σ → 0+, by (4.20) we have

lim
σ→0+

∫
F+

ζ(z)dµσ,wσ(z) = lim
σ→0+

LIMt→+∞
1

t

∫ t

0
ζ(T (s)wσ)ds

=LIMt→+∞
1

t

∫ t

0
ζ(T (s) lim

σ→0+
wσ)ds

=LIMt→+∞
1

t

∫ t

0
ζ(T (s)w)ds

=

∫
F+

ζ(z)dµ0,w(z),

where we have also used the continuity of the translation semigroup T (·) on F+ with

respect to the topology Θ+
loc (cf. [8]). The proof is complete.
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