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Facultad de Matemáticas, Universidad de Sevilla, C/ Tarfia s/n, 41012 - Sevilla, Spain
4 Applied Analysis Research Group, Faculty of Mathematics and Statistics,

Ton Duc Thang University, Ho Chi Minh City, Vietnam

October 4, 2022

Abstract

In this work, we investigate stochastic fractional diffusion equations with Caputo-Fabrizio
fractional derivatives and multiplicative noise, involving finite and infinite delays. Initially,
the existence and uniqueness of the mild solution in the spaces Cp([−a, b];Lq(Ω, Ḣr))) and
Cδ((−∞, b];Lq(Ω, Ḣr))) are established. Next, besides investigating the regularity properties,
we show the continuity of mild solutions with respect to the initial functions and the order of the
fractional derivative for both cases of delay separately.
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1 Introduction

Let X be a bounded domain of Rn, n ∈ N+. Assume that the boundary of X, namely ∂X, is
smooth enough. In this paper, we aim at investigating the existence, uniqueness, regularity and
continuity results for two problems for stochastic fractional diffusion equations containing delays
with Caputo-Fabrizio derivatives and multiplicative noise.

• The first problem we are interested in involves a finite or bounded delay:
(CFDβt + (−4)α

)
x(t) = A(t, xt) +B(t, xt)ω̇t, t ∈ J := [0, b],

x(t)|∂X = 0, t ∈ J = [0, b],

x(s) = χ(s), s ∈ J0 := [−a, 0], a > 0.

(1)

∗Correspondence: tranngocthach@tdtu.edu.vn (Tran Ngoc Thach)
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• The second model is concerned with an infinite (or unbounded) delay:
(CFDβt + (−4)α

)
x(t) = A(t, xt) +B(t, xt)ω̇t, t ∈ J = [0, b],

x(t)|∂X = 0, t ∈ J := [0, b],

x(s) = χ(s), s ∈ J∞ := (−∞, 0],

(2)

where we notice that the condition x = χ on J0 = [−a, 0] is now replaced by x = χ on
J∞ = (−∞, 0].

In the above models, α is a positive number, b > 0 is the final time of observations, CFDβt is the
Caputo-Fabrizio fractional derivative [14] of order 0 < β < 1

CFDβt f(t) = Eβ(t) ∗ ḟ(t), t ≥ 0,

where Eβ(t) := M(β)
1−β exp

(
− β

1−β t
)

, with M(β) is a normalization function satisfying M(0) =

M(1) = 1 ([14, 15]), ḟ(t) := ∂
∂tf(t) is the classical derivative of f , and ∗ denotes the convolution,

ω̇t = ∂
∂tωt (called white noise) stands for the generalized derivative of ωt, which is the standard Brow-

nian motion (also called Wiener process) defined on a completed probability space (Ω,F , {Ft},P).
The initial function χ ∈ C(J0;L2(Ω, L2(X))). The fractional operator (−4)α, the function xt, the
non-linear source A, and the non-linear space-time-noise B will be specified later.

Initially, let us mention about the classical diffusion equations, the paramount importance of
the Caputo-Fabrizio operator, and some related studies on time fractional diffusion equations in
the deterministic case. It should be noted that if the fractional derivative CFDβt is replaced by
the integer order derivative ∂t then the equations we consider turn to be the primitive diffusion
models (also called typical heat equations and classical parabolic equations), which are traditional
and have been much studied previously due to their theoretical interest and essential applications
in various fields of science such as heat transfer and image processing [3, 28, 35, 37]. Regarding the

fractional derivative CFDβt , the presence of this derivative plays the role of modeling several practical
phenomena in physics, control systems, biology, fluid dynamics and material science [5, 6, 7, 24]. The
readers can refer to impressive studies [1, 36] for more details about its physical interpretation and
an application in mass–spring–damper motion. It is worth mentioning that such derivative possesses
the advantage of not having singular kernel [14, 38]. We can list here some recent studies on useful
properties of the Caputo-Fabrizio derivative [2, 7, 14] and fractional differential equations containing
such operator [1, 22, 38, 40]. For some other recent results on deterministic fractional diffusion
equations, the readers can refer to [10, 11, 23, 34], where fundamental solutions are constructed, and
the existence and behaviors of solutions are investigated.

Next, let us explain the description of our stochastic model with delays in details. Since uncon-
trollable sources in natural generate distinct random noises, it is essential to consider our problems
containing stochastic perturbations. In our models, we would like to deal with a usual stochastic
term that is a standard Brownian motion ωt, which is the classical and well-known noise studied
in various papers recently [8, 9, 16, 26, 27, 43, 47, 48]. Additionally, due to the fact that, in some
practical situations, the current behavior is affected by the previous states, it is required to include
some delays and external forces depending on history state in our models. In the last decades, the
number of articles dealing with delay partial differential equations (DPDEs) has increased signifi-
cantly. Some DPDEs with finite delay can be found in [13, 17, 20, 21, 30, 31, 41]. As regards the
infinite delay case, we can list here several considerable results [12, 25, 32, 33, 39, 42, 44, 45, 46].

Despite of the importance of the appearances of stochastic perturbations and delays mentioned
above, to the best of our knowledge, fractional diffusion equations with Caputo-Fabrizio derivative
containing delays and multiplicative noise have not been studied in the literature until now. There-
fore, the present paper is concerned with problems (1) and (2), being our main goals as follows.
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• Firstly, the existence and uniqueness of mild solutions will be proved. The results are inspired
in some previous papers [17, 45, 46] but constructed in the subspaces Cp([−a, b];Lq(Ω, Ḣr)))
and Cδ((−∞, b];Lq(Ω, Ḣr))), with r ≥ 0, q ≥ 2, p ∈ (0, 1

2 ], δ > 0, instead of the two usual spaces
C([−a, b];L2(Ω, L2(X)))) and Cδ((−∞, b];L2(Ω, L2(X)))) respectively (notice that if q = 2 and
r = 0 then Lq(Ω, Ḣr) becomes L2(Ω, L2(X))), under more generalized assumptions for the non-
linear source A and space-time-noise B. From our perception, this is one of positive points of
the present paper.

• Secondly, we aim at describing some regularity properties for mild solutions.

• Lastly, for each problem, besides verifying the continuity of the mild solution with respect to
initial functions, we are strongly interested in investigating the continuity with respect to the
order of the fractional derivative. As far as we know, until now, no one dealt with this type of
continuity for mild solutions to stochastic fractional differential equations involving delays.

The organization of the present paper is as follows. In Section 2, we recall some notations includ-
ing the fractional operator, the expression of the standard Brownian motion, and some necessary
functional spaces. Furthermore, the definition of mild solutions to our problems and some properties
of resolvent operators are presented in this section. In Section 3, the first results on the existence,
uniqueness, regularity properties, and the continuity of mild solutions with respect to the initial
function and the order of the fractional derivative in the case of finite delay are stated. In Section
4, we continue to investigate the behaviors of mild solutions in the case of infinite delay including
the existence, uniqueness, regularity and continuity properties, but in different spaces and under
different conditions for the initial function, source term, and space-time-noise.

2 Preliminaries

2.1 Notations

To make easier the reading of the paper, in this section, we introduce some notations and
functional spaces.

Let us first consider the negative Laplacian operator L := −4 defined on H1
0 (X)∩H2(X) as well

as recall the definition of fractional operators. Denote by (λk, ξk) an eigenpair of L satisfying that
(λk) is a positive non-decreasing sequence, which tends to infinity, and (ξk) form an orthonormal
basis in L2(X). We also recall Ḣr, r ≥ 0, the subspace of L2(X) satisfying

‖f‖Ḣr :=
( ∑
k∈N+

λ2r
k |〈f, ξk〉|

) 1
2
<∞,

where 〈·, ·〉 is the usual inner product in L2(X). Identifying the dual space
(
L2(X)

)∗
= L2(X), it

can be set Ḣ−r =
(
Ḣr
)∗

and the fractional operator Lr := (−4)r : Ḣ−r → Ḣr can be defined by
Lr :=

∑
k∈N+ λrk〈·, ξk〉ξk (see [19], [29]).

Next, we describe some functional spaces necessary for our main results. Let Q ∈ L
(
L2(X)

)
be

the linear operator defined by Qξk = Λkξk, with Tr(Q) :=
∑

k∈N+ Λk finite, and let the L2(X)-valued
Brownian motion defined by

ωt :=
∑
k∈N+

Q
1
2 ξkw

(k)
t , t ≥ 0,
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where w
(k)
t are one-dimensional standard Brownian motions. Let L2

Q,r = L2(Q
1
2 (L2(X)), Ḣr) be the

space of all Hilbert-Schmidt operators T : Q
1
2 (L2(X))→ Ḣr satisfying

‖T‖L2
Q,r

:=
( ∑
k∈N+

‖TQ
1
2 ξk‖2Ḣr

) 1
2
<∞.

For short, we denote L2
Q = L2

Q,r if r = 0.
Let U be an arbitrary Banach space. We denote by Lq(Ω, U) the space of U -valued random

variables % such that

‖%‖Lq(Ω,U) :=
(
E‖%‖qU

) 1
q <∞.

Additionally, we denote by C(I;U) the space of continuous functions y from I ⊂ R into U with the
sup norm, and let Cp(I;U) be the subspace of C(I;U) equipped with the norm

‖y‖Cp(I;U) := sup
t1,t2∈I

‖y(t1)− y(t2)‖U
|t1 − t2|p

<∞.

If x ∈ C([−a, b];L2(Ω, L2(X))), then for t ∈ J we denote by xt the function on [−a, 0] as

xt(s) = x(t+ s), s ∈ [−a, 0],

where a stands for the finite delay if a <∞ or the infinite delay if a =∞.
Let us now introduce the Burkholder-Davis-Gundy-type inequality [18], which is of paramount

importance in estimating the stochastic term appearing in the expression of solutions.

Proposition 2.1. Let q ≥ 2, t0, t ∈ J and ϕ : J → L2
Q satisfy E

[ ∫ t
t0
‖ϕ(ζ)‖2

L2
Q
dζ
] q

2
<∞. Then, the

following inequality holds

E
∥∥∥∫ t

t0

ϕ(ζ)dωζ

∥∥∥q ≤ c(q)E[ ∫ t

t0

‖ϕ(ζ)‖2L2
Q
dζ
] q

2
,

where c(q) =

√
q(q−1)

2

(
q
q−1

)q−2
.

2.2 Mild solutions and properties of resolvent operator

Our goal in this subsection is to construct a mild formulation for solutions to Problem (1), which
is of the form x(t) =

∑
k∈N+〈x(t), ξk〉ξk for t ∈ J . For the sake of convenience, let us first consider

the following problem 
(CFDβt + (−4)α

)
x(t) = F (t), t ∈ J := [0, b],

x(t)|∂X = 0, t ∈ J = [0, b],

x(0) = x0.

(3)

By taking the inner product of the first equation in Problem (3) and then taking the Laplace
transform, one arrives at

ζL{〈x(t), ξk〉}(ζ)− 〈x(0), ξk〉
ζ + β(1− ζ)

= −λαkL{〈x(t), ξk〉}(ζ) + L{〈F (t), ξk〉}(ζ),
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which implies (
1 + λαk (1− β)

)
L{〈x(t), ξk〉}(ζ)

=
1

ζ +
λαkβ

1+λαk (1−β)

〈x(0), ξk〉+
ζ + β(1− ζ)

ζ +
λαkβ

1+λαk (1−β)

L{〈F (t), ξk〉}(ζ).

Now, with the help of the inverse Laplace transform and the condition x(0) = x0, one obtains the
following expression for the Fourier coefficients

(
1 + λαk (1− β)

)
〈x(t), ξk〉 = exp

(
−

βλαk t

1 + λαk (1− β)

)
〈x0, ξk〉+

+
β

1 + λαk (1− β)

∫ t

0
exp

(
−

βλαk (ζ − t)
1 + λαk (1− β)

)
〈F (ζ), ξk〉dζ.

For the sake of convenience, we set mα,β(λk) := β
1+λαk (1−β) and gα,β(t, λk) as follows

gα,β(t, λk) := (1 + λαk (1− β))−1 exp
(
−

βλαk t

1 + λαk (1− β)

)
, t ∈ J, k ∈ N+. (4)

Then, the following expression of solutions to Problem (3) is obtained

x(t) =
∑
k∈N+

gα,β(t, λk)〈x0, ξk〉ξk +
∑
k∈N+

(
mα,β(λk)

∫ t

0
gα,β(t− ζ, λk)〈F (ζ), ξk〉dζ

)
ξk, t ∈ J.

Inspired by the above formulation of solutions to Problem (3), we give the following definition
of the mild solution to Problem (1).

Definition 2.1. An X-valued process {x(t)} is said to be a mild solution of Problem (1) (resp.
Problem (2)) if

(i) x ∈ C([−a, b];L2(Ω, L2(X))) (resp. x ∈ C((−∞, b];L2(Ω, L2(X)))),

(ii) x(s) = χ(s), for s ∈ J0 (resp. s ∈ J∞),

(iii) For t ∈ J , x(t) satisfies

x(t) = Gα,β(t)χ(0) +

∫ t

0
G̃α,β(t− ζ)A(ζ, xζ)dζ + Zα,β(t), P− a.e, (5)

where the two operators Gα,β(t) : L2(X)→ L2(X), G̃α,β(t) : L2(X)→ L2(X) and the stochastic
term Zα,β(t) are defined by

Gα,β(t)(·) :=
∑
k∈N+

gα,β(t, λk)〈·, ξk〉ξk, G̃α,β(t)(·) :=
∑
k∈N+

mα,β(λk)gα,β(t, λk)〈·, ξk〉ξk

Zα,β(t) :=

∫ t

0
G̃α,β(t− ζ)B(ζ, xζ)dωζ , t ∈ J, (6)

where the coefficients mα,β(λk) and gα,β(t, λk) are defined in (4).

In the following propositions, some properties of the aforementioned operator are presented.

Proposition 2.2. Let α > 0, 0 < β < 1, and q ≥ 2. Then
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(G1) The two operators Gα,β(t), G̃α,β(t) are linear, bounded and satisfies the following property for
any 0 ≤ η ≤ α

‖LηGα,β(t)‖L(Lq(Ω,L2(X))) ≤ C1(α, β, η), with C1(α, β, η) = (1− β)−η/α

‖LηG̃α,β(t)‖L(Lq(Ω,L2(X))) ≤ C1(α, β, η), with C̃1(α, β, η) = β(1− β)−η/α,

(G2) The two operators Gα,β(t), G̃α,β(t) satisfies the following Hölder continuity of exponent γ ∈ (0, 1]
for any 0 ≤ t1 < t2 ≤ b and 0 ≤ η ≤ α

‖Lη
(
Gα,β(t2)− Gα,β(t1)

)
‖L(Lq(Ω,L2(X))) ≤ C2(α, β, η, γ)(t2 − t1)γ ,

‖Lη
(
G̃α,β(t2)− G̃α,β(t1)

)
‖L(Lq(Ω,L2(X))) ≤ C̃2(α, β, η, γ)(t2 − t1)γ

with C2(α, β, η, γ) = βγ(1− β)−(η/α)−γ and C̃2(α, β, η, γ) = β1+γ(1− β)−(η/α)−γ.

Remark 2.1. Assume that η = 0 in Proposition 2.2, then the following properties hold

‖Gα,β(t)‖L(Lq(Ω,L2(X))) ≤M1(α, β), for t ∈ J,
‖Gα,β(t1)− Gα,β(t2)‖L(Lq(Ω,L2(X))) ≤M2(α, β, γ)(t2 − t1)γ , for 0 ≤ t1 < t2 ≤ b,

‖G̃α,β(t)‖L(Lq(Ω,L2(X))) ≤ M̃1(α, β), for t ∈ J,
‖G̃α,β(t1)− G̃α,β(t2)‖L(Lq(Ω,L2(X))) ≤ M̃2(α, β, γ)(t2 − t1)γ , for 0 ≤ t1 < t2 ≤ b,

where the exponent γ ∈ (0, 1], M1(α, β) = C1(α, β, 0), M2(α, β, γ) = C2(α, β, γ, 0), M̃1(α, β) =
C̃1(α, β, 0), M̃2(α, β, γ) = C̃2(α, β, γ, 0).

Proof. To prove two above properties, we first estimate the coefficients gα,β(t, λk) defined in (4). It
is obvious that for any k ∈ N+

|gα,β(t, λk)| ≤ (1 + λαk (1− β))−1 = (1 + λαk (1− β))−η/α(1 + λαk (1− β))−(α−η)/α.

Since 0 ≤ η ≤ α, it is clear that

(1 + λαk (1− β))−η/α ≤ λ−ηk (1− β)−η/α and (1 + λαk (1− β))−(α−η)/α ≤ 1, (7)

which allow us to estimate the coefficients gα,β(t, λk) as

|gα,β(t, λk)| ≤ λ−ηk (1− β)−η/α, for any k ∈ N+. (8)

Let x ∈ Lq(Ω, L2(X)), the above estimate directly yields that

E‖LηGα,β(t)x‖q
L2(X)

= E
( ∑
k∈N+

λ2η
k |gα,β(t, λk)|2|〈x, ξk〉|2

) q
2

≤ (1− β)−qη/αE
( ∑
k∈N+

|〈x, ξk〉|2
) q

2
. (9)

Since E‖x‖q
L2(X)

= E
(∑

k∈N+ |〈x, ξk〉|2
)q/2

, (9) shows that the property (G1) holds, which implies

that the resolvent operator Gα,β(t) is linear and bounded. Similarly, the operator G̃α,β(t) is linear
and bounded as in the property (G1).
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Next, we continue to verify property (G2) by taking into account

gα,β(t2, λk)− gα,β(t1, λk)

= (1 + λαk (1− β))−1 exp
(
−

βλαk t1
1 + λαk (1− β)

)[
exp

(
−

βλαk (t2 − t1)

1 + λαk (1− β)

)
− 1
]

= gα,β(t1, λk)
[

exp
(
−

βλαk (t2 − t1)

1 + λαk (1− β)

)
− 1
]
.

Using property (8) again and the inequality 1 − e−y ≤ yγ , γ ∈ (0, 1], for y > 0, it follows, for
0 ≤ t1 ≤ t2 ≤ T , that∣∣gα,β(t2, λk)− gα,β(t1, λk)

∣∣ ≤ λ−ηk (1− β)−η/α
∣∣∣ βλαk (t2 − t1)

1 + λαk (1− β)

∣∣∣γ
≤ βγ(1− β)−(η/α)−γλ−ηk (t2 − t1)γ .

For x ∈ Lq(Ω, L2(X)), the above estimate directly implies

E‖Lη
(
Gα,β(t2)− Gα,β(t1)

)
x‖q

L2(X)
= E

( ∑
k∈N+

λ2η
k

∣∣gα,β(t2, λk)− gα,β(t1, λk)
∣∣2|〈x, ξk〉|2) q2

≤ βqγ(1− β)−q(η/α)−qγ(t2 − t1)qγE
( ∑
k∈N+

|〈x, ξk〉|2
) q

2
,

whence property (G2) holds and the resolvent operator Gα,β(t) is Hölder continuous of exponent
γ ∈ (0, 1]. Similarly, the resolvent operator G̃α,β(t) is Hölder continuous of exponent γ ∈ (0, 1].

Proposition 2.3. Let α > 0 and q ≥ 2. Then, the two operators Gα,β(t) and G̃α,β(t) are continuous
with respect to the order β. Namely, for β, β′ ∈ [β0, β1] ∈ (0, 1), 0 ≤ η ≤ α, and t ∈ J , there exists
two positive constants C3(α, β1, b, λ1, η), C̃3(α, β1, b, λ1, η) > 0 such that

‖Lη
(
Gα,β(t)− Gα,β′(t)

)
‖L(Lq(Ω,L2(X))) ≤ C3(α, β1, b, λ1, η)|β − β′|,

‖Lη
(
G̃α,β(t)− G̃α,β′(t)

)
‖L(Lq(Ω,L2(X))) ≤ C̃3(α, β1, b, λ1, η)|β − β′|. (10)

Proof. For β, β′ ∈ (0, 1), it can be seen from (4) that

|gα,β(t, λk)− gα,β′(t, λk)|

=
∣∣∣(1 + λαk (1− β))−1 exp

(
−

βλαk t

1 + λαk (1− β)

)
− (1 + λαk (1− β′))−1 exp

(
−

β′λαk t

1 + λαk (1− β′)

)∣∣∣
≤ (1 + λαk (1− β))−1

∣∣∣ exp
(
−

βλαk t

1 + λαk (1− β)

)
− exp

(
−

β′λαk t

1 + λαk (1− β′)

)∣∣∣+
+
∣∣(1 + λαk (1− β))−1 − (1 + λαk (1− β′))−1

∣∣ exp
(
−

β′λαk t

1 + λαk (1− β′)

)
=: (I) + (II).

By using the inequality |e−c − e−d| ≤ |c− d| for c, d ∈ R+, one directly obtain∣∣∣ exp
(
−

βλαk t

1 + λαk (1− β)

)
− exp

(
−

β′λαk t

1 + λαk (1− β′)

)∣∣∣ ≤ ∣∣∣ βλαk t

1 + λαk (1− β)
−

β′λαk t

1 + λαk (1− β′)

∣∣∣
=
∣∣∣βλαk t+ β(1− β′)λ2α

k t− β′λαk t− β′(1− β)λ2α
k t(

1 + λαk (1− β)
)(

1 + λαk (1− β′)
) ∣∣∣

≤
∣∣∣(β − β′)(λαk + λ2α

k )t

(1− β)(1− β′)λ2α
k

∣∣∣,
7



which together with (1 + λαk (1 − β))−1 ≤ λ−ηk (1 − β1)−η/α, for η ∈ [0, α], and λ−αk ≤ λ−α1 , implies
that

(I) ≤ (λ−α1 + 1)b

(1− β1)2+η/α
|β − β′|λ−ηk .

On the other hand, one can verify that∣∣(1 + λαk (1− β))−1 − (1 + λαk (1− β′))−1
∣∣ =

∣∣∣ λαk (β − β′)(
1 + λαk (1− β)

)(
1 + λαk (1− β′)

)∣∣∣
≤ |β − β′|

(1− β)(1− β′)η/αληk
,

which together with exp
(
− β′λαk t

1+λαk (1−β′)

)
≤ 1 yields

(II) ≤ |β − β′|
(1− β1)1+η/α

λ−ηk .

From all the above observations, one deduces that there exist C3(α, β1, b, λ1, η) > 0 such that

|gα,β(t, λk)− gα,β′(t, λk)| ≤ C3(α, β1, b, λ1, η)|β − β′|λ−ηk .

Let x ∈ Lq(Ω, L2(X)), with the help of the above estimate, one obtains

E‖Lη
(
Gα,β(t)− Gα,β′(t)

)
x‖q

L2(X)
= E

( ∑
k∈N+

λ2η
k |gα,β(t, λk)− gα,β′(t, λk)|2|〈x, ξk〉|2

) q
2

≤ |C3(α, β1, b, λ1, η)|q|β − β′|qE
( ∑
k∈N+

|〈x, ξk〉|2
) q

2
, (11)

which implies property (10) holds. The operator G̃α,β(t) can be estimated similarly; therefore, we
omit the detail here.

3 Existence, uniqueness, and regularity results in the case of finite
delay

In this section, we aim at studying Problem (1), which is included in the finite delay case. For
r ≥ 0, q ≥ 2, p ∈ (0, 1

2 ], let us define the following Banach space

Bp,q,rχ :=
{
x ∈ Cp([−a, b];Lq(Ω, Ḣr)) : x(s) = χ(s), for s ∈ J0

}
,

endowed with the norm

‖x‖Bp,q,rχ
= sup
−a≤t<t+θ≤b

‖x(t+ θ)− x(t)‖Lq(Ω,Ḣr)

θp
.

Our goal now is to establish existence, uniqueness and regularity results for Problem (1), provided
that χ ∈ Cp(J0;Lq(Ω, Ḣr)), for r ≥ 0, q ≥ 2, p ∈ (0, 1

2 ]. Suppose that the non-linear source A and
the non-linear space-time-noise B satisfy the following assumptions for µ, ν ∈ [r − α, r]:

(A1) There exists KA > 0 such that for any x, x† ∈ Cp([−a; b];Lq(Ω, Ḣr)) and t ∈ J∫ t

0
E‖A(ζ, xζ)−A(ζ, x†ζ)‖

q

Ḣµ
dζ ≤ KA

∫ t

−a
E‖x(ζ)− x†(ζ)‖q

Ḣr
dζ,

8



(A2) There exists KA > 0 such that ‖A(·, 0)‖Lq(J ;Lq(Ω,Ḣµ)) ≤ KA,

(B1) There exists KA > 0 such that for any x, x† ∈ Cp([−a; b];Lq(Ω, Ḣr)) and t ∈ J∫ t

0
E‖B(ζ, xζ)−B(ζ, x†ζ)‖

q
L2
Q,ν
dζ ≤ KB

∫ t

−a
E‖x(ζ)− x†(ζ)‖q

Ḣr
dζ,

(B2) There exists KB > 0 such that ‖B(·, 0)‖Lq(J ;Lq(Ω,L2
Q,ν)) ≤ KB.

Remark 3.1. The above conditions for A and B are inspired on assumptions (H1), (H2) in [45].
The novel point here is that subspaces Ḣµ, Ḣν , Ḣr are considered instead of the usual Hilbert space
L2(X). Furthermore, a generalized version of the expectation E‖ · ‖2, that is, E‖ · ‖q, q ≥ 2 is
considered.

The following theorem states the existence and uniqueness result in the space Bp,q,rχ .

Theorem 3.1. Let χ ∈ Cp(J0;Lq(Ω, Ḣr)), for r ≥ 0, q ≥ 2, p ∈ (0, 1
2 ]. Assume that (A1), (A2),

(B1), (B2) hold. Then, Problem (1) has a unique mild solution in the space Bp,q,rχ . Furthermore,
the following regularity properties hold for −a ≤ t < t+ σ ≤ b

i) E
∥∥x(t)

∥∥q
Ḣr ≤M3(α, β)

(
1 + supθ∈J0 E‖χ(θ)‖q

Ḣr

)
,

ii) E
∥∥x(t+ σ)− x(t)

∥∥q
Ḣr ≤M4(α, β)σpq

(
1 + ‖χ‖qCp(J0;Lq(Ω,Ḣr))

)
,

where M3(α, β), M4(α, β) depend on α, β, r, µ, ν, q, a, b,KA,KB,KA,KB.

Corollary 3.1 (The existence and uniqueness results on the usual space Bχ). Notice that if As-
sumptions (A1), (A2), (B1), (B2) hold for r = µ = ν = 0, q = 2, and the initial condition χ belongs
to C(J0;L2(Ω, L2(X))), then Problem (1) has a unique mild solution in the usual space

Bχ =
{
x ∈ C([−a, b];L2(Ω, L2(X))) : x(s) = χ(s), for s ∈ J0

}
.

Furthermore, the following regularity properties hold for −a ≤ t < t+ σ ≤ b

E
∥∥x(t)

∥∥2

L2(X)
≤M3(α, β)

(
1 + sup

θ∈J0
E‖χ(θ)‖2L2(X)

)
E
∥∥x(t+ σ)− x(t)

∥∥2

L2(X)
≤M4(α, β)σ2p

(
1 + ‖χ‖2C(J0;L2(Ω,L2(X)))

)
where M3(α, β), M4(α, β) depend on α, β, a, b,KA,KB,KA,KB.

Proof. Let us define the operator Ψ on Bp,q,rχ by

Ψ(x)(s) = χ(s), for all s ∈ J0, (12)

and for all t ∈ J

Ψ(x)(t) = Gα,β(t)χ(0) +

∫ t

0
G̃α,β(t− ζ)A(ζ, xζ)dζ + Zα,β(t). (13)

It is obvious that to show the existence of a mild solution to Problem (1) is equivalent to find a
fixed point of the operator Ψ. To do this end, we aim to use a well-known method that is Banach
fixed point theorem. Our strategy here is to prove that Ψ is well-defined, i.e. Ψ(Bp,q,rχ ) ⊂ Bp,q,rχ , and
then verify that Ψ is a contraction.
Claim 1. Ψ(x) ∈ Bp,q,rχ , for all x ∈ Bp,q,rχ .
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For x ∈ Bp,q,rχ , we shall show that t 7→ Ψ(x)(t) is Hölder continuous on J . Indeed, for t ∈ J and
σ > 0 small enough, it can be seen that

E
∥∥∥Ψ(x)(t+ σ)− Ψ(x)(t)

∥∥∥q
Ḣr
≤ 3q−1E‖

(
Gα,β(t+ σ)− Gα,β(t)

)
χ(0)‖q

Ḣr
+

+ 3q−1E
∥∥∥∫ t+σ

0
G̃α,β(t+ σ − ζ)A(ζ, xζ)dζ −

∫ t

0
G̃α,β(t− ζ)A(ζ, xζ)dζ

∥∥∥q
Ḣr

+

+ 3q−1E‖Zα,β(t+ σ)−Zα,β(t)‖q
Ḣr

=: J1(t, σ) + J2(t, σ) + J3(t, σ). (14)

Thanks to (G2), one can estimate the first term in the right hand side as follows

J1(t, σ) = 3q−1E‖Lr
(
Gα,β(t+ σ)− Gα,β(t)

)
χ(0)‖q

L2(X)
≤ 3q−1|M2(α, β, γ)|qσγqE‖Lrχ(0)‖q

L2(X)
,

where γ ∈ (0, 1]. Since E‖Lrχ(0)‖q
L2(X)

= E‖χ(0)‖q
Ḣr
≤ supθ∈J0 E‖χ(θ)‖q

Ḣr
, it is easy to see that

J1(t, σ) ≤ 3q−1|M2(α, β, γ)|qσγq sup
θ∈J0

E‖χ(θ)‖q
Ḣr
−→ 0, as σ → 0. (15)

For the second term, let us split it into J2,1(t, σ) and J2,2(t, σ) defined as follows

J2(t, σ) ≤ 6q−1E
∥∥∥∫ t

0
Lr
(
G̃α,β(t+ σ − ζ)− G̃α,β(t− ζ)

)
A(ζ, xζ)dζ

∥∥∥q
L2(X)

+

+ 6q−1E
∥∥∥∫ t+σ

t
LrG̃α,β(t+ σ − ζ)A(ζ, xζ)dζ

∥∥∥q
L2(X)

=: J2,1(t, σ) + J2,2(t, σ).

In order to show J2,1(t, σ) tends to zero as σ → 0, we first use the Hölder inequality and property
(G2) in turns

J2,1(t, σ) ≤ 6q−1E
∣∣∣ ∫ t

0

∥∥LµLr−µ(G̃α,β(t+ σ − ζ)− G̃α,β(t− ζ)
)
A(ζ, xζ)

∥∥
L2(X)

dζ
∣∣∣q

≤ 6q−1tq−1E
∣∣∣ ∫ t

0

∥∥LµLr−µ(G̃α,β(t+ σ − ζ)− G̃α,β(t− ζ)
)
A(ζ, xζ)

∥∥q
L2(X)

dζ
∣∣∣

≤ 6q−1bq−1|C̃2(α, β, r − µ, γ)|qσγq
∫ t

0
E
∥∥LµA(ζ, xζ)

∥∥q
L2(X)

dζ,

where we have used r − µ ≤ α. On the other hand, it follows from Assumption (A2) that∫ t

0
E
∥∥LµA(ζ, xζ)

∥∥q
L2(X)

dζ

≤ 2q−1

∫ t

0
E
∥∥Lµ(A(ζ, xζ)−A(ζ, 0)

)∥∥q
L2(X)

dζ + 2q−1

∫ t

0
E
∥∥LµA(ζ, 0)

∥∥q
L2(X)

dζ

≤ 2q−1KA

∫ t

−a
E
∥∥x(ζ)

∥∥q
Ḣrdζ + 2q−1

∫ t

0
E
∥∥A(ζ, 0)

∥∥q
Ḣµdζ

≤ 2q−1KA

(
a sup
θ∈J0

E‖χ(θ)‖q
Ḣr

+ t sup
θ∈J

E‖x(θ)‖q
Ḣr

)
+ 2q−1K

q
A. (16)

From two latter observations, one deduces that there exists κ
(1)
α,β depending on α, β, r, µ, γ, q, a, b,KA

such that

J2,1(t, σ) ≤ κ(1)
α,βσ

γq
(

sup
θ∈J0

E‖χ(θ)‖q
Ḣr

+ sup
θ∈J

E‖x(θ)‖q
Ḣr

+K
q
A

)
, (17)
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which implies that J2,1(t, σ) tends to zero as σ → 0. We continue to estimate J2,2(t, σ) by using
property (G1) and a similar technique as above. In this way, one arrives at

J2,2(t, σ) ≤ 6q−1E
∣∣∣ ∫ t+σ

t
‖LµLr−µG̃α,β(t+ σ − ζ)A(ζ, xζ)‖L2(X)dζ

∣∣∣q
L2(X)

≤ 6q−1σq−1E
∣∣∣ ∫ t+σ

t
‖LµLr−µG̃α,β(t+ σ − ζ)A(ζ, xζ)‖qL2(X)

dζ
∣∣∣

≤ 6q−1σq−1|C̃1(α, β, r − µ)|q
∫ t+σ

t
E‖LµA(ζ, xζ)‖qL2(X)

dζ.

Reasoning similarly to estimate (16), one can verify that∫ t+σ

t
E
∥∥LµA(ζ, xζ)

∥∥q
L2(X)

dζ

≤ 2q−1KA

(
a sup
θ∈J0

E‖χ(θ)‖q
Ḣr

+ b sup
θ∈J

E‖x(θ)‖q
Ḣr

)
+ 2q−1‖A(·, 0)‖q

Lq(J ;Lq(Ω,Ḣµ))
.

Hence, there exists κ
(2)
α,β depending on α, β, r, µ, q, a, b,KA such that

J2,2(t, σ) ≤ κ(2)
α,βσ

q−1
(

sup
θ∈J0

E‖χ(θ)‖q
Ḣr

+ sup
θ∈J

E‖x(θ)‖q
Ḣr

+K
q
A

)
, (18)

which implies that J2,2(t, σ) tends to zero as σ → 0.
We now estimate the last term on the right hand side of (14) as

J3(t, σ) = 3q−1E‖Zα,β(t+ σ)−Zα,β(t)‖q
Ḣr

= 3q−1E
∥∥∥∫ t+σ

0
G̃α,β(t+ σ − ζ)B(ζ, xζ)dωζ −

∫ t

0
G̃α,β(t− ζ)B(ζ, xζ)dωζ

∥∥∥q
Ḣr
.

It can be seen that J3(t, σ) ≤ J3,1(t, σ) + J3,2(t, σ), where two new non-linear terms J3,1(t, σ) and
J3,2(t, σ) are defined by

J3,1(t, σ) := 6q−1E
∥∥∥∫ t

0
Lr
(
G̃α,β(t+ σ − ζ)− G̃α,β(t− ζ)

)
B(ζ, xζ)dωζ

∥∥∥q
L2(X)

,

J3,2(t, σ) := 6q−1E
∥∥∥∫ t+σ

t
LrG̃α,β(t+ σ − ζ)B(ζ, xζ)dωζ

∥∥∥q
L2(X)

.

Using the Burkholder-Davis-Gundy-type inequality, the Hölder inequality, and property (G2), one
can arrive at

J3,1(t, σ) ≤ 6q−1c(q)E
(∫ t

0
‖LνLr−ν

(
G̃α,β(t+ σ − ζ)− G̃α,β(t− ζ)

)
B(ζ, xζ)‖2L2

Q
dζ
) q

2

≤ 6q−1c(q)t
1− 2

q

∫ t

0
E‖LνLr−ν

(
G̃α,β(t+ σ − ζ)− G̃α,β(t− ζ)

)
B(ζ, xζ)‖qL2

Q
dζ

≤ 6q−1c(q)t
1− 2

q

∫ t

0
‖Lr−ν

(
G̃α,β(t+ σ − ζ)− G̃α,β(t− ζ)

)
‖qL(Lq(Ω,L2(X)))

E‖LνB(ζ, xζ)‖qL2
Q
dζ

≤ 6q−1c(q)|C̃2(α, β, r − ν, γ)|qσqγt1−
2
q

∫ t

0
E‖LνB(ζ, xζ)‖qL2

Q
dζ,
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where we note that r − ν ≤ α and γ ∈ (0, 1]. In addition, Assumption (B1) allows us to obtain∫ t

0
E
∥∥LνB(ζ, xζ)

∥∥q
L2
Q
dζ

≤ 2q−1

∫ t

0
E
∥∥Lν(B(ζ, xζ)−B(ζ, 0)

)∥∥q
L2
Q
dζ + 2q−1

∫ t

0
E
∥∥LνB(ζ, 0)

∥∥q
L2
Q
dζ

≤ 2q−1KB

∫ t

−a
E
∥∥x(ζ)

∥∥q
Ḣrdζ + 2q−1

∫ t

0
E
∥∥B(ζ, 0)

∥∥q
Ḣνdζ

≤ 2q−1KB

(
a sup
θ∈J0

E‖χ(θ)‖q
Ḣr

+ t sup
θ∈J

E‖x(θ)‖q
Ḣr

)
+ 2q−1‖B(·, 0)‖q

Lq(J ;Lq(Ω,L2
Q,ν))

. (19)

From two latter observations, one deduces that there exists κ
(3)
α,β depending on α, β, r, ν, γ, q, a, b,KB

such that

J3,1(t, σ) ≤ κ(3)
α,βσ

γq
(

sup
θ∈J0

E‖χ(θ)‖q
Ḣr

+ sup
θ∈J

E‖x(θ)‖q
Ḣr

+K
q
B

)
, (20)

which implies that J3,1(t, σ) tends to zero as σ → 0. We continue to estimate J3,2(t, σ) by using the
property (G1) and a similar technique as in above. In this way, we have

J3,2(t, σ) ≤ 6q−1c(q)E
(∫ t+σ

t
‖LνLr−ν G̃α,β(t+ σ − ζ)B(ζ, xζ)‖2L2

Q
dζ
) q

2

≤ 6q−1c(q)σ
q
2
−1

∫ t+σ

t
E‖LνLr−ν G̃α,β(t+ σ − ζ)B(ζ, xζ)‖qL2

Q
dζ

≤ 6q−1c(q)σ
q
2
−1

∫ t+σ

t
‖Lr−ν G̃α,β(t+ σ − ζ)‖qL(Lq(Ω,L2(X)))

E‖LνB(ζ, xζ)‖qL2
Q
dζ

≤ 6q−1c(q)|C̃1(α, β, r − ν)|qσ
q
2
−1

∫ t+σ

t
E‖LνB(ζ, xζ)‖qL2

Q
dζ.

By using a similar way as in the estimate (19), one can verify that∫ t+σ

t
E‖LνB(ζ, xζ)‖qL2

Q
dζ

≤ 2q−1KB

(
a sup
θ∈J0

E‖χ(θ)‖q
Ḣr

+ b sup
θ∈J

E‖x(θ)‖q
Ḣr

)
+ 2q−1‖B(·, 0)‖q

Lq(J ;Lq(Ω,L2
Q,ν))

.

Hence, there exists κ
(4)
α,β depending on α, β, r, ν, q, a, b,KB such that

J3,2(t, σ) ≤ κ(4)
α,βσ

q
2
(

sup
θ∈J0

E‖χ(θ)‖q
Ḣr

+ sup
θ∈J

E‖x(θ)‖q
Ḣr

+K
q
B

)
, (21)

which implies that J3,2(t, σ) tends to zero as σ → 0. Therefore, we conclude that J3(t, σ) → 0 as
σ → 0.

Since J1(t, σ), J2(t, σ), and J3(t, σ) tend to zero as σ → 0, the map t 7→ Ψ(x)(t) is continuous
on J in Lq(Ω, Ḣr) sense. Furthermore, results (15)-(21) imply that the terms J1(t, σ), J2(t, σ), and
J3(t, σ) are of order σp, with p ∈ (0, 1

2 ]. From this together with (12) it follows that Ψ(Bp,q,rχ ) ⊂ Bp,q,rχ .
Claim 2. Operator Ψ is a contraction in Bp,q,rχ .

The present claim can be verified by showing that for x, x† ∈ Bp,q,rχ there exists a positive constant
Πα,β depending on α, β, r, µ, ν, q, a, b,KA,KB such that, for t ∈ J ,

sup
0≤θ≤t

E
∥∥Ψm(x)(θ)− Ψm(x†)(θ)

∥∥q
Ḣr ≤

|Πα,βt|m

m!
sup

0≤θ≤b
E‖x(θ)− x†(θ)‖q

Ḣr
, (22)
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for any m ∈ N+, which leads to

sup
0≤t≤b

E
∥∥Ψm(x)(t)− Ψm(x†)(t)

∥∥q
Ḣr ≤

|Πα,βb|m

m!
sup

0≤t≤b
E‖x(t)− x†(t)‖q

Ḣr
. (23)

Indeed, it can be seen from equation (13) that, for t ∈ J ,

E
∥∥Ψ(x)(t)− Ψ(x†)(t)

∥∥q
Ḣr ≤ 2q−1E

∥∥∥∫ t

0
G̃α,β(t− ζ)

(
A(ζ, xζ)−A(ζ, x†ζ)

)
dζ
∥∥∥q
Ḣr

+

+ 2q−1E
∥∥Zα,β(t)−Zα,β(t)

∥∥q
Ḣr

=: I1 + I2. (24)

The first term can be estimated by using the Hölder inequality and property (G1):

I1 ≤ 2q−1E
∣∣∣ ∫ t

0
‖LµLr−µG̃α,β(t− ζ)

(
A(ζ, xζ)−A(ζ, x†ζ)

)
‖L2(X)dζ

∣∣∣q
≤ 2q−1tq−1E

∣∣∣ ∫ t

0
‖LµLr−µG̃α,β(t− ζ)

(
A(ζ, xζ)−A(ζ, x†ζ)

)
‖q
L2(X)

dζ
∣∣∣

≤ 2q−1bq−1|C̃1(α, β, r − µ)|q
∫ t

0
E‖Lµ

(
A(ζ, xζ)−A(ζ, x†ζ)

)
‖q
L2(X)

dζ.

Now, Assumption (A2) allows us to obtain

I1 ≤ 2q−1bq−1|C̃1(α, β, r − µ)|qKA

∫ t

−a
E‖x(ζ)− x†(ζ)‖q

Ḣr
dζ. (25)

The second term can be estimated by using the Burkholder-Davis-Gundy-type inequality, the Hölder
inequality, and property (G1) as follows:

I2 ≤ 2q−1E
∥∥∥∫ t

0
LνLr−ν G̃α,β(t− ζ)

(
B(ζ, xζ)−B(ζ, x†ζ)

)
dωζ

∥∥∥q
L2(X)

≤ 2q−1c(q)E
(∫ t

0
‖LνLr−ν G̃α,β(t− ζ)

(
B(ζ, xζ)−B(ζ, x†ζ)

)
‖2L2
Q
dζ)

q
2

≤ 2q−1c(q)t
1− 2

q

∫ t

0
E‖LνLr−ν G̃α,β(t− ζ)

(
B(ζ, xζ)−B(ζ, x†ζ)

)
‖q
L2
Q
dζ

≤ 2q−1c(q)t
1− 2

q

∫ t

0
‖Lr−ν G̃α,β(t− ζ)‖qL(Lq(Ω,L2(X)))

E‖Lν
(
B(ζ, xζ)−B(ζ, x†ζ)

)
‖q
L2
Q
dζ

≤ 2q−1c(q)t
1− 2

q |C̃1(α, β, ν − r)|q
∫ t

0
E‖Lν

(
B(ζ, xζ)−B(ζ, x†ζ)

)
‖q
L2
Q
dζ.

This together with Assumption (B2) yields

I2 ≤ 2q−1c(q)b
1− 2

q |C̃1(α, β, ν − r)|qKB

∫ t

−a
E‖x(ζ)− x†(ζ)‖q

Ḣr
dζ. (26)

Combining (24), (25), (26), and noting x(s) = x†(s) = χ(s) for s ∈ J0, one concludes that

E
∥∥Ψ(x)(t)− Ψ(x†)(t)

∥∥q
Ḣr

≤ 2q−1
(
KAb

q−1|C̃1(α, β, µ− r)|q +KBc(q)b
1− 2

q |C̃1(α, β, ν − r)|q
) ∫ t

0
E‖x(ζ)− x†(ζ)‖q

Ḣr
dζ,

13



which implies that there exists Πα,β depending on α, β, r, µ, ν, γ, q, a, b,KA,KB such that, for t ∈ J ,

sup
0≤θ≤t

E
∥∥Ψ(x)(θ)− Ψ(x†)(θ)

∥∥q
Ḣr ≤ Πα,β

∫ t

0
sup

0≤θ≤ζ
E‖x(θ)− x†(θ)‖q

Ḣr
dζ

≤ Πα,βt sup
θ∈J

E‖x(θ)− x†(θ)‖q
Ḣr
dζ,

which implies that (22) holds for m = 1. We now aim at showing that if it holds in the case
m = m0 ∈ N+ then it also holds when m = m0 + 1. Indeed, by using a similar technique as above,
one arrives at

sup
0≤θ≤t

E
∥∥Ψm0+1(x)(θ)− Ψm0+1(x†)(θ)

∥∥q
Ḣr

≤ Πα,β

∫ t

0
sup

0≤θ≤ζ
E‖Ψm0(x)(θ)− Ψm0(x†)(θ)‖q

Ḣr
dζ

≤ Πα,β

∫ t

0

|Πα,βζ|m0

m0!
sup
θ∈J

E‖x(θ)− x†(θ)‖q
Ḣr
dζ

≤
|Πα,βb|m0+1

(m0 + 1)!
sup
θ∈J

E‖x(θ)− x†(θ)‖q
Ḣr
dζ.

Hence, (22) holds for any m ∈ N+ and the inequality (23) is true as desired. Since
|Πα,βb|m

m! tends to
zero as m→∞, there exists m ∈ N+ such that Ψm is a contraction. This procedure can be repeated
in order to obtain that Ψ is a contraction too. In other words, Ψ(x) = x has a unique solution in
the space Bp,q,rχ .
Claim 3. The solution x satisfies regularity properties i) and ii).

Initially, we aim at proving that the solution x satisfies the regularity property i). Indeed, for
t ∈ J , by using a similar argument as in the proof of Claim 1, one can easily arrive at

E
∥∥x(t)

∥∥q
Ḣr ≤ 3q−1|M1(α, β)|q sup

θ∈J0
E‖χ(θ)‖q

Ḣr
+

+ 6q−1bq−1|C̃1(α, β, r − µ)|q
(
KA

∫ t

−a
E
∥∥x(ζ)

∥∥q
Ḣrdζ +

∫ t

0
E
∥∥A(ζ, 0)

∥∥q
Ḣµdζ

)
+

+ 6q−1c(q)|C̃1(α, β, r − ν)|qb1−
2
q

(
KB

∫ t

−a
E
∥∥x(ζ)

∥∥q
Ḣrdζ +

∫ t

0
E
∥∥B(ζ, 0)

∥∥q
L2
Q,ν
dζ
)
,

which implies that there exists positive constants κ
(5)
α,β, κ

(6)
α,β, κ

(7)
α,β depending on α, β, r, µ, ν, q, a, b,

and KA,KB,KB,KB such that

sup
0≤θ≤t

E
∥∥x(θ)

∥∥q
Ḣr ≤ κ

(5)
α,β + κ

(6)
α,β sup

θ∈J0
E‖χ(θ)‖q

Ḣr
+ κ

(7)
α,β

∫ t

0
sup

0≤θ≤ζ
E‖x(θ)‖q

Ḣr
dζ.

By using the Grönwall inequality, one obtains

sup
0≤θ≤t

E
∥∥x(θ)

∥∥q
Ḣr ≤

(
κ

(5)
α,β + κ

(6)
α,β sup

θ∈J0
E‖χ(θ)‖q

Ḣr

)
exp

(
κ

(7)
α,βt

)
,

which yields that

sup
θ∈J

E
∥∥x(θ)

∥∥q
Ḣr ≤

(
κ

(5)
α,β + κ

(6)
α,β sup

θ∈J0
E‖χ(θ)‖q

Ḣr

)
exp

(
κ

(7)
α,βb

)
,

which implies that property i) holds true.
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Next, we shall employ the result we have proved above to show that the solution x satisfies the
following regularity property ii). By the same way as in Claim 1, one can check that there exists a

positive constant κ
(8)
α,β depending on α, β, r, µ, ν, q, a, b,KA,KB,KA,KB such that

E
∥∥x(t+ σ)− x(t)

∥∥q
Ḣr ≤ κ

(8)
α,βσ

pq
(

1 + sup
θ∈J0

E‖χ(θ)‖q
Ḣr

+ sup
θ∈J

E‖x(θ)‖q
Ḣr

)
, p ∈ (0, 1/2]. (27)

From (27) and property i), it is clear that there exists a positive constant κ
(9)
α,β depending only

on α, β, r, µ, ν, q, a, b,KA,KB,KA,KB such that

E
∥∥x(t+ σ)− x(t)

∥∥q
Ḣr ≤ κ

(9)
α,βσ

pq
(

1 + sup
θ∈J0

E‖χ(θ)‖q
Ḣr

)
, for 0 ≤ t < t+ σ ≤ b.

Furthermore, in the case −a ≤ t < t+ σ ≤ 0, we note that

E
∥∥x(t+ σ)− x(t)

∥∥q
Ḣr = E

∥∥χ(t+ σ)− χ(t)
∥∥q
Ḣr ≤ σpq‖χ‖

p

Cp(J0;Lq(Ω,Ḣr))
.

Hence, it can be seen that property ii) holds. This completes the proof.

In what follows, we are interested in considering the continuity of mild solutions in the case of
finite delay with respect to the initial function and the order of the fractional derivative separately.
Initially, the following theorem describes the continuity result in the first sense.

Theorem 3.2. Assume that (A1), (A2), (B1), (B2) hold. Then, the mild solution to Problem (1)
is continuous with respect to the initial function. Namely, if χ1, χ2 ∈ C(J0;Lq(Ω, Ḣr)), for r ≥ 0
and q ≥ 2, and x1, x2 are mild solutions to Problem (1) with respect to the initial functions χ1, χ2

respectively. Then, there exists M5(α, β) > 0 depending on α, β, r, µ, ν, q, a, b,KA,KB such that∥∥x1(t)− x2(t)
∥∥
Lq(Ω,Ḣr)

≤M5(α, β)‖χ1 − χ2‖C(J0;Lq(Ω,Ḣr)), (28)

for all t ∈ J .

Proof. By a similar argument to that one used to obtain the uniqueness result, we have

sup
0≤θ≤t

E
∥∥x1(θ)− x2(θ)

∥∥q
Ḣr ≤ 3q−1|M1(α, β)|q sup

θ∈J0
E‖χ1(θ)− χ2(θ)‖q

Ḣr
+

+ Πα,β

∫ t

0
sup

0≤θ≤ζ
E‖x1(θ)− x2(θ)‖q

Ḣr
dζ.

By using the Grönwall inequality, we obtain

sup
0≤θ≤t

E
∥∥x1(θ)− x2(θ)

∥∥q
Ḣr ≤ 3q−1|M1(α, β)|q sup

θ∈J0
E‖χ1(θ)− χ2(θ)‖q

Ḣr
exp

(
Πα,βt

)
,

which implies that property (28) holds.

Next, the following theorem gives the continuity of mild solutions with respect to the order of
fractional derivative.

Theorem 3.3. Let χ ∈ C(J0;Lq(Ω, Ḣr)), for r ≥ 0, q ≥ 2. Assume that (A1), (A2), (B1), (B2)
hold. Then, the mild solution to Problem (1) is continuous with respect to the order of the frac-
tional derivative. Namely, if β, β′ ∈ [β0, β1] ⊂ (0, 1) and x(β), x(β′) are mild solutions to Prob-
lem (1) with respect to the orders β, β′ respectively. Then, there exists M6(α) > 0 depending on
α, β1, r, λ1, µ, ν, q, a, b,KA,KB, such that∥∥x(β)(t)− x(β′)(t)

∥∥
Lq(Ω,Ḣr)

≤M6(α)|β − β′|
(

sup
θ∈J0

E‖χ(θ)‖q
Ḣr

+ sup
θ∈J

E‖x(β)(θ)‖q
Ḣr

+K
q
A +K

q
B

) 1
q , (29)

for all t ∈ J .

15



Proof. For the sake of convenience, let us set Gα,β,β′(t) := Gα,β(t)−Gα,β′(t) and Ĝα,β,β′(t) := G̃α,β(t)−
G̃α,β′(t). It can be seen from the integral equations (5)-(6) that, for t ∈ J ,

E‖x(β)(t)− x(β′)(t)‖q
Ḣr
≤ 3q−1E‖Gα,β,β′(t)χ(0)‖q

Ḣr
+ 6q−1E

∥∥∥∫ t

0
Ĝα,β,β′(t− ζ)A(ζ, x

(β)
ζ )dζ

∥∥∥q
Ḣr

+

+ 6q−1E
∥∥∥∫ t

0
G̃α,β′(t− ζ)

(
A(ζ, x

(β)
ζ )−A(ζ, x

(β′)
ζ )

)
dζ
∥∥∥q
Ḣr

+

+ 6q−1E
∥∥∥∫ t

0
Ĝα,β,β′(t− ζ)B(ζ, x

(β)
ζ )dωζ

∥∥∥q
Ḣr

+

+ 6q−1E
∥∥∥∫ t

0
G̃α,β′(t− ζ)

(
B(ζ, x

(β)
ζ )−B(ζ, x

(β′)
ζ )

)
dωζ

∥∥∥q
Ḣr
.

It is obvious that the five previous terms can be estimated similarly as the estimates for J1(t, σ),
J2(t, σ), J3(t, σ) defined in (14), but one needs to use property (G1) and Proposition 2.3 instead of
property (G2). Therefore, in what follows, we omit the details and show directly the results, which
can be verified easily

E‖x(β)(t)− x(β′)(t)‖q
Ḣr
≤ κ(1)

α |β − β′|q
(

sup
θ∈J0

E‖χ(θ)‖q
Ḣr

+ sup
θ∈J

E‖x(β)(θ)‖q
Ḣr

+K
q
A +K

q
B

)
+ κ(2)

α

∫ t

−a
E‖x(β)(ζ)− x(β′)(ζ)‖q

Ḣr
dζ,

where κ
(1)
α and κ

(2)
α depend on α, β1, λ1, r, µ, ν, q, a, b,KA,KB. Since x(β)(ζ) = x(β′)(ζ) for ζ ∈ J0,

the above inequality yields that

sup
0≤θ≤t

E‖x(β)(θ)− x(β′)(θ)‖q
Ḣr
≤ κ(1)

α |β − β′|q
(

sup
θ∈J0

E‖χ(θ)‖q
Ḣr

+ sup
θ∈J

E‖x(β)(θ)‖q
Ḣr

+K
q
A +K

q
B

)
+ κ(2)

α

∫ t

0
sup

0≤θ≤ζ
E‖x(β)(θ)− x(β′)(θ)‖q

Ḣr
dζ.

With the help of the Grönwall inequality, one obtains

sup
0≤θ≤t

E‖x(β)(θ)− x(β′)(θ)‖q
Ḣr

≤ κ(1)
α |β − β′|q

(
sup
θ∈J0

E‖χ(θ)‖q
Ḣr

+ sup
θ∈J

E‖x(β)(θ)‖q
Ḣr

+K
q
A +K

q
B

)
exp(κ(2)

α t),

which implies that property (29) holds.

4 Existence, uniqueness, and regularity results in the case of infi-
nite delay

In this section, we continue to investigate stochastic fractional diffusion equations, but in the
case of infinite delay. Existence, uniqueness, and regularity results for Problem (2) are verified from
now on, provided that χ ∈ Cδ(J∞;Lq(Ω, Ḣr)), for r ≥ 0, q ≥ 2, p ∈ (0, 1

2 ], and δ > 0.
To this end, let us prepare some materials including some notations of necessary functional spaces.

We first introduce the spaces Cδ(J∞;Lq(Ω, Ḣr)) and Cδ((−∞, b];Lq(Ω, Ḣr)), which are subspaces of
C(J∞;Lq(Ω, Ḣr)) and C((−∞, b];Lq(Ω, Ḣr)) endowed with the norms

‖x‖Cδ(J∞;Lq(Ω,Ḣr)) :=
(

sup
θ∈J∞

eδθE‖x(θ)‖q
Ḣr

) 1
q
<∞,

‖x‖Cδ((−∞,b];Lq(Ω,Ḣr)) :=
(

sup
θ∈(−∞,b]

eδθE‖x(θ)‖q
Ḣr

) 1
q
<∞.
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Additionally, let us introduce the following Banach space

Sq,rχ,δ :=
{
x ∈ Cδ((−∞, b];Lq(Ω, Ḣr)) : x(s) = χ(s), for s ∈ J∞

}
,

endowed with the norm of the space Cδ((−∞, b];Lq(Ω, Ḣr)).
Suppose that the non-linear source A and the non-linear space-time-noise B satisfy the following

assumptions for µ, ν ∈ [r − α, r]

(A3) A(·, 0) = 0 and there exists kA : J → R+ such that for any x, x† ∈ Cδ(J∞;Lq(Ω, Ḣr)) and
t ∈ J

E‖A(t, x)−A(t, x†)‖q
Ḣµ
≤ kA(t)‖x− x†‖qCδ(J∞;Lq(Ω,Ḣr))

,

(B3) B(·, 0) = 0 and there exists kB : J → R+ such that for any x, x† ∈ Cδ(J∞;Lq(Ω, Ḣr)) and
t ∈ J

E‖B(t, x)−B(t, x†)‖q
L2
Q,ν
≤ kB(t)‖x− x†‖qCδ(J∞;Lq(Ω,Ḣr))

,

The following theorem state the existence, uniqueness, and regularity results for Problem (2).

Theorem 4.1. Let χ ∈ Cδ(J∞;Lq(Ω, Ḣr)), for r ≥ 0, q ≥ 2, and δ > 0. Assume that (A3), (B3)
hold and

KA :=

∫ b

0
kA(ζ)dζ <∞, KB :=

∫ b

0
kB(ζ)dζ <∞.

Then, Problem (2) has a unique mild solution in the space Sq,rχ,δ. Furthermore, the following regularity
property holds for t ∈ J

‖xt‖qCδ(J∞;Lq(Ω,Ḣr))
≤M7(α, β)‖χ‖q

Cδ(J∞;Lq(Ω,Ḣr))
, (30)

where M7(α, β) depends on α, β, r, µ, ν, q, a, b,KA,KB.

Corollary 4.1. As a consequence, property (30) implies

E‖x(t)‖q
Lq(Ω,Ḣr)

≤M7(α, β)‖χ‖q
Cδ(J∞;Lq(Ω,Ḣr))

, for all t ∈ J,

which together with x(s) = χ(s), for s ∈ J∞, leads to the existence of M8(α, β), depending on
α, β, r, µ, ν, q, a, b,KA,KB, such that

E‖x(t)‖q
Lq(Ω,Ḣr)

≤M8(α, β)‖χ‖q
Cδ(J∞;Lq(Ω,Ḣr))

, for all t ∈ (−∞, b],

Corollary 4.2 (Existence and uniqueness results on the usual space PCb). If Assumptions (A3),
(B3) hold for r = µ = ν = 0, q = 2, and the initial condition χ belongs to Cδ(J∞;L2(Ω, L2(X))),
then Problem (2) has a unique mild solution in the usual space PCb (see [42, 46]) defined by

PCb :=
{
x ∈ Cδ((−∞, b];L2(Ω, L2(X))) : x(s) = χ(s), for s ∈ J∞

}
,

Furthermore, the following regularity properties hold for t ∈ J

‖xt‖2Cδ(J∞;L2(Ω,L2(X)) ≤M7(α, β)‖χ‖2Cδ(J∞;L2(Ω,L2(X)),

where M7(α, β) depends on α, β, a, b,KA,KB.
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Proof. Let us define the operator Φ on Sq,rχ,δ by

Φ(x)(s) = χ(s), for all s ∈ J∞, (31)

and for all t ∈ J

Φ(x)(t) = Gα,β(t)χ(0) +

∫ t

0
G̃α,β(t− ζ)A(ζ, xζ)dζ + Zα,β(t). (32)

where Zα,β is defined by

Zα,β(t) :=

∫ t

0
G̃α,β(t− ζ)B(ζ, xζ)dωζ .

In what follows, we aim at proving that Ψ is well-defined, i.e. Φ(Sq,rχ,δ) ⊂ S
q,r
χ,δ, and then verify

that Φ is a contraction.
Claim 1. Φ(x) ∈ Sq,rχ,δ, for all x ∈ Sq,rχ,δ.

Let us verify the continuity of the map t 7→ Φ(x)(t) firstly. For t ∈ J and σ > 0 small enough,
by a similar argument as in the proof of Theorem 3.1, one arrives at

E
∥∥∥Φ(x)(t+ σ)− Φ(x)(t)

∥∥∥q
Ḣr
≤ 3q−1|M2(α, β, γ)|qσγq sup

θ∈J∞
E‖χ(θ)‖q

Ḣr
+

+ 6q−1bq−1|C̃2(α, β, r − µ, γ)|qσγq
∫ t

0
E
∥∥LµA(ζ, xζ)

∥∥q
L2(X)

dζ+

+ 6q−1σq−1|C̃1(α, β, r − µ)|q
∫ t+σ

t
E‖LµA(ζ, xζ)‖qL2(X)

dζ+

+ 6q−1c(q)|C̃2(α, β, r − ν, γ)|qσqγb1−
2
q

∫ t

0
E‖LνB(ζ, xζ)‖qL2

Q
dζ+

+ 6q−1c(q)|C̃1(α, β, r − ν)|qσ
q
2
−1

∫ t+σ

t
E‖LνB(ζ, xζ)‖qL2

Q
dζ

=: N1(t, σ) +N2(t, σ) +N3(t, σ) +N4(t, σ) +N5(t, σ).

Assumption (A3) allows us to obtain

N2(t, σ) ≤ 6q−1bq−1|C̃2(α, β, r − µ, γ)|qσγq
∫ t

0
kA(ζ)

∥∥xζ∥∥qCδ(J∞,Lq(Ω,Ḣr))
dζ,

N3(t, σ) ≤ 6q−1σq−1|C̃1(α, β, r − µ)|q
∫ t+σ

t
kA(ζ)

∥∥xζ∥∥qCδ(J∞,Lq(Ω,Ḣr))
dζ.

On the other hand, with the help of Assumption (B3), we have

N4(t, σ) ≤ 6q−1c(q)|C̃2(α, β, r − ν, γ)|qσqγb1−
2
q

∫ t

0
kB(ζ)

∥∥xζ∥∥qCδ(J∞,Lq(Ω,Ḣr))
dζ,

N5(t, σ) ≤ 6q−1c(q)|C̃1(α, β, r − ν)|qσ
q
2
−1

∫ t+σ

t
kB(ζ)

∥∥xζ∥∥qCδ(J∞,Lq(Ω,Ḣr))
dζ.

Noting that for 0 < ζ < b, there holds
∥∥xζ∥∥qCδ(J∞,Lq(Ω,Ḣr))

≤ supθ∈(−∞,ζ] E‖x(θ)‖q
Lq(Ω,Ḣr)

. By all

the above observations, one can see that there exists κ
(10)
α,β > 0 depending on α, β, r, µ, ν, q, a, b and

18



p ∈ (0, 1
2 ] such that

E
∥∥∥Φ(x)(t+ σ)− Φ(x)(t)

∥∥∥q
Ḣr
≤ κ(10)

α,β σ
pq
(

sup
θ∈J∞

E‖χ(θ)‖q
Ḣr

+

+

∫ t

0

(
kA(ζ) + kB(ζ)

)
sup

θ∈(−∞,ζ]
E‖x(θ)‖q

Lq(Ω,Ḣr)
dζ+

+

∫ t+σ

t

(
kA(ζ) + kB(ζ)

)
sup

θ∈(−∞,ζ]
E‖x(θ)‖q

Lq(Ω,Ḣr)
dζ
)
.

Since KA =
∫ b

0 kA(ζ)dζ <∞ and KB =
∫ b

0 kB(ζ)dζ <∞, one concludes that

E
∥∥∥Φ(x)(t+ σ)− Φ(x)(t)

∥∥∥q
Ḣr
≤ κ(10)

α,β σ
pq
(

sup
s∈J∞

E‖χ(s)‖q
Ḣr

+ (KA + KB) sup
θ∈(−∞,b]

E‖x(θ)‖q
Lq(Ω,Ḣr)

)
,

which implies that the map t 7→ Φ(x)(t) is continuous on J in Lq(Ω, Ḣr) sense.

Similarly, one can verify there exists κ
(11)
α,β > 0 depending on α, β, r, µ, ν, q, a, b such that

sup
t∈J

eδtE‖Φ(x)(t)‖q
Ḣr
≤ κ(11)

α,β e
δb
(

sup
θ∈J∞

E‖χ(θ)‖q
Ḣr

+ (KA + KB) sup
θ∈(−∞,b]

E‖x(θ)‖q
Lq(Ω,Ḣr)

)
.

From two observations and noting that Φ(x) = χ on J∞, one concludes that the map t 7→ Φ(x)(t)
belongs to the space Sq,rχ,δ as desired.

Claim 2. The operator Φ is a contraction in Sq,rχ,δ.
For t ∈ J , by arguing as in Theorem 3.1, one arrives at

E
∥∥Φ(x)(t)− Φ(x†)(t)

∥∥q
Ḣr

≤ 2q−1bq−1|C̃1(α, β, r − µ)|q
∫ t

0
E‖Lµ

(
A(ζ, xζ)−A(ζ, x†ζ)

)
‖q
L2(X)

dζ+

+ 2q−1c(q)t
1− 2

q |C̃1(α, β, ν − r)|q
∫ t

0
E‖Lν

(
B(ζ, xζ)−B(ζ, x†ζ)

)
‖q
L2
Q
dζ. (33)

Setting κ
(12)
α,β = 2q−1

(
bq−1|C̃1(α, β, r − µ)|q + c(q)b

1− 2
q |C̃1(α, β, ν − r)|q

)
, Assumption (A3) and As-

sumption (B3) yield that

E
∥∥Φ(x)(t)− Φ(x†)(t)

∥∥q
Ḣr ≤ κ

(12)
α,β

∫ t

0
(kA(ζ) + kB(ζ))‖xζ − x†ζ‖

q

Cδ(J∞;Lq(Ω,Ḣr))
dζ

Multiplying both sides of the above inequality by eδh and replacing t by t+ h, with h ∈ (−t, 0], one
obtains

eδhE
∥∥Φ(x)(t+ h)− Φ(x†)(t+ h)

∥∥q
Ḣr ≤ κ

(12)
α,β e

δh

∫ t+h

0
(kA(ζ) + kB(ζ))‖xζ − x†ζ‖

q

Cδ(J∞;Lq(Ω,Ḣr))
dζ.

(34)

On the other hand, it should be noted that

Φ(x)(t+ h) = Φ(x†)(t+ h) = χ(t+ h), for all h ∈ (−∞,−t].

Hence, one deduces that for all h ∈ J∞ there holds

eδhE
∥∥(Φ(x)

)
t
(h)−

(
Φ(x†)

)
t
(h)
∥∥q
Ḣr ≤ κ

(12)
α,β

∫ t

0
(kA(ζ) + kB(ζ))‖xζ − x†ζ‖

q

Cδ(J∞;Lq(Ω,Ḣr))
dζ,
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which implies that

‖
(
Φ(x)

)
t
−
(
Φ(x†)

)
t
‖q
Cδ(J∞;Lq(Ω,Ḣr))

≤ κ(12)
α,β

∫ t

0
(kA(ζ) + kB(ζ))‖xζ − x†ζ‖

q

Cδ(J∞;Lq(Ω,Ḣr))
dζ

Now, by using a similar method as in the proof of Claim 2 of Theorem 3.1, one can obtain that
Φ(x) = x has a unique solution in the space Sq,rχ,δ.
Claim 3. The solution x satisfies the regularity property (30).

By using a similar way employed to obtain (34), one arrives at for t ∈ J

E
∥∥x(t)

∥∥q
Ḣr ≤ 3q−1|M1(α, β)|qE‖Lrχ(0)‖q

L2(X)
+

+ κ
(12)
α,β

∫ t

0
(kA(ζ) + kB(ζ))‖xζ‖qCδ(J∞;Lq(Ω,Ḣr))

dζ.

Multiplying both sides of the above inequality by eδh and replacing t by t+ h, with h ∈ (−t, 0],

eδhE
∥∥x(t+ h)

∥∥q
Ḣr ≤ 3q−1eδh|M1(α, β)|qE‖Lrχ(0)‖q

L2(X)
+

+ κ
(12)
α,β e

δh

∫ t+h

0
(kA(ζ) + kB(ζ))‖xζ‖qCδ(J∞;Lq(Ω,Ḣr))

dζ

≤ 3q−1|M1(α, β)|q‖χ‖q
Cδ(J∞;Lq(Ω,Ḣr))

+

+ κ
(12)
α,β

∫ t

0
(kA(ζ) + kB(ζ))‖xζ‖qCδ(J∞;Lq(Ω,Ḣr))

dζ.

In addition, for h ∈ (−∞,−t], it is obvious that

eδhE
∥∥x(t+ h)

∥∥q
Ḣr = e−δteδ(t+h)E

∥∥χ(t+ h)
∥∥q
Ḣr ≤ ‖χ‖

q

Cδ(J∞;Lq(Ω,Ḣr))
.

Hence, for all h ∈ J∞, there exists κ
(13)
α,β > 0 depending on α, β, r, µ, ν, q, a, b such that

‖xt‖Cδ(J∞;Lq(Ω,Ḣr)) ≤ κ
(13)
α,β ‖χ‖

q

Cδ(J∞;Lq(Ω,Ḣr))
+ κ

(12)
α,β

∫ t

0
(kA(ζ) + kB(ζ))‖xζ‖qCδ(J∞;Lq(Ω,Ḣr))

dζ

With the help of the Grönwall inequality, we obtain

‖xt‖qCδ(J∞;Lq(Ω,Ḣr))
≤ κ(13)

α,β ‖χ‖
q

Cδ(J∞;Lq(Ω,Ḣr))
exp

(
κ

(12)
α,β

∫ t

0
(kA(ζ) + kB(ζ))dζ

)
≤ κ(13)

α,β exp
(
κ

(12)
α,β (KA + KB)

)
‖χ‖q

Cδ(J∞;Lq(Ω,Ḣr))
,

which implies that the regularity property (30) holds.

In the following couple of theorems, we shall investigate the continuity of mild solutions in the
case of infinite delay with respect to the initial function and the order of the fractional derivative
separately.

Theorem 4.2. Assume that (A3), (B3) hold. Then, the mild solution to Problem (2) is continuous
with respect to the initial function. Namely, let χ1, χ2 ∈ Cδ(J∞;Lq(Ω, Ḣr)), for r ≥ 0, q ≥ 2,
δ > 0, and let x1, x2 be the mild solutions to Problem (2) with respect to the initial functions χ1, χ2

respectively. Then, there exists M8(α, β) depending on α, β, r, µ, ν, q, b,KA,KB such that∥∥x1(t)− x2(t)
∥∥
Lq(Ω,Ḣr)

≤M8(α, β)‖χ1 − χ2‖Cδ(J∞;Lq(Ω,Ḣr)), (35)

for all t ∈ J .
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Proof. The proof follows by the similar technique as for Claim 2 of Theorem 4.1. Therefore, we skip
here.

Theorem 4.3. Let χ ∈ Cδ(J0;Lq(Ω, Ḣr)), for r ≥ 0, q ≥ 2 and δ > 0. Assume that (A3), (B3)
hold. Then, the mild solution to Problem (2) is continuous with respect to the order of the frac-
tional derivative. Namely, if β, β′ ∈ [β0, β1] ⊂ (0, 1) and x(β), x(β′) are the mild solutions to Prob-
lem (2) with respect to the orders β, β′ respectively. Then, there exists M9(α, β) depending on
α, β1, λ1, µ, ν, q, b,KA,KB such that∥∥x(β)(t)− x(β′)(t)

∥∥
Lq(Ω,Ḣr)

≤M9(α, β)|β − β′|‖χ‖Cδ(J∞;Lq(Ω,Ḣr)),

for all t ∈ J .

Proof. By a similar technique to the one in Theorem 4.1, and using Proposition 2.3 instead of
property (G2), one can easily arrive at

‖x(β)
t − x

(β′)
t ‖Cδ(J∞;Lq(Ω,Ḣr)) ≤ κ

(3)
α |β − β′|q

(
‖χ‖q

Cδ(J∞;Lq(Ω,Ḣr))
+ sup
θ∈(−∞,b]

E‖x(θ)‖q
Lq(Ω,Ḣr)

)
+

+ κ(4)
α

∫ t

0
(kA(ζ) + kB(ζ))‖x(β)

ζ − x
(β′)
ζ ‖

q

Cδ(J∞;Lq(Ω,Ḣr))
dζ

where κ
(3)
α and κ

(4)
α depend on α, β1, λ1, r, µ, ν, q, a, b,KA,KB. With the help of the Grönwall in-

equality, one obtains

‖x(β)
t −x

(β′)
t ‖Cδ(J∞;Lq(Ω,Ḣr))

≤ κ(3)
α |β − β′|q

(
‖χ‖q

Cδ(J∞;Lq(Ω,Ḣr))
+ sup
θ∈(−∞,b]

E‖x(θ)‖q
Lq(Ω,Ḣr)

)
exp(κ(4)

α (KA + KB)),

which implies that property (29) holds.

5 Conclusion

In the present paper, two problems for stochastic fractional differential equations are considered,
one involving finite delay and another with infinite delay. The main contributions here are to
establish the existence, uniqueness, regularity properties of the mild solution to such problems. In
the case of finite delay, the existence result is obtained on the space Cp([−a, b];Lq(Ω, Ḣr)), which is a
subspace of the usual one C([−a, b];L2(Ω, L2(X)). In the case of infinite delay, we show the existence
of the mild solution on the space Cδ((−∞, b];Lq(Ω, Ḣr)), which is a subspace of the usual one
Cδ((−∞, b];L2(Ω, L2(X)). Besides of constructing the continuity with respect to the initial function,
we investigated a novel result for stochastic fractional differential equations involving delays that is
the continuity with respect to the order of the fractional derivative.
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