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1. Introduction

1.1. Setting of the problem. In this paper, we are interested in the convergence problem for
the following type of time-fractional parabolic equations:

CDα
t u+Au = F (x, t, u(x, t)), in Ω× (0, T ],

u(x, 0) = u0(x), in Ω,

u(x, t) = 0, in ∂Ω.

(1)

where Ω be an open and bounded domain in RN , (N ≥ 1) with smooth boundary ∂Ω. The
notation CDα

t means the Caputo time-fractional derivative of order α ∈ (0, 1) (see Definition
2.2). In the first equation of Problem (1), A is a symmetric and uniformly elliptic operator on Ω
defined by

Af(x) =
N∑
i=1

∂

∂xi

( k∑
j=1

aij(x)
∂

∂xj
f(x)

)
− b(x)f(x), x ∈ Ω,

where aij ∈ C1(Ω), b ∈ C(Ω; [0,+∞)), and aij = aji, 1 ≤ i, j ≤ N . We assume that there exists

a constant c0 > 0 such that, for x ∈ Ω, y = (y1, y2, ..., yN ) ∈ RN ,
∑N

i,j=1 yiaij(x)yj ≥ c0|y|2.
(see [16]). More detailed properties related to A can be found at the beginning of Section 2.

Fractional partial differential equations (FPDE) of the form (1) have many applications in
various fields, for example, physics and probability theory. These equations model anomalous
diffusion where time-fractional derivatives can be used to describe particles adhesion and trap-
ping phenomena. Fractional derivatives have been used for more than 300 years, but, like the
Pareto distribution with no mean, these derivatives are present in the physical sciences because
of relatively recent observations of anomalous diffusion, see [13]. There are many new models
related to fractional differential equations with different approaches, which have attracted the
attention of many mathematicians, for example [6, 9, 16, 18, 20–24] and references therein. The
well-posedness of problem (1) (including the existence and uniqueness of mild solution) with
several different assumptions on the function F has been clarified in the interesting book [8].
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In various research directions concerning FPDEs, researchers are interested in the convergence
problem when the fractional order tends to 1−. Our main purpose in this paper is to provide
some answers to this open question: If the problem (1) has a solution, what asymptotic property
does the solution possess when the fractional order α approaches 1−?. The significance of the
convergence problem for Problem (1) is given by the following question

(Q1) Does the solution of Problem (1) with 0 < α < 1 approach the solution of Problem (1) with
α = 1 as α approaches 1−?

This is an interesting and open question suggested by Carvalho-Neto and Planas [15]. This
intriguing problem was also raised and investigated in the recent book [8] (see Section 3.5, p.127).
In this book, Gal and Warma addressed the limiting behavior of the mild solution as α → 1−

for a class of parabolic problems with polynomial nonlinearities. The relationship between the
solutions of fractional PDEs and classical PDEs is a very interesting topic for mathematicians.
while the structure of the solution of Problem (1) depends on the Caputo derivative and the
Mittag-Leffler functions, the solution of Problem (1) (α = 1) depends on the classical derivative
with exponential functions. Noting that, if F = 0, then the solution to Problem (1) is given by

uα(t) = Eα,1(−tαA)u0, (2)

when 0 < α < 1, and by

u∗(t) = e−tAu0, (3)

when α = 1. As showed by [8] (see p. 28), the operator e−tA has a semi-group structure, namely

e−(t+s)A = e−tAe−sA, while the semigroup property does not hold for the operator Eα,1(−tαA),
namely, Eα,1(−(t+ s)αA) 6= Eα,1(−tαA)Eα,1(−sαA). The great difference between the structure
of Eα,1(−tαA) in (2) and e−tA in (3) is the main challenge in finding an answer to question Q1.
Since the solution structure of (1), as indicated by (2), is related to the Mittag-Leffler function,
the idea of question Q1 in the simple case F = 0 is expressed simply as the following two questions:

(Q2) Does the function Eα,1(−tαA), with 0 < α < 1, approach the function e−tA with α = 1, in
an appropriate sense, as α approaches 1−?

and

(Q3) Does the function CDα
t v (Caputo derivative of the function v) approach Dtv (the classical

first degree derivative of v) in appropriate sense as α approaches 1−?

It would be surprising if these issues related to questions Q1, Q2 or Q3 would not have been
thoroughly studied. Let us refer the reader to the interesting recent work of Chen-Stynes [5]
where it can be found the following facts:

In the simple linear case Au = −p∂2u
∂x2

and F (x, t, u) = −cu + f , the question (Q1) is first
studied in [5] for a linear fractional diffusion equation

CDα
t u− puxx + cu = f. (4)

When α → 1−, they showed that the solution uα of Problem (4) converges, uniformly to the
solution of the classical parabolic initial-boundary value problem where Dα

t is replaced by Dt.
They also provided an interesting result which describes the connection between the Mittag-Leffler
function Eα,β and the exponential function as follows.

Lemma 1.1. Let 3/4 ≤ α < 1 and α ≤ β ≤ 1. Then there exists a constant C which is
independent of α, β, z such that, for any z < 0,∣∣∣Eα,β(z)− ez

∣∣∣ ≤ C

1 + |z|
(1− α). (5)
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The main analysis in the proof of Lemma 1.1 is based on the extension of the Mittag-Leffler
function which is represented as a complex contour integral. Lemma 1.1 is very useful in investi-
gating linear problems. However, we are not sure that Lemma 1.1 can be successfully applied to
the nonlinear problem. In order to study the problem in the nonlinear case, and use embeddings
in Lp, we need a different result. Thus, we need to state another theorem about the convergence
of Eα,1 when α approaches 1−, using a new proof.

To the best of our knowledge, except for the article [5] (and [8] as mentioned above), there have
been no studies concerning both proving global results and answering questions Q1, Q2, Q3. From
the previous motivations, the main objective of this paper is to provide accurate and detailed
answers to these problems.

1.2. MAIN RESULTS. In order to study further on this topic, we need to establish a more
detailed relationship between both functions Eα,1(z) and Eα,α(z) with ez. In the following
theorem, we will answer questions Q2 and Q3 as introduced before. Our main results are stated
as follows.

Theorem 1.2. a) Let v : [0, T ] → R such that Dtv ∈ L∞(0, T ) and further assume that Dtv
and CDα

t v are locally integrable functions. Then, for 0 < α ≤ 1,∣∣∣CDα
t v(t)−Dtv(t)

∣∣∣ ≤ 3

Γ(1− α)
t−αM̃α(T, p)

∥∥Dv∥∥
Lp(0,T )

, (6)

where ∥∥Dv∥∥
Lp(0,T )

=

(ˆ T

0
|Dsv(s)|pds

) 1
p

(7)

and p > 1
α and

M̃α(T, p) =

[
p(1− α)

αp− 1
+ T − 1− p− 1

αp− 1

(
T
αp−1
p−1 − 1

)] p−1
p

+
∣∣∣Γ(α)− 1

Γ(α)

∣∣∣ ( p− 1

αp− 1

) p−1
p

T
αp−1
p . (8)

b) Let v : [0, T ] → L2(Ω) and and further assume that Dtv and CDα
t v are locally integrable

functions. Then∥∥∥CDα
t v(t)−Dtv(t)

∥∥∥
L2(Ω)

≤ 3

Γ(1− α)
t−αM̃α(T, p)

∥∥Dv∥∥
Lp(0,T ;L2(Ω))

(9)

where ∥∥Dv∥∥
Lp(0,T ;L2(Ω))

=

(ˆ T

0

∥∥Dsv(s)
∥∥p
L2(Ω)

ds

)1/p

.

c) Let k > 0 and α ∈ (0, 1). Then for any µ > 0, there exists two constants C(µ, p, T ) and

C̃(µ, p, T ) such that ∣∣∣Eα,1(−ktα)− e−kt
∣∣∣ ≤ 3C(µ, p, T )

Γ(1− α)
t−αM̃α(T, p)k

µ−1
p , (10)

and ∣∣∣ˆ t

0
(t− s)α−1Eα,α(−k(t− s)α)ds−

ˆ t

0
e−k(t−s)ds

∣∣∣ ≤ 3C̃(µ, p, T )

Γ(1− α)
t−αM̃α(T, p)k

µ−1
p
−1

(11)
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Remark 1.1. Let us point out an interesting observation: if a measurable function is bounded
on (0,∞), then it is locally integrable there. To satisfy the above assumptions, we can assume
that Dtv and CDα

t v are measurable function which are bounded on (0,∞).

Theorem 1.2 is one of the basis to prove our main results. The main idea of the proof of this
theorem is detailed in Section 3.

Based on the above theorem, we first investigate the convergence problem for the fractional
diffusion equation (1) in the case F = F (x, t). The following theorem shows that the mild solution
of (1), when 0 < α < 1, converges to the mild solution of (12) when α→ 1−, where u∗ solves

Dtu
∗ +Au∗ = F (x, t), in Ω× (0, T ],

u∗(x, 0) = u0(x), in Ω,

u∗(x, t) = 0, in ∂Ω.

(12)

Theorem 1.3. Let u0 ∈ Lq(Ω) and F ∈ L∞(0, T ;Lq(Ω)) for max
(

1, 2pN
pN+4

)
< q ≤ 2, p > 1

α .

Then we have the following statement∥∥∥uα − u∗∥∥∥
Ld(0,T ;L

2N
N−4θ (Ω))

. M̃α(T, p)
[ ∥∥u0

∥∥
Lq(Ω)

+
3

Γ(1− α)

∥∥F∥∥
L∞(0,T ;Lq(Ω))

]
. (13)

where d > 1
α and M̃α(T, p) is defined by (8). Here the hidden constant is independent of α and

the constant θ satisfies

0 ≤ θ < min
(N

4
,
1 + pN

4 −
pN
2q

p

)
. (14)

The idea to prove Theorem 1.3 is to apply Theorem 1.2 and some Sobolev embeddings between
Lp and Hilbert scales (see Lemma 2.1).

Our last main result is concerned with the limit problem for the nonlinear fractional diffusion
equation. Let us study the following nonlinear fractional diffusion equation with Caputo derivative

CDα
t uα +Auα = F (uα(x, t)), uα(0) = u0, (15)

and the nonlinear parabolic diffusion equation with classical derivative

Dtu
∗ +Au∗ = F (u∗(x, t)), u∗(0) = u0. (16)

The following theorem shows that the mild solution of (15) converges to the mild solution of
(16) when α→ 1−.

Theorem 1.4. Let F : Lr(Ω)→ Lm(Ω) such that F (0) = 0 and

‖F (ψ1)− F (ψ2)‖Lm(Ω) ≤ Kf‖ψ1 − ψ2‖Lr(Ω), (17)

for any ψ1, ψ2 ∈ Lr(Ω). Here Kf is a postive constant and two numbers m, r are chosen such

that 1 ≤ m ≤ r and 1
m −

1
r <

2α
N . Let u0 ∈ X

N(r−2)
4r

−γ(Ω) for any 0 < γ < 1. Then there exists a
postive β0 > 0 such that Problem (15) has a unique mild solution in Zb,β0((0, T ];Lr(Ω)) where b
satisfies that

N

2

(
1

m
− 1

r

)
− α < b < min

(
1, α− N

2

(
1

m
− 1

r

))
.

Let us assume that m, r, p,N satisfy that 2
m −

2
r + 1 < 4

pN + 4
N . Let us assume that the initial

condition u0 ∈ X
N(r−2)

4r
+
µ0−1
p (Ω) ∩ Lr(Ω), then Problem (15) has a unique mild solution uα ∈
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Zb,β0((0, T ];Lr(Ω)). Furthermore, we obtain the following estimate∥∥uα − u∗∥∥Zb,β0 ((0,T ];Lr(Ω))
≤ 6C(µ0, p, T )T b−α

Γ(1− α)
M̃α(T, p)

∥∥u0

∥∥
X
N(r−2)

4r +
µ0−1
p (Ω)

+
6KfT

b−αC̃(µ, p, T )

Γ(1− α)
M̃α(T, p)

∥∥u∗∥∥
L∞(0,T ;Lr(Ω))

, (18)

where u∗ is the unique mild solution to Problem (16). Here Zb,β0((0, T ];Lr(Ω)) is defined in (21).

Remark 1.2. Using Proposition 4.1, under the initial condition u0 ∈ Lr(Ω), by the same method
as Theorem 1.4, we can show that Problem (16) has a unique solution u∗ ∈ L∞(0, T ;Lr(Ω)). We
omit the details of the proof.

Remark 1.3. The convergence behavior of solution to Problem (15) with a source of polynomial
type is showed in [2,8,14] and references given there. Although we share the same topic with the
above works, because of a different chosen case of source function, our results are novel. Indeed,
the existence of global solution without any restriction on initial data when F satisfies (17) is not
trivial. Our techniques used to derive the existence of global solution and convergence results in
this paper are also different from those in [2, 8, 14].

In Section 2, we introduce some notations on functional spaces, Riemann-Liouville integral and
its properties. Section 3 will provide the proof of Theorem 1.2. The proof of Theorem 1.3 and
Theorem 1.4 will be given in Section 4.

2. Notation and Preliminaries

Given r ∈ (1,∞) we denote by r∗ its Hölder conjugate, i.e., the real number such that 1
r+ 1

r∗ = 1.
By a . b we will denote that a ≤ Cb for a constant C which does not depend on a, b and neither
on the discretization parameters.

We consider the operator A acting on W 2,2
∗ (Ω) := W 1,2

0 (Ω) ∩W 2,2(Ω) ⊂ L2(Ω). Then, there

exist sequences {λj}j≥1 and {ej}j≥1 ⊂ W 2,2
∗ (Ω) which are the eigenvalues and eigenvectors of

−A respectively. It is well known that {λj}j≥1 are positive, non-decreasing and limj→∞ λj =∞
(see [19]). Moreover, −Aej = λjej . The sequence

{
ej

}
, j = 1, 2, 3... forms an orthonormal basis

of L2(Ω), see e.g. [12]. Let Xs(Ω), s ≥ 0, be the space which is defined in following form

Xs(Ω) =

{
v ∈ L2(Ω)

∣∣∣∣ ‖v‖2Xs(Ω) :=
∞∑
j=1

λ2s
j

(ˆ
Ω

v(x)ej(x)dx

)2

<∞

}
, (19)

and we call Xs(Ω) by a Hilbert scales space (see p. 1452, [16]). For s = 0, we have X0(Ω) = L2(Ω)
with the usual norm ‖·‖. We identify the dual space

[
L2(Ω)

]∗
with L2(Ω), and thus we can set

X−s(Ω) := [Xs(Ω)]∗ with

‖v‖2X−s(Ω) :=
∞∑
j=1

λ−2s
j 〈v, ej〉2−s,s, (20)

where 〈·, ·〉−s,s is the duality bracket between Xs(Ω) and X−s(Ω). More detailed information
about these spaces can be found in [8, 16].

Let Zb,β((0, T ];X) denote the weighted space of all functions v ∈ C((0, T ];X) such that

‖v‖Zb,β((0,T ];X) := sup
t∈(0,T ]

tbe−βt‖v(t, ·)‖X <∞,

where b, β > 0 (see [4]).
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Lemma 2.1. (see [16]) The following statements hold true:
a) If s = N

4 , p ≥ 1 or if 0 ≤ s < N
4 and 1 ≤ p ≤ 2N

N−4s , then we have the following Sobolev
embedding

Xs(Ω) ↪→W 2s,2(Ω) ↪→ Lp(Ω) (21)

b) If −N
4
< s ≤ 0 and p ≥ 2N

N − 4s
, then we have the following Sobolev embedding

Lp(Ω) ↪→W 2s,2(Ω) ↪→ Xs(Ω) (22)

Operators Eα,1(−tαA) and E1,1(−tαA) , 0 < α < 1, 0 < β ≤ 1 are defined by

Eα,1(−tαA)v =
∞∑
j=1

Eα,1(−tαλj)〈v, ej〉ej , E1,1(−tαA)v =
∞∑
j=1

e−tλj 〈v, ej〉ej (23)

for any v ∈ L2(Ω).

2.1. Fractional integral and derivative. We recall some definitions introduced in [8, 10].

Definition 2.2. If the function ψ is absolutely continuous in time, the Caputo derivative is the
following function

CDα
t ψ(t) =

1

Γ(1− α)

ˆ t

0
(t− s)−αψ′(s)ds, (24)

where Γ is the Gamma function and ψ′(s) is the first order integer derivative of function ψ(s)
with respect to its independent variable s.

Definition 2.3. The Riemann–Liouville fractional integral operator of order α > 0 of a locally
integrable function ψ : (0,∞)→ R is defined by

Jαψ(t) =

ˆ t

0

(t− s)α−1

Γ(α)
ψ(s)ds.

Remark 2.1. If the function ψ is absolutely continuous in time, then

cDα
t ψ(t) := J1−αψ′(t), t ≥ 0,

2.2. Wright function.

Definition 2.4. The symbol Mα denotes the Wright type function introduced by [10]

Mα(r) =
∞∑
n=0

rn

n!Γ(1− α(1 + n))
, r ∈ C.

This function is an entire function on C. The Mittag-Leffler function is expressed by Eα,1(−z) =´∞
0 Mα(η)e−zηdη, z ∈ C.

3. Proof of Theorem (1.2)

3.1. Proof of Part a). In the following sentences, we present the challenge of assessing (1.2) as
follows. In a first logical thought, we deal directly with the difference of CDα

t v and Dtv. However,
we are stuck at some components. Therefore, the direction of thinking about direct evaluation is
prevented.

Our novel ideas are discovered unexpectedly and interestingly as follows. First, we apply the
Riemann–Liouville fractional integral operator Jα to the difference of CDα

t v and Dtv, denoted

W̃α(t) which is given by (25). After several estimations, we process the upper bound of W̃α(t)

as given in (39). In the next step, we compute the Caputo derivative of W̃α(t) in terms of itself



NEW RESULTS FOR CONVERGENCE PROBLEM 7

(see (41)). The well-known formula Jα
(
CDα

t

)
f(t) = f(t) − f(0) (see [10]) allows us to deduce

the desired result (1.2) since we have the following lucky fact that W̃α(0) = 0.
In the sequel, we will present, in a detailed way, the proof of part a). Set the following function

W̃α(t) = Jα
(
CDα

t v(t)−Dtv(t)
)

= Jα
(
CDα

t v(t)− Γ(α)Dtv(t)
)

+
(

Γ(α)− 1
)
JαDtv(t) = W̃ (1)

α (t) + W̃ (2)
α (t). (25)

Since Dtv and CDα
t v are locally integrable functions, it follows from Definition (2.3) that W̃α is

well-defined. Our next aim is to estimate the quantity W̃α(t).

Step 1. Estimate of the term W̃
(1)
α (t).

First, we need to find an upper bound for the term W̃
(1)
α (t). Thanks to the formula Jα

(
CDα

t

)
v(t) =

v(t) − v(0) (see [10]) and recalling that Jα is defined by Definition 2.3, we derive the following
equality

W̃ (1)
α (t) = Jα

(
CDα

t v(t)− Γ(α)Dtv(t)
)

= Jα
(
CDα

t v(t)
)
− Γ(α)Jα

(
Dtv(t)

)
=
[
v(t)− v(0)−

ˆ t

0
(t− s)α−1Dsv(s)ds

]
=

ˆ t

0

[
1− (t− s)α−1

]
Dsv(s)ds. (26)

To continute further, we consider two cases.
Case 1. 0 ≤ t ≤ 1. For this case, it is easy to see that 1− (t− s)α−1 < 0. Thus, we deduce that

|1− (t− s)α−1| = −1 + (t− s)α−1. Thanks to the Hölder inequality, we derive that∣∣∣W̃ (1)
α (t)

∣∣∣ =
∣∣∣Jα(CDα

t v(t)− Γ(α)Dtv(t)
)∣∣∣

≤
ˆ t

0

∣∣∣1− (t− s)α−1
∣∣∣|Dsv(s)|ds

≤
(ˆ t

0

(
(t− s)α−1 − 1

)p∗
ds

) 1
p∗
(ˆ t

0
|Dsv(s)|pds

) 1
p

≤
(ˆ t

0

(
(t− s)α−1 − 1

)p∗
ds

) 1
p∗ ∥∥Dv∥∥

Lp(0,T )
, (27)

where we remind (7) and we choose 0 < β ≤ α0. Our next aim is to provide an upper bound for
the integral term on the right hand side of (27). It is not difficult to see that if 0 ≤ a ≤ b then,
for any µ ≥ 1, we have (b− a)µ ≤ bµ − aµ. Thus, we find the following estimate(ˆ t

0

(
(t− s)α−1 − 1

)p∗
ds

) 1
p∗

≤
(ˆ t

0

[
(t− s)(α−1)p∗ − 1

]
ds

) 1
p∗

=
[ p− 1

αp− 1
t
αp−1
p−1 − t

] p−1
p
. (28)

It is easy to verify that the derivative of the function Φ(t) = p−1
αp−1 t

αp−1
p−1 −t is Φ′(t) = t

p(α−1)
p−1 − 1 > 0

for any 0 < α < 1 and 0 < t ≤ 1. This implies that the function Φ is increasing on [0, 1], so we

arrive at Φ(t) ≤ Φ(1) = p−1
αp−1 − 1 = p(1−α)

αp−1 . The latter inequality, together with (27) and (28),

leads to ∣∣∣W̃ (1)
α (t)

∣∣∣ ≤ [p(1− α)

αp− 1

] p−1
p
∥∥Dv∥∥

Lp(0,T )
. (29)
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Case 2. t ≥ 1. In this case, we know that the function 1 − s1−α is negative for s ∈ (0, 1) and
positive for s > 1. Hence, after changing variables for integration and (26), we have∣∣∣W̃ (1)

α (t)
∣∣∣ =

∣∣∣Jα(CDα
t v(t)− Γ(α)Dtv(t)

)∣∣∣ =
∣∣∣ ˆ t

0

[
1− (t− s)α−1

]
Dsv(s)

∣∣∣ds
≤
(ˆ t

0

∣∣∣1− (t− s)α−1
∣∣∣p∗ds) 1

p∗
(ˆ t

0
|Dsv(s)|pds

) 1
p

≤
(ˆ t

0

∣∣∣1− (t− s)α−1
∣∣∣p∗ds) 1

p∗ ∥∥Dv∥∥
Lp(0,T )

. (30)

It is easy to check that
ˆ t

0

∣∣∣1− (t− s)α−1
∣∣∣p∗ds =

ˆ t

0

∣∣∣1− sα−1
∣∣∣p∗ds

=

ˆ 1

0

[
sα−1 − 1

]p∗
ds+

ˆ t

1

[
1− sα−1

]p∗
ds. (31)

Using (b− a)µ ≤ bµ − aµ, for any 0 ≤ a ≤ b and µ ≥ 1, we arrive at

ˆ 1

0

[
sα−1 − 1

]p∗
ds ≤

ˆ 1

0

[
s(α−1)p∗ − 1

]
ds =

p(1− α)

αp− 1
. (32)

and ˆ t

1

[
1− sα−1

]p∗
ds ≤

ˆ t

1

[
1− s(α−1)p∗

]
ds = t− 1− p− 1

αp− 1

(
t
αp−1
p−1 − 1

)
. (33)

Set Ψ(t) = t − 1 − p−1
αp−1

(
t
αp−1
p−1 − 1

)
for 1 ≤ t ≤ T . Its derivative is Ψ′(t) = 1 − t

αp−p
p−1 > 0, t ≥

1, αp−pp−1 < 0. Thus, we obtain immediately that

ˆ t

1

[
1− sα−1

]p∗
ds ≤ Ψ(t) ≤ Ψ(T ) = T − 1− p− 1

αp− 1

(
T
αp−1
p−1 − 1

)
. (34)

Combining (31), (32) and (34), we find that

(ˆ t

0

∣∣∣1− (t− s)α−1
∣∣∣p∗ds) 1

p∗ ≤

[
p(1− α)

αp− 1
+ T − 1− p− 1

αp− 1

(
T
αp−1
p−1 − 1

)] p−1
p

. (35)

It follows from (30) and (29) that∣∣∣W̃ (1)
α (t)

∣∣∣ =
∣∣∣Jα(CDα

t v(t)− Γ(α)Dtv(t)
)∣∣∣

≤

[
p(1− α)

αp− 1
+ T − 1− p− 1

αp− 1

(
T
αp−1
p−1 − 1

)] p−1
p ∥∥Dv∥∥

Lp(0,T )
, (36)

for any t > 0.

Step 2. Estimate W̃
(2)
α (t).

Now, Definition 2.3 and the definition of W̃
(2)
α (t) in (25) imply

W̃ (2)
α (t) =

(
Γ(α)− 1

)
JαDtv(t) =

Γ(α)− 1

Γ(α)

ˆ t

0
(t− s)α−1Dsv(s)ds. (37)
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For this step, using the Hölder inequality and noting that p > 1
α , it is straightforward to see that∣∣∣W̃ (2)

α (t)
∣∣∣ ≤ ∣∣∣Γ(α)− 1

Γ(α)

ˆ t

0
(t− s)α−1Dsv(s)ds

∣∣∣
≤
∣∣∣Γ(α)− 1

Γ(α)

∣∣∣ (ˆ t

0
(t− s)(α−1)p∗ds

) 1
p∗
(ˆ t

0
|Dsv(s)|pds

) 1
p

≤
∣∣∣Γ(α)− 1

Γ(α)

∣∣∣ ( p− 1

αp− 1

) p−1
p

T
αp−1
p
∥∥Dv∥∥

Lp(0,T )
. (38)

Therefore, Step 2 is completed.

On account of (25), (36) and (38), we deduce an upper bound for the term W̃α(t) as follows∣∣∣W̃α(t)
∣∣∣ = W̃ (1)

α (t) + W̃ (2)
α (t) ≤ M̃α(T, p)

∥∥Dv∥∥
Lp(0,T )

. (39)

where we recall that M̃α(T, p) is defined in (8).
Notice that the following equality

CDα
t J

α
(
CDα

t v(t)−Dtv(t)
)

= CDα
t v(t)−Dtv(t) = CDα

t W̃α(t),

the fact that W̃α(0) = 0, and the definition of CDα
t for the function W̃α(t), allow us to obtain

the following equality

CDα
t v(t)−Dtv(t) = CDα

t W̃α(t) =
t−α

Γ(1− α)
W̃α(t)

+
α

Γ(1− α)

ˆ t

0
(t− s)−α−1

[
W̃α(t)− W̃α(s)

]
ds. (40)

Due to the estimate (39), we bound the second term on the right hand side of the above expression
as follows∣∣∣ˆ t

0
(t− s)−α−1

[
W̃α(t)− W̃α(s)

]
ds
∣∣∣ ≤ 2M̃α(T, p)

∥∥Dv∥∥
Lp(0,T )

ˆ t

0
(t− s)−α−1ds

=
2M̃α(T, p)

∥∥Dv∥∥
Lp(0,T )

α
t−α. (41)

For any t ≥ 0, this leads to∣∣∣CDα
t v(t)−Dtv(t)

∣∣∣ ≤ t−α

Γ(1− α)

∣∣∣W̃α(t)
∣∣∣+
∣∣∣ ˆ t

0
(t− s)−α−1

[
W̃α(t)− W̃α(s)

]
ds
∣∣∣

≤ 3

Γ(1− α)
t−αM̃α(T, p)

∥∥Dv∥∥
Lp(0,T )

. (42)

3.2. Proof of Part b). In the case v = v(x, t) and v : [0, T ]→ L2(Ω), we deduce that∥∥∥W̃ (1)
α (t)

∥∥∥
L2(Ω)

=
∥∥∥ˆ t

0

[
1− (t− s)α−1

]
Dsv(s)ds

∥∥∥
L2(Ω)

≤
ˆ t

0

∣∣∣1− (t− s)α−1
∣∣∣ ∥∥Dsv(s)

∥∥
L2(Ω)

ds.

(43)

By a similar argument as in (36), we find that

∥∥∥W̃ (1)
α (t)

∥∥∥
L2(Ω)

≤

[
p(1− α)

αp− 1
+ T − 1− p− 1

αp− 1

(
T
αp−1
p−1 − 1

)] p−1
p ∥∥Dv∥∥

Lp(0,T ;L2(Ω))
, (44)
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for any t > 0, and we notice that∥∥Dv∥∥
Lp(0,T ;L2(Ω))

=

(ˆ T

0

∥∥Dsv(s)
∥∥p
L2(Ω)

ds

)1/p

.

By a similar argument as in (38), we find that∥∥∥W̃ (1)
α (t)

∥∥∥
L2(Ω)

≤
∣∣∣Γ(α)− 1

Γ(α)

∣∣∣ ( p− 1

αp− 1

) p−1
p

T
αp−1
p
∥∥Dv∥∥

Lp(0,T ;L2(Ω))
. (45)

In the same spirit as in the proof of (42), we also obtain the desired result (9).

3.3. Proof of Part c). Set ψα(k, t) = Eα,1(−ktα) and ψ(k, t) = E1,1(−kt). It is obvious to see
that

CDα
t ψα(k, t) = −kψα(k, t), ψα(k, 0) = 1,

and Dtψ(k, t) = −kψ(k, t), ψ(k, 0) = 1. These equations give that ψ(k, t) = e−kt which implies
d
dtψ(k, t) = −ke−kt. Therefore, using the inequality 1 − e−z ≤ Cµz

µ for any µ > 0, it is obvious
to find that ∥∥∥ d

dt
ψ(k, t)

∥∥∥
Lp(0,T )

=
( ˆ T

0

(
ke−kt

)p
dt
)1/p

= k
1− 1

p p−1/p
(

1− e−kpT
)1/p

≤ Cµk1+µ−1
p p

µ−1
p Tµ/p = C(µ, p, T )k

1+µ−1
p , (46)

where in the above expression, we set C(µ, p, T ) = Cµp
µ+1
p Tµ/p. Set %α(k, t) = ψα(k, t)−ψ(k, t).

It is straightforward to check that

CDα
t %α(k, t) = −k%α(k, t) + CDα

t ψ(k, t)−Dtψ(k, t), %α(k, 0) = 0. (47)

Multiplying both sides of (47) by %α(k, t) and using the inequality

CDα
t %α(k, t)%α(k, t) ≥ 1

2
CDα

t |%α(k, t)|2,

we arrive at

1

2
CDα

t |%α(k, t)|2 + k|%α(k, t)|2 =
〈
CDα

t ψ(k, t)−Dtψ(k, t), %α(k, t)
〉
. (48)

From the latter estimate, noting that∣∣∣〈CDα
t ψ(k, t)−Dtψ(k, t), %α(k, t)

〉∣∣∣ ≤ ∣∣∣CDα
t ψ(k, t)−Dtψ(k, t)

∣∣∣∣∣∣%α(k, t)
∣∣∣,

we obtain that

k|%α(k, t)| ≤
∣∣∣CDα

t ψ(k, t)−Dtψ(k, t)
∣∣∣ ≤ 3

Γ(1− α)
t−αM̃α(T, p)

∥∥∥ d
dt
ψ(k, t)

∥∥∥
Lp(0,T )

≤ 3C(µ, p, T )

Γ(1− α)
t−αM̃α(T, p)k

1+µ−1
p . (49)

This implies the following estimate∣∣∣Eα,1(−ktα)− e−kt
∣∣∣ = |%α(k, t)| ≤ 3C(µ, p, T )

Γ(1− α)
t−αM̃α(T, p)k

µ−1
p . (50)

We continue to show the second part which is showed similarly as for the previous term. Set the
following functions

wα(k, t) =

ˆ t

0
(t− s)α−1Eα,α(−k(t− s)α)F (s)ds, w(k, t) =

ˆ t

0
e−k(t−s)F (s)ds. (51)



NEW RESULTS FOR CONVERGENCE PROBLEM 11

It is easy to verify that CDα
t wα(k, t) = −kwα(k, t) + F (t), wα(k, 0) = v0 and Dtw(k, t) =

−kw + F (t), w(k, 0) = v0. By letting zα(k, t) = wα(k, t)− w(k, t), we find that

CDα
t zα(k, t) = −kzα(k, t) + CDα

t w(k, t)−Dtw(k, t), zα(k, 0) = 0. (52)

Multiplying both sides of (52) by zα(k, t) and using the inequality

CDα
t zα(k, t)zα(k, t) ≥ 1

2
CDα

t |zα(k, t)|2,

we derive that

1

2
CDα

t |zα(k, t)|2 + k|zα(k, t)|2 =
〈(

CDα
t w(k, t)−Dtψ(k, t)

)
zα(k, t)

〉
, (53)

which allows us to obtain

k|zα(k, t)|2 ≤
〈(

CDα
t w(k, t)−Dtψ(k, t)

)
zα(k, t)

〉
≤
∣∣∣CDα

t w(t)−Dtw(t)
∣∣∣|zα(k, t)|.

This inequality, together with part a) of Theorem 1.2, implies

k|zα(k, t)| ≤
∣∣∣CDα

t w(t)−Dtw(t)
∣∣∣ ≤ 3

Γ(1− α)
t−αM̃α(T, p)

∥∥∥Dw∥∥∥
Lp(0,T )

. (54)

Let us continue to estimate the term
∥∥∥Dw∥∥∥

Lp(0,T )
on the right hand side of the latter expression.

Indeed, by a simple calculation and setting F = 1, we have

Dtw(t) = −kw + F (t) = −k
ˆ t

0
e−k(t−s)ds+ 1 = e−kt.

In view of the inequality 1− e−z ≤ Cµzµ for any µ > 0, we obtain∥∥∥Dw∥∥∥
Lp(0,T )

=
(ˆ T

0
e−ktpdt

)1/p
≤ CµTµ/pp

µ−1
p k

µ−1
p = C̃(µ, T, p)k

µ−1
p . (55)

This, together with (54), leads to the desired result.

4. Proof of Theorem 1.3 and Theorem 1.4

4.1. Proof of Theorem 1.3. From the paper [8], we have the following mild solution to Problem
(1) in the case F = F (x, t)

uα(t) = Eα,1(−tαA)u0 +

ˆ t

0
(t− s)α−1Eα,α(−(t− s)αA)F (s)ds. (56)

The mild solution to Problem (12) is defined by

u∗(t) = E1,1(−tαA)u0 +

ˆ t

0
E1,1(−(t− s)A)F (s)ds. (57)

By subtracting both sides of the latter equations, we have

uα(t)− u∗(t) =
(
Eα,1(−tαA)u0 − E1,1(−tαA)u0

)
+

ˆ t

0
(t− s)α−1Eα,α(−(t− s)αA)F (s)ds−

ˆ t

0
E1,1(−(t− s)A)F (s)ds = J1(t) + J2(t). (58)
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Take any 0 ≤ θ < N
4 . By using Parseval’s equality and the estimate (10) as in Theorem 1.2, we

deduce

∥∥∥Eα,1(−tαA)u0 − E1,1(−tαA)u0

∥∥∥
Xθ(Ω)

=

√√√√√ ∞∑
j=1

λ2θ
j

∣∣∣Eα,1(−λjtα)− E1,1(−λjt)
∣∣∣2(ˆ

Ω

u0(x)ej(x)dx

)2

≤ 3C(µ, p, T )

Γ(1− α)
M̃α(T, p)t−α

[ ∞∑
j=1

λ
2θ+ 2µ−2

p

j

(ˆ
Ω

u0(x)ej(x)dx

)2]1/2

=
3C(µ, p, T )

Γ(1− α)
M̃α(T, p)t−α

∥∥u0

∥∥
Xθ+

µ−1
p (Ω)

. (59)

Since max
(

1, 2pN
pN+4

)
< q ≤ 2, we know that 1 + pN

4 > pN
2q . Let us recall θ as in (14). If we set

µ = 1 + p
(
Nq−2N

4q − θ
)

, then by the above condition on θ, we immediately obtain that µ > 0 and

Xθ+
µ−1
p (Ω) = X

Nq−2N
4q (Ω). In view of Lemma 2.1, noticing that 1 < q ≤ 2, we derive the Sobolev

embedding Lq(Ω) ↪→ Xθ+
µ−1
p (Ω) = X

Nq−2N
4q (Ω). In addition, from (14) and using again Lemma

2.1, we have Xθ(Ω) ↪→ L
2N
N−4θ (Ω). These observations, together with (59), yield to∥∥∥J1

∥∥∥
L

2N
N−4θ (Ω)

=
∥∥∥Eα,1(−tαA)u0 − E1,1(−tαA)u0

∥∥∥
L

2N
N−4θ (Ω)

≤ C(N, θ)
∥∥∥Eα,1(−tαA)u0 − E1,1(−tαA)u0

∥∥∥
Xθ(Ω)

≤ C̃1M̃α(T, p)t−α
∥∥u0

∥∥
Lq(Ω)

, (60)

where C̃1 depends on p, q,N, θ, T, α. Let us now estimate the second term on the right hand side
of (58). Using Parseval’s equality and estimate (11) as in Theorem (1.2), we have that, for any
µ > 0 and p > 1

α ,∥∥∥ˆ t

0
(t− s)α−1Eα,α(−(t− s)αA)F (s)ds−

ˆ t

0
E1,1(−(t− s)A)F (s)ds

∥∥∥
Xθ(Ω)

≤

( ∞∑
j=1

λ2θ
j

∣∣∣ ˆ t

0
(t− s)α−1Eα,α(−λj(t− s)α)ds−

ˆ t

0
E1,1(−λj(t− s))ds

∣∣∣2(ˆ
Ω

F (x, s)ej(x)dx

)2) 1
2

≤ 3C̃(µ, p, T )

Γ(1− α)
M̃α(T, p)t−α

[ ∞∑
j=1

λ
2θ+ 2µ−2

p
−2

j

(ˆ
Ω

F (x, s)ej(x)dx

)2]1/2

=
3C̃(µ, p, T )

Γ(1− α)
M̃α(T, p)t−α

∥∥F (·, s)
∥∥
Xθ+

µ−1
p −1

(Ω)
. (61)

By the same techniques as before, we know that the Sobolev embedding below is true

Lq(Ω) ↪→ Xθ+
µ−1
p (Ω) ↪→ Xθ+

µ−1
p
−1

(Ω).

This implies that
∥∥F (·, s)

∥∥
Xθ+

µ−1
p −1

(Ω)
≤
∥∥∥F∥∥∥

L∞(0,T ;Lq(Ω))
, which yields

∥∥∥J2

∥∥∥
L

2N
N−4θ (Ω)

≤ 3C̃(µ, p, T )

Γ(1− α)
M̃α(T, p)t−α

∥∥∥F∥∥∥
L∞(0,T ;Lq(Ω))

. (62)
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Combining (58), (60) and (62), we derive that∥∥∥uα(t)− u∗(t)
∥∥∥
L

2N
N−4θ (Ω)

≤ t−αM̃α(T, p)
[
C̃1

∥∥u0

∥∥
Lq(Ω)

+
3C̃(µ, p, T )

Γ(1− α)

∥∥∥F∥∥∥
L∞(0,T ;Lq(Ω))

]
. (63)

Therefore, we achieve the desired result (13). The proof is completed.

4.2. Proof of Theorem 1.4. In order to show the existence of the mild solution to Problem
(15), we need to use next two results.

Proposition 4.1. There exists a positive constant C such that, for any 1 ≤ m ≤ r,∥∥e−tAϕ∥∥
Lr(Ω)

≤ C(m, r)t−
N
2

( 1
m
− 1
r

)‖ϕ‖Lm(Ω), t > 0, ϕ ∈ Lm(Ω). (64)

Proof. For the proof, see [11, Lemma 2.3]. �

First we state the following lemma which will be useful in our main results (this lemma can
be found in [4], Lemma 8, page 9).

Lemma 4.1. Let a > −1, b > −1 such that a + b ≥ −1, d > 0 and t ∈ [0, T ]. For d > 0, the
following limit holds

lim
µ→∞

(
sup
t∈[0,T ]

td
ˆ 1

0
sa(1− s)be−µt(1−s)ds

)
= 0.

In the first part, we show the existence and uniqueness of the mild solution to Problem (15).
Define the mapping Q : Zb,β((0, T ];Lr(Ω))→ Zb,β((0, T ];Lr(Ω)), β > 0, by

Qψ(t) := Eα,1(−tαA)u0 +

ˆ t

0
(t− s)α−1Eα,α(−(t− s)αA)F (ψ(s))ds. (65)

In what follows, we shall prove the existence of a unique solution of Problem (65). This is based

on the Banach principle argument. Thanks to the Sobolev embedding X
N(p−2)

4p (Ω) ↪→ Lr(Ω), the
Parseval equality and the boundedness of Mittag-Leffler functions, we find that∥∥∥Eα,1(−tαA)u0

∥∥∥2

Lr(Ω)
.
∥∥∥Eα,1(−tαA)u0

∥∥∥2

X
N(r−2)

4r (Ω)

≤
∞∑
j=1

(ˆ
Ω

u0(x)ej(x)dx

)2 (
Eα,1

(
−λ2

j t
α
))2

λ
N(r−2)

2r
j

=
∞∑
j=1

(ˆ
Ω

u0(x)ej(x)dx

)2
C2

(1 + λjtα)2γ
λ
N(r−2)

2r
j

≤ C2t−2αγ‖u0‖2
X
N(r−2)

4r −γ(Ω)
. (66)

It follows from the assumption b > αγ that

tbe−βt
∥∥∥Eα,1(−tαA)u0

∥∥∥
Lp(Ω)

≤ T b−αγ‖u0‖
X
N(r−2)

4r −γ(Ω)
.

This inequality also implies that if ψ = 0 then Qψ belongs to the space Zb,β((0, T ];Lr(Ω)). In
the following, we need to estimate the upper bound for the term ‖Qψ1(t)−Qψ2(t)‖Lr(Ω) for any

ψ1, ψ2 ∈ Zb,β((0, T ];Lr(Ω)). It is noted that

Eα,α(−(t− s)αA)F (ψ(s)) = α

ˆ ∞
0

νMα(ν)e−ν(t−s)αAF (ψ(s)),
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using the globally Lipschitz property of F and Proposition 4.1, we arrive at

‖Qψ1(t)−Qψ2(t)‖Lr(Ω) ≤ α
ˆ t

0
(t− s)α−1

ˆ ∞
0

νMα(ν)

∥∥∥∥∥e−ν(t−s)αA
[
F (ψ1(s))− F (ψ2(s))

]∥∥∥∥∥
Lr(Ω)

dνds

≤ αC
ˆ t

0
(t− s)α−1

ˆ ∞
0

ν−
N
2

( 1
m
− 1
r

)(t− s)−
N
2

( 1
m
− 1
r

)Mα(ν)
∥∥∥F (ψ1(s))− F (ψ2(s))

∥∥∥
Lm(Ω)

dνds

≤
αCKfΓ(1− N

2 ( 1
m −

1
r ))

Γ(1− αN
2 ( 1

m −
1
r ))

ˆ t

0
(t− s)α−1−N

2
( 1
m
− 1
r

)
∥∥ψ1(s, .)− ψ2(s, .)

∥∥
Lr(Ω)

ds (67)

where we have used the following identity
´∞

0 ν−
N
2

( 1
m
− 1
r

)Mα(ν)dν =
Γ(1−N

2
( 1
m
− 1
r

))

Γ(1−αN
2

( 1
m
− 1
r

))
, since condi-

tion N
2 ( 1

m −
1
r ) < 1 holds. Multiplying both sides of the above expression by tbe−βt and by simple

transformation, we obtain

‖Qψ1 −Qψ2‖Zb,β((0,T ];Lr(Ω)) ≤
αCKfMβΓ(1− N

2 ( 1
m −

1
r ))

Γ(1− αN
2 ( 1

m −
1
r ))

‖ψ1 − ψ2‖Zb,β((0,T ];Lr(Ω)) (68)

where

Mβ = sup
t∈(0,T ]

tb
ˆ t

0
(t− s)α−1−N

2
( 1
m
− 1
r

)s−be−β(t−s)ds

= tb+α−
N
2

( 1
m
− 1
r

)

ˆ 1

0
(1− z)α−1−N

2
( 1
m
− 1
r

)z−be−βt(1−z)dz. (69)

It is easy to verify the following conditions b+α− N
2 ( 1

m −
1
r ) > 0, α− 1− N

2 ( 1
m −

1
r ) > −1, −b >

−1, α − N
2 ( 1

m −
1
r ) ≥ b. In view of Lemma 4.1, we infer that Mβ → 0 when β tends to infinity.

Hence, there exists a positive β0 > 0 such that
αCKfMβΓ(1−N

2
( 1
m
− 1
r

))

Γ(1−αN
2

( 1
m
− 1
r

))
≤ 1

2 , which allows us to

deduce that Q is a contraction mapping on Zb,β0((0, T ];Lr(Ω)). This, together with (42), leads
to Qψ ∈ Zb,β((0, T ];Lr(Ω)) if ψ ∈ Zb,β0((0, T ];Lr(Ω)). Hence, we conclude that Q has a fixed
point u in Zb,β0((0, T ];Lr(Ω)), i.e, u is a unique mild solution of Problem (65) under the condition

u0 ∈ X
N(r−2)

4r
−γ(Ω). If we let γ = 1−µ0

p ∈ (0, 1) if 0 < µ0 < 1, then Problem (65) has a unique

solution in Zb,β0((0, T ];Lr(Ω)).
In the second part, we show that the mild solution to Problem (15) converges to the mild solution
to Problem (16) when α→ 1−.

Let u∗ be a solution of the following classical parabolic problem (16). It follows from [7] that
the mild solution u∗ is given by the formula

u∗(t) = E1,1(−tA)u0 +

ˆ t

0
E1,1(−(t− s)A)F (u∗(s))ds, (70)

where we recall that E1,1(−tA) = e−tA. In the next estimates, we compare both functions uα
and u∗. From the above identities, we can divide the differences of the mild solution of Problem
(15) and the mild solution of (16) into the sum of three terms as follows

uα(t)− u∗(t) =
[
Eα,1(−tαA)− E1,1(−tA)

]
u0

+

ˆ t

0
(t− s)α−1Eα,α(−(t− s)αA)

[
F (uα(s))− F (u∗(s))

]
ds

+

ˆ t

0

[
(t− s)α−1Eα,α(−(t− s)αA)− E1,1(−(t− s)αA)

]
F (u∗(s))ds = (I) + (II) + (III).

(71)
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For the first term on the right hand side of (71), we apply the same techniques as in (59) and
(66) to derive that∥∥∥[Eα,1(−tαA)− E1,1(−tA)

]
u0

∥∥∥
Lr(Ω)

.
∥∥∥Eα,1(−tαA)u0 − E1,1(−tA)u0

∥∥∥
X
N(r−2)

4r (Ω)

≤

√√√√√ ∞∑
j=1

(ˆ
Ω

u0(x)ej(x)dx

)2(
(Eα,1 (−λjtα)− (E1,1 (−λjt)

)2

λ
N(r−2)

2r
j

≤ 3C(µ0, p, T ) (Γ(1− α))−1 M̃α(T, p)t−α
∥∥u0

∥∥
X
N(r−2)

4r +
µ0−1
p (Ω)

, µ0 > 0. (72)

It follows from the latter estimate and b ≥ α that∥∥(I)
∥∥
Zb,β0 ((0,T ];Lr(Ω))

≤ 3C(µ0, p, T ) (Γ(1− α))−1 M̃α(T, p)T b−α
∥∥u0

∥∥
X
N(r−2)

4r +
µ0−1
p (Ω)

. (73)

For the second term on the right hand side of (71), we observe that (II) = Quα − Qu∗ and
applied (67) to obtain that

∥∥(II)
∥∥
Zb,β0 ((0,T ];Lr(Ω))

≤
αCKfMβ0Γ(1− N

2 ( 1
m −

1
r ))

Γ(1− αN
2 ( 1

m −
1
r ))

‖uα − u∗‖Zb,β((0,T ];Lr(Ω)) . (74)

As for the last term on the right hand side of (71), we use the similar techniques as in (61),

∥∥(III)(t)
∥∥
Lr(Ω)

≤ 3C̃(µ, p, T )

Γ(1− α)
M̃α(T, p)t−α

[ ∞∑
j=1

λ
N(r−2)

2r
+ 2µ−2

p
−2

j

(ˆ
Ω

F (u∗(x, s))ej(x)dx

)2]1/2

.

(75)

Notice that

∞∑
j=1

λ
N(r−2)

2r
+ 2µ−2

p
−2

j

(ˆ
Ω

F (u∗(x, s))ej(x)dx

)2

=

∞∑
j=1

λ
N(r−2)

2r
+ 2µ−2

p
−2

j λ
N(m−2)

2m
j

(ˆ
Ω

F (u∗(x, s))ej(x)dx

)2

≤

 ∞∑
j=1

λ
N
m
−N
r

+ 2µ−2
p
−2

j

∥∥F (u∗)
∥∥
L∞(0,T ;X

N(m−2)
4m (Ω))

≤

 ∞∑
j=1

λ
N
m
−N
r

+ 2µ−2
p
−2

j

∥∥F (u∗)
∥∥
L∞(0,T ;Lm(Ω))

, (76)

where we have used the Sobolev embedding Lm(Ω) ↪→ X
Nm−2N

4m (Ω) for 1 < m < 2. Since the

condition 2
m −

2
r + 1 < 4

pN + 4
N holds, we multiply both sides of this condition by pN

4 to deduce

p+ pN
2r + 1− pN

2m −
pN
4 > 0. By choosing µ such that 0 < µ < p+ pN

2r + 1− pN
2m −

pN
4 , it is easy to

verify that

N

m
+

2µ

p
<
N

m
+

2

p

(
p+

pN

2r
+ 1− pN

2m
− pN

4

)
=
N

r
+

2

p
+ 2− N

2
. (77)
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From the constraint (77), we deduce N
m −

N
r + 2µ−2

p − 2 < 0. Thus, we arrive at the following

observation
∞∑
j=1

λ
N
m
−N
r

+ 2µ−2
p
−2

j =

∞∑
j=1

1

λ
N
r

+ 2
p

+2−N
m
− 2µ

p

j

≤ 1

C

∞∑
j=1

1

j

(
N
r

+ 2
p

+2−N
m
− 2µ

p

)
2
N

,

where we note that λj ≥ Cj2/N . Due to (77), it is easy to verify that the condition is true(
N
r + 2

p + 2− N
m −

2µ
p

)
2
N > 1 holds true. Therefore, the infinite sum

∑∞
j=1

1

j(
N
r +2

p+2−Nm−
2µ
p ) 2

N

is

convergent and it holds that the series on the right hand side of (76),
∑∞

j=1 λ
N
m
−N
r

+ 2µ−2
p
−2

j , is

convergent. In addition, the globally Lipschitz property of F as in (17) gives us∥∥F (u∗)
∥∥
L∞(0,T ;Lm(Ω))

≤ Kf

∥∥u∗∥∥
L∞(0,T ;Lr(Ω))

. (78)

It follows from (75) that∥∥(III)
∥∥
Zb,β((0,T ];Lr(Ω))

.
3Kf C̃(µ, p, T )

Γ(1− α)
M̃α(T, p)T b−α

∥∥u∗∥∥
L∞(0,T ;Lr(Ω))

. (79)

Combining (73), (74) and (79), we deduce that∥∥uα − u∗∥∥Zb,β0 ((0,T ];Lr(Ω))
≤
∥∥(I)

∥∥
Zb,β0 ((0,T ];Lr(Ω))

+
∥∥(II)

∥∥
Zb,β0 ((0,T ];Lr(Ω))

+
∥∥(III)

∥∥
Zb,β0 ((0,T ];Lr(Ω))

≤ 3C(µ0, p, T ) (Γ(1− α))−1 M̃α(T, p)T b−α
∥∥u0

∥∥
X
N(r−2)

4r +
µ0−1
p (Ω)

+
αCKfMβ0Γ(1− N

2 ( 1
m −

1
r ))

Γ(1− αN
2 ( 1

m −
1
r ))

‖uα − u∗‖Zb,β0 ((0,T ];Lr(Ω))

+
3Kf C̃(µ, p, T )

Γ(1− α)
M̃α(T, p)T b−α

∥∥u∗∥∥
L∞(0,T ;Lr(Ω))

. (80)

Since
αCKfMβ0

Γ(1−N
2

( 1
m
− 1
r

))

Γ(1−αN
2

( 1
m
− 1
r

))
≤ 1

2 , we obtain the desired result (18).
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