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Abstract

In this paper we study an stochastic system of differential equations
with nonlocal discrete diffusion. For two type of noises we study the
existence of either positive or probability solutions. Also, we analyse
the asymptotic behaviour of solutions in the long term, showing that
under suitable assumptions they tend to a neighborhood of the unique
deterministic fixed point. Finally, we perform numerical simulations and
discuss the application of the results to life tables for mortality in Spain.
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1 Introduction

Diffusion processes can be sometimes modeled by nonlocal operators, which take
into account the influence of the value of the variable in the whole domain (or in
part of them) and not only in the current point. For example, we can consider
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the following nonlocal parabolic problem

ut (x, t) =

∫
RN

J (x− y) (u (y, t)− u (x, t)) dy, x ∈ Ω, t > 0,

u (x, t) = g (x, t) , x /∈ Ω, t > 0,

u (x, 0) = u0 (x) , x ∈ Ω,

where Ω ⊆ R is some interval (see [6], [13], [32]). Also, nonlinear nonlocal
problems modeling phase transitions have been studied for example in [4], [5].

In [29] we considered the following nonlocal problem with discrete diffusion:

d

dt
ui (t) =

∑
r∈D

ji−rur (t)− ui(t) +
∑
r∈Z\D

ji−rgr (t) , i ∈ D, t > 0, (1)

ui (0) = u0
i , i ∈ D,

where D = {m1, . . . ,m2}, m1 < m2, mi ∈ Z, and j : Z → R+. The term∑
r∈D ji−rur (t) − ui(t) can be seen as a space discretization of the integral∫

RN J (x− y) (u (y, t)− u (x, t)) dy (see e.g. [32]).
This problem was shown to be appropriate to model dynamical life tables

by performing numerical simulations with data of mortality from Spanish pop-
ulation. In actuarial or demographic sciences life tables are used to study some
biometrics functions, which are related, for example, to the probability of sur-
vival or death. They are important in order to calculate the insurance premium
or to analyse the sustainability of the social welfare system

The predictions for mortality in Spain obtained from model (1) were shown
to be adequate for a period of about three years but no longer. This is why in
[30] we considered the following model with delay:

d

dt
ui (t) =

∑
r∈D

∫ 0

−h
ji−ru

r(t+ s)αi(s)dµ(s)− ui(t) (2)

+
∑
r∈Z\D

∫ 0

−h
ji−rgr (t+ s)αi(s)dµ(s), i ∈ D, t > 0,

ui (τ + s) ≡ φi (s) , i ∈ D, s ∈ [−h, 0],

where αi : [−s, 0]→ R+ and dµ(s) = ξ (s) ds being ξ (·) a probability density. In
[30] it was shown that with this model the prediction horizon can be extended up
to 8 years. In addition, it gives coherent values, in magnitude, when comparing
it with other classical techniques such as the Lee-Carter model, up to 18 years.

However, in the real world there is always some kind of noise which can
be intrinsic to the process under study or that can be related to errors in the
observed data. Hence, we will consider now the following stochastic system of

2



differential equations:

d

dt
ui (t) =

∑
r∈D

ji−rur (t)− ui(t) +
∑
r∈Z\D

ji−rgr (t) + bσi(ui(t))
dwi
dt

, i ∈ D, t > 0,

(3)

ui (0) = u0
i , i ∈ D,

where wi (t) are independent Brownian motions and b > 0 is the intensity of the
white noise. We will assume the following assumptions on the kernel {ji} and
the functions {gi(·)}:

(H1) ji ≥ 0 for all i ∈ Z.

(H2)
∑
i∈Z ji = 1.

(H3) g ∈ C([0,+∞), l∞2 ),

where l∞2 = {(ui)i∈Z\D : supi∈Z\D |ui|}.

We will consider two specific type of noises. Namely: 1) σi(v) = v (linear
case); 2) σi(v) = v(1−v). The choice of the noise in the second case is motivated
by the fact that we are interested in studying variables like the probability of
death, which take values in the interval [0, 1]. Noises of this type have been
used for example for the logistic equation [22].

Our main aim in this paper is to present some theoretical results concerning
the properties of solutions of the stochastic system. First, we prove in the linear
case the existence of a unique positive solution whenever the initial datum is pos-
itive. Second, we establish in the second case that if the initial condition takes
values in the interval (0, 1), then the solution remains in this interval for any
future time. Third, we analyse the asymptotic behaviour of solutions, showing
under certain assumptions that for large times they remain in a neighborhood
of the unique fixed point of the deterministic system.

Finally, we perform numerical simulations of solutions and analyse the effi-
ciency of model (3) for prediction of mortality using data from Spain.

2 Properties of solutions

In this section, under certain conditions on the functions of the problem, we
will establish first that for any positive initial condition there exists a unique
globally defined solution which is almost sure positive. Then we will prove that
if the initial condition lies in the interval (0, 1), then the solution remains there
for all positive times. This is important for the application to life tables.

Throughout this paper we will assume for the kernel {ji} and the functions
{gi(·)} the conditions (H1)− (H3) given above.
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System (3) can be rewritten in the matricial form

du

dt
= Bu (t) + h (t) + bσ(u(t))

dw

dt
, (4)

u (0) = u0 ∈ Rm,

where u (t) = (um1
(t) , ..., um2

(t))T , w (t) = (wm1
(t) , ..., wm2

(t))T , h(t) =
(hm1 (t) , ..., hm2(t))T , m = m2 −m1 + 1, σ : Rm → Rm×m and

(σ(v))ij = 0 if i 6= j,

(σ(v))ii = σi(vi) for i = m1, ...,m2,

hi(t) =
∑
r∈Z\D

ji−rgr (t) ,

B =



j0 j−1 j−2 · · · · · · jm1−m2

j1 j0 j−1 j−2 · · · jm1−m2+1

j2 j1 j0 j1 · · · jm1−m2+2

...
. . .

. . .
. . .

. . .
...

jm2−m1−1 · · · j2 j1 j0 j1
jm2−m1

· · · · · · j2 j1 j0


.

2.1 A linear noise

First, we will consider a standard linear noise, that is, we study the system

d

dt
ui (t) =

∑
r∈D

ji−rur (t)− ui(t) +
∑
r∈Z\D

ji−rgr (t) + bui(t)
dwi
dt

, i ∈ D, t > 0,

(5)

ui (0) = u0
i , i ∈ D.

Denote Rm+ = {v ∈ Rm : vj > 0 for all j}. We will prove the existence
of global positive solutions. For this aim we follow a standard procedure in
stochastic differential equations (see e.g. [10], [11], [26]).

Lemma 1 Assume that gr(t) ≥ 0 for all r and t. Then for any u0 ∈ Rm+ there
exists a unique globally defined solution u (·) such that u (t) ∈ Rm+ almost sure
for t ≥ 0.

Proof. The existence of a unique locally defined solution for problem (4) follows
from standard results as the functions involved in the systems are locally Lips-
chitz (see e.g. [15, Chapter 2, p.45]). If the solution is defined in the maximal
interval [0, τe), then we need to establish that τe = +∞ and that u (t) ∈ Rm+ for
all t ≥ 0 a.s.
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Let k0 > 0 be large enough so that u0
i ∈ [1/k0, k0] for all i ∈ D. As usual,

we define the stopping time

τk = inf{t ∈ [0,∞) : ui (t) 6∈ (
1

k
, k) for some i ∈ D}.

This sequence is increasing as k ↗ +∞. If τ∞ = limk→+∞ τk = +∞ a.s., then
τe = +∞ and u (t) ∈ Rm+ for t ≥ 0 almost sure, proving the assertion.

By contradiction, assume the existence of T, ε > 0 such that

P (τ∞ ≤ T ) > ε.

In such a case there exists k1 ≥ k0 for which

P (τk ≤ T ) ≥ ε for k ≥ k1.

Further, we consider the C2-function V : Rm+ → R1
+ given by

V (u) =
∑
i∈D

(ui − 1− log(ui)).

For u (t) ∈ Rm+ by Itô’s formula we have

dV (u(t)) =
∑
i∈D

(
1− 1

ui (t)

)∑
r∈D

ji−rur (t)− ui(t) +
∑
r∈Z\D

ji−rgr (t)

 dt

(6)

+
∑
i∈D

1

2
b2dt+

∑
i∈D

(
1− 1

ui (t)

)
bui(t)dwi(t)

= I(t)dt+
∑
i∈D

Ii(t)dwi(t),

where Ii(t) =
(

1− 1
ui(t)

)
bui(t). By using (H1)− (H3) and gr (t) ≥ 0 the first

term is estimated as follows for u (t) ∈ Rm+ :

I(t) ≤
∑
i∈D

∑
r∈D

ji−rur (t)−
∑
i∈D

ui(t) +m+
∑
i∈D

∑
r∈Z\D

ji−rgr (t) +
m

2
b2

−
∑
i∈D

1

ui (t)

∑
r∈D

ji−rur (t) +
∑
r∈Z\D

ji−rgr (t)


≤ KT ,

where we have used that

∑
i∈D

1

ui (t)

∑
r∈D

ji−rur (t) +
∑
r∈Z\D

ji−rgr (t)

 ≥ 0,
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∑
i∈D

∑
r∈D

ji−rur (t)−
∑
i∈D

ui(t) =
∑
r∈D

∑
i∈D

ji−rur (t)−
∑
i∈D

ui(t)

≤
∑
r∈D

ur (t)−
∑
i∈D

ui(t) = 0,

∑
i∈D

∑
r∈Z\D

ji−rgr (t) ≤ CT
∑
i∈D

∑
r∈Z\D

ji−r ≤ mCT .

Integrating in (6) over (0, τk ∧ T ) and taking expectations we obtain that

0 ≤ EV (u(τk ∧ T ))

≤ V (u0) + E
∫ τk∧T

0

KT dt+ E
∫ τk∧T

0

∑
i∈D

(
1− 1

ui (t)

)
bui(t)dwi(t)

= V (u0) +KTE(τk ∧ T ) ≤ V (u0) +KTT.

Let Ωk = {ω : τk ≤ T}, which satisfies P (Ωk) ≥ ε for k ≥ k1. For any
ω ∈ Ωk there is i ∈ D such that either ui (τk, ω) = k or ui (τk, ω) = 1/k, which
implies that

V (u(τk ∧ T, ω)) ≥ (k − 1− log(k)) ∧ (
1

k
− 1 + log(k)).

Hence,

V (u0)+KTT ≥ E(1Ωk
V (u(τk∧T ))) ≥ ε((k−1−log(k))∧(

1

k
−1+log(k))) = εR(k),

where 1A stands for the indicator function of the set A. Passing to the limit as
k → +∞ we get a contradiction as R(k)→ +∞.

Corollary 2 Let u0, v0 ∈ Rm be two initial conditions satisfying u0
i > v0

i for
any i ∈ D. Also, gu, gv ∈ C([0,+∞), l∞2 ) are such that gui (t) ≥ gvi (t) for all
i ∈ D and t ≥ 0. Then, ui (t) > vi (t), for all i ∈ D and t ≥ 0, where u (·), v (·)
are the unique solutions to problem (3) corresponding to {u0, gu} and {v0, gv},
respectively.

Proof. It follows immediately by defining the function w (·) = u (·)− v (·) and
applying Lemma 1 to it.

2.2 A nonlinear noise

Second, we are going to consider the system

d

dt
ui (t) =

∑
r∈D

ji−rur (t)− ui(t) +
∑
r∈Z\D

ji−rgr (t) + bui(t)(1− ui(t))
dwi
dt

,

(7)

ui (0) = u0
i ,
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where i ∈ D, t > 0.
We are interesting in proving that if the components of the initial condition

lie within the interval (0, 1) and the functions gr (t) take values in [0, 1], then
the components of the solution u (t) also lie in (0, 1) for any t ≥ 0 a.s. This is
important for applying the results to life tables, as in such situation the variable
is a probability.

We start with the deterministic case.

Lemma 3 Let b = 0. Assume that gr(t) ∈ [0, 1] for all r and t. Then for any
u0 ∈ Rm such that u0

i ∈ [0, 1], for any i ∈ D, the unique solution u (·) to (7)
satisfies that ui (t) ∈ [0, 1] for all i ∈ D and t ≥ 0.

Proof. The fact that ui (t) ≥ 0 was proved in [29], so it remains to check that
ui (t) ≤ 1. Let z+ = max{z, 0} for a real number z. Multiplying the equation
by (u− 1)

+
and using the equality [1, Lemma 2.2](

dy

dt
, y+

)
Rm

=
1

2

d

dt

∥∥y+
∥∥2

Rm

we have

1

2

d

dt

∥∥∥(u (t)− 1)
+
∥∥∥2

Rm

=
∑
i∈D

∑
r∈D

ji−rur (t) (ui (t)− 1)+

+
∑
r∈Z\D

ji−rgr (t) (ui (t)− 1)+ −
∑
i∈D

ui (t) (ui (t)− 1)
+

=
∑
i∈D

∑
r∈D

ji−r(ur (t)− 1)(ui (t)− 1)+ +
∑
i∈D

∑
r∈D

ji−r(u
i (t)− 1)+

+
∑
i∈D

∑
r∈Z\D

ji−rgr (t) (ui (t)− 1)+ −
∑
i∈D

(ui (t)− 1) (ui (t)− 1)
+ −

∑
i∈D

(ui (t)− 1)
+
.

Using gr (t) ≤ 1 and (H1)− (H2) we obtain that∑
i∈D

∑
r∈D

ji−r(ui (t)− 1)+ +
∑
i∈D

∑
r∈Z\D

ji−rgr (t) (ui (t)− 1)+ −
∑
i∈D

(ui (t)− 1)
+

≤
∑
i∈D

∑
r∈D

ji−r +
∑
r∈Z\D

ji−r

 (ui (t)− 1)+ −
∑
i∈D

(ui (t)− 1)
+

= 0.
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Hence, by (H2) we deduce that

1

2

d

dt

∥∥∥(u (t)− 1)
+
∥∥∥2

Rm

≤
∑
i∈D

∑
r∈D

ji−r(ur (t)− 1)(ui (t)− 1)+

≤
∑
i∈D

∑
r∈D

ji−r(ur (t)− 1)+(ui (t)− 1)+

≤ 1

2

∑
i∈D

∑
r∈D

ji−r

((
(ur (t)− 1)+

)2
+
(
(ui (t)− 1)+

)2)
≤
∥∥∥(u (t)− 1)

+
∥∥∥2

Rm
.

Thus, ∥∥∥(u (t)− 1)
+
∥∥∥2

Rm
≤
∥∥∥(u0 − 1

)+∥∥∥2

Rm
e2t,

so u (t) ≤ 1 for all t ≥ 0.

Further, we study system (7).

Lemma 4 Assume that gr(t) ∈ [0, 1] for all r and t. Then for any u0 ∈ Rm
such that u0

i ∈ (0, 1), for any i ∈ D, the unique solution u (·) to (7) satisfies
almost sure that ui (t) ∈ (0, 1) for all i ∈ D and t ≥ 0.

Proof. Let k0 > 0 be large enough so that u0
i ∈ [1/k0, 1 − 1/k0] for all i ∈ D.

We define now the stopping time

τk = inf{t ∈ [0,∞) : ui (t) 6∈ (
1

k
, 1− 1

k
) for some i ∈ D}.

This sequence is increasing as k ↗ +∞. If τ∞ = limk→+∞ τk = +∞ a.s., then
0 < ui (t) < 1 almost sure for t ≥ 0, proving the assertion.

By contradiction, assume the existence of T, ε > 0 such that

P (τ∞ ≤ T ) > ε.

In such a case there exists k1 ≥ k0 for which

P (τk ≤ T ) ≥ ε for k ≥ k1.

Let
K0 = {u = (um1 , ..., um2) ∈ Rm+ : 0 < ui < 1}.

We define the C2-function V : K0 → R1
+ given by

V (u) = −
∑
i∈D

(log(1− ui) + log(ui)).
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For u (t) ∈ K0 by Itô’s formula we have

dV (u(t)) =
∑
i∈D

(
1

1− ui (t)
− 1

ui

)∑
r∈D

ji−rur (t)− ui(t) +
∑
r∈Z\D

ji−rgr (t)

 dt

+
∑
i∈D

1

2

(
u2
i (t) + (1− ui(t))2

)
b2dt+

∑
i∈D

b(2ui(t)− 1)dwi(t)

= I(t)dt+
∑
i∈D

Ii(t)dwi(t),

where Ii(t) = b(2ui(t)− 1). We note that

∑
i∈D

(
− 1

ui

)∑
r∈D

ji−rur (t)− ui(t) +
∑
r∈Z\D

ji−rgr (t)

 ≤∑
i∈D

1.

Then the term I(t) is estimated as follows when t ≤ τk:

I (t) ≤
∑
i∈D

(
1

1− ui (t)

)∑
r∈D

ji−rur (t)− ui(t) +
∑
r∈Z\D

ji−r

+
∑
i∈D

(
1 + b2

)

≤
∑
i∈D

(
1

1− ui (t)

)∑
r∈D

ji−r (ur (t)− 1) +
∑
r∈D

ji−r +
∑
r∈Z\D

ji−r − ui(t)

+m
(
1 + b2

)
≤
∑
i∈D

(
1

1− ui (t)

)
(1− ui(t)) +m

(
1 + b2

)
= m

(
2 + b2

)
.

Integrating over (0, τk ∧ T ) and taking expectations we infer that

0 ≤ EV (u(τk ∧ T )) ≤ V (u0) + E
∫ τk∧T

0

m
(
2 + b2

)
dt+ E

∫ τk∧T

0

∑
i∈D

b(2ui(t)− 1)dwi(t)

= V (u0) +m
(
2 + b2

)
E(τk ∧ T ) ≤ V (u0) +m

(
2 + b2

)
T.

Let Ωk = {ω : τk ≤ T}, which satisfies P (Ωk) ≥ ε for k ≥ k1. For any
ω ∈ Ωk there exists i ∈ D such that either ui (τk, ω) = 1

k or ui (τk, ω) = 1− 1
k ,

so

V (u(τk ∧ T, ω)) ≥ log(k)− log(1− 1

k
).

Thus,

V (u0) +m
(
2 + b2

)
T ≥ E(1Ωk

V (u(τk ∧ T ))) ≥ ε
(

log(k)− log(1− 1

k
)

)
.

Passing to the limit as k → +∞ we arrive at a contradiction.
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3 Asymptotic behaviour

We are now interested in studying the asymptotic behaviour of the solutions
to problems (5)-(7) around an asymptotically stable equilibrium of the deter-
ministic model in the autonomous case, that is, when b = 0 and the function
g (·) is constant, which means that gr (t) ≡ gr ∈ R. In [29] the existence of such
fixed point was proved. Namely, under suitable assumptions we show that the
solutions of the stochastic system remain close for large times to the unique
deterministic fixed point in some sense.

When b = 0, a fixed point u ∈ Rm has to satisfy the following system:

−
∑
r∈D

ji−rur + ui =
∑
r∈Z\D

ji−rgr = hi, i ∈ D,

which can be rewritten in the matricial form

Au = h, (8)

where

A =



1− j0 −j−1 −j−2 · · · · · · −jm1−m2

−j1 1− j0 −j−1 −j−2 · · · −jm1−m2+1

−j2 −j1 1− j0 −j−1 · · · −jm1−m2+2

...
. . .

. . .
. . .

. . .
...

−jm2−m1−1 · · · −j2 −j1 1− j0 −j−1

−jm2−m1
· · · · · · −j2 −j1 1− j0


.

If we assume that ∑
r∈D

ji−r < 1, ∀i ∈ D, (9)

which implies that A is diagonal dominant, then system (8) possesses a unique
fixed point u, which is exponentially stable and

‖u (t)− u‖2Rm ≤ ‖u (0)− u‖2Rm e−2δt → 0 if t→ +∞, (10)

for some δ > 0 [29, Theorem 3].
We start with the linear case.

Theorem 5 Assume that gr ≥ 0, for all r and t, b < 1 and∑
r∈D

ji−r < 1− b2, ∀i ∈ D. (11)

Then for any u0 ∈ Rm+ the unique solution to problem (5) has the property

lim sup
t→+∞

1

t
E
∫ t

0

‖u (s)− u‖2Rm ds ≤ b2

δ
‖u‖2Rm ,

where u is the unique solution of system (8) and

δ = min
i∈D

{
1− b2 −

∑
r∈D

ji−r

}
.
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Proof. We define the C2-function V : Rm → R given by

V (u) =
∑
i∈D

(ui − ui)2
.

By Itô’s formula, we have

dV (u(t)) =
∑
i∈D

2 (ui(t)− ui)

∑
r∈D

ji−rur (t)− ui(t) +
∑
r∈Z\D

ji−rgr

 dt

+
∑
i∈D

b2u2
i (t)dt+

∑
i∈D

2 (ui(t)− ui) bui(t)dwi(t)

= I(t)dt+
∑
i∈D

Ii(t)dwi(t). (12)

In view of Au = h, we have that

−
∑
r∈D

ji−rur + ui =
∑
r∈Z\D

ji−rgr.

Then the term I(t) is estimated as follows:

I(t) =
∑
i∈D

2 (ui(t)− ui)

(∑
r∈D

ji−r (ur (t)− ur)− (ui(t)− ui)

)
+
∑
i∈D

b2 (ui(t)− ui + ui)
2

≤ 2
∑
i∈D

∑
r∈D

ji−r (ur (t)− ur) (ui(t)− ui)− 2(1− b2) ‖u (t)− u‖2Rm + 2b2 ‖u‖2Rm .

We deal with the first term in the last inequality:∑
i∈D

∑
r∈D

ji−r (ur (t)− ur) (ui(t)− ui)

≤ 1

2

∑
i∈D

∑
r∈D

ji−r (ur (t)− ur)2
+

1

2

∑
i∈D

∑
r∈D

ji−r (ui(t)− ui)2

=
1

2

∑
r∈D

(ur (t)− ur)2
∑
i∈D

ji−r +
1

2

∑
i∈D

(ui(t)− ui)2
∑
r∈D

ji−r.

We observe (see [29, p.939]) that

δ = min
i∈D

{
1− b2 −

∑
r∈D

ji−r

}
= min

r∈D

{
1− b2 −

∑
i∈D

ji−r

}
.

Hence,
I(t) ≤ −2δ ‖u (t)− u‖2Rm + 2b2 ‖u‖2Rm .

11



Integrating in (12) over (0, t) we have

0 ≤ V (u(t)) ≤ V (u(0))− 2δ

∫ t

0

‖u (s)− u‖2Rm ds+ 2b2 ‖u‖2Rm t

+
∑
i∈D

∫ t

0

2 (ui(t)− ui) bui(t)dw(t).

Taking expectations and dividing by t we obtain

lim sup
t→+∞

1

t
E
∫ t

0

‖u (s)− u‖2Rm ds ≤ b2

δ
‖u‖2Rm .

Remark 6 Since the unique solution to problem (5) with b = 0 satisfies u (t) ≥
0 [29], it is easy to see from (10) that ur ≥ 0 for all r ∈ D.

We consider now system (7).

Theorem 7 Assume that gr(t) ∈ [0, 1] for all r and t, b < 1 and∑
r∈D

ji−r < 1− b2, ∀i ∈ D.

Then for any u0 ∈ Rm such that u0
i ∈ (0, 1), for any i ∈ D, the unique solution

to problem (7) has the property

lim sup
t→+∞

1

t
E
∫ t

0

‖u (s)− u‖2Rm ds ≤ b2

δ
‖u‖2Rm ,

where u is the unique solution of system (8) and

δ = min
i∈D

{
1− b2 −

∑
r∈D

ji−r

}
.

Proof. We define the C2-function V : Rm → R given by

V (u) =
∑
i∈D

(ui − ui)2
.

By Itô’s formula, we have

dV (u(t)) =
∑
i∈D

2 (ui(t)− ui)

∑
r∈D

ji−rur (t)− ui(t) +
∑
r∈Z\D

ji−rgr

 dt

+
∑
i∈D

b2u2
i (t) (1− ui(t)2

dt+
∑
i∈D

2 (ui(t)− ui) bui(t)(1− ui(t))dwi(t)

= I(t)dt+
∑
i∈D

Ii(t)dwi(t).

12



Since ui(t) ∈ (0, 1), we have∑
i∈D

b2u2
i (t) (1− ui(t)2 ≤

∑
i∈D

b2u2
i (t).

Repeating the same arguments of Theorem 5 we obtain that

0 ≤ V (u(t)) ≤ V (u(0))− 2δ

∫ t

0

‖u (s)− u‖2Rm ds+ 2b2 ‖u‖2Rm t

+
∑
i∈D

∫ t

0

2 (ui(t)− ui) bui(t)(1− ui(t))dwi(t).

Taking expectations and dividing by t we finally have

lim sup
t→+∞

1

t
E
∫ t

0

‖u (s)− u‖2Rm ds ≤ b2

δ
‖u‖2Rm .

Remark 8 Since by Lemma 3 the unique solution to problem (7) with b = 0
satisfies u (t) ∈ [0, 1], it is easy to see from (10) that ur ∈ [0, 1] for all r ∈ D.

4 Application to life tables

The mortality table is the most widely used tool for studying the survival of a
population. This instrument is based on so-called biometric functions, among
which we have life expectancy at birth at moment t, et0; the number of living
(deceased) individuals of an initial population, at a moment of time t, with
completed age x, ltx (dtx); or the associated probabilities of survival or death, ptx
and qtx, respectively. In this work we will focus on this last probability, qtx.

It is known that the probability of death is unknown a priori, and it is
common to assume that deaths occur randomly and independently among indi-
viduals of the same age x. In this sense, we can only know particular values of
mortality that have occurred at a specific moment in time and for the popula-
tion being studied, usually from a region or country, although it is usually also
used for specific groups, for example, the takers of a life insurance policy.

As the phenomenon of mortality is not reproducible in a natural way, it
is usual to have a single estimate of qtx for each age x and each time interval
[t, t + 1[. This can cause a significant deviation of the estimation from the
true probability of death, which can endanger all those processes in which it
intervenes; for example, in calculating pension spending forecasts in the public
welfare system; or in the calculation of the technical necessary provisions to deal
with claims that may occur in, for example, the life insured portfolio that an
insurance company owns.

The way to approach the problem of estimating mortality rates has been
modified and adapted to the statistical and mathematical techniques that have

13



emerged. Thus, at first the estimation of qx was performed by using information
from different periods, so that crude mortality rates (q̂x), which did not always
respond to certain softness criteria, were obtained. Namely, ”the probability of
dying at an age x must be similar to that of dying at age x − 1 and x + 1”.
Failure to comply with this property implies that some techniques must be
applied to dampen this effect, for example by adjusting classical survival laws
such as Gompertz ([17]), Gompetz-Makeham ([24], [27]) or the Heligmann and
Pollard laws [19]. However, these types of techniques deal with the problem
from a static point of view, that is, qtx remains constant at close moments of
time (see also [28], [31]). However, it is known that the probability of death
does not remain constant over time, that is, qtx 6= qt+hx , so using information
from different times either to estimate the true probabilities of death or to
calculate the number of deaths within, say, 10 years is incorrect and can lead
to serious errors. To solve this problem, dynamic models of mortality were
introduced. The best known model of this type is the one introduced by Lee-
Carter [23], which introduces mortality improvement factors for each calendar
year. Subsequently, other similar models appeared, such as the CBD model
[7], or the M3-M7 models ([8], [9]), all of which address the problem of the
evolution of mortality from a stochastic point of view. In this line, in the
previous work [29] we introduced a mathematical model of the evolution of qtx
based on a system of differential equations with a non-local operator, which is
based on the non-parametric estimation of mortality rates by kernel graduation
([2], [12]). This model reproduces qualitative aspects of mortality well, but has
a short prediction horizon of three years. In order to solve this problem, in a
later work [30] we proposed a second model, which improves the first one in the
sense that it incorporates the previous information using a delay term. This
model gives very good results and realizations, with the same valid prediction
horizons as in the Lee-Carter models. Even though the model proposed in [30]
provides adequate estimates, it does not provide alternative scenarios, that is, it
provides a future point estimate of future mortality rates but does not provide
uncertainty intervals for the estimates. In order to deal with this problem, in
this work we have proposed a modification of the model described in [29] in
which a stochastic term is introduced.

The model proposed in this work can be used to model (among others) the
behavior of mortality rates, and can be deduced using a procedure analogous to
the one in [29].

We solve numerically system (3) by using the Euler-Maruyama method (see
e.g. [20]) and implementing it in the Matlab software, version R2020a. In
the resolution of this system, the mortality data for the year 2010 from the
National Institute of Statistics (of Spain) [21] are used as initial values. Also,
the mortality values for 2019 are used as a reference for the suitability of the
estimates.

In relation to the values of the parameters that are used for the resolution of
the stochastic system, we observe first that ages are taken from 0 to 100 (thus,
m1 = 0, m2 = 100). The function g is defined to be piecewise constant, with
gi = 0.41, for i > 100, and gi = 0.001802, for i < 0; the choice of the value 0.41
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is the one proposed in [14, 3] as the convergence value of the limit mortality.
The election of the g′s values is motivated by the necessity of avoiding numerical
perturbations in the method. The value 0.001802 is obtained applying static
kernel graduation to the initial series of values, and taking the graduate value

of the risk of death at birth,
◦
q

2010

0 . Namely, we consider the observed values
at the initial moment, q2010

x , and then, in order to graduate this series we use
static kernel estimation for x = 0 via the formula

◦
q

2010

i =

∑
r∈D ji−rq

2010
r∑

r∈D ji−r
,

obtaining that
◦
q

2010

0 = 0.001802. Other types of corrections at the boundary to
handle this problem can be found for example in [16], [18].

The time step is one year, which is subdivided into 50 sub-periods for the
intermediate calculations. As in previous papers, a Gaussian kernel with band-
width equal to 1 is used.

Figure 1 shows (in logarithmic scale) the observed mortality values for the
years 2010 and 2019, together with 50 trajectories obtained in the numerical
resolution of the system. It can be seen that all of them contain the three parts
in which the mortality curve is traditionally subdivided [19]: adaptation to the
environment, social or accident hump, and natural longevity. Therefore we can
say that the system preserves the qualitative properties of the mortality curve
and, in this sense, is adequate.

Figure 1: Ensemble of estimates of mortality

Although the proposed model is adequate from the qualitative point of view,
it is evident that the estimated mortality rates are not between the initial values{
q2010
x

}
and the observed limit values

{
q2019
x

}
. This is due to the fact that the
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model does not take into account the improvements in mortality, which, as it
was already mentioned, is the essential nature of dynamic mortality models.
It is easy to obtain an initial correction of the estimates using the average
annual improvement rate, IR, which is calculated as the arithmetic mean of the
improvement rates by age:

IRx =
qtx
qt+1
x

.

We have obtained that IR = 0.03. Figure 2 shows the new graphic after this
correction. Now, the set of corrected predictions lies between the observed
values in 2010 and 2019.

Figure 2 shows how a simple correction provides reasonable estimates in
magnitude for a short period of time. However, it can be seen that these es-
timates are not equally adequate for all ages. This is due to the fact that
the improvement in mortality does not affect all ages in the same way and,
therefore, it is necessary to introduce appropriate correction rates for each age,
for example incorporating the history of mortality through delay terms as has
benn carried out, in the deterministic system, in the previous work [30]. In this
sense, the study of the stochastic model with delay would be an improvement
of the current work. This is outside the scope of this study, which is a first
approximation to the stochastic model, and will be considered in future works.

Figure 2: Ensemble of estimates of mortality
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