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Abstract This paper deals with fractional stochastic nonlocal partial differential equations driven

by multiplicative noise. We first prove the existence and uniqueness of solution to this kind of

equations with white noise by applying the Galerkin method. Then, the existence and uniqueness

of tempered pullback random attractor for the equation are ensured in an appropriate Hilbert

space. When the fractional nonlocal partial differential equations are driven by colored noise,

which indeed are approximations of the previous ones, we show the convergence of solutions of

Wong-Zakai approximations and the upper semicontinuity of random attractors of the approxi-

mate random system as δ → 0.
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1 Introduction

In this paper, we mainly consider the following stochastic fractional nonlocal reaction-diffusion

equation driven by multiplicative white noise,
∂u
∂t + a(l(u))(−∆)γu = f(u) + h(t) + αu ◦ dWdt ,

u = 0,

u(x, τ) = uτ (x),

in O × (τ,∞),

on ∂O × (τ,∞),

in O,

(1.1)

where (−∆)γ , γ ∈ (0, 1), stands for the fractional Laplacian operator, O is a smooth bounded

domain of Rn, τ ∈ R, α is a positive constant, l ∈ L(L2(O);R) and h ∈ L2
loc(R;L2(O)). The

symbol ◦ indicates that the equation is understood in the sense of Stratonovich integration.

Throughout this paper, the function a ∈ C(R;R+) and there exist two positive constants m and

M , such that

m ≤ a(s) ≤M, ∀s ∈ R. (1.2)
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Moreover, the function f ∈ C(R) and there exist positive constants Cf , κ, β1 and β2 > 1, such

that for some p ≥ 2,

(f(s)− f(r))(s− r) ≤ Cf (s− r)2, ∀s, r ∈ R. (1.3)

−κ− β1|s|p ≤ f(s)s ≤ κ− β2|s|p, ∀s ∈ R. (1.4)

From (1.4), we deduce there exists a constant β3 > 1, such that

|f(s)| ≤ β3(|s|p−1 + 1), ∀s ∈ R. (1.5)

The identification l(u) in (1.1) is in fact (l, u), however, we keep the usual notation in the existing

previous literature l(u) instead of (l, u) for the operator l acting on u. At last, let (Ω,F , {Ft}t∈R,P)

be a complete filtered probability space with a filtration {Ft}t∈R satisfying the usual condition,

that is, {Ft}t∈R is an increasing right continuous family of sub-σ-algebras of F that contains all

P-null sets. W of (1.1) is a two-sided cylindrical Wiener process in a Hilbert space defined on

this complete filtered probability space (Ω,F , {Ft}t∈R,P).

The operator (−∆)γ with γ ∈ (0, 1) denotes the fractional Laplacian, which has properties

that limγ→1−(−∆)γu = −∆u and limγ→0+(−∆)γu = u (see [28, Proposition 4.4]). Recently

in the literature, great attention has been devoted to the study of fractional partial differential

equations, not only for pure academic interest, but also for various applications in physics, finance,

probability and materials science, see, e.g., [1, 19, 24, 25] and the references therein. In fact,

there are different definitions about fractional Laplacian operator [28]. Two well-known and

widely studied fractional Laplacian operators are integral one (which reduces to the classical

fractional Laplacian, see, for example, [6, 8, 30, 31] and the references therein) and the spectral

one (sometimes called the local, fractional Laplacian; see, for example, [7, 9, 32, 33] and the

references therein), respectively. Note that these two fractional operators are different, indeed, the

spectral operator depends on the domain O considered (since its eigenfunctions and eigenvalues

depend on O), while the integral one (−∆)γ evaluated at some point is independent of the domain

in which the equation is set, for more details, see [31] and the references therein.

In our paper, we focus on the integral fractional format (see Section 2) since the solutions

of (1.1) with integral operator are closely related to the solutions of the equation defined on the

entire domain Rn (see [37]). In general, defining this operator based on the spectral decomposition

of the Dirichlet Laplacian is also frequently used, as adopted in [29].

On the one hand, in the real world, the different stochastic perturbations originate from

many natural sources. Sometimes, they cannot be ignored and we need to incorporate them

into the corresponding deterministic models, in this way, the stochastic differential equations are

produced. In more recent decades, the random attractors for stochastic equations related to the

standard Laplacian have been extensively studies in the literature, see, e.g., [2, 4, 5, 10, 11, 12,

13, 17, 18, 20, 23, 27, 41] and the references therein. However, as far as the authors are aware, the

attractors of the fractional stochastic PDEs are not well studied, until recently B. X. Wang and
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his collaborators have been intensively working on a class of non-autonomous fractional PDEs,

see [34, 35, 36, 37, 38, 39, 40]. On the other hand, since 1990, Chipot et al. [14, 15, 16] studied the

behavior of a population of bacteria with nonlocal term in a container and extended the nonlocal

effects from a constant a into a general nonlocal operator a(l(·)) which is adopted in our model.

Motivated by these previous works, it is interesting to study the dynamics of (1.1).

To prove the existence and uniqueness of problem (1.1), one advantage is fractional Laplacian

operator (−∆)γ , γ ∈ (0, 1), shares the same property of classical Laplacian operator, namely,

Hγ(O) is compactly embedded in L2(O) for a bounded domain O ⊂ Rn (e.g., [28]), which allows

us to use the parallel ideas as classical reaction-diffusion equations to analyse the dynamics of

problem (1.1). The difficulty appearing in our problem is the “double” nonlocal terms: one is the

well-known fractional Laplacian (−∆)γ (see (2.1)), that cannot provide us enough dissipativity

when directly doing energy estimates; a(l(·)) is another nonlocal term accompanying fractional

Laplacian operator. However, an a priori estimates shows the regularity of our solutions could

arrive at L2(τ, τ +T ;Hγ(Rn)) that is a subspace of L2(τ, τ +T ;L2(Rn)). Therefore, a Nemytskii

operator including nonlocal term a(l(·)) to problem (2.11) is introduced so that problem (1.1)

can be solved smoothly.

This paper is structured as follows. The next section is devoted to introduce the definitions

of fractional Laplacian operator and Ornstein-Uhlenbeck process, set the fractional stochastic

nonlocal problem into a random one in a proper way. In Section 3, we mainly prove the existence

and uniqueness of solution to fractional stochastic nonlocal PDEs (2.4) using the Galerkin method,

thereupon a continuous cocycle is defined based on this solution operator. Section 4 is fully

dedicated to prove the existence and uniqueness of tempered pullback random attractor for our

problem in an appropriate Hilbert space. In Section 5, we discuss the Wong-Zakai approximated

equation of our model, construct another cocycle and study the dynamics of this approximated

equation with multiplicative colored noise in comparison to the dynamics established in the

previous sections. Finally, the last section deals with the convergence of solutions and attractors

of problem (2.4) as δ → 0.

2 Preliminaries

In this section, we will recall the concept of integral fractional Laplacian operator and in-

troduce the definition of solutions of the stochastic nonlocal reaction-diffusion equations with

fractional Laplacian (1.1).

2.1 Fractional setting

Let S be the Schwartz space of rapidly decaying C∞ functions on Rn. For any fixed 0 < γ < 1,
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for every u ∈ S, the fractional Laplacian operator (−∆)γ at the point x is defined by,

(−∆)γu(x) = −1

2
C(n, γ)

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2γ
dy, x ∈ Rn, (2.1)

where C(n, γ) is a positive constant given by

C(n, γ) =
γ4γΓ(n+2γ

2
)

π
n
2 Γ(1− γ)

, (2.2)

for more details on the integral fractional Laplacian operators, see [28] and the references therein.

It can be also defined using Fourier transform by

F((−∆)γu)(ξ) = |ξ|2γ(Fu), ξ ∈ Rn,

where F is the Fourier transform defined by

(Fu)(ξ) =
1

(2π)n/2

∫
Rn
e−ix·ξu(x)dx, u ∈ S.

For any real 0 < γ < 1, the fractional Sobolev space W γ,2(Rn) := Hγ(Rn) is defined by:

Hγ(Rn) =

{
u ∈ L2(Rn) :

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2γ
dxdy <∞

}
,

endowed with the norm

‖u‖Hγ(Rn) =

(∫
Rn
|u(x)|2dx+

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2γ
dxdy

) 1
2

.

From now on, we denote by ‖ · ‖p the norm in Lp(Rn) for some p ≥ 2. Especially, we denote by

‖ · ‖ and (·, ·) the norm and the inner product of L2(Rn), respectively. Moreover, the Gagliardo

semi-norm of Hγ(Rn) denoted by ‖ · ‖Ḣγ(Rn) is written as:

‖u‖2
Ḣγ(Rn)

=

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2γ
dxdy, u ∈ Hγ(Rn).

Thus, ‖u‖2Hγ(Rn) = ‖u‖2 + ‖u‖2
Ḣγ(Rn)

for all u ∈ Hγ(Rn). Note that Hγ(Rn) is a Hilbert space

with inner product

(u, v)Hγ(Rn) =

∫
Rn
u(x)v(x)dx+

∫
Rn

∫
Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2γ
dxdy, ∀u, v ∈ Hγ(Rn).

By [28], the norm ‖u‖Hγ(Rn) is equivalent to
(
‖u‖2 + ‖(−∆)

γ
2 u‖2

) 1
2

for u ∈ Hγ(Rn). More

precisely, we have

‖u‖2Hγ(Rn) = ‖u‖2 +
2

C(n, γ)
‖(−∆)

γ
2 u‖2, ∀u ∈ Hγ(Rn). (2.3)
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We will relate the integral fractional Laplacian with solutions of problem (1.1). Since (−∆)γ

of (2.1) is obvious a nonlocal operator, we here interpret the homogeneous Dirichlet boundary

(1.1) as u = 0 on Rn\O instead of u = 0 only on ∂O (consistent with the nonlocal character of

(−∆)γ), then problem (1.1) becomes
∂u
∂t + a(l(u))(−∆)γu = f(u) + h(t) + αu ◦ dWdt ,

u = 0,

u(x, τ) = uτ (x),

x ∈ O, t > τ,

x ∈ Rn\O, t > τ,

x ∈ O.

(2.4)

Based on this interpretation, we define two spaces V = {u ∈ Hγ(Rn) : u = 0 a.e. on Rn\O}
and H = {u ∈ L2(Rn) : u = 0 a.e. on Rn\O}, their dual spaces are V ∗ and H, respectively.

Furthermore, let b : V × V → R be a bilinear form given by, for v1, v2 ∈ V ,

b(v1, v2) = µ(v1, v2) +
1

2
C(n, γ)

∫
Rn

∫
Rn

(v1(x)− v1(y))(v2(x)− v2(y))

|x− y|n+2γ
dxdy, (2.5)

where C(n, γ) is the same as in (2.2) and µ is also a constant given later. For convenience, we

associate an operator A : V → V ∗ with b such that

< A(v1), v2 >(V ∗,V )= b(v1, v2), for all v1, v2 ∈ V, (2.6)

where < ·, · >(V ∗,V ) is the duality paring of V ∗ and V .

In order to prove our results in the fractional framework, the properties of operator A intro-

duced in [37] are considered: On the one hand, since A is injective and surjective, the inverse

A−1 : V ∗ → V is well-defined; On the other hand, two facts that H = H∗ ⊂ V ∗ and the

embedding V ↪→ H is compact (see, e.g., [28]) yield that A−1 : H → V ⊂ H is a symmetric

compact operator. Then, by means of the Hilbert-Schmidt theorem, A has a family of eigenfunc-

tions {ej}∞j=1 which forms an orthonormal basis of H. Moreover, if λj denotes the eigenvalue of

operator A corresponding to ej , i.e.,

Aej = λjej , j = 1, 2, · · · ,

then λj satisfies

0 < µ < λ1 ≤ λ2 ≤ · · · ≤ λj →∞ as j →∞.

The following lemma is crucial to deal with the nonlinearity f in (2.4) with arbitrary growth

order.

Lemma 2.1 [37, Lemma 2.1] Suppose 0 < γ < 1, 2 ≤ p < ∞ and r > n
4γ (1 − 2

p). Then D(Ar)

is continuously embedded into Lp(O).
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2.2 Ornstein-Uhlenbeck process

The standard probability space (Ω,F ,P) presented in previous section is used throughout this

paper, where Ω = {ω ∈ C(R;R) : ω(0) = 0}, F is the Borel σ-algebra induced by the compact-

open topology of Ω and P is the Wiener measure on (Ω,F). For any given t ∈ R, we identify

W (t, ω) := ω(t) and define the time shift θt : Ω→ Ω by

θtω(·) = ω(·+ t)− ω(t), ω ∈ Ω,

then (Ω,F ,P, {θt}t∈R) is a parametric dynamical system. Furthermore, let z : Ω → R be a

random variable given by z(ω) := −
∫ 0
−∞ e

τω(τ)dτ for ω ∈ Ω, then z(t, ω) := z(θtω) is the unique

stationary solution of the following stochastic equation:

dz = −zdt+ dW

with initial value z0 (for more details, see [3, 42] and the references therein). In addition, it

follows from [3] that there exists a θt-invariant set of full measure (still denoted by Ω), such that

the random variable z(θtω) satisfies the following properties: for all ω ∈ Ω,

lim
t→±∞

|z(θtω)|
|t|

= 0 and lim
t→±∞

1

t

∫ t

0
z(θsω)ds = 0. (2.7)

2.3 Setting of the problem

For convenience, we fix a number 0 < µ < min
{
β1
m ,

β2
M , C(n, γ)

}
and define the following

Nemytskii operator F : L2(Rn)→ Lq(Rn) by

F (u)(x) := F (u(x)) = a(l(u))µu(x) + f(u(x)), (2.8)

where q ∈ (1, 2] is the conjugate number of p. By (1.4) and the Young inequality, we have:

Case 1. p = q = 2

−κ− (β1 −mµ)|u(x)|2 ≤ F (u(x))u(x) ≤ κ− (β2 −Mµ)|u(x)|2.

Case 2. p > 2

−
(
p− 2

p
|mµ|

p
p−2 + κ

)
−
(
β1 +

2

p

)
|u(x)|p ≤ F (u(x))u(x)

≤
(
κ+

p− 2

p
|Mµ|

p
p−2

)
−
(
β2 −

2

p

)
|u(x)|p.

In conclusion, since β2 > 1, there exist positive constants α1, α2 and κ1, such that for all x ∈ Rn,

some p ≥ 2, F satisfies

−κ1 − α1|u(x)|p ≤ F (u(x))u(x) ≤ κ1 − α2|u(x)|p. (2.9)
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From (2.9), we can deduce that there exists α3 > 0, such that

|F (u(x))| ≤ α3(|u(x)|p−1 + 1). (2.10)

Then problem (2.4) can be written as
∂u
∂t + a(l(u))(−∆)γu+ a(l(u))µu = F (u) + h(t) + αu ◦ dWdt ,

u = 0,

u(x, τ) = uτ (x),

x ∈ O, t > τ,

x ∈ Rn\O, t > τ,

x ∈ O.

(2.11)

To study the dynamics of problem (2.11), we first transform the stochastic fractional nonlocal

differential equation (2.11) into a pathwise deterministic one by doing a change of variable. Given

τ ∈ R, t ≥ τ , ω ∈ Ω and uτ ∈ H, if u = u(t, τ, ω, uτ ) is a solution of (2.11), then we define a new

variable v = v(t, τ, ω, vτ ) by

v(t, τ, ω, vτ ) = e−αz(θtω)u(t, τ, ω, uτ ) with vτ = e−αz(θτω)uτ . (2.12)

In terms of (2.11)-(2.12), for t > τ , we obtain

∂v

∂t
+ a(l(eαz(θtω)v)) ((−∆)γv + µv) = αz(θtω)v + e−αz(θtω)F (eαz(θtω)v) + e−αz(θtω)h(t), x ∈ O,

(2.13)

with boundary condition

v(t, x) = 0, x ∈ Rn\O and t > τ, (2.14)

and initial condition

v(x, τ) = vτ (x) = e−αz(θτω)uτ , x ∈ O. (2.15)

3 Main result

First of all, the notion of weak solutions to problem (2.13)-(2.15) is stated before proving the

existence and uniqueness of solution to this equation. Then, the solution of (2.11) is obtained

via the transform (2.12).

Definition 3.1 Given τ ∈ R, ω ∈ Ω and vτ ∈ H, a weak solution to (2.13)-(2.15) is a continuous

function v(·, τ, ω, vτ ) : [τ,∞)→ H with v(τ, τ, ω, vτ ) = vτ , fulfilling

v ∈ L2
loc(τ,∞;V ) ∩ Lploc(τ,∞;Lp(Rn)),

dv

dt
∈ L2

loc(τ,∞;V ∗) + Lqloc(τ,∞;Lq(Rn)).

Moreover, for every ζ ∈ V ∩ Lp(Rn), v satisfies

d

dt
(v, ζ) + a(l(eαz(θtω)v))

(
1

2
C(n, γ)

∫
Rn

∫
Rn

(v(x)− v(y))(ζ(x)− ζ(y))

|x− y|n+2γ
dxdy + µ(v, ζ)

)
= αz(θtω)(v, ζ) + e−αz(θtω)

∫
O
F (eαz(θtω)v)ζ(x)dx+ e−αz(θtω)

∫
O
h(t)ζ(x)dx,

(3.1)

where the previous equation must be understood in the sense of distribution on (τ,∞).
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We are now ready to achieve our goal by using Galerkin method, to this end, the basis {ej}∞j=1

will be used based on the properties of operator A and the results of Lemma 2.1.

Theorem 3.2 Assume a ∈ C(R;R+) is locally Lipschitz and satisfies (1.2), f ∈ C(R) fulfills

(1.3)-(1.4), which implies F : L2(Rn)→ Lq(Rn) satisfies (2.9)-(2.10). In addition, h ∈ L2
loc(R;H)

and l ∈ L(L2(O);R). Then, for every τ ∈ R, ω ∈ Ω and each initial datum vτ ∈ H, there exists

a unique weak solution v(t, τ, ω, vτ ) to problem (2.13)-(2.15) in the sense of Definition 3.1. Also,

this solution is (F ,B(H))-measurable in ω and continuous in initial data vτ in H. Moreover, the

following energy equality holds:

d

dt
‖v(t)‖2 + a(l(eαz(θtω)v))

(
C(n, γ)‖v‖2

Ḣγ(Rn)
+ 2µ‖v‖2

)
= 2αz(θtω)‖v‖2 + 2e−αz(θtω)

∫
O
F (eαz(θtω)v)vdx+ 2e−αz(θtω)

∫
O
h(t)vdx,

(3.2)

for almost all t ≥ τ .

Proof. We will first construct a sequence of approximate solutions by Galerkin method, then

derive uniform estimates using energy equality and take the limit of these approximate solutions,

finally this limit is proved to be the desired solution.

Step 1: Approximate solutions. Given n ∈ N, let Xn := span[e1, e2, · · · , en] and Pn : H → Xn

be the projection given by

Pnv := vn(t, τ, ω, vτ ) =
n∑
j=1

(v, ej)ej , ∀v ∈ H.

Meanwhile, the projection operator Pn can be extended to V ∗ and (Lp(Rn))∗ by

Pnϕ =
n∑
j=1

(ϕ, ej)ej :=
n∑
j=1

(ϕ(ej))ej , ∀ϕ ∈ V ∗ or ϕ ∈ (Lp(Rn))∗.

Now, for each vn ∈ Xn and t ≥ τ , we consider the following system:

dvn
dt

+ a(l(eαz(θtω)vn))PnA(vn) = αz(θtω)vn + e−αz(θtω)PnF (eαz(θtω)vn) + e−αz(θtω)Pnh(t), (3.3)

with initial condition

vn(τ) = Pnvτ . (3.4)

With the help of (1.2) and (2.9)-(2.10), we know that for every τ ∈ R, ω ∈ Ω and vτ ∈ H, system

(3.3)-(3.4) has a maximal solution vn(·, τ, ω, vn(τ)) ∈ C([τ, τ + T );Xn) for some T > 0, that is

also measurable in ω ∈ Ω. In fact, we can show this T = ∞, which implies the solutions are

globally defined.
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Step 2. Uniform estimates. Since vn(x, t) = 0 for all x /∈ O, it follows from (3.3) that

1

2

d

dt
‖vn‖2 + a(l(eαz(θtω)vn))b(vn, vn) = αz(θtω)‖vn‖2

+ e−αz(θtω)

∫
O
F (eαz(θtω)vn)vndx+ e−αz(θtω)

∫
O
h(t)vndx.

(3.5)

By (2.9), we obtain

e−αz(θtω)

∫
O
F (eαz(θtω)vn)vndx ≤ e−2αz(θtω)

∫
O

(
κ1 − α2|eαz(θtω)vn|p

)
dx

≤ κ1|O|e−2αz(θtω) − α2e
(p−2)αz(θtω)

∫
O
|vn|pdx.

(3.6)

Since h ∈ L2
loc(R;H), by the Young inequality, we have

e−αz(θtω)

∫
O
h(t)vndx ≤

1

2
e−2αz(θtω)‖h(t)‖2 +

1

2
‖vn‖2. (3.7)

Making use of (1.2), (2.5) and (3.5)-(3.7), we derive

d

dt
‖vn‖2 +m

(
C(n, γ)‖vn‖2Ḣγ(Rn)

+ 2µ‖vn‖2
)

+ 2α2e
(p−2)αz(θtω)‖vn‖pp

≤ (2αz(θtω) + 1)‖vn‖2 + 2κ1|O|e−2αz(θtω) + e−2αz(θtω)‖h(t)‖2.
(3.8)

Given τ ∈ R, ω ∈ Ω and T > 0, by the continuity of z(θtω) in t, it follows from (3.8) that

{vn}∞n=1 is bounded in L∞(τ, τ + T ;H) ∩ L2(τ, τ + T ;V ) ∩ Lp(τ, τ + T ;Lp(Rn)), (3.9)

which along with (2.6) implies

{A(vn)}∞n=1 is bounded in L2(τ, τ + T ;V ∗). (3.10)

Furthermore, by (2.10), we derive there exists a constant C := C(ω, α, T, p), such that∫ τ+T

τ

∫
O
|F (eαz(θtω)vn)|qdxdt ≤ αq3

∫ τ+T

τ

∫
O

(
|eαz(θtω)vn|p−1 + 1

)q
dxdt

≤ 2q−1αq3

∫ τ+T

τ

∫
O

(
|eαz(θtω)vn|p + 1

)
dxdt

≤ 2q−1αq3C‖vn‖
p
Lp(τ,τ+T ;Lp(Rn)) + 2q−1αq3T |O|.

Consequently, by (3.9), we have

{F (eαz(θtω)vn)}∞n=1 is bounded in Lq(τ, τ + T ;Lq(Rn)). (3.11)

Subsequently, it follows from (3.3) and (3.10)-(3.11) that{
dvn
dt

}∞
n=1

is bounded in L2(τ, τ + T ;V ∗) + Lq(τ, τ + T ;Lq(Rn)). (3.12)
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Next, we consider the limiting process of (3.3)-(3.4) as n→∞.

Step 3. Existence of solutions. By (3.9)-(3.12), from compactness arguments and the Aubin-

Lions lemma, there exist ṽ ∈ H, v ∈ L∞(τ, τ + T ;H) ∩ L2(τ, τ + T ;V ) ∩ Lp(τ, τ + T ;Lp(Rn)),

χ ∈ Lq(τ, τ + T ;Lq(Rn)) and a subsequence of {vn}∞n=1 (which is denoted the same) such that

vn → v weak-star in L∞(τ, τ + T ;H);

vn → v weakly in L2(τ, τ + T ;V );

vn → v weakly in Lp(τ, τ + T ;Lp(Rn));

F (eαz(θtω)vn)→ χ weakly in Lq(τ, τ + T ;Lq(Rn));

dvn
dt →

dv
dt weakly in Lq(τ, τ + T ;Lq(Rn)) + L2(τ, τ + T ;V ∗);

vn(τ + T, τ, ω)→ ṽ weakly in H.

(3.13)

Actually, {dvndt }
∞
n=1 is bounded in Lq(τ, τ + T ; (V ∩ Lp(Rn))∗) since q, the conjugate number of

p, belongs to (1, 2]. Notice that, the embedding V ↪→ H is compact and H ↪→ (V ∩ Lp(Rn))∗ is

continuous, together with (3.9) and (3.12), we infer from [26] that there exists a subsequence of

{vn}∞n=1 (which is relabeled the same) such that

vn → v strongly in L2(τ, τ + T ;H). (3.14)

Eq. (3.14) implies there exists a further subsequence of {vn}∞n=1 (relabeled the same again) such

that

vn → v for almost every (t, x) ∈ (τ, τ + T )× Rn. (3.15)

Now we will check χ = F (eαz(θtω)v). Indeed, by (3.15) and the continuity of F , we deduce

F (eαz(θtω)vn)→ F (eαz(θtω)v) for almost every (t, x) ∈ (τ, τ + T )× Rn. (3.16)

By applying [28, Lemma 1.3], we infer from (3.13) and (3.16) that

F (eαz(θtω)vn)→ F (eαz(θtω)v) weakly in Lq(τ, τ + T ;Lq(Rn)). (3.17)

Combing (3.11) with (3.17), we have

χ = F (eαz(θtω)v). (3.18)

Furthermore, by means of the fact that a ∈ C(R;R+) and (3.15), we obtain

a(l(eαz(θtω)vn)) = a((l, eαz(θtω)vn))
n→∞−−−→ a((l, eαz(θtω)v)) = a(l(eαz(θtω)v)). (3.19)

Next, we prove the energy equality (3.2) holds. Consider j ∈ N and φ ∈ C∞0 (τ, τ + T ),

multiplying by φej in (3.3), integrating the resulting identity and taking the limit when n→∞,
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with the help of (3.13)-(3.19), we derive

−
∫ τ+T

τ
(v, ej)φ

′dt+ a(l(eαz(θtω)v))

∫ τ+T

τ
b(v, ej)φdt

= α

∫ τ+T

τ
z(θtω)(v, ej)φdt+

∫ τ+T

τ
e−αz(θtω)(F (eαz(θtω)v), ej)(Lq ,Lp)φdt

+

∫ τ+T

τ
e−αz(θtω)(h(t), ej)φdt.

(3.20)

Based on the result of Lemma 2.1, we pick up a positive integer k satisfying k > n
4γ (1− 2

p), such

that D(Ak) is continuously embedded into Lp(O). Since equality (3.20) holds for every ej (j ∈ N)

and the linear combinations of {ej , j ∈ N} are dense in D(Ak), by a limiting process, for every

ϑ ∈ D(Ak), we find

−
∫ τ+T

τ
(v, ϑ)φ′dt+ a(l(eαz(θtω)v))

∫ τ+T

τ
b(v, ϑ)φdt

= α

∫ τ+T

τ
z(θtω)(v, ϑ)φdt+

∫ τ+T

τ
e−αz(θtω)(F (eαz(θtω)v), ϑ)(Lq ,Lp)φdt

+

∫ τ+T

τ
e−αz(θtω)(h(t), ϑ)φdt,

(3.21)

which implies the following equality

dv

dt
= −a(l(eαz(θtω)v))Av + αz(θtω)v + e−αz(θtω)F (eαz(θtω)v) + e−αz(θtω)h(t), (3.22)

holds in Lq(τ, τ+T ; (D(Ak))∗). Indeed, (3.13) shows the identity (3.22) actually holds in L2(τ, τ+

T ;V ∗)+Lq(τ, τ+T ;Lq(Rn)) and Lq(τ, τ+T ; (V ∩Lp(Rn))∗). This means, for all ϑ ∈ V ∩Lp(Rn),

d

dt
(v, ϑ) + a(l(eαz(θtω)v))b(v, ϑ) = αz(θtω)(v, ϑ)

+ e−αz(θtω)(F (eαz(θtω)v), ϑ)(Lq ,Lp) + e−αz(θtω)(h(t), ϑ),

(3.23)

holds true in the sense of distribution on (τ, τ + T ). Thus, the required (3.1) is proved.

Step 4. Continuity of solutions v. We now show v : [τ,∞) → H is continuous. Since

v ∈ L2(τ, τ + T ;V ) ∩ Lp(τ, τ + T ;Lp(Rn)) and dv
dt ∈ L

2(τ, τ + T ;V ∗) + Lq(τ, τ + T ;Lq(Rn)) (cf.

(3.13)), we deduce from [28] that v ∈ C([τ, τ + T ];H) and

1

2

d

dt
‖v‖2 =

(
dv

dt
, v

)
(V ∗+Lq ,V ∩Lp)

for almost every t ∈ (τ, τ + T ). (3.24)

Subsequently, by (3.23)-(3.24), we have

1

2

d

dt
‖v‖2 + a(l(eαz(θtω)v))b(v, v) = αz(θtω)(v, v)

+ e−αz(θtω)(F (eαz(θtω)v), v)(Lq ,Lp) + e−αz(θtω)(h(t), v),

(3.25)
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which implies the energy equation (3.2).

We next consider two endpoints of (2.13)-(2.15), prove v(τ) = vτ and v(τ + T ) = ṽ. For any

φ ∈ C1([τ, τ + T ]), multiplying by φej in (3.3) and taking the limit as n → ∞, it follows from

(3.2), (3.13) and (3.18) that

(ṽ, ej)φ(τ + T )− (vτ , ej)φ(τ)

=

∫ τ+T

τ
(v, ej)φ

′dt− a(l(eαz(θtω)v))

∫ τ+T

τ
b(v, ej)φdt+ α

∫ τ+T

τ
z(θtω)(v, ej)φdt

+

∫ τ+T

τ
e−αz(θtω)(F (eαz(θtω)v), ej)(Lq ,Lp)φdt+

∫ τ+T

τ
e−αz(θtω)(h(t), ej)φdt.

(3.26)

By (3.23), we also have

(v(τ + T ), ej)φ(τ + T )− (v(τ), ej)φ(τ)

=

∫ τ+T

τ
(v, ej)φ

′dt− a(l(eαz(θtω)v))

∫ τ+T

τ
b(v, ej)φdt+ α

∫ τ+T

τ
z(θtω)(v, ej)φdt

+

∫ τ+T

τ
e−αz(θtω)(F (eαz(θtω)v), ej)(Lq ,Lp)φdt+

∫ τ+T

τ
e−αz(θtω)(h(t), ej)φdt.

Comparing (3.26) with the above expression, we obtain

(v(τ + T ), ej)φ(τ + T )− (v(τ), ej)φ(τ) = (ṽ, ej)φ(τ + T )− (vτ , ej)φ(τ).

As φ ∈ C1([τ, τ + T ]) is arbitrary and {ej}∞j=1 is an orthonormal basis of H, we obtain from the

above equality that

v(τ) = vτ and v(τ + T ) = ṽ in H. (3.27)

Moreover, making use of (3.13) and (3.27), we arrive at

vn(τ + T, τ, ω, vn(τ))→ v(τ + T, τ, ω, vτ ) weakly in H. (3.28)

By similar arguments as (3.28), we obtain the weak convergence of vn for all t ≥ τ , that is,

vn(t, τ, ω, vn(τ))→ v(t, τ, ω, vτ ) weakly in H, ∀t ≥ τ. (3.29)

At last, (3.23) and (3.27) indicate v is a solution of problem (2.13)-(2.15) in the sense of Definition

3.1.

Step 5. Uniqueness of solution. Suppose v1 and v2 are two solutions of problem (2.13)-(2.15),

let w = v1 − v2, then we have

dw

dt
+ a(l(eαz(θtω)v1)) ((−∆)γv1 + µv1)− a(l(eαz(θtω)v2)) ((−∆)γv2 + µv2)

= αz(θtω)w + e−αz(θtω)(F (eαz(θtω)v1)− F (eαz(θtω)v2)).

12



By energy equation we infer that,

1

2

d

dt
‖w‖2 + a(l(eαz(θtω)v1)) ((−∆)γv1 + µv1, w)− a(l(eαz(θtω)v1)) ((−∆)γv2 + µv2, w)

= a(l(eαz(θtω)v2)) ((−∆)γv2 + µv2, w)− a(l(eαz(θtω)v1)) ((−∆)γv2 + µv2, w)

+ αz(θtω)‖w‖2 + e−αz(θtω)(F (eαz(θtω)v1)− F (eαz(θtω)v2), w).

Since a ∈ C(R;R+) is locally Lipschitz, we denote this Lipschitz constant by La, together with

(1.2)-(1.3), (2.8) and the Young inequality, we obtain

d

dt
‖w‖2 + 2mb(w,w) ≤ 2La‖l‖eαz(θtω)‖w‖((−∆)γv2 + µv2, w) + 2|αz(θtω)|‖w‖2

+ 2Mµ‖w‖2 + 2µLa‖l‖eαz(θtω)‖v1‖‖v2‖‖w‖+ 2Cf‖w‖2

≤
(

2C(n, γ)(µ+ 1)La‖l‖eαz(θtω)‖v2‖Hγ(O) + 2α|z(θtω)|+ 2Cf

+ 2Mµ+ µ2L2
a‖l‖2e2αz(θtω)‖v1‖2‖v2‖2

)
‖w‖2,

which along with the Gronwall Lemma implies the uniqueness and continuity of solution in initial

data in H.

Step 6. Measurability of solutions in ω. Note that (3.29) and the uniqueness of solution

indicate for any t ≥ τ and ω ∈ Ω, the whole sequence vn(t, τ, ω)→ v(t, τ, ω) weakly in H. Since

vn(t, τ, ω) is measurable in ω ∈ Ω, we know the weak limit v(t, τ, ω) is also measurable in ω. The

proof of this theorem is finished. �

The following lemma establishes the compactness of the solution operators in H so that the

existence of random attractors for system (2.13)-(2.15) can be proved later.

Lemma 3.3 Suppose the conditions of Theorem 3.2 hold true. Then for any τ ∈ R, t > τ and

ω ∈ Ω, the solution operator v(t, τ, ω, ·) : H → H of problem (2.13)-(2.15) is compact. That is,

for every bounded sequence {v0,n}∞n=1 in H, the sequence {v(t, τ, ω, v0,n)}∞n=1 has a convergent

subsequence in H.

Proof. Choose T > 0 such that t ∈ [τ, τ + T ]. Thanks to (3.14), there exists ṽ ∈ L2(τ, τ + T ;H)

and a subsequence of {v0,n}∞n=1 (which is relabeled the same), such that

v(·, τ, ω, v0,n)→ ṽ in L2(τ, τ + T ;H).

We deduce from the above that there exists a set I of measure zero with I ⊂ [τ, τ + T ] and a

subsequence of {v0,n}∞n=1 (which is relabeled the same), such that

v(r, τ, ω, v0,n)→ ṽ(r) in H, ∀r ∈ [τ, τ + T ] \ I. (3.30)
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Since t > τ , (τ, t) ⊂ [τ, τ + T ] and I has measure zero, by (3.30), we find that there exists

r0 ∈ (τ, t) \ I, such that

v(r0, τ, ω, v0,n)→ ṽ(r0) in H. (3.31)

By means of (3.31) and the continuity of solutions in initial data, we obtain

v(t, τ, ω, v0,n) = v(t, r0, ω, v(r0, τ, ω, v0,n))→ v(t, r0, ω, ṽ(r0)) in H,

which concludes the proof. �

4 Existence of random attractors to problem (2.11)

This section is devoted to uniform estimates of solutions for the fractional stochastic nonlocal

reaction-diffusion equations (2.11). Before doing this, we first construct a cocycle generated by

(2.11). Then, by means of the solution v of (2.13)-(2.15) and the transform (2.12), we obtain a

solution u of stochastic fractional nonlocal PDE (2.11), which is

u(t, τ, ω, uτ ) = eαz(θtω)v(t, τ, ω, vτ ),

with uτ = eαz(θτω)vτ . We deduce from Theorem 3.2 that u(t, τ, ω, uτ ) is both continuous in

t ∈ [τ,∞) and in uτ ∈ H. Moreover, u(t, τ, ·, uτ ) : Ω → H is measurable. Thus, we can define a

continuous cocycle in H for problem (2.11). Let Φ : R+ × R× Ω×H → H be a mapping given

by, for every t ∈ R+, τ ∈ R, ω ∈ Ω and uτ ∈ H,

Φ(t, τ, ω, uτ ) = u(t+ τ, τ, θ−τω, uτ ) = eαz(θtω)v(t+ τ, τ, θ−τω, vτ ), (4.1)

where vτ = e−αz(ω)uτ .

In the sequel, we will present the existence and upper semicontinuity of tempered random

attractors for Φ in H. To this end, it is necessary to introduce some notation and assumptions.

Let D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} be a family of bounded nonempty subsets of H, we say D is

tempered if for every c > 0, τ ∈ R and ω ∈ Ω,

lim
t→−∞

ect‖D(τ + t, θtω)‖ = 0,

where the norm ‖D‖ of a set D in H is given by ‖D‖ = supu∈D ‖u‖. From now on, we use D to

denote the collection of all tempered families of bounded nonempty subsets in H:

D = {D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} : D is tempered in H}.

Furthermore, we assume that for every τ ∈ R,∫ 0

−∞
emµs‖h(s+ τ)‖2ds <∞. (4.2)
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Also, let h be tempered in the following sense: for every c > 0,

lim
r→∞

e−cr
∫ 0

−∞
emµs‖h(s− r)‖2ds = 0. (4.3)

It is easy to see these two conditions do not require h is bounded in H when t→∞.

Lemma 4.1 Suppose the conditions of Theorem 3.2 and (4.2) hold. Then, for every α0 > 0, σ ∈
R, τ ∈ R, ω ∈ Ω and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists T = T (τ, ω,D, σ, α0) > 0

such that for all t ≥ T and 0 < α ≤ α0, the solution v of problem (2.13)-(2.15) satisfies

‖v(σ, τ − t, θ−τω, vτ−t)‖2 +
1

2
mµ

∫ σ−τ

−t
e

5
4
mµ(s−σ+τ)−2α

∫ s
σ−τ z(θrω)dr‖v(s+ τ, τ − t, θ−τω, vτ−t)‖2V ds

+ 2α2

∫ σ−τ

−t
e

5
4
mµ(s−σ+τ)−2α

∫ s
σ−τ z(θrω)dre(p−2)αz(θsω)‖v(s+ τ, τ − t, θ−τω, vτ−t)‖ppds

≤ 1 +
2κ1|O|
mµ

e
1
4
mµ(τ−σ)e−2α

∫ 0
σ−τ z(θrω)dr

+
4

mµ

∫ σ−τ

−∞
e

5
4
mµ(s−σ+τ)−2α

∫ s
σ−τ z(θrω)dre−2αz(θsω)‖h(s+ τ)‖2ds,

where eαz(θ−tω)vτ−t ∈ D(τ − t, θ−tω).

Proof. We mainly use the energy equation (3.2) to complete this proof. First of all, for the last

term of (3.2), by the Young inequality, we have

2e−αz(θtω)(h(t), vn) ≤ mµ

4
‖vn‖2 +

4

mµ
e−2αz(θtω)‖h(t)‖2. (4.4)

Next, with the help of (2.9), we obtain

2e−αz(θtω)

∫
O
F (eαz(θtω)v)vdx ≤ 2e−2αz(θtω)

∫
O

(
κ1 − α2|eαz(θtω)v|p

)
dx

≤ 2κ1|O|e−2αz(θtω) − 2α2e
(p−2)αz(θtω)‖v‖pp.

(4.5)

It follows from (1.2), (3.2) and (4.4)-(4.5) that

d

dt
‖v(t, τ, ω, vτ )‖2 +

(
5

4
mµ− 2αz(θtω)

)
‖v‖2 +mC(n, γ)‖v‖2

Ḣγ(Rn)

+
1

2
mµ‖v‖2 + 2α2e

(p−2)αz(θtω)‖v‖pp ≤ 2κ1|O|e−2αz(θtω) +
4

mµ
e−2αz(θtω)‖h(t)‖2.

(4.6)

Multiplying (4.6) by e
5
4
mµt−2α

∫ t
0 z(θrω)dr and then integrating the inequality on (τ − t, σ) with
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σ > τ − t, we derive

‖v(σ, τ − t, ω, vτ−t)‖2 +
1

2
mµ

∫ σ

τ−t
e

5
4
mµ(s−σ)−2α

∫ s
σ z(θrω)dr‖v(s, τ − t, ω, vτ−t)‖2ds

+mC(n, γ)

∫ σ

τ−t
e

5
4
mµ(s−σ)−2α

∫ s
σ z(θrω)dr‖v(s, τ − t, ω, vτ−t)‖2Ḣγ(Rn)

ds

+ 2α2

∫ σ

τ−t
e

5
4
mµ(s−σ)−2α

∫ s
σ z(θrω)dre(p−2)αz(θsω)‖v(s, τ − t, ω, vτ−t)‖ppds

≤ e
5
4
mµ(τ−t−σ)−2α

∫ τ−t
σ z(θrω)dr‖vτ−t‖2 + 2κ1|O|

∫ σ

τ−t
e

5
4
mµ(s−σ)−2α

∫ s
σ z(θrω)dre−2αz(θsω)ds

+
4

mµ

∫ σ

τ−t
e

5
4
mµ(s−σ)−2α

∫ s
σ z(θrω)dre−2αz(θsω)‖h(s)‖2ds.

Replacing ω by θ−τω in the above inequality, we have

‖v(σ, τ − t, θ−τω, vτ−t)‖2 +
1

2
mµ

∫ σ

τ−t
e

5
4
mµ(s−σ)−2α

∫ s
σ z(θr−τω)dr‖v(s, τ − t, θ−τω, vτ−t)‖2ds

+mC(n, γ)

∫ σ

τ−t
e

5
4
mµ(s−σ)−2α

∫ s
σ z(θr−τω)dr‖v(s, τ − t, θ−τω, vτ−t)‖2Ḣγ(Rn)

ds

+ 2α2

∫ σ

τ−t
e

5
4
mµ(s−σ)−2α

∫ s
σ z(θr−τω)dre(p−2)αz(θs−τω)‖v(s, τ − t, θ−τω, vτ−t)‖ppds

≤ e
5
4
mµ(τ−t−σ)−2α

∫ τ−t
σ z(θr−τω)dr‖vτ−t‖2 + 2κ1|O|

∫ σ

τ−t
e

5
4
mµ(s−σ)−2α

∫ s
σ z(θr−τω)dre−2αz(θs−τω)ds

+
4

mµ

∫ σ

τ−t
e

5
4
mµ(s−σ)−2α

∫ s
σ z(θr−τω)dre−2αz(θs−τω)‖h(s)‖2ds.

After doing change of variables, we arrive at

‖v(σ, τ − t, θ−τω, vτ−t)‖2

+
1

2
mµ

∫ σ−τ

−t
e

5
4
mµ(s−σ+τ)−2α

∫ s
σ−τ z(θrω)dr‖v(s+ τ, τ − t, θ−τω, vτ−t)‖2ds

+mC(n, γ)

∫ σ−τ

−t
e

5
4
mµ(s−σ+τ)−2α

∫ s
σ−τ z(θrω)dr‖v(s+ τ, τ − t, θ−τω, vτ−t)‖2Ḣγ(Rn)

ds

+ 2α2

∫ σ−τ

−t
e

5
4
mµ(s−σ+τ)−2α

∫ s
σ−τ z(θrω)dre(p−2)αz(θsω)‖v(s+ τ, τ − t, θ−τω, vτ−t)‖ppds

≤ e
5
4
mµ(τ−t−σ)−2α

∫−t
σ−τ z(θrω)dr‖vτ−t‖2 + 2κ1|O|

∫ σ−τ

−t
e

5
4
mµ(s−σ+τ)−2α

∫ s
σ−τ z(θrω)dre−2αz(θsω)ds

+
4

mµ

∫ σ−τ

−t
e

5
4
mµ(s−σ+τ)−2α

∫ s
σ−τ z(θrω)dre−2αz(θsω)‖h(s+ τ)‖2ds.

(4.7)
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On the one hand, the first term of the right hand side of (4.7) is equivalent to,

e
5
4
mµ(τ−t−σ)−2α

∫−t
σ−τ z(θrω)dr‖vτ−t‖2

= e
5
4
mµ(τ−σ)e−

5
4
mµte−2α

∫ 0
σ−τ z(θrω)dre−2α

∫−t
0 z(θrω)dre−2αz(θ−tω)e2αz(θ−tω)‖vτ−t‖2.

Due to eαz(θ−tω)vτ−t ∈ D(τ − t, θ−tω) and 0 < α ≤ α0, we obtain from the above equality that

e
5
4
mµ(τ−t−σ)−2α

∫−t
σ−τ z(θrω)dr‖vτ−t‖2

≤ e
5
4
mµ(τ−σ)e−

5
4
mµte2α0|

∫ 0
σ−τ z(θrω)dr|e2α0|

∫−t
0 z(θrω)dr|e2α0|z(θ−τω)|‖D(τ − t, θ−tω)‖2.

(4.8)

On the other hand, (2.7) indicates that there exists T1 = T1(ω, α0,m, µ), such that for all t ≥ T1,

|z(θ−tω)| ≤ 1

16

µm

α0
t and

∣∣∣∣∫ −t
0

z(θrω)dr

∣∣∣∣ ≤ 1

16

µm

α0
t. (4.9)

Hence, it follows from (4.8)-(4.9) that for all t ≥ T1,

e
5
4
mµ(τ−t−σ)−2α

∫−t
σ−τ z(θrω)dr‖vτ−t‖2 ≤ e

5
4
mµ(τ−t)e2α0|

∫ 0
σ−τ z(θrω)dr|e−µmt‖D(τ − t, θ−tω)‖2. (4.10)

In fact, e−µmt‖D(τ − t, θ−tω)‖ → 0 as t → ∞ since D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} is tempered.

Therefore, by (4.10), we find that there exists T2 = T2(τ, ω, σ,D, α0,m, µ) ≥ T1, such that for all

t ≥ T2,

e
5
4
mµ(τ−t−σ)−2α

∫−t
σ−τ z(θrω)dr‖vτ−t‖2 ≤ 1. (4.11)

For the last term on the right hand side of (4.7), we have

4

mµ

∫ σ−τ

−t
e

5
4
mµ(s−σ+τ)−2α

∫ s
σ−τ z(θrω)dre−2αz(θsω)‖h(s+ τ)‖2ds

=
4

mµ
e

5
4
mµ(τ−σ)e−2α

∫ 0
σ−τ z(θrω)dr

∫ σ−τ

−t
e

5
4
mµse−2α

∫ s
0 z(θrω)dre−2αz(θsω)‖h(s+ τ)‖2ds.

(4.12)

(4.9) implies for all t ≥ T1,∫ −T1
−t

e
5
4
mµse−2α

∫ s
0 z(θrω)dre−2αz(θsω)‖h(s+ τ)‖2ds

≤
∫ −T1
−t

e
5
4
mµse−2α0|

∫ s
0 z(θrω)dr|e−2α0|z(θsω)|‖h(s+ τ)‖2ds

≤
∫ −T1
−t

eµms‖h(s+ τ)‖2ds

≤
∫ −T1
−∞

eµms‖h(s+ τ)‖2ds,

(4.13)
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the last integral of (4.13) is convergent thanks to (4.2). It follows from (4.12)-(4.13) that

4

mµ

∫ σ−τ

−t
e

5
4
mµ(s−σ+τ)−2α

∫ s
σ−τ z(θrω)dre−2αz(θsω)‖h(s+ τ)‖2ds

≤ 4

mµ

∫ σ−τ

−∞
e

5
4
mµ(s−σ+τ)−2α

∫ s
σ−τ z(θrω)dre−2αz(θsω)‖h(s+ τ)‖2ds,

(4.14)

where the integral is convergent because of (4.13). By the same arguments as for (4.14), we

deduce that

2κ1|O|
∫ σ−τ

−t
e

5
4
mµ(s−σ+τ)−2α

∫ s
σ−τ z(θrω)dre−2αz(θsω)ds

≤ 2κ1|O|e
5
4
mµ(τ−σ)e−2α

∫ 0
σ−τ z(θrω)dr

∫ σ−τ

−t
e

5
4
mµse−2α

∫ s
0 z(θrω)dre−2αz(θsω)ds

≤ 2κ1|O|e
5
4
mµ(τ−σ)e−2α

∫ 0
σ−τ z(θrω)dr

∫ σ−τ

−∞
emµsds ≤ 2κ1|O|

mµ
e

1
4
mµ(τ−σ)e−2α

∫ 0
σ−τ z(θrω)dr.

(4.15)

By (4.7) and (4.14)-(4.15), for all t ≥ T2, we obtain

‖v(σ, τ − t, θ−τω, vτ−t)‖2 +
1

2
mµ

∫ σ−τ

−t
e

5
4
mµ(s−σ+τ)−2α

∫ s
σ−τ z(θrω)dr‖v(s+ τ, τ − t, θ−τω, vτ−t)‖2ds

+mC(n, γ)

∫ σ−τ

−t
e

5
4
mµ(s−σ+τ)−2α

∫ s
σ−τ z(θrω)dr‖v(s+ τ, τ − t, θ−τω, vτ−t)‖2Ḣγ(Rn)

ds

+ 2α2

∫ σ−τ

−t
e

5
4
mµ(s−σ+τ)−2α

∫ s
σ−τ z(θrω)dre(p−2)αz(θsω)‖v(s+ τ, τ − t, θ−τω, vτ−t)‖ppds

≤ 1 +
2κ1|O|
mµ

e
1
4
mµ(τ−σ)e−2α

∫ 0
σ−τ z(θrω)dr

+
4

mµ

∫ σ−τ

−∞
e

5
4
mµ(s−σ+τ)−2α

∫ s
σ−τ z(θrω)dre−2αz(θsω)‖h(s+ τ)‖2ds.

Thus, the proof of this lemma is complete. �

According to the results of Lemma 4.1, we claim the solution operator of problem (2.13)-(2.15)

has a random pullback absorbing set.

Lemma 4.2 Suppose the conditions of Theorem 3.2 and (4.3) hold. For each α > 0, let Bα =

{Bα(τ, ω) : τ ∈ R, ω ∈ Ω} be a random set given by

Bα(τ, ω) = {v ∈ H : ‖v‖2 ≤ Rα(τ, ω)},

where Rα(τ, ω) is defined by

Rα(τ, ω) = 1 +
2κ1|O|
mµ

+
4

mµ

∫ 0

−∞
e

5
4
mµs−2α

∫ s
0 z(θrω)dre−2αz(θsω)‖h(s+ τ)‖2ds. (4.16)
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Then, for every τ ∈ R, ω ∈ Ω and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists T =

T (τ, ω,D, α,m, µ) > 0 such that the solution v of (2.13)-(2.15) with eαz(θ−tω)vτ−t ∈ D(τ−t, θ−tω)

satisfies, for all t ≥ T ,

v(τ, τ − t, θ−τω, vτ−t) ∈ Bα(τ, ω). (4.17)

In addition, the random variable Rα defined by (4.16) is tempered, i.e., for any c > 0,

lim
t→∞

e−ctRα(τ − t, θ−tω) = 0. (4.18)

Proof. (4.16) is obtained directly from Lemma 4.1 with σ = τ . It remains to check (4.18), by

(4.16) we infer that,

Rα(τ − t, θ−tω) = 1 +
2κ1|O|
mµ

+
4

mµ

∫ 0

−∞
e

5
4
mµs−2α

∫ s
0 z(θr−tω)dre−2αz(θs−tω)‖h(s+ τ − t)‖2ds

= 1 +
2κ1|O|
mµ

+
4

mµ

∫ 0

−∞
e

5
4
mµs−2α

∫ 0
−t z(θrω)dr−2α

∫ s−t
0 z(θrω)dre−2αz(θs−tω)‖h(s+ τ − t)‖2ds.

(4.19)

Given c > 0, let c1 = min
{

1
16
mµ
α ,

1
12

c
α

}
, by (2.11), we find there exists T0 = T0(c1) > 0, such that

for all t ≥ T0,

|z(θ−tω)| ≤ c1t and

∣∣∣∣∫ 0

−t
z(θrω)dr

∣∣∣∣ ≤ c1t. (4.20)

Notice that if t ≥ T0 and s ≤ 0, then we have t− s ≥ t ≥ T0. Therefore, for all t ≥ T0 and s ≤ 0,

we obtain from (4.20) that∣∣∣∣−2α

∫ 0

−t
z(θrω)dr

∣∣∣∣ ≤ 2αc1t,

∣∣∣∣−2α

∫ s−t

0
z(θrω)dr

∣∣∣∣ ≤ 2αc1(t−s), |−2αz(θs−tω)| ≤ 2αc1(t−s).

(4.21)

Thus, by (4.19) and (4.21), we deduce, for all t ≥ T0,

Rα(τ − t, θ−tω) ≤ 1 +
2κ1|O|
mµ

+
4

mµ
e

1
2
ct

∫ 0

−∞
emµs‖h(s+ τ − t)‖2ds.

Therefore, by (4.3), we derive that

lim sup
t→∞

e−ctRα(τ − t, θ−tω) ≤ lim sup
t→∞

4

mµ
e−

1
2
ct

∫ 0

−∞
emµs‖h(s+ τ − t)‖2ds

= lim sup
r→∞

4

mµ
e−

1
2
cre−

1
2
cτ

∫ 0

−∞
emµs‖h(s− r)‖2ds = 0,

which means Rα is tempered, as desired in (4.18). The proof of this lemma is complete. �

Next, we prove the asymptotic compactness of solution operator for problem (2.13)-(2.15).

Lemma 4.3 Assume the conditions of Lemma 4.2 hold. Then, the sequence v(τ, τ−tn, θ−τω, v0,n)

of solutions of (2.13)-(2.15) has a convergent subsequence in H as tn →∞ when eαz(θ−tnω)v0,n ∈
D(τ − tn, θ−tnω) with D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D.
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Proof. By Lemma 4.1 with σ = τ − 1, we find there exists T = T (τ, ω,D, α,m, µ) > 0 and

C = C(τ, ω, α,m) > 0, such that for all t ≥ T ,

‖v(τ − 1, τ − t, θ−τω, v0)‖ ≤ C, (4.22)

for any v0 ∈ H with eαz(θ−tω)v0 ∈ D(τ−t, θ−tω). Since tn →∞, there isN = N(τ, ω,D, α,m, µ) ≥
1, such that for all tn ≥ T with n ≥ N , we have

‖v(τ − 1, τ − t, θ−τω, v0,n)‖ ≤ C. (4.23)

In addition,

v(τ, τ − tn, θ−τω, v0,n) = v(τ, τ − 1, θ−τω, v(τ − 1, τ − tn, θ−τω, v0,n)),

together with (4.23) and Lemma 3.3, we find the sequence v(τ, τ−1, θ−τω, v(τ−1, τ−tn, θ−τω, v0,n))

is precompact in H. That is, the sequence v(τ, τ − tn, θ−τω, v0,n) has a convergent subsequence

in H, which concludes the proof. �

In what follows, we will present the existence of tempered random pullback attractors for the

fractional nonlocal stochastic equation (2.11). Based on the uniform estimates on the solutions of

(2.13)-(2.15), we first prove the existence of tempered pullback absorbing set and the asymptotic

compactness of (2.11).

Lemma 4.4 Assume the conditions of Lemma 4.2 are true. Given α > 0, τ ∈ R and ω ∈ Ω, let

Kα(τ, ω) = {u ∈ H : ‖u‖2 ≤ e2αz(ω)Rα(τ, ω)},

where Rα(τ, ω) is the same as in (4.16). Then Kα = {Kα(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D is a closed

measurable tempered pullback absorbing set of the cocycle Φ.

Proof. We first show that Kα absorbs every member D of D. By (2.12), we have

u(τ, τ − t, θ−τω, uτ−t) = eαz(ω)v(τ, τ − t, θ−τω, vτ−t) with uτ−t = eαz(θ−tω)vτ−t. (4.24)

If uτ−t ∈ D(τ − t, θ−tω), then by (4.24), we obtain eαz(θ−tω)vτ−t ∈ D(τ − t, θ−tω), which together

with Lemma 4.2 implies that there exists T = T (τ, ω,D, α,m, µ) > 0, such that

v(τ, τ − t, θ−τω, vτ−t) ∈ Bα(τ, ω), (4.25)

where Bα(τ, ω) is the same as in (4.17). It follows from (4.24)-(4.25) and (4.16)-(4.17) that for

all t ≥ T ,

‖u(τ, τ − t, θ−τω, uτ−t)‖2 ≤ e2αz(ω)Rα(τ, ω). (4.26)

On the other hand, by (4.1), we have

Φ(t, τ − t, θ−tω, uτ ) = u(τ, τ − t, θ−τω, uτ−t), (4.27)
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which along with (4.26) shows Φ(t, τ − t, θ−tω, vτ−t) ∈ Kα(τ, ω) for all t ≥ T , hence Kα absorbs

all elements of D. We now prove Kα is tempered, namely, Kα ∈ D. By (2.7) and (4.18), for any

c > 0, we obtain

lim
t→∞

e−ct‖Kα(τ − t, θ−tω)‖ = lim
t→∞

e−
1
2
ct+αz(θ−tω)

(
e−ctRα(τ − t, θ−tω)

) 1
2 = 0,

which implies Kα ∈ D. Note that Rα(τ, ω) is measurable in ω ∈ Ω, and so is Kα(τ, ω), which

completes this proof. �

The D-pullback asymptotic compactness of Φ is presented below.

Lemma 4.5 Assume the conditions of Lemma 4.2 hold. Then for every τ ∈ R, ω ∈ Ω and

D = {D(τ, ω) : τ ∈ R, ω ∈ Ω}, the sequence Φ(tn, τ−tn, θ−tnω, u0,n) has a convergent subsequence

in H provided tn →∞ and u0,n ∈ D(τ − tn, θ−tnω).

Proof. It follows from (4.24) and (4.27) that

Φ(tn, τ − tn, θ−tnω, u0,n) = u(τ, τ − tn, θ−τω, u0,n) = eαz(ω)v(τ, τ − tn, θ−τω, v0,n), ∀n ∈ N,
(4.28)

where v0,n = e−αz(θ−tnω)u0,n. Thanks to u0,n ∈ D(τ − tn, θ−tnω), we find that eαz(θ−tnω)v0,n ∈
D(τ − tn, θ−tnω), thus by Lemma 4.3 we infer that the sequence v(τ, τ − tn, θ−tnω, v0,n) has a

convergent subsequence in H, which along with (4.28) completes the proof. �

The main result of this section is the existence and uniqueness of tempered pullback attractor

of Φ in H as stated below.

Theorem 4.6 Assume a ∈ C(R;R+) satisfies (1.2), f ∈ C(R) fulfills (1.3)-(1.4), which implies

F : L2(Rn)→ Lq(Rn) satisfies (2.9)-(2.10). In addition, suppose h ∈ L2
loc(R;H), l ∈ L(L2(O);R)

and (4.2)-(4.3) hold. Then the cocycle Φ generated by (2.11) has a unique D-pullback attractor

Aα = {Aα(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D in H.

Proof. The existence and uniqueness of the D-pullback attractor Aα follows from [34, 35] im-

mediately based on lemmas 4.4 and 4.5. �

5 Existence of attractors to fractional random nonlocal PDEs

driven by colored noise

In this section, we discuss the approximations of fractional stochastic nonlocal differential

equation (1.1), namely, the following pathwise Wong-Zakai approximated equation,
∂uδ
∂t + a(l(uδ))(−∆)γuδ = f(uδ) + h(t) + αuδζδ(θtω),

uδ = 0,

uδ(x, τ) = uδ,τ (x),

in O × (τ,∞),

on ∂O × (τ,∞),

in O,

(5.1)
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where functions a and f fulfill the same conditions (1.2)-(1.5) as in the previous sections and

h ∈ L2
loc(R;H), ζδ is the colored noise with correlation time δ > 0. To study (5.1), we proceed

similarly as in Section 2: define an operator F (uδ) : L2(Rn) → Lq(Rn) as (2.8) satisfying (2.9)-

(2.10) and consider the integral fractional format of Laplacian operator. More precisely, for

γ ∈ (0, 1), we investigate the problem
∂uδ
∂t + a(l(uδ))(−∆)γuδ + a(l(uδ))µuδ = F (uδ) + h(t) + αuδζδ(θtω),

uδ = 0,

uδ(x, τ) = uδ,τ (x),

x ∈ O, t > τ,

x ∈ Rn\O, t > τ,

x ∈ O.

(5.2)

To better understand the relations between solutions of (2.11) and (5.2), we define a new variable

vδ(t) = uδ(t)e
−αyδ(θtω). (5.3)

Recall that yδ satisfies
dyδ
dt

= −ηyδ + ζδ(θtω). (5.4)

For almost all ω ∈ Ω, one special solution of (5.4) can be represented by

Yδ(t, ω) = e−ηt
∫ t

−∞
eηsζ(θsω)ds,

which, in fact, can be rewritten as Yδ(t, ω) = yδ(θtω). Where yδ : Ω→ R is a well-defined random

variable given by yδ(ω) :=
∫ 0
−∞ e

ηsζδ(θsω)ds and has the following properties:

Lemma 5.1 ([21, Lemma 3.2]) Let yδ be the random variable defined as above. Then the mapping

(t, ω)→ yδ(θtω) = e−ηt
∫ t

−∞
eηsζδ(θsω)ds, (5.5)

is a stationary solution of (5.4) with continuous trajectories. In addition, E(yδ) = 0 and for

every ω ∈ Ω,

lim
δ→0

yδ(θtω) = z(θtω) uniformly on [τ, τ + T ] with τ ∈ R, T > 0; (5.6)

lim
t→±∞

|yδ(θtω)|
|t|

= 0 uniformly for 0 < δ ≤ η̃; (5.7)

lim
t→±∞

1

t

∫ t

0
yδ(θrω)dr = 0 uniformly for 0 < δ ≤ η̃, (5.8)

where η̃ = min{1, 1
2η} and z(θtω) is given in Subsection 2.2.

Remark 5.2 In this manuscript, in order to simplify the computations, we take η = 1 in equation

(5.4), then the results of Lemma 5.1 are true for η = 1.
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Thus, it follows from (5.2)-(5.4) that, for t > τ ,

∂vδ
∂t

+ a(l(eαyδ(θtω)vδ))(−∆)γvδ + a(l(eαyδ(θtω)vδ))µvδ = αyδ(θtω)vδ

+ e−αyδ(θtω)F (eαyδ(θtω)vδ) + e−αyδ(θtω)h(t), x ∈ O,
(5.9)

with boundary condition

vδ(t, x) = 0, x ∈ Rn\O and t > τ, (5.10)

and initial condition

vδ(x, τ) = vδ,τ = e−αyδ(θτω)uδ,τ , x ∈ O. (5.11)

Since (5.9)-(5.11) can be viewed as a deterministic equation parameterized by ω ∈ Ω, by the

same procedures as in Theorem 3.2, we can prove that under conditions (1.2) and (2.9)-(2.10),

for every τ ∈ R, ω ∈ Ω and vδ,τ ∈ H, (5.9)-(5.11) has a unique solution,

vδ(·, τ, ω, vδ,τ ) ∈ L2
loc(τ,∞;V ) ∩ Lploc(τ,∞;Lp(Rn)).

Moreover, this solution vδ satisfies the following energy equation,

d

dt
‖vδ(t, τ, ω, vδ,τ )‖2 + a(l(eαyδ(θtω)vδ))

(
C(n, γ)‖vδ‖2Ḣγ(Rn)

+ 2µ‖vδ‖2
)

= 2αyδ(θtω)‖vδ‖2 + 2e−αyδ(θtω)

∫
O
F (eαyδ(θtω)vδ)vδdx+ 2e−αyδ(θtω)

∫
O
h(t)vδdx,

(5.12)

for almost all t ≥ τ . At this point, thanks to the transform (5.11), there exists a unique solution

uδ(·, τ, ω, uδ,τ ) ∈ L2
loc(τ,∞;V ) ∩ Lploc(τ,∞;Lp(Rn)) to problem (5.2). In addition, this solution

is (F ,B(H))-measurable in ω and behaves continuously in H with respect to the initial value.

Next, we define a cocycle Ξ : R+ × R × Ω ×H → H such that for every t ∈ R+, τ ∈ R, ω ∈ Ω

and uδ,τ ∈ H,

Ξ(t, τ, ω, uδ,τ ) = uδ(t+ τ, τ, θ−τω, uδ,τ ) = eαyδ(θtω)vδ(t+ τ, τ, θ−τω, vδ,τ ) (5.13)

with vδ,τ = e−αy(ω)uδ,τ .

In the following results, we establish the existence of tempered absorbing sets for equation

(5.2) in H as well as the pullback asymptotic compactness of solutions. Finally, we prove the

existence of tempered random attractors for this equation.

Lemma 5.3 Assume a ∈ C(R;R+) is locally Lipschitz and satisfies (1.2), f ∈ C(R) fulfills (1.3)-

(1.4), which implies F : L2(Rn)→ Lq(Rn) satisfies (2.9)-(2.10). In addition, let h ∈ L2
loc(R;H),

l ∈ L(L2(O);R) and (4.2)-(4.3) hold. Then, given α > 0, for every τ ∈ R and ω ∈ Ω, the

cocyle Ξ associated with equation (5.2) possesses a closed measurable D-pullback absorbing set

Kδ
α = {Kδ

α(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D in H given by

Kδ
α(τ, ω) = {uδ ∈ H : ‖uδ‖2 ≤ e2αyδ(ω)Rδα(τ, ω)}, (5.14)
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where Rδα(τ, ω) is defined by

Rδα(τ, ω) = 1 +
2κ1|O|
mµ

+
4

mµ

∫ 0

−∞
e

5
4
mµs−2α

∫ s
0 yδ(θrω)dre−2αyδ(θsω)‖h(s+ τ)‖2ds. (5.15)

Moreover, for every α > 0, τ ∈ R and ω ∈ Ω,

lim
δ→0

Rδα(τ, ω) = Rα(τ, ω), (5.16)

where Rα(τ, ω) is defined in (4.16).

Proof. It follows from (1.2), (2.9), (5.12) and the Young inequality that,

d

dt
‖vδ(t, τ, ω, vτ )‖2 +

(
5

4
mµ− 2αyδ(θtω)

)
‖vδ‖2 +mC(n, γ)‖vδ‖2Ḣγ(Rn)

+
1

2
mµ‖vδ‖2

+ 2α2e
(p−2)αyδ(θtω)‖vδ‖pp ≤ 2κ1|O|e−2αyδ(θtω) +

4

mµ
e−2αyδ(θtω)‖h(t)‖2.

Multiplying the above inequality by e
5
4
mµt−2α

∫ t
0 yδ(θrω)dr, integrating the inequality on (τ − t, τ)

with t > 0 and replacing ω by θ−τω, we obtain

‖vδ(τ, τ − t, θ−τω, vδ,τ−t)‖2 +
1

2
mµ

∫ 0

−t
e

5
4
mµs−2α

∫ s
0 yδ(θrω)dr‖vδ(s+ τ, τ − t, θ−τω, vδ,τ−t)‖2ds

+mC(n, γ)

∫ 0

−t
e

5
4
mµs−2α

∫ s
0 yδ(θrω)dr‖vδ(s+ τ, τ − t, θ−τω, vδ,τ−t)‖2Ḣγ(Rn)

ds

+ 2α2

∫ 0

−t
e

5
4
mµs−2α

∫ s
0 yδ(θrω)dre(p−2)αyδ(θsω)‖vδ(s+ τ, τ − t, θ−τω, vδ,τ−t)‖ppds

≤ e−
5
4
mµt−2α

∫−t
0 yδ(θrω)dr‖vδ,τ−t‖2 + 2κ1|O|

∫ 0

−t
e

5
4
mµs−2α

∫ s
0 yδ(θrω)dre−2αyδ(θsω)ds

+
4

mµ

∫ 0

−t
e

5
4
mµs−2α

∫ s
0 yδ(θrω)dre−2αyδ(θsω)‖h(s+ τ)‖2ds,

(5.17)

where eαyδ(θ−tω)vδ,τ−t ∈ D(τ − t, θ−tω). Together with (5.7)-(5.8), the same reasoning as (4.11)-

(4.15) yields that

‖vδ(τ, τ − t, θ−τω, vδ,τ−t)‖2

≤ 1 +
2κ1|O|
mµ

+
4

mµ

∫ 0

−∞
e

5
4
mµs−2α

∫ s
0 yδ(θrω)dre−2αyδ(θsω)‖h(s+ τ)‖2ds.

(5.18)

(2.7) and (4.2) imply (5.18) is well-defined. Furthermore, it follows from (5.3) and (5.18) that

Ξ(t, τ − t, θ−tω, vδ,τ−t) = uδ(τ, τ − t, θ−τω, uδ,τ−t)

= vδ(τ, τ − t, θ−τω, vδ,τ−t)eαyδ(ω) ∈ Kδ
α(τ, ω),

(5.19)
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with uδ,τ−t = vδ,τ−te
αyδ(θ−tω). Now, by (5.19), along with (4.3) and (5.7), we can easily verify

Kδ
α(τ, ω) is tempered.

It remains to show (5.16). On the one hand, by (5.7)-(5.8), we find there exists T3 =

T3(α, ω, µ,m) > 0, such that for all t ≥ T3, we have

|yδ(θtω)| ≤ 1

16

mµ

α
t and

∣∣∣∣∫ t

0
yδ(θrω)dr

∣∣∣∣ ≤ 1

16

mµ

α
t. (5.20)

On the other hand, notice that∫ 0

−∞
e

5
4
mµs−2α

∫ s
0 yδ(θrω)dre−2αyδ(θsω)‖h(s+ τ)‖2ds

=

∫ −T3
−∞

e
5
4
mµs−2α

∫ s
0 yδ(θrω)dre−2αyδ(θsω)‖h(s+ τ)‖2ds

+

∫ 0

−T3
e

5
4
mµs−2α

∫ s
0 yδ(θrω)dre−2αyδ(θsω)‖h(s+ τ)‖2ds.

(5.21)

We now deal with the first term on the right hand side of (5.21). By (5.20) and (4.2), we have∫ −T3
−∞

e
5
4
mµs−2α

∫ s
0 yδ(θrω)dre−2αyδ(θsω)‖h(s+ τ)‖2ds ≤

∫ −T3
−∞

emµs‖h(s+ τ)‖2ds <∞.

Thus, (5.6) and the Lebesgue Dominated Theorem imply that,

lim
δ→0

∫ −T3
−∞

e
5
4
mµs−2α

∫ s
0 yδ(θrω)dre−2αyδ(θsω)‖h(s+ τ)‖2ds

=

∫ −T3
−∞

e
5
4
mµs−2α

∫ s
0 z(θrω)dre−2αz(θsω)‖h(s+ τ)‖2ds.

(5.22)

The same reasoning as above shows

lim
δ→0

∫ 0

−T3
e

5
4
mµs−2α

∫ s
0 yδ(θrω)dre−2αyδ(θsω)‖h(s+ τ)‖2ds

=

∫ 0

−T3
e

5
4
mµs−2α

∫ s
0 z(θrω)dre−2αz(θsω)‖h(s+ τ)‖2ds.

(5.23)

Consequently, it follows from (5.21)-(5.23) that

lim
δ→0

∫ 0

−∞
e

5
4
mµs−2α

∫ s
0 yδ(θrω)dre−2αyδ(θsω)‖h(s+ τ)‖2ds

=

∫ 0

−∞
e

5
4
mµs−2α

∫ s
0 z(θrω)dre−2αz(θsω)‖h(s+ τ)‖2ds.

(5.24)

By the definitions of Rα(τ, ω) (cf. (4.16)) and Rδα(τ, ω) (cf. (5.15)), we derive (5.16) immediately.

The proof of this lemma is complete. �

Theorem 5.4 Under the conditions of Lemma 5.3, the cocycle Ξ of problem (5.2) possesses a

unique D-pullback attractor Aδα = {Aδα(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D in H.
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Proof. In order to prove this result, we need to establish analogous results to lemmas 4.4 and 4.5

for the cocycle generated by (5.2). As the proof is similar as the one in Theorem 4.6, we prefer

to omit it here. �

6 Upper semicontinuity of attractors

In this section, we consider the limiting behavior of random pullback attractors Aδα of problem

(5.2) as δ → 0, for which the following condition is needed: there exists a constant C ′f > 0, such

that ∣∣∣∣df(s)

ds

∣∣∣∣ ≤ C ′f (1 + |s|p−2
)
, ∀s ∈ R. (6.1)

Lemma 6.1 Assume a ∈ C(R;R+) is locally Lipschitz and satisfies (1.2), f ∈ C(R) fulfills

(1.3)-(1.4) and (6.1), which implies F : L2(Rn)→ Lq(Rn) satisfies (2.9)-(2.10). In addition, h ∈
L2
loc(R;H) and l ∈ L(L2(O);R). Let u and uδ be the solutions of (2.11) and (5.2), respectively.

Then, for every τ ∈ R, ω ∈ Ω, T > 0 and ε ∈ (0, 1), there exist δ0 = δ0(τ, ω, T, ε) and c =

c(τ, ω, T, α, vδ,M,Cf , C
′
f , µ) > 0, such that for all 0 < |δ| < δ0 and t ∈ [τ, τ + T ],

‖uδ(t, τ, ω, uδ,τ )− u(t, τ, ω, uτ )‖2 ≤ c‖uδ,τ − uτ‖2 + cε

(
1 +

∫ t

τ
‖h(s)‖2ds

)
. (6.2)

Proof. Before showing the details, we emphasize that in this proof, c is a positive constant which

is different from line to line even in the same line. Let v̄ = vδ − v. By (5.9) and (2.13), we have

1

2

d

dt
‖v̄‖2 + a(l(eαz(θtω)v)) ((−∆)γ v̄ + µv̄, v̄)

=

∣∣∣∣ (a(l(eαyδ(θtω)vδ))((−∆)γvδ + µvδ)− a(l(eαz(θtω)v))((−∆)γvδ + µvδ), v̄
) ∣∣∣∣

+ α(yδ(θtω)vδ − z(θtω)v, v̄) +

∫
O

(
e−αyδ(θtω)F (eαyδ(θtω)vδ)− e−αz(θtω)F (eαz(θtω)v)

)
v̄dx

+
(
e−αyδ(θtω) − e−αz(θtω)

)
(h(t), v̄).

(6.3)

Since vδ, v ∈ C(τ, τ + T ;H), there exists a bounded set S ∈ H such that, vδ and v both

belong to S. Besides, taking into account that l ∈ L2(O), there exists a constant R > 0 such

that l(vδ) ∈ [−R,R] and l(v) ∈ [−R,R]. Then, by means of the locally Lipschitz continuity of

function a, we obtain∣∣∣(a(l(eαyδ(θtω)vδ))((−∆)γvδ + µvδ)− a(l(eαz(θtω)v))((−∆)γvδ + µvδ), v̄
)∣∣∣

≤
∣∣∣a(l(eαyδ(θtω)vδ))− a(l(eαz(θtω)v))

∣∣∣ ((−∆)γvδ + µvδ, v̄)

≤ La‖l‖
(
‖eαyδ(θtω)vδ − eαz(θtω)vδ‖+ eαz(θtω)‖v̄‖

)(C(n, γ)

2
‖vδ‖Ḣγ(Rn)‖v̄‖+ µ‖vδ‖‖v̄‖

)
=
C(n, γ)

2
La‖l‖

∣∣∣eαyδ(θtω) − eαz(θtω)
∣∣∣ ‖vδ‖‖vδ‖Ḣγ(Rn)‖v̄‖+ La‖l‖µeαz(θtω)‖vδ‖‖v̄‖2.

(6.4)
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Observe that ∫
O

(
e−αyδ(θtω)F (eαyδ(θtω)vδ)− e−αz(θtω)F (eαz(θtω)v)

)
v̄dx

=

∫
O
e−αyδ(θtω)

(
F (eαyδ(θtω)vδ)− F (eαyδ(θtω)v)

)
v̄dx

+

∫
O

(
e−αyδ(θtω) − e−αz(θtω)

)
F (eαyδ(θtω)v)v̄dx

+

∫
O
e−αz(θtω)

(
F (eαyδ(θtω)v)− F (eαz(θtω)v)

)
v̄dx := I1 + I2 + I3.

(6.5)

For I1, in terms of (1.2), (1.3), (2.8) and the locally Lipschitz continuity of function a, we have

I1 =

∫
O
e−αyδ(θtω)

(
F (eαyδ(θtω)vδ)− F (eαyδ(θtω)v)

)
v̄dx

= e−αyδ(θtω)

∫
O

(
a(l(eαyδ(θtω)vδ))µe

αyδ(θtω)vδ − a(l(eαyδ(θtω)v))µeαyδ(θtω)v
)
v̄dx

+ e−αyδ(θtω)

∫
O

(
f(eαyδ(θtω)vδ)− f(eαyδ(θtω)v)

)
v̄dx

= e−αyδ(θtω)

∫
O

(
a(l(eαyδ(θtω)vδ))µe

αyδ(θtω)vδ − a(l(eαyδ(θtω)v))µeαyδ(θtω)vδ

)
v̄dx

+ e−αyδ(θtω)

∫
O

(
a(l(eαyδ(θtω)v))µeαyδ(θtω)vδ − a(l(eαyδ(θtω)v))µeαyδ(θtω)v

)
v̄dx

+ e−αyδ(θtω)

∫
O

(
f(eαyδ(θtω)vδ)− f(eαyδ(θtω)v)

)
v̄dx

≤ La‖l‖µeαyδ(θtω)‖vδ‖‖v̄‖2 +Mµ‖v̄‖2 + Cf‖v̄‖2.

(6.6)

For I2, it follows from (2.10) and the Young inequality that

I2 =

∫
O

(
e−αyδ(θtω) − e−αz(θtω)

)
F (eαyδ(θtω)v)v̄dx

≤
∣∣∣e−αyδ(θtω) − e−αz(θtω)

∣∣∣ ∫
O
F (eαyδ(θtω)vδ)v̄dx

≤
∣∣∣e−αyδ(θtω) − e−αz(θtω)

∣∣∣ (α3e
α(p−1)yδ(θtω)

∫
O
|vδ|p−1v̄dx+ α3

∫
O
v̄dx

)
≤ c

∣∣∣e−αyδ(θtω) − e−αz(θtω)
∣∣∣ (‖vδ‖pp + ‖v̄‖pp + 1

)
.

(6.7)

For I3, making use of the locally Lipschitz continuity of function a, (1.2), (2.8) and (6.1), we
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arrive at

I3 =

∫
O
e−αz(θtω)

(
F (eαyδ(θtω)v)− F (eαz(θtω)v)

)
v̄dx

= e−αz(θtω)

∫
O

(
a(l(eαyδ(θtω)v))µeαyδ(θtω)v − a(l(eαz(θtω)v))µeαz(θtω)v

)
v̄dx

+ e−αz(θtω)

∫
O
f(eαyδ(θtω)v)− f(eαz(θtω)v)v̄dx

≤ e−αz(θtω)

∫
O

(
a(l(eαyδ(θtω)v))µeαyδ(θtω)v − a(l(eαz(θtω)v))µeαyδ(θtω)v

)
v̄dx

+ e−αz(θtω)

∫
O

(
a(l(eαz(θtω)v))µeαyδ(θtω)v − a(l(eαz(θtω)v))µeαz(θtω)v

)
v̄dx

+
∣∣∣eαyδ(θtω)−αz(θtω) − 1

∣∣∣ ∫
O

∣∣∣∣dfds
∣∣∣∣ vv̄dx

≤
∣∣∣eαyδ(θtω) − eαz(θtω)

∣∣∣ (eαyδ(θtω)−αz(θtω)
)
µ‖v‖C(τ,τ+T ;H)La‖l‖‖v‖‖v̄‖

+
∣∣∣eαyδ(θtω)−αz(θtω) − 1

∣∣∣ (2µM‖v‖‖v̄‖+ C ′f

∫
O

(
eαyδ(θtω) + eαz(θtω)

)p−2
|v|p−1|v̄|)dx

)
≤ c

∣∣∣eαyδ(θtω)−αz(θtω) − 1
∣∣∣ (‖v‖pp + ‖v̄‖pp) + c

∣∣∣eαyδ(θtω) − eαz(θtω)
∣∣∣ (‖v‖2 + ‖v̄‖2).

(6.8)

With the help of (5.6), we find for every ε > 0, there exists δ1 = δ1(ε, τ, ω, T ) > 0, such that for

all 0 < |δ| < δ1 and t ∈ [τ, τ + T ],∣∣∣e−αyδ(θtω) − e−αz(θtω)
∣∣∣ ≤ ε and

∣∣∣eαyδ(θtω)−αz(θtω) − 1
∣∣∣ ≤ ε. (6.9)

It follows from (6.5)-(6.9) that there exists a constant c = c(τ, ω, T, α, vδ,M,Cf , C
′
f , µ) > 0, such

that for every ε > 0, 0 < |δ| < δ1 and t ∈ [τ, τ + T ],∫
O

(
e−αyδ(θtω)F (eαyδ(θtω)vδ)− e−αz(θtω)F (eαz(θtω)v)

)
v̄dx ≤ c‖v̄‖2 + cε+ cε‖vδ‖pp + cε‖v‖pp.

(6.10)

By (6.9) and the Young inequality, for every ε > 0, for all 0 < |δ| < δ1 and t ∈ [τ, τ + T ], we

obtain ∣∣∣e−αz(θtω) − e−αyδ(θtω)
∣∣∣ (h(t), v̄) ≤ 1

2
ε‖v̄‖2 +

1

2
ε‖h(t)‖2, (6.11)

and

α(yδ(θtω)vδ − z(θtω)v, v̄) ≤ α|(yδ(θtω)vδ − z(θtω)vδ, v̄)|+ α|(z(θtω)vδ − z(θtω)v, v̄)|

≤ c‖v̄‖2 +
1

2
ε‖v̄‖2 +

1

2
ε‖vδ‖2.

(6.12)

28



Taking into account (6.3)-(6.12) and (1.2), together with the fact that v and vδ both belong

to C(τ, τ + T ;H) ∩ L2(τ, τ + T ;V ), we derive

d

dt
‖v̄‖2 ≤ c‖v̄‖2 + cε

(
1 + ‖v‖pp + ‖vδ‖pp + ‖h(t)‖2

)
. (6.13)

Solving (6.13), we find for all 0 < |δ| < δ1 and t ∈ [τ, τ + T ],

‖v̄‖2 ≤ ec(t−τ)‖v̄(τ)‖2 + cεec(t−τ)

∫ t

τ

(
1 + ‖v‖pp + ‖vδ‖pp + ‖h(s)‖2

)
ds. (6.14)

Since we have proved that v and vδ both belong to Lploc(τ,∞;Lp(Rn)), there exists a positive

constant C1 := C1(T, ω) such that ∫ t

τ

(
‖v‖pp + ‖vδ‖pp

)
ds < C1.

Therefore, (6.14) is equivalent to

‖vδ(t, τ, ω, vδ,τ )− v(t, τ, ω, vτ )‖2 ≤ ec(t−τ)‖vδ,τ − vτ‖2 + cεec(t−τ)

(
1 +

∫ t

τ
‖h(s)‖2ds

)
. (6.15)

Note that

uδ(t, τ, ω, uδ,τ )− u(t, τ, ω, uτ ) = eαyδ(θtω)vδ(t, τ, ω, vδ,τ )− eαz(θtω)v(t, τ, ω, vτ )

= eαyδ(θtω)(vδ(t, τ, ω, vδ,τ )− v(t, τ, ω, vτ )) +
(
eαyδ(θtω) − eαz(θtω)

)
v(t, τ, ω, vτ ),

where vδ,τ = e−αyδ(θτω)uδ,τ and vτ = e−αz(θτω)uτ . Then, by the continuity of yδ(θtω) in t and

(6.15), we obtain that there exists δ2 ∈ (0, δ1), such that for all 0 < |δ| < δ2 and t ∈ [τ, τ + T ],

‖uδ(t, τ, ω, uδ,τ )− u(t, τ, ω, uτ )‖2 ≤ c‖vδ(t, τ, ω, vδ,τ )− v(t, τ, ω, vτ )‖2

+ c
∣∣∣eαyδ(θtω) − eαz(θtω)

∣∣∣ ‖v(t, τ, ω, vτ )‖2,

which along with (5.6) and (6.15) implies (6.2). �

An immediate result of Lemma 6.1 is:

Corollary 6.2 Assume the conditions of Lemma 6.1 are true and δn → 0 as n→∞. Let uδn and

u be the solutions of (5.2) and (2.11) with initial data uδn,τ and uτ , respectively. If uδn,τ → uτ

in H as n→∞, then for every τ ∈ R, ω ∈ Ω and t > τ ,

uδn(t, τ, ω, uδn,τ )→ u(t, τ, ω, uτ ) in H as n→∞.

We have stated that for each δ ∈ (0, 1), Aδα is the unique D-pullback attractor of Ξδ in H. To

establish the upper semicontinuity of these attractors as δ → 0, we need the following compactness

result.
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Lemma 6.3 Assume the conditions of Lemma 6.1 and (4.2)-(4.3) hold. Let τ ∈ R and ω ∈ Ω be

fixed, if δn → 0 as n→∞ and un ∈ Aδnα (τ, ω), then the sequence {un}∞n=1 is precompact in H.

Proof. The proof is standard based on the arguments of Lemma 3.3. Since the attractor Aδnα is

invariant and un ∈ Aδnα (τ, ω), we see that for each n ∈ N, there exists ũn ∈ Aδnα (τ − 1, θ−1ω) such

that

un = Ξδn(1, τ − 1, θ−1ω, ũn) = uδn(τ, τ − 1, θ−τω, ũn). (6.16)

By (5.16), there exists N = N(τ, ω, α) > 1, such that for all n ≥ N ,

Rδnα (τ − 1, θ−1ω) ≤ 1 +
2κ1|O|
mµ

+
4

mµ

∫ 0

−∞
e

5
4
mµs−2α

∫ s
0 z(θr−1ω)dr−e−2αz(θs−1ω)‖h(s+ τ − 1)‖2ds.

(6.17)

Since ũn ∈ Aδnα (τ − 1, θ−τω) ⊂ Kδn
α (τ − 1, θ−1ω), by (5.14) and (6.17), for all n ≥ N , we obtain

‖ũn‖2 ≤ e2αz(ω)

(
1 +

2κ1|O|
mµ

+
4

mµ

∫ 0

−∞
e

5
4
mµs−2α

∫ s
0 z(θr−1ω)dr−e−2αz(θs−1ω)‖h(s+ τ − 1)‖2ds

)
.

(6.18)

It follows from (5.3) that for all t ≥ τ − 1,

vδn(t, τ − 1, θ−τω, ṽn) = uδn(t, τ − 1, θ−τω, ũn)e−αyδn (θt−τω), (6.19)

where ṽn = e−αyδn (θ−1ω)ũn. In terms of (5.6), we know that

lim
n→∞

e−αyδn (θ−1ω) = e−αz(θ−1ω),

which along with (6.18)-(6.19) shows the sequence {ṽn}∞n=1 is bounded in H. Then, similar

arguments to those in Lemma 3.3 infer that {vδn(t, τ − 1, θ−τω, ṽn)}∞n=1 is precompact in H, that

is, there exists v′ ∈ H, such that for all t ∈ (τ − 1, τ),

vδn(t, τ − 1, θ−τω, ṽn)→ v′(t) in H. (6.20)

By (5.3), (6.19)-(6.20), for all n ≥ N , we have

uδn(t, τ, θ−τω, ũn)→ e−αz(θt−τω)v′(t) in H for almost all t ∈ (τ − 1, τ). (6.21)

Since δn → 0, it follows from Corollary 6.2 and (6.21) that

uδn(τ, t, θ−τω, uδn(t, τ − 1, θ−τω, ũn))→ u(τ, t, θ−τω, e
−αz(θt−τω)v′(t)) in H, (6.22)

where u is the solution of (2.11). Note that

uδn(τ, t, θ−τω, uδn(t, τ − 1, θ−τω, ũn)) = uδn(τ, τ − 1, θ−τω, ũn).

Therefore, by (6.22), we have

uδn(τ, τ − 1, θ−τω, ũn)→ u(τ, t, θ−τω, e
−αz(θt−τω)v′) in H,

which along with (6.16) completes the proof. �
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Theorem 6.4 Assume the conditions of Lemma 6.3 are true. Then, for every τ ∈ R and ω ∈ Ω,

we have

lim
δ→0

distH(Aδα(τ, ω),Aα(τ, ω)) = 0. (6.23)

Proof. Given τ ∈ R and ω ∈ Ω, let

K0(τ, ω) = {u ∈ H : ‖u‖2 ≤ e2αz(ω)R0(τ, ω)},

where R0(τ, ω) is defined by

R0(τ, ω) = 1 +
2κ1|O|
mµ

+
4

mµ

∫ 0

−∞
e

5
4
mµs−2α

∫ s
0 z(θrω)dre−2αz(θsω)‖h(s+ τ)‖2ds.

By (4.3), we see the family K0 = {K0(τ, ω) : τ ∈ R, ω ∈ Ω} belongs to D. Moreover, by (5.16)

and (5.6), we have

lim
δ→0
‖Kδ

α(τ, ω)‖ = ‖K0(τ, ω)‖ for all τ ∈ R and ω ∈ Ω,

which, together with Corollary 6.2 and Lemma 6.3, concludes this proof by [36, Theorem 3.1]

immediately. �

7 Final comments and remarks

In this paper, we have analyzed a kind of fractional stochastic nonlocal partial differential

equations driven by multiplicative noise, showing first the existence and uniqueness of solution

to our model (2.11). Next, we also proved the existence and uniqueness of tempered pullback

random attractor. When the fractional nonlocal partial differential equations are driven by colored

noise, we investigated the convergence of solutions of Wong-Zakai approximations and the upper

semicontinuity of random attractors of the approximated random system when δ → 0.

Actually, instead of studying the linear multiplicative noise αu◦ dWdt , we could consider a more

general nonlinear one g(u)dWdt (with an appropriate nonlinear function g). It is worth recalling

that Imkeller and Schmalfuß [22] proved that a stochastic ordinary differential equation, with

locally Lipschitz g, always generates a random dynamical system. However, it is not known yet

whether the same happens for general stochastic partial differential equations driven by nonlinear

white noise. Therefore, we can consider the Wong-Zakai approximate system via replacing g(u)dWdt
by g(u)ζδ(θtω). Thus, the similar analysis carried out in our paper is useful to prove the existence

and uniqueness of solution and the existence of random attractors to this approximate problem.

So far, it is unknown how to prove the convergence of solutions and attractors of approximated

problems driven by nonlinear noise towards the original stochastic ones. However, as in some

cases (multiplicative or additive noise) we are able to prove these convergences (see [43]), it seems

sensible to think that the attractors of the Wong-Zakai approximations provide us interesting
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information about the dynamics of the stochastic problem. We plan to drive deeper into this

analysis in the near future.

8 Acknowledgements

This research has been partially supported by the Spanish Ministerio de Ciencia, Innovación y

Universidades (MCIU), Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo

Regional (FEDER) under the project PGC2018-096540-B-I00.

References

[1] S. Abe, S. Thurner, Anomalous diffusion in view of Einsteins 1905 theory of Brownian

motion, Physica A, 356 (2005), 403-407.

[2] M. Anguiano, P. E. Kloeden, T. Lorenz, Asymptotic behavior of nonlocal reaction-diffusion

equations, Nonlinear Anal., 73 (2010), 3044-3057.

[3] L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998.

[4] P. W. Bates, H. Lisei, K. N. Lu, Attractors for stochastic lattice dynamical systems, Stoch.

Dyn., 6 (2006), 1-21.

[5] P. W. Bates, K. N. Lu, B. X. Wang, Random attractors for stochastic reaction-diffusion

equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.
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