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y Conocimiento) and FEDER under projects US-1254251 and P18-FR-4509.

1



1 Introduction

Stability of stochastic differential equations (SDEs) has become a very prevalent theme of recent
research in Mathematics and its applications. Stochastic systems are used to model problems
from the real world in which some kind or randomness or noise must be taken into account.
Some stochastic models cannot be proved to fulfill stability properties with respect to all the
unknown variables of the system. However, it is very interesting in some situations to analyze
if it is still possible to prove some stability properties with respect to some of the variables
in the problem. It is worth mentioning that, recently considerable attention has been paid to
the concept of stability with respect to a part of the system states. Such concept arises from
the study of combustion systems [1], vibrations in rotating machinery [14], biocenology [24],
inertial navigation systems [29], electro-magnetics [35], and spacecraft stabilization via gimballed
gyroscopes and/or flywheels [31].

The method of Lyapunov functions is one of the most powerful tool to study the stability of
stochastic dynamical systems. Lyapunov stability of stochastic dynamical systems has attracted
the attention of several authors, we would like to mention here the references [4, 5, 10, 19], among
others.

With the emergence of the second method of Lyapunov as an essential means in science,
engineering, and applied mathematics, numerous exciting and important variants to Lyapunov’s
original concept stability were proposed. One of these involves the notion of stability with re-
spect to a part of the variables, Peiffer and Rouche [21], Rouche et al. [24], Rumyantsev [25],
Rumyantsev and Oziraner [26], Savchenko and Ignatyev [30], Vorotnikov [31], Vorotnikov and
Rumyantsev [32]. This type of stability has been used in investigating the qualitative proper-
ties of equilibria and boundedness properties of motions of dynamical systems determined by
ordinary differential equations, difference equations, functional differential equations, stochastic
differential equations driven by standard Brownian motion, etc. It involves a notion of stability
with respect to only a prespecified subset of the state variables characterizing the motions of the
system under investigation.

For the dormant applications in risk measures, and superhedging in finance, considerable
attention has been paid to the theory of nonlinear expectation. Notably, Peng [22] built the
fundamental theory of time-consistent G-expectation and G-conditional expectation, where G is
the infinitesimal generator of a nonlinear heat equation. Under the G-framework, Peng [20, 22]
introduced the notion of G-normal disribution, G-Brownian motion and he also established the
corresponding stochastic calculus of Itô’s type. Since then, many researches have been carried
out on the stochastic analysis with respect to the G-Brownian motion. On that basis, Gao [9]
and Peng [20] studied the existence and uniqueness of the solution of G-SDE under a standard
Lipschitz condition. Moreover, Lin [17] obtained the existence and uniqueness of the solution of
G-SDE with reflecting boundary. The G-Brownian motion has a very rich and interesting new
structure which non-trivially, for a recent account and development of this theory we refer the
reader to see [2],[16], and [15].

Stability analysis of G-SDEs became increasingly significant since it has been extensively used
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in many branches of science. The corresponding study of the stability properties of solutions has
received much attention during the last decades, see [28, 33, 34].

Several works concentrated on the study of stability with respect to a part of variables of
stochastic differential equations driven by standard Brownian motion. However, to the best of
our knowledge, no work has been brought about stability with respect to a part of variables of
stochastic differential equations driven by G-Brownian motion (GSDEs, in short). Consequently,
this paper is devoted to establishing some criteria for the pth moment exponential stability and
the quasi sure exponential stability with respect to a part of the variables of GSDEs by using
the method of Lyapunov’s functions and recently developed Itô’s calculus for SDEs driven by
G-Brownian motion as well as Gronwall inequalities.

The content of this paper is organized as follows: In Section 2, we recall some necessary
preliminaries and results in G-framework. In Section 3, we establish sufficient conditions to ensure
pth moment exponential stability and quasi sure exponential stability with respect to a part of
the variables of stochastic differential equations driven by G-Brownian motion by using the G-
Lyapunov techniques. In Section 4, we give sufficient conditions of quasi sure exponential stability
with respect to a part of the variables of G-stochastic perturbed systems based on Gronwall’s
inequalities and recently developed Itô’s calculus for GSDEs. In Section 5, the obtained results
are used to analyze the stability with respect to a part of the variables of G-stochastic systems
and spring-mass-damper system. Finally, in Section 6, some conclusions are included.

2 Preliminaries

In this section, we briefly recall some notations and preliminaries about sublinear expectations
and G-Brownian motion. For more details, one can refer to see [13, 20, 22, 23].

Notations on G-stochastic calculus

• Rn : the space of n−dimensional real column vectors.

• 〈x, y〉 : the scalar product of two vectors x, y ∈ Rn.

• If x ∈ Rn, |x| denotes its Euclidean norm.

• B(Ω) : the Borel σ−algebra of Ω.

• Cb,Lip(Rn) : the space of all bounded real-valued Lipschitz continuous functions.

• L0 : the space of all B(Ω)−measurable real functions.

• B0(ω) : all bounded elements in L0(ω).

• LpG(Ω) : Banach space under the natural norm ||X||p = Ê(|X|p)
1
p .
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• Mp,0
G (0, T ) = {ζ := ζt(ω) =

∑N−1
j=0 ζj1[tj ,tj+1)(t), ∀N > 0,

0 = t0 < ... < tN = T, ζj ∈ LpG(ωtj), j = 0, 1, 2, .., N − 1}.

• Mp
G(0, T ) : the completion of Mp,0

G under ||η||Mp
G

= |
∫ T

0

Ê[|η(t)|p]dt|
1
p .

• ΩT := {ω·∧T : ω ∈ Ω}.

Let Ω be a given set and let H be a linear space of real valued functions defined on Ω. We
further suppose that H satisfies a ∈ H for each constant a and |X| ∈ H if X ∈ H.

Definition 2.1. A sublinear expectation Ê on H is a functional Ê : H → R satisfying the fol-
lowing properties: for all X, Y ∈ H,
i) Monotonicity: if X ≥ Y, then Ê[X] ≥ Ê[Y ].

ii) Constant preserving: Ê[a] = a, ∀ a ∈ R.
iii) Sub-additivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ].

iv) Positive homogeneity: Ê[λX] = λÊ[X], λ ≥ 0.

The triple (Ω,H, Ê) is called a sublinear expectation space. X ∈ H is called a random variable

in (Ω,H, Ê). Y = (Y1, ..., Yn), where Yi ∈ H is called a n-dimensional random vector in (Ω,H, Ê).

Definition 2.2. Weakly compact sets are defined by sets which are compact with respect to the
weak topology of a Banach space.

The representation of a sublinear expectation can be expressed as a supermum of linear
expectations.

Theorem 2.1. [22] There exists a weakly compact family P of probability measures defined on
(Ω,B(Ω)), such that

Ê(X) = sup
p∈P

Ep(X), X ∈ L1
G(Ω).

Definition 2.3. In a sublinear expectation space (Ω,H, Ê), an n-dimensional random vector
Y = (Y1, .., Yn) ∈ H is said to be independent from an m-dimensional random vector X =

(X1, .., Xm) ∈ H under the sublinear expectation Ê, if for any test function ϕ ∈ Cb,Lip(Rm+n)

Ê(ϕ(X, Y )) = Ê[Ê[ϕ(x, Y )]|x=X ].

Definition 2.4. Let X1 and X2 be two n-dimensional random vectors defined on sublinear expec-
tation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2), respectively. They are called identically distributed,

denoted by X1
d
= X2, if

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], ∀ϕ ∈ Cb,Lip(Rn).

X̄ is said to be an independent copy of X if X̄
d
= X and X̄ is independent from X.
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Definition 2.5. (G-Normal Distribution) A random variable X on a sublinear expectation

space (Ω,H, Ê) is called G-normal distributed, denoted by X ∼ N(0, [σ2, σ̄2]), for a given pair
0 ≤ σ̄ ≤ σ̄, if for any a, b ≥ 0

aX + bX̄
d
=
√
a2 + b2X,

where X̄ is an independent copy of X.

Let Ω be the space of all Rd−valued continuous paths (ωt)t≥0 with ω0 = 0. We assume
moreover that Ω is a metric space equipped with the following distance:

ρ(ω1, ω2) :=
∞∑
N=1

2−N
(

max
0≤t≤N

(|ω1
t − ω2

t |) ∧ 1

)
,

and consider the canonical process Bt(ω) = ωt, t ∈ [0,+∞), for ω ∈ Ω; then for each fixed
T ∈ [0,+∞), we have

L0
ip(ΩT ) := {ϕ(Bt1 , Bt2 , ..., Btn) : n ≥ 1, 0 ≤ t1 ≤ ... ≤ tn ≤ T, ϕ ∈ Cb,lip(Rd×n)}.

Definition 2.6. On the sublinear expectation space (Ω, L0
ip(ΩT ), Ê), the canonical process (Bt)t≥0

is called a G-Brownian motion, if the following properties are satisfied:
(i) B0 = 0.

(ii) for t, s ≥ 0, the increment Bt+s −Bt
d
=
√
sX, where X is G-normal distributed.

(iii) for t, s ≥ 0, the increment Bt+s − Bt is independent from (Bt1 , Bt2 , ..., Btn) for each n ∈ N,
and 0 ≤ t1 ≤ t2 ≤ ... ≤ tn ≤ t.
Moreover, the sublinear expectation Ê[.] is called G-expectation.

Remark 2.2. The standard Brownian motion is a particular case of G-Brownian motion. Then,
for σ̄2 = σ2 = 1 the G-Brownian motion is degenerate to the standard Brownian motion.

For simplicity, let (Bt)t≥0 be a 1-dimensional G-Brownian motion. The letter G denotes the
function

G(a) :=
1

2
Ê[aB2

1 ] =
1

2
(σ2a+ − σ2a−), a ∈ R,

with σ2 := −Ê[−B2
1 ] ≤ Ê[B2

1 ] := σ2, 0 ≤ σ ≤ σ < ∞. Recall that a+ = max{0, a} and
a− = −min{0, a}.

Now, we introduce the natural choquet capacity.

Definition 2.7. Let B(Ω) the Borel σ−algebra and P be a weakly compact collection of prob-
ability measures P defined on (Ω,B(Ω)), then the capacity Ĉ(.) associated to P is defined by

Ĉ(A) := sup
P∈P

P (A), A ∈ B(Ω).
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Definition 2.8. A set A ⊂ B(Ω) is polar if Ĉ(A) = 0. A property holds ”quasi-surely” (q.s.) if
it holds outside a polar set.

Now, we recall the following lemmas, which will be crucial in our stability analysis.

Lemma 2.3. [8] Let {Ak} ⊂ B(Ω) such that

∞∑
k=1

Ĉ(Ak) <∞.

Then, lim
k→∞

supAk is polar.

Lemma 2.4. [8] Let X ∈ L0(Ω) satisfying Ê|X|p <∞, for p > 0. Then, for each M > 0,

Ĉ(|X| > M) ≤ Ê|X|p

Mp
.

Lemma 2.5. [9] For each p ≥ 1, η ∈Mp
G(0, T ), and 0 ≤ s ≤ t ≤ T.

Ê
[

sup
s≤u≤t

|
∫ u

s

ηrd〈Ba, Bā〉r|p
]
≤
(
σ(a+ā)+(a+ā)T + σ(a−ā)+(a−ā)T

4

)p
|t− s|p−1

∫ t

s

Ê[|ηu|p]du.

Lemma 2.6. [9] Let p ≥ 2, η ∈ Mp
G(0, T ) and 0 ≤ s ≤ t ≤ T. Then, there exists some constant

Cp depending only on p, such that

Ê
[

sup
s≤u≤t

|
∫ u

s

ηrdBr|p
]
≤ Cp|t− s|

p
2
−1

∫ t

s

Ê[|ηu|p]du.

3 P -th moment exponential stability of G-stochastic dif-

ferential equations with respect to a part of the vari-

ables

Several authors dealt with the problem of stability with respect to a part of variables of stochas-
tic differential equations driven by standard Brownian motion in the sense of Lyapunov, see for
instance [6, 11, 12, 31]. The novelty in our work is to tackle the problem of stability with respect
to a part of variables of stochastic differential equations driven by G-Brownian motion by using
the method of G-Lyapunov’s function and recently developed Itô’s calculus for SDE driven by
G-Brownian motion.

Consider the following SDE driven by an m-dimensional G-Brownian motion:

dx(t) = f(t, x(t))dt+ h(t, x(t))d〈B〉t + g(t, x(t))dBt, ∀x ∈ Rn, t ≥ 0, (3.1)
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where Bt = (B1(t), ...., Bm(t))T is an m-dimensional G-Brownian motion, and (〈B〉)t≥0 is the
quadratic variation process of B.
For the well-posedness of system (3.1), we assume that f, h and g ∈ M2

G([0, T ],Rn) satisfy the
following global Lipschitz condition:

|φ(t, x)− φ(t, x̃)| ≤ K|x− x̃|, ∀t ∈ [0, T ], x, x̃ ∈ Rn,

φ = f, h, g respectively, and K is a positive constant. For the purpose of stability, we further
assume that f(t, 0) = h(t, 0) = g(t, 0) = 0, ∀t ≥ 0.

Denote x = (x1, x2)T where x = (x1.1 , ...., x1.n1
)T ∈ Rn1 , x2 = (x2.1 , ...., x2.n2

)T ∈ Rn2 ,
n1 > 0, n2 ≥ 0, n1 + n2 = n;

|x1| =
√
x2

1.1
+ ...+ x2

1.n1
, |x2| =

√
x2

2.1
+ ...+ x2

2.n2
, |x| =

(
|x1|2 + |x2|2

) 1
2 .

Under the precedent assumptions, there exists a unique global solution:

x(t, t0, x0) = (x1(t, t0, x0), x2(t, t0, x0))

corresponding to the initial condition x(t0) = x0 = (x10 , x20) ∈ Rn, see [16, 20, 27]. In what
follows we use x(t, t0, x0) = (x1(t, t0, x0), x2(t, t0, x0)), or simply x(t) = (x1(t), x2(t)) to denote a
solution of our system on some small interval.

Definition 3.1. The equilibrium point x = 0 of the G-SDE (3.1) is said to be
(i) P th moment exponentially stable with respect to x1, if there exist positive constants λ1, λ2,
and p > 0 such that for all x0 ∈ Rn, the following inequalities are satisfied:

Ê(|x1(t; t0, x0)|p) ≤ λ1|x0|pe−λ2(t−t0), ∀t ≥ t0 ≥ 0.

In particular, for p = 2 we said that the G-stochastic system (3.1) is exponentially stable in mean
square with respect to x1.
(ii) Quasi surely exponentially stable with respect to x1, if

lim
t→∞

sup
1

t
ln (|x1(t, t0, x0)|) < 0, q.s., (3.2)

for all x0 ∈ Rn.

Definition 3.2. The solution of the sub-system with respect to the variable x2 is said to be quasi
surely globally uniformly bounded, if for each α > 0, there exists c = c(α) > 0 (independent of
t0), such that

for every t0 ≥ 0, and all x20 ∈ Rn2 with |x20 | ≤ α, sup
t≥t0
|x2(t, t0, x0)| ≤ c(α), q.s., (3.3)

where x20 = x2(t0; t0, x0).
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Definition 3.3. Denote by C1,2(R+×Rn,R) the family of all real-valued functions V (t, x) defined
on R+ × Rn which are twice continuously differentiable in x and once in t.
If V ∈ C1,2(R+ × Rn,R), we define an operator L (called as G-Lyapunov function) from
R+ × Rn −→ R as follows:

LV (t, x) := Vt(t, x) + Vxf(t, x) +G
(
〈Vx(t, x), 2h(t, x)〉+ 〈Vxx(t, x)g(t, x), g(t, x)〉

)
,

where

Vt(t, x) =
∂V

∂t
(t, x) ; Vx(t, x) = (

∂V

∂x1

(t, x),
∂V

∂x2

(t, x)) ; Vxx(t, x) =
( ∂2V

∂xi∂xj
(t, x)

)
n×n

.

By G-Itô’s formula [23], it follows

dV (t, x(t)) = LV (t, x(t))dt+ Vx(t, x(t))g(t, x(t))dBt.

Now, we aim to prove the pth moment exponential stability of SDEs driven by G-Brownian
motion (3.1) with respect to a part of the variables, via the G-Lyapunov functions.

Theorem 3.1. Assume that there exist V ∈ C1,2(R+ × Rn,R+) and positive constants ci (i =
1, 2, 3), p such that for all t ≥ t0 ≥ 0, and all x = (x1, x2) ∈ Rn,

c1|x1|p ≤ V (t, x) ≤ c2|x1|p, (3.4)

LV (t, x) ≤ −c3|x1|p. (3.5)

Then, the trivial solution of the G-stochastic system (3.1) is pth moment exponentially stable
with respect to x1.

In order to prove the previous theorem, we need to recall an important lemma.

Lemma 3.2. [18] Let η ∈M1
G(0, T ) and Mt =

∫ t

0

η(s)d〈B〉s −
∫ t

0

2G(η(s))ds.

Then, for each t ∈ [0, T ], we have Ê(Mt) ≤ 0.

Proof of Theorem 3.1. Applying G-Itô’s formula to e
c3
c2
t
V (t, x(t)), we obtain

d(e
c3
c2
t
V (t, x(t)))

= e
c3
c2
t
(c3

c2

V (t, x(t)) + Vt(t, x(t)) + 〈Vx(t, x(t)), f(t, x(t))〉
)
dt

+ e
c3
c2
t〈Vx(t, x(t)), h(t, x(t))〉d〈B〉t + e

c3
c2
t〈Vx(t, x(t)), g(t, x(t))〉dBt

+
1

2
e

c3
c2
t〈Vxx(t, x(t))g(t, x(t)), g(t, x(t))〉d〈B〉t.
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That is,

e
c3
c2
t
V (t, x(t))

=e
c3
c2
t0V (t0, x(t0)) +

∫ t

t0

e
c3
c2
s
[c3

c2

V (s, x(s)) + Vs(s, x(s)) + 〈Vx(s, x(s)), f(s, x(s))〉

+G (〈Vx(s, x(s)), 2h(s, x(s))〉+ 〈Vxx(s, x(s))g(s, x(s)), g(s, x(s))〉)
]
ds

−
∫ t

t0

e
c3
c2
s
G (〈Vx(s, x(s)), 2h(s, x(s))〉+ 〈Vxx(s, x(s))g(s, x(s)), g(s, x(s))〉) ds

+

∫ t

t0

e
c3
c2
s〈Vx(s, x(s)), h(s, x(s))〉d〈B〉s +

∫ t

t0

e
c3
c2
s〈Vx(s, x(s)), g(s, x(s))〉dBs

+
1

2

∫ t

t0

e
c3
c2
s〈Vxx(s, x(s))g(s, x(s)), g(s, x(s))〉d〈B〉s

= e
c3
c2
t0V (t0, x(t0)) +

∫ t

t0

e
c3
c2
s

(
c3

c2

V (s, x(s)) + LV (s, x(s))

)
ds+M t0

t

+

∫ t

t0

e
c3
c2
s〈Vx(s, x(s)), g(s, x(s))〉dBs.

Where,

M t0
t =

∫ t

t0

e

c3

c2

s

〈Vx(s, x(s)), h(s, x(s))〉d〈B〉s

+
1

2

∫ t

t0

e
c3
c2
s〈Vxx(s, x(s))g(s, x(s)), g(s, x(s))〉d〈B〉s

−
∫ t

t0

e
c3
c2
s
G (〈Vx(s, x(s)), 2h(s, x(s))〉+ 〈Vxx(s, x(s))g(s, x(s)), g(s, x(s))〉) ds.

Taking, G-expectation on both sides, it yields that

Ê(e
c3
c2
t
V (t, x(t)))

≤ e
c3
c2
t0V (t0, x(t0)) + Ê

∫ t

t0

e

c3

c2

s(c3

c2

V (s, x(s)) + LV (s, x(s))
)
ds+ Ê(M t0

t )

+ Ê
∫ t

t0

e
c3
c2
s〈Vx(s, x(s)), g(s, x(s))〉dBs.

Since, Vx(t, x) is uniformly continuous in t uniformly Lipschitz in x on [0, T ]×B0(Ω). Thus, based
upon Proposition 3.11 in [16], we observed that exp( c3

c2
(·))〈Vx(·, x(·)), g(·, x(·))〉 ∈ Mp

G(0, T ), for
any p ≥ 2. Then, we obtain

Ê
∫ t

t0

e
c3
c2
s〈Vx(s, x(s)), g(s, x(s))〉dBs = 0.
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Using Lemma 3.2, we have Ê(M t0
t ) ≤ 0. Consequently, we obtain

Ê(e
c3
c2
t
V (t, x(t))) ≤ e

c3
c2
t0V (t0, x(t0)) + Ê

∫ t

t0

e
c3
c2
s

(
c3

c2

V (s, x(s)) + LV (s, x(s))

)
ds.

This together with (3.4) and (3.5), implies

Ê(e
c3
c2
t
V (t, x(t))) ≤ e

c3
c2
t0V (t0, x(t0)) + Ê

∫ t

t0

e
c3
c2
s

(
c3

c2

V (s, x(s))− c3|x1(s)|p
)
ds

≤ e
c3
c2
t0V (t0, x(t0)) + Ê

∫ t

t0

e
c3
c2
s

(
c3

c2

V (s, x(s))− c3

c2

V (s, x(s))

)
ds

≤ e
c3
c2
t0V (t0, x(t0))

≤ c2e
c3
c2
t0|x10|p.

Thus, we obtain

Ê(V (t, x(t))) ≤ c2e
− c3

c2
(t−t0)|x10|p.

Due to (3.4) again and the fact that |x10| ≤ |x0|, we deduce that

Ê(|x1(t, t0, x0)|p) ≤ Ê(V (t, x(t)))

c1

≤ c2

c1

e
− c3

c2
(t−t0)|x0|p.

Therefore, the G-stochastic system (3.1) is pth moment exponentially stable with respect to x1. 2

Theorem 3.3. Assume that there exist V ∈ C1,2(R+ × Rn,R+) and positive constants ci (i =
1, 2, 3), p, such that for all t ≥ t0 ≥ 0, and all x = (x1, x2) ∈ Rn,

c1|x1|p ≤ V (t, x) ≤ c2|x1|p, (3.6)

LV (t, x) ≤ (−c3 + ϕ(t))|x1|p, (3.7)

where ϕ(t) is a continuous nonnegative function, with∫ +∞

0

ϕ(t)dt ≤M < +∞. (3.8)

Then, the trivial solution of the G-stochastic system (3.1) is pth moment exponentially stable
with respect to x1.

Proof of Theorem 3.3. By using similar reasoning as above, we obtain

Ê(e
c3
c2
t
V (t, x(t))) ≤ e

c3
c2
t0V (t0, x(t0)) + Ê

∫ t

t0

e
c3
c2
s

(
c3

c2

V (s, x(s)) + LV (s, x(s))

)
ds.

10



On account of (3.6) and (3.7), we obtain

Ê(e
c3
c2
t
V (t, x(t))) ≤ e

c3
c2
t0V (t0, x(t0)) + Ê

∫ t

t0

e
c3
c2
s

(
c3

c2

V (s, x(s)) + (−c3 + ϕ(s))|x1(s)|p
)
ds

≤ e
c3
c2
t0V (t0, x(t0)) + Ê

∫ t

t0

e
c3
c2
s
(c3

c2

V (s, x(s))− c3

c2

V (s, x(s))

+
ϕ(s)

c1

V (s, x(s))
)
ds.

That is,

Ê(e
c3
c2
t
V (t, x(t))) ≤ e

c3
c2
t0V (t0, x(t0)) + Ê

∫ t

t0

ϕ(s)

c1

e
c3
c2
s
V (s, x(s))ds. (3.9)

Applying now the Gronwall lemma [7], and condition (3.6), we obtain

Ê(e
c3
c2
t
V (t, x(t))) ≤ e

c3
c2
t0V (t0, x(t0))e

1
c1

∫ t
t0
ϕ(s)ds

≤ e
c3
c2
t0V (t0, x(t0))e

1
c1

∫+∞
0 ϕ(s)ds

≤ e
c3
c2
t0V (t0, x(t0))e

M
c1

≤ e
c3
c2
t0c2|x10|pe

M
c1 .

Hence, we see that

Ê(V (t, x(t))) ≤ c2e
M
c1 |x10|pe

− c3
c2

(t−t0)
.

Due to the fact that |x10| ≤ |x0| and condition (3.6), we deduce from the last inequality that

Ê(|x1(t)|p) ≤ c2

c1

e
M
c1 |x0|pe−

c3
c2

(t−t0)
.

Setting λ1 =
c2

c1

e
M
c1 and λ2 =

c3

c2

, we conclude that the G-stochastic system (3.1) is pth moment

exponentially stable with respect to x1. 2

Mao [19] developed the condition under which the pth moment exponential stability implies
the almost sure exponential stability of stochastic differential equations driven by standard Brow-
nian motion. In what follows, our target is to involve conditions under which the pth moment
exponential stability with respect to a part of the variables of stochastic differential equations
driven by G-Brownian motion implies the quasi sure exponential stability with respect to a part
of the variables.

The system (3.1) might be regarded as the following form:
dx1(t) = f1(t, x1(t), x2(t))dt+ h1(t, x1(t), x2(t))d〈B〉t + g1(t, x1(t), x2(t))dBt

dx2(t) = f2(t, x1(t), x2(t))dt+ h2(t, x1(t), x2(t))d〈B〉t + g2(t, x1(t), x2(t))dBt.
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with the same initial condition x(t0) = x0 = (x10 , x20), f := (f1, f2), h = (h1, h2), g := (g1, g2),
and

• f1, h1, g1 : R+ × Rn1 × Rn2 → Rn1 .

• f2, h2, g2 : R+ × Rn1 × Rn2 → Rn2 .

Theorem 3.4. Consider the G-stochastic system (3.1), assume that there exists a positive con-
stant η such that

Ê
(
|f1(t, x1, x2)|p + |h1(t, x1, x2)|p + |g1(t, x1, x2)|p

)
< ηÊ(|x1|p), ∀x1 ∈ Rn1 ,∀x2 ∈ Rn2 ,∀t ≥ t0.

(3.10)
Then, the pth moment exponential stability with respect to x1 of the G-stochastic system (3.1),
implies the quasi sure exponential stability.

Proof. By the definition of the pth moment exponential stability with respect to x1, there exist
a pair of positive constants λ1 and λ2, such that

Ê(|x1(t; t0, x0)|p) ≤ λ1|x0|pe−λ2(t−t0), ∀t ≥ t0 ≥ 0. (3.11)

Furthermore, we have

x1(t+s) = x1(t)+

∫ t+s

t
f1(u, x1(u), x2(u))du+

∫ t+s

t
h1(u, x1(u), x2(u))d〈B〉u+

∫ t+s

t
g1(u, x1(u), x2(u))dBu,

which implies,

|x1(t + s)|p ≤ 4p−1
(
|x1(t)|p + |

∫ t+s

t
f1(u, x1(u), x2(u))du|p

+ |
∫ t+s

t
h1(u, x1(u), x2(u))d〈B〉u|p + |

∫ t+s

t
g1(u, x1(u), x2(u))dBu|p

)
.

Using the sub-additivity of G-expectation, we obtain

Ê( sup
0≤s≤τ

|x1(t+ s)|p)

≤ 4p−1
[
Ê|x1(t)|p + Ê

(∫ t+s

t

|f1(u, x1(u), x2(u))|du
)p

+ Ê
(

sup
0≤s≤τ

|
∫ t+s

t

g1(u, x1(u), x2(u))dBu|p
)

+ Ê
(

sup
0≤s≤τ

|
∫ t+s

t

h1(u, x1(u), x2(u))d〈B〉u|p
)]

.

(3.12)
On account of (3.10), (3.11) and by Hölder’s inequality [8], we obtain

Ê
(∫ t+τ

t

|f1(u, x1(u), x2(u))|du
)p
≤ τ p

∫ t+τ

t

Ê|f1(u, x1(u), x2(u))|pdu

≤ λ1

λ2

ητ p|x0|pe−λ2(t−t0).

(3.13)
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On the other side, based on (3.10), (3.11) and Lemma 2.6, we obtain

Ê
(

sup
0≤s≤τ

|
∫ t+τ

t

g1(u, x1(u), x2(u))dBu|p
)
≤ Cpτ

p
2
−1

∫ t+τ

t

Ê|g1(u, x1(u), x2(u))|pdu

≤ λ1

λ2

Cpητ
p
2 |x0|pe−λ2(t−t0).

(3.14)

Likewise, by Lemma 2.5 we obtain

Ê
(

sup
0≤s≤τ

|
∫ t+τ

t

h1(u, x1(u), x2(u))d〈B〉u|p
)
≤ C ′pτ

p−1

∫ t+τ

t

Ê|h1(u, x1(u), x2(u))|pdu

≤ λ1

λ2

C ′pητ
p|x0|pe−λ2(t−t0),

(3.15)

where C ′p is a positive constant dependent only on p.
Then, we conclude from the above inequalities (3.13), (3.14), and (3.15) that

Ê( sup
0≤s≤τ

|x1(t+ s)|p) ≤ Re−λ2t,

with R = 4p−1λ1

λ2

|x0|p
(
λ2 + ητ p(1 + Cpτ

− p
2 + C ′p)

)
.

Now, let ε ∈ (0, λ2) be arbitrary, then thanks to Lemma 2.4, we obtain

Ĉ

(
sup

0≤s≤τ
|x1(nτ + s)|p > e−(λ2−ε)nτ

)
≤ e(λ2−ε)nτ Ê( sup

0≤s≤τ
|x1(nτ + s)|p)

≤ Re−εnτ .

By the Borel-Cantelli lemma for the capacity 2.3, we see that there exists n0 := n0(ω), such that
for almost all ω ∈ Ω, n > n0(ω),

sup
0≤s≤τ

|x1(t+ s)|p ≤ e−(λ2−ε)nτ , q.s.,

where t ∈ [nτ, (n+ 1)τ ]. Thus, we obtain

1

t
log(|x1(t)|) =

1

pt
log(|x1(t)|p) ≤ −(λ2 − ε)nτ

pnτ
, q.s.

Hence, lim
t−→∞

sup
1

t
log(|x1(t)|) ≤ −(λ2 − ε)

p
, q.s.

13



Since ε > 0 is arbitrary, we obtain the desired result

lim
t−→∞

sup
1

t
log(|x1(t)|) ≤ −λ2

p
, q.s.

That is, the G-stochastic (3.1) system is quasi surely exponentially stable with respect to x1.
2

4 Exponential stability of G-stochastic perturbed differ-

ential equations with respect to a part of the variables

In this section, we consider the following linear stochastic system:

dx(t) = Ax(t)dt, ∀t ≥ t0 ≥ 0, (4.1)

where,

A =

(
A1 0
0 A2

)
, x := (x1, x2) ∈ Rn1 × Rn2 , n1 > 0, n2 ≥ 0, n1 + n2 = n.

• A1 is a constant n1 × n1 matrix.

• A2 is a constant n2 × n2 matrix.

The above system (4.1) might be regarded as the following system:{
dx1(t) = A1x1(t)dt

dx2(t) = A2x2(t)dt,
(4.2)

with initial condition x(t0) := x0 := (x10 , x20) ∈ Rn1 × Rn2 .

Assume that some parameters are excited or perturbed by G-Brownian motion, and the per-
turbed system has the form:{

dx1(t) = A1x1(t)dt+ g(t, x1(t), x2(t))dBt

dx2(t) = A2x2(t)dt,
(4.3)

with the same initial conditions, where Bt = (B1(t), ...., Bm(t))T is an m-dimensional G-Brownian
motion, and g : R+ × Rn1 × Rn2 −→ Rn1×m.
Assume that conditions of existence and uniqueness of solutions are satisfied, see [22], and
x(t, t0, x0) = (x1(t; t0, x0), x2(t; t0, x0)) is the solution of system (4.3).
Suppose that the origin of the linear stochastic system (4.2) is quasi surely exponentially stable
with respect to x1. Further, we assume that the origin x = (0, 0) is an equilibrium point of the
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G-stochastic perturbed system (4.3), that is g(t, 0, 0) = 0 for all t ≥ 0.

The objective of this section is to state sufficient conditions under which the G-stochastic per-
turbed system (4.3) is still quasi surely exponentially stable with respect to x1 by using recently
developed Itô’s calculus for SDEs driven by G-Brownian motion and Gronwall inequalities.

Theorem 4.1. Let λ1 be the maximum of the real parts of all eigenvalues of −A1, we suppose
that there exist a constant c1 ≥ 0, and a polynomial p1(t) such that for all x1 ∈ Rn1 , x2 ∈ Rn2,
and sufficiently large t,

|g(t, x1(t), x2(t))|2 ≤ p1(t)e(−2λ1+c1)t, q.s. (4.4)

Furthermore, we assume that lim
t−→∞

sup
log |eA1t|2

t
≤ −c2, where c2 is a positive constant.

Then, we have

lim
t−→∞

sup
log |x1(t; t0, x0)|2

t
≤ −(c2 − c1), q.s.

for all t0 ≥ 0 and x0 ∈ Rn.
In particular, if c2 > c1, then the G-stochastic perturbed system (4.3) is said to be quasi surely
exponentially stable with respect to x1.

In order to prove this theorem, let us start by recalling an important Gronwall lemma [7],
which will be very useful later on.

Lemma 4.2. Let b(t), c(t), and u(t) be continuous functions for t ≥ t0 ≥ 0, and b(t) be nonneg-
ative for t ≥ t0 ≥ 0, φ is a constant and suppose

u(t) ≤ φ+

∫ t

t0

[b(s)u(s) + c(s)] ds, t ≥ t0 ≥ 0.

Then,

u(t) ≤ φ exp

(∫ t

t0

b(τ)dτ

)
+

∫ t

t0

c(s) exp

(∫ t

s

b(τ)dτ

)
ds, t ≥ t0 ≥ 0.

We need to recall the following lemma, which is essential in our analysis.

Lemma 4.3. [20] Let Bt be a one-dimensional G-Brownian motion, suppose that there exist
constants ε > 0 and α > 0, such that

Ê
(

exp

[
α2

2
(1 + ε)

∫ T

0

g2(s)d〈B〉s
])

<∞, ∀g ∈M2
G(0, T ).

Then, for any T > 0 and β > 0,

Ĉ

(
sup

0≤t≤T

[∫ t

0

g(s)dBs −
α

2

∫ t

0

g2(s)d〈B〉s
]
> β

)
≤ exp(−αβ).
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Now, we are in a position to prove our main result in this section.

Proof of Theorem 4.1. Fix ε > 0 arbitrarly, and there exists ρ = ρ(ε) such that

|e−A1t|2 ≤ ρe(2λ1+ε)t, p1(t) ≤ ρeεt, t > 0.

Applying G-Itô’s formula, we obtain

d(e−A1tx1(t)) = e−A1tg(t, x1(t), x2(t))dBt.

Define W (t) = |e−A1tx1(t)|2, based on the G-Itô’s formula again it yields that

W (t) = W (t0) + 2

∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))dBs

+

∫ t

t0

trace
(
e−A1sg(s, x1(s), x2(s))gT1 (s, x1(s), x2(s))e−A

T
1 s
)
d〈B〉s. (4.5)

From Lemma 4.3, it follows that for any α > 0, β > 0, and τ > t0,

Ĉ
(

supt0≤t≤τ
[ ∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))dBs −

α

2∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))gT1 (s, x1(s), x2(s))e−A

T
1 se−A1sx1(s)d〈B〉s

]
> β

)
≤ exp(−αβ).

Choose an arbitrary θ > 1, and let k be an integer large enough so that k > t0, and set

α = e−c1k, β = θec1k log k, τ = k.

Then, we obtain

Ĉ
(

sup
t0≤t≤k

[ ∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))dBs −

e−c1k

2∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))gT (s, x1(s), x2(s))e−A

T
1 se−A1sx1(s)d〈B〉s

]
> θec1k log k

)
≤ 1

kθ
.

Applying the Borel-Cantelli lemma for the capacity 2.3, we see that for almost all ω ∈ Ω, there
exists k0 = k0(ω), such that∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))dBs

≤ e−c1k

2

∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))gT (s, x1(s), x2(s))e−A

T
1 se−A1sx1(s)d〈B〉s

+ θec1k log k, for all k > k0, t0 ≤ t ≤ k.

16



Using condition (4.4), it follows that∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))dBs

≤ e−c1k

2

∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))gT (s, x1(s), x2(s))e−A

T
1 se−A1sx1(s)d〈B〉s

+ θec1k log k

≤ e−c1k

2
ρ2

∫ t

t0

W (s)ec1sd〈B〉s + θec1k log k.

This together with (4.5), we obtain

W (t) ≤ W (t0) + e−c1kρ2

∫ t

t0

W (s)ec1sd〈B〉s + 2θec1k log k

+

∫ t

t0

trace
(
e−A1sg(s, x1(s), x2(s))gT (s, x1(s), x2(s))e−A

T
1 s
)
d〈B〉s

≤ W (t0) + e−c1kρ2

∫ t

t0

W (s)ec1sd〈B〉s + 2θec1k log k + bρ2

∫ t

t0

ec1sd〈B〉s. (4.6)

By Peng [20, Chapter III], we have for each 0 ≤ s ≤ t ≤ T,

〈B〉t − 〈B〉s ≤ σ̄2(t− s).

Based on this fact and the inequality (4.6), it follows that

W (t) ≤ W (t0) + e−c1kρ2σ2

∫ t

t0

W (s)ec1sds+ 2θec1k log k + bρ2σ2

∫ t

t0

ec1sds.

Applying the Lemma 4.2, we obtain

W (t) ≤
(
W (t0) + 2θec1k log k

)
exp

(
e−c1kρ2σ2

∫ t

t0

ec1sds

)
+ bρ2σ2

∫ t

t0

exp

(
ρ2σ2e−c1k

∫ t

s

ec1rdr

)
ec1sds

≤
(
W (t0) + 2θec1k log k +

bρ2σ2

c1

ec1k
)

exp

(
e−c1kρ2σ2

∫ t

t0

ec1sds

)
≤
(
W (t0) + 2θec1k log k +

bρ2σ2

c1

ec1k
)

exp

(
ρ2σ2

c1

)
, t0 ≤ t ≤ k, k ≥ k0, q.s.

That is,

W (t) ≤
(
W (t0) + 2θec1k log k +

bρ2σ2

c1

ec1k
)

exp

(
ρ2σ2

c1

)
, t0 ≤ t ≤ k, k ≥ k0, q.s. (4.7)
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Since θ > 1 is arbitrary, and
W (t)

ec1t log t
≤ W (t)

ec1(k−1) log(k − 1)
, k − 1 ≤ t ≤ k.

From (4.7), we see immediately that

lim
t−→∞

sup
W (t)

ec1t log(t)
≤ lim

k−→∞
sup

(
W (t0) + 2θec1k log k + bρ2σ2

c1
ec1k
)

exp

(
ρ2σ2

c1

)
ec1(k−1) log(k − 1)

≤ 2 exp

(
c1 +

ρ2σ2

c1

)
q.s.

Since,

lim
t−→∞

sup
log |x1(t; t0, x0)|2

t
≤ lim

t−→∞
sup

log |eAt|2

t
+ lim

t−→∞
sup

log |e−Atx1(t; t0, x0)|2

t
.

Consequently, we obtain

lim
t−→∞

sup
log |x1(t; t0, x0)|2

t
≤ −c2 + c1 = −(c2 − c1), q.s.

Then, if the inequality c2 > c1 is satisfied, we deduce that the G-stochastic perturbed system
(4.3) is quasi surely exponentially stable with respect to x1. 2

5 Examples

Some illustrative examples are given to demonstrate the validity and accuracy of our results.

Example 5.1. To highlight the utility and the importance of our found out result, we consider
the example of spring-mass model with viscous damping (see Fig.1), whose equation is given by:

q̈(t) + c(t)q̇(t) + kq(t) = 0, t ≥ 0, (5.1)

q(0) = q0, q̇(0) = q̇0,

where c(t) is a time-varying damping coefficient. This damping corresponds to the type of re-
sistance to motion and energy dissipation that is encountered when a piston with perforations is
moved through a cylinder filled with a viscous fluid, for example oil, and k is the stiffness of the
spring coefficient.
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Figure 1: Spring-mass-damper system.

The spring-mass-damper system is an impressive system to analyze it, since the physical intuition
conducts one to surmise that if c(t) ≥ β ≥ 0, t ≥ 0, for that reason the zero solution (q(t), q̇(t)) =
(0, 0) is asymptotically stable, due to the fact that the constant of energy dissipated. Nevertheless,
this is not the case, a simple counterexample (see [3]) is c(t) = 2 + et, k = 1, q(0) = 2 and
q̇(0) = −1, which yields that q(t) = 1 + e−t, t ≥ 0. Thus, q(t)→ 1 as t→∞. This is due to the
fact that damping increases so fast that the system arrests at q = 1.

The system (5.1) can be equivalently written as{
dz1(t) = z2(t)dt, z1(0) = q0, t ≥ 0

dz2(t) = (−kz1(t)− c(t)z2(t))dt, z2(0) = q̇0,
(5.2)

where z1 := q and z2 = q̇.
The solutions (z1(t), z2(t)) to system (5.2) are equivalently characterized by the solution x1(t), t ≥
0, of the following system:{

dx1(t) = f1(x1(t), x2(t))dt, x1(0) = (q0, q̇0), t ≥ 0

dx2(t) = 1dt, x2(0) = 0,
(5.3)

where x1 = (z1, z2) ∈ R2, x2 = t ∈ R+, and

f1 =

(
x1v

−x1L(x2)

)
, L(x2) =

(
k

c(x2)

)
, v =

(
0
1

)
, f2(x1, x2) = 1.

Assume that some parameters of system (5.1) are excited or perturbed by a G-Brownian motion,
and the perturbed system has the following form:{

dx1(t) = f1(x1(t), x2(t))dt+ g(t, x1(t), x2(t))dBt, x1(0) = (q0, q̇0), t ≥ 0

dx2(t) = 1dt, x2(0) = 0,
(5.4)

where B is a one-dimension G-Brownian motion, B = N(0× [1
2
, 1]), and g(t, x) =

(
g1(t, x)
g2(t, x)

)
,
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with 
g1(t, x) = αz2, α > 0,

g2(t, x) =
α√
2

√
cos(x2)z2z1 − α

√
2 sin(x2)z1z2.

It is clear that the G-stochastic system (5.4) is unstable since the state x2, representing the time,
is unbounded. Consequently, it is very interesting to analyze if it is still possible to prove some
stability properties with respect to some of the variables in the problem.

Let c(t) = 4 + cos(t), k = 2, and consider the following Lyapunov-like function:

V (t, x1, x2) = xT1 P (x2)x1,

where P (x2) =

(
6 + cos(x2) 1

1 1

)
.

It is clear that, xT1 P1x1 ≤ V (t, x1, x2) ≤ xT1 P2x1, where

P1 =

(
5 1
1 1

)
, P2 =

(
7 1
1 1

)
.

Note that P1 and P2 have the eigenvalues 0.76, 5.24 and 0.84, 7.16, respectively.
Therefore,

0.76|x1|2 ≤ V (t, x1, x2) ≤ 7.16|x1|2.

Applying the G-Itô formula to V , one has

LV (t, x1, x2) = − sin(x2)z2
1 − 4z2

1 − 2 cos(x2)z2
2 − 6z2

2 +G(12α2z2
2 + 2α2 cos(x2)z2

2)

≤ −3z2
1 − 4z2

2 +G(12α2z2
2) +G(2α2 cos(x2)z2

2)

≤ −3z2
1 − 4z2

2 + 6α2z2
2 + α2z2

2

≤ −3z2
1 − 4z2

2 + 7α2z2
2 .

For α =
1√
7

we then obtain

LV (t, x1, x2) ≤ −3z2
1 − 4z2

2 + z2
2

≤ −3z2
1 − 3z2

2

= −3|x1|2.

Thus, constants in Theorem 3.1 become c1 = 0.76, c2 = 7.16, c3 = 3, p = 2, and we conclude
that the G-stochastic system (5.4) is exponentially stable in mean square with respect to x1.
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Example 5.2. Consider the following G-stochastic system: dx1(t) = −2x1dt−
1

2
sin2(x2)e−2tx1d〈B〉t + (1 + e−t|sin(x2)|)x1dBt

dx2(t) = 2 cos(t)x2dt,
(5.5)

where x = (x1, x2)T ∈ R2 , B is a one-dimension G-Brownian motion and B = N(0 × [1
2
, 1]),

with initial value x0 = (x10 , x20).
The solution of the sub-system with respect to the variable x2 is quasi surely globally uniformly
bounded. In fact, for all t ≥ t0 ≥ 0, and all x20 ∈ R with |x20| ≤ β, we have |x2(t)| ≤ βe2 sin(t) q.s.

Denote V = x2
1, then we obtain

LV (t, x) = Vx(t, x)f1(t, x) +G(2Vx(t, x)h1(t, x) + Vxxg
2
1(t, x))

= −4x2
1 +G

(
−2x2

1 sin2(x2)e−2t + 2(1 + e−t| sin(x2)|)2x2
1

)
= −4x2

1 +G
(
2x2

1 + 4e−t| sin(x2)|x2
1

)
.

By the sub-additivity of the function G, we obtain

LV (t, x) ≤ −4x2
1 +G(2x2

1) +G(4e−t| sin(x2)|x2
1)

≤ −4x2
1 + x2

1 + 2e−t| sin(x2)|x2
1

≤ −3x2
1 + 2e−tx2

1.

Thus,
LV (t, x) ≤ (−3 + ϕ(t))x2

1,

where ϕ(t) = 2e−t, which satisfies condition (3.8) of Theorem 3.3.
Hence, all conditions of Theorem 3.3 are fulfilled with p = 2 and then the G-stochastic system
(5.5) is exponentially stable in mean square with respect to x1.
Furthermore, we have

1. |f1(t, x)|2 = 4|x1|2,

2. |h1(t, x)|2 = |1
2
sin2(x2)e−2tx1|2 ≤ |x1|2,

3. |g1(t, x)|2 = |(1 + e−t|sin(x2)|)x1|2 ≤ 2(1 + e−2t| sin(x2)|2)|x1|2 ≤ 4|x1|2.

Then, we obtain

Ê
(
|f1(t, x)|2 + |h1(t, x)|2 + |g1(t, x)|2

)
≤ 9Ê

(
|x1|2

)
.

Hence, based on Theorem 3.4, with p = 2 and η = 9, one can deduce that the G-stochastic system
(5.5) is quasi sure exponentially stable with respect to x1.
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Remark 5.3. Note that, we cannot establish the exponential stability in all variables for the
above example because the solution of the sub-system with respect to the variable x2 is quasi
surely globally uniformly bounded but not attractive.

Remark 5.4. The sub-system with respect to the variable x2 can be taken in such a way that
all trajectories are quasi surely globally uniformly bounded but not attractive.

Example 5.5. Consider the following G-stochastic system dx1(t) = −2x1(t)dt+ (1 + t2)e−4.5t x(t)

1 + |x(t)|
dBt

dx2(t) = A2x2(t)dt,

(5.6)

where x = (x1, x2) ∈ R3, x2 = (z1, z2) ∈ R2 and B is a one-dimensional G-Brownian motion,

A2 =

(
0 −1
1 0

)
.

With initial value x0 = (x10 , x20), and x20 = (z10 , z20).

By simple resolution, we obtain

x2(t) =

(
z10(t, w) cos(t)− z20(t, w) sin(t)
z10(t, w) sin(t) + z20(t, w) cos(t)

)
.

Using the Euclidean norm, we deduce

|x2(t)| = |x20|.

The solution of the sub-system with respect to the variable x2 is quasi surely globally uniformly
bounded. In fact, for all t ≥ t0 ≥ 0, and all x20 ∈ R2 with |x20| ≤ α′, we have |x2(t)| ≤ α′ q.s.,
and the constants of Theorem 4.1 are c1 = 0.5, and c2 = 2.

Hence, by Theorem 4.1 we deduce that lim sup
t→∞

log |x1(t, t0, x0)|2

t
≤ −1.5 q.s. for all t0 ≥ 0 and

x0 ∈ R2. Indeed, the G-stochastic perturbed system (5.6) is quasi sure exponentially stable with
respect to x1.

6 Conclusion

In this paper, we dealt with the analysis problem of stability of stochastic differential equations
driven by G-Brownian motion. Some stability criteria for the pth moment exponential stability
and quasi sure exponential stability with respect to a part of the variables are established.
The main technical tools for deriving stability results are G-Lyapunov functions and recently
developed Itô’s calculus for G-SDEs. Some examples have been investigated to validate the
developed methods.
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