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Chapter 1: Introduction 

Commodity trading is one of the oldest forms of economic activity, albeit its functioning is yet 

scarcely understood nowadays. On the other hand, the large-scale expansion of fuels, minerals and 

grains trading in recent decades has been one of the vital elements which has facilitated globalization 

(Buchan and Errington, 2016).  

 

The activity of sourcing the natural resources needed by the industry and society in general 

constitutes one of the pillars of the global economy, obtaining commodities from where there is 

abundance of and moving them to where they are most needed in time and form, equilibrating thus 

mismatches between offer and demand (Meersman et al., 2012). Commodity trading stretches from 

grain like wheat or corn, which comprises the base of human and animal feeding, to copper, iron or 

aluminium, metals that have laid the foundations the developing of information technologies, 

transportation and infrastructures, as well as oil and natural gas, key elements for the world’s energy 

production.  

 

The modern form of commodity trading dates back to the beginning of the 17th century, with the 

stablishing of the East India Company (EIC) in 1600, and the Vereeningde Oostindische 

Compagnie (VOC), or the Netherlands East India Company in 1602 (Robins, 2012). Both these 

two companies, which were in hands of private investors, possessed the concessions of their 

monarchies that granted them the exclusive right to trade all kind of commodities, mainly cotton, 

opium, spices or tea, between the middle and far east and their European metropolis.  

 

Later on, the huge demand for metals that arose in the beginning of the 19th century stemming from 

the advances of the industrial revolution fostered the creation of the London Metal Exchange (LME) 
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in 1877 (Geman and Smith, 2013), formalizing a trading which had been taking place informally in 

the outskirts of the Royal Exchange of London since decades earlier.  At the LME, copper suppliers 

from Chile or tin suppliers from Malaisia would find their buyers, enabling them to set prices for 

future deliveries. Some of the first standards withing commodity trading were then first set, 

remaining in force still today, such as the 3-month future contract for copper.  This originally was 

equivalent to the time that copper shipments from Chile took to arrive to England (The London 

Metal Exchange, 2019). In a similar fashion, the first future exchanges were stablished across the 

world, like the Chicago Board of Trade (CBOT), which in1864 created the first standardized futures 

contract for grain, being still nowadays a reference market for setting of agricultural commodities 

prices. 

 

Additionally, the generalization of the use of oil in the 20th century, mainly since in 1911 gasoline 

became the main product that Standard Oil’s refineries made, overtaking kerosene (Murty, 2020), 

to meet the unstoppable increase of its demand due to the growing use of cars, transformed the 

commodities trading business. The Seven Sisters appeared in the 40s. This seven large vertically-

integrated petroleum conglomerate, were capable of controlling every stages of the oil production, 

from extraction to refining, going through transportation and retailing, hence becoming the first oil 

cartel (Buchan and Errington, 2016). 

 

The 1973 Oil Crisis, caused by the embargo by the Arab countries to western nations due to the 

Yom Kippur war, terminated with this model of vertical integration. This allowed a new model of 

free competence between private companies that traded with commodities to appear. These new 

independent companies, like March Rich & Co. transform commodities in space through logistical 

systems, in time through warehousing and in form through processing by the making of blends 
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(Pirrong, 2013). Many companies involved in commodity trading ceased therefore to be present in 

all the parts of the process and focused solely in arbitrating in commodity markets. 

 

Since 1981, with the financialization of futures markets after the creation of the first futures contract 

for oil by the New York Mercantile Exchange (NYMEX), like the ones that already existed for 

copper or corn, and large investment banks opening dedicated commodities trading desks (Blas and 

Farchy, 2021), commodity trading reshaped to look like today. Commodity trading is now 

decentralised, dominated by companies that reach both physical and financial markets, for either 

hedging their exposure in the physical world as well as for speculating. These companies have 

developed sophisticated financial structures for their operations, reaching in some cases to acquire 

a meaningful importance in the economy, even to be considered as systemic -too big to fail- 

(Jacques and Simondet, 2016). 

1.1. Copper and its trading 

Copper is a key element for the current transformations in energy and technology. It is the best non-

precious metal conductor, which makes it a key component of electrical wires, generators, motors, 

transformers and renewable energy production systems. Additionally, copper and copper brass are 

key components for construction materials and industrial machinery and equipment, thanks to its 

resistance to corrosion, its durability, as well as its machinability and ability to be cast. 

 

Also, copper plays a major role in transportation uses, being critical in the electrification of fossil-

fuel-based transportation means, being intensively used an in Electrical Vehicles (EV). Indeed, a 

conventional car contains 23 Kg of copper on average, whereas a Hybrid Electric Vehicle (HEV) 

has almost twice as much on average, while a Plug-in Hybrid Electric Vehicle (PHEV) contains 

about 60 Kg (International Copper Study Group, 2022). 
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In 2021, the use of refined copper in the world reached its historical peak with 25.3 million tons 

consumed globally. Having achieved an annualized consumption increase rate of 3.3% since 1990. 

Meanwhile, the total used of copper in the world, also accounted for recycling, approached 32.5 

million tons (International Copper Study Group, 2022). 

1.1.1. Copper production 

The world’s copper production is essentially achieved through alternative processes which depend 

on the chemical and physical characteristics of the copper ores extracted. According to the USGS’ 

2017 Mineral Commodity Summary on Copper (U.S. Geological Survey, 2017), global identified 

copper resources contained 2.1 billion tons of copper as of 2014, of which about 80% are mainly 

copper sulphides, whose copper content has to be extracted through pyrometallurgical processes 

(Schlesinger and Davenport, 2011). 

 

The main source of copper, despite the growing importance of scrap recycling, is still primary 

copper, which is obtained by the extraction and processing of copper ores. According to the U.S. 

Geological Survey (2023) the world’s primary copper production reached 21.2 million tons in 2021, 

of which 3.9 million were only obtained through the Solvent Extraction/Electro-Winning (SX/EW) 

process, whereas the rest were achieved by smelting and refining of concentrates of different grades 

(International Copper Study Group, 2022). 

 

The majority presence in the earth’s crust of  sulphide deposits, having low copper grades between 

0.5% - 2.0%, (Schlesinger and Davenport, 2011) makes concentrates the only technically and 

economically feasible mining product from most copper mines. Copper concentrates are thus the 

main products offered by copper mines, representing 80% of the origin of all cathodic copper 

obtained to be used with industrial applications (Norgate and Jahanshahi, 2010). Concentrates are 

produced from copper sulphide ores, occurring naturally in different kinds of deposits, being 
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porphyry deposits the most relevant ones. According to the USGS’ 2015 Assessment of 

Undiscovered Copper Resources of the World (Hammarstrom et al., 2019) porphyry deposits 

represented 1.8 billion tons of all identified copper resources, whereas undiscovered deposits of 

these kind alone are estimated to contain 3.1 billion tons of copper. 

 

Ore grade differs depending on the deposit class, which for the case of porphyry deposits oscillates 

between 0.3% and 2.0% of copper, with the top 25 mines by Cu content having a mean grade of 

0.49% (Mudd et al., 2013). These copper deposits may also contain some other valuable elements, 

such as gold or silver with variable gradings, as is the case of the Indonesian mine Grasberg with an 

average gold grade in the ore mined during 2018 of 1.58 g/t, as well as having reached an average 

copper grade at the mill of 0.98% (Freeport-McMoRan, 2018). 

 

Other relevant, though fewer, common classes of deposits, such as sediment-hosted copper 

deposits, which account for 0.31 billion tons of global total identified resources and 0.42 billion tons 

of undiscovered world resources, are likely to contain significant amounts of additional by-products, 

for example cobalt or silver, as well as higher average copper grades (Hammarstrom et al., 2019), 

such as the Katanga mine in D.R.C. with an average Cu grade of 3.49% and an average cobalt grade 

of 0.46% in 2018 (Katanga Mining Limited, 2018), and KGHM Polska Miedź’s Polish mines 

whose ores graded on average 1.49% of copper and 48.6 g/t of silver throughout 2018 (KGHM 

Polska Miedz, 2018). 

1.1.2. Copper concentrates 

Except for oxidized ores, which are mainly treated through a hydrometallurgical process, ores 

undergo an enrichment process known as froth flotation to achieve concentrates. Through flotation, 

grades are significantly increased while the tonnage of the concentrate outflow is much less than the 

tonnage of the ore inflow current. Most of the copper content in the ore, as well as the by-products, 
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pass into the concentrate with minimum losses of valuable elements being removed to the tail 

outflow current (Figure 1). 

 

Figure 1. Cu ores flotation flowsheet. 

 Source: Schlesinger and Davenport (2011) 

 

Copper sulphide ores must undergo froth-flotation to obtain concentrates containing around 30% 

of copper, as the average grades of ores mined globally range from 0.5% - 2% Cu which makes 

direct smelting unfeasible for economic and technical reasons (Glöser et al., 2013; International 

Copper Study Group, 2017). 

 

Concentrates are latter further treated at smelting plants through pyrometallurgical processes 

(Figure 2) to achieve copper anodes, containing 99.5% of Cu. Copper is eventually refined 

electrochemically to achieve copper cathodes with 99.9% Cu (The London Metal Exchange, 2019). 
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In addition, gold, silver and other impurities in the concentrates are recovered from the anode slimes, 

produced at the electrorefining stage, using multiple techniques. The grade of these slimes is a direct 

reflection of the levels of these elements in the concentrate at the beginning of the smelting process 

(Schlesinger and Davenport, 2011). 

 

Figure 2. Industrial processing of copper sulphides ore to obtain copper cathodes. 

Source: Schlesinger and Davenport (2011) 

1.1.3. Copper trading 

The relevance of copper trading is undeniable. In 2020 copper ores and concentrates trade globally 

reached 61.8 b $USD, being China the main importer and Chile the leading exporter followed by 

Peru (OEC, 2023). In 2016 exports of copper ores, concentrates, copper matte and cement copper 

increased by 1.5%, reaching 47.3 b $USD, while imports attained 43.9 b $USD (United Nations, 

2016). In addition, the global mining capacity is expected to rise by 10% from the 23.5 million 
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tonnes recorded in 2016 to 25.9 million tonnes in 2020, with smelter production having reached the 

record figure of 19.0 million tonnes in 2016 (International Copper Study Group, 2017). 

 

Copper cathodes are regarded as the pure form of copper and are traded as the underlying asset of 

futures contracts at major physical future exchanges such as the London Metal Exchange (LME) or 

the New York Mercantile Exchange (COMEX). The price of copper on these exchanges is a 

reflection of the actual supply and demand of physical copper (Sánchez Lasheras et al., 2015), and 

is taken as the core reference for pricing all copper products. 

 

Copper concentrates are usually sold directly by the mining companies that produce them to 

smelters and refiners that process them to obtain cathodic copper, frequently under the framework 

of long-term supply agreements. The absence of a reference market for concentrates generates that 

both producers and processors, as well as independent traders, agree on complex price fixing 

mechanisms, which are generally of exclusive application to each specific agreement. These 

mechanisms tend to be kept confidentially, as they are regarded as highly sensitive for the parties 

involved in concentrates trading. Nonetheless, they have broad repercussions in the financial aspects 

of such a relevant trade at a global scale.  

 

Products that are less refined than copper cathodes, such as mattes or concentrates, are priced at a 

discount on the exchange price, while products requiring further processing than cathodes, such as 

copper wires or rods, are sold at the exchange reference price plus a premium. Discounts and 

premiums on the exchange reference prices are usually decomposed into a series of factors 

corresponding to the specifications of the products being traded. Discounts associated with 

concentrates widely vary in function of the content of the payable elements - copper, gold and silver 

- the excess of punishable elements, such as arsenic or bismuth, as well as the current availability of 
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smelters demanding concentrates with those specifications, and the global supply and demand 

levels of copper, among other causes. 

1.2. Objectives 

As previously mentioned, one of the main problems identified is the lack of a reference market for 

copper concentrates, unlike there is for cathodic copper or for other industrial or precious metals, as 

well as for other commodities. The absence of a specific reference market adds an additional layer 

of complexity to copper concentrate trading, as the market price for copper is not the only factor 

that affects the price of concentrates despite being the main one. Reference markets for commodities 

are of key importance. Apart from the ability of price discovery, market participants have also the 

possibility of using financial instruments to mitigate, transfer and, essentially, hedge, their risks 

related to commodities’ high volatility. 

 

Much previous research has primarily focused on possible modelling alternatives for reference 

commodity prices, such as Brennan and Schwartz (1985), Liu et al. (2017) and Dehghani and 

Bogdanovic (2018), who explore different alternatives to forecast copper prices at major 

commodity exchanges. Others, have modelled the exchanges’ reference prices of some 

commodities to conduct applied studies, for instance Zhang et al. (2015), who employ the LBMA 

price of gold for the valuation of a mining project, and Guj and Chandra (2019), who model the 

LME copper price to apply to the real option valuation of a copper mine.  

 

In addition, previous research have instead dodged the problem of copper concentrates pricing, 

focusing on cathodic copper price modelling. This has been applied to multiple projects that may 

be affected to a certain extent by copper price variations at some major metal futures exchange, such 

as the London Metal Exchange (LME). This simplification of reality, either referred to the mining 



 
 

19 
 

business or the smelter side of the process, along with trading itself, falls short of what market 

participant come across on a daily basis when dealing with copper concentrates. 

 

Therefore, we have set the main objective of this research to develop a model for copper concentrate 

benchmark prices, so we can set an useful reference for market participant to value their 

concentrates, as well as to be able to forecast potential price trends on copper concentrates. Through 

the analysis of available data, as well as the existent literature, this research aims to achieve a better 

understanding on the mechanisms for copper concentrates price setting, as well as on the 

agreements reached between traders, miners and smelters, along with the corporate finances of 

commodity traders. 

 

On the other hand, there are also multiple examples in the literature on the finances of mining 

companies and on the valuation of mining projects, as well as the assessment of the economic 

aspects of mining investments considering the uncertainty involved. However, regarding to mineral 

commodities trading, specifically when treated as a standalone element, separated to the mining or 

smelting activities, little has been researched so far. Hence, aiming to improve our understanding of 

mineral commodities trading, we have set the second objective of this research the financial 

assessment of a copper concentrates trader through Real Options, as a case of analysis of mineral 

commodities trading. Treating the activity of trading in an isolated and independent way from the 

extractive and processing stages. 

 

Additionally, this research pursues to provide practical, usable tools, that may be of application by 

market participants in their regular operations. Emphasizing on improving the current process of 

copper concentrate price setting, as well as developing price forecasting models, which may be 
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especially beneficial for a better financial planning of any company that trades, process or produce 

copper concentrates. 

1.3. Structure 

Following the introduction there is a chapter dedicated to the theoretical foundations in which we 

review the most recent advances on commodities pricing and trading, setting the theoretical 

framework for the development of our research. In this chapter, the methodology we have employed 

to develop the copper concentrates benchmark prices model is briefly explained, as well as the Real 

Options methodology and variables which we have resorted to for the valuation of the copper 

concentrates trader. 

 

Additionally, the different concentrates’ layouts that have been used to test the benchmark price 

model forecasting ability are also described. These concentrates have been chosen as they depict 

both regular trading operations, as well as most complex ones. Also, in this chapter we have set the 

parameters, such as the main error measures we have used, needed to develop our research and 

perform further testing of the models’ forecasting capacity, as well as to carry out the Real Options 

analysis. 

 

Chapter 3 is committed to find an accurate model that allows us to forecast copper TC/RC 

benchmark levels. The model should deliver reliable forecasts, while at the same time may be of 

practical application by industry participants and of easy integration in a latter, larger-scale copper 

concentrates benchmark prices model. 

 

To find the best solution, we have compared five measures of error of different forecasts for copper 

TC/RC annual benchmark levels obtained using well-known models in literature: Geometric 
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Brownian Motion (GBM), Mean-Reverting Orstein Uhlenbeck Process (OUP) and Linear 

Exponential Smoothing (LES). 

 

Three forecasting horizons were set, one, two and three years ahead, in order to compare the 

different models short- and longer-term forecasting capabilities. To carry out the different 

simulations, as well as the different models’ calibration process, we have employed an historical 

dataset of copper TC/RC benchmark levels from 2004 to 2017.  

 

The copper concentrates benchmark prices model is mathematically described in Chapter 4, where 

we have also performed a series of simulations to check its forecasting capacity. The model delivers 

short-term (up to one year ahead) price estimations for copper concentrates basing on independent 

forecast for metal prices (copper, gold and silver), as well as resorting to forecasts of main discounts 

(copper TC/RC and gold and silver RC), along with other relevant factors. 

 

Both historical future contracts and spot price data have been used for copper, gold and silver from 

2004 to 2018 to perform the Monte Carlo simulations to obtain concentrate prices forecasts. The 

results achieved in Chapter 3 on TC/RC benchmark levels have been integrated in this model to 

give full coherence to our research. The five concentrates described in Chapter 2 have been used to 

test the model’s accuracy, while also employing the Mean Average Percentage Error (MAPE) as 

main indicator of precision. 

 

Chapter 5, entitled ‘Managing a High Uncertainty Scenario Through a Real Option Assessment: 

Evidence from a Copper Concentrate Trader’ is dedicated to the analysis of the copper concentrates 

trading business through the use of the Real Options methodology. Real Options allow to assess the 

uncertainties associated to the high volatility that concentrate prices experience, while also allowing 
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to take advantage of potentially beneficial opportunities on the trading business development that 

may arise over time. 

 

The trading company valuation is carried out by projecting ahead for a total of five years its market 

strategy, as well as its balance sheet and profits and losses statements. The concentrate benchmark 

price model developed in Chapter 4 is used here to obtain numerical results of the expected value 

of the trading company, which clearly depends of future concentrate price. Simulations have been 

carried out in a simplified version of the methodology proposed in Chapter 4, opting form an 

statistical approach for metal pricing, using the distributions of daily metal prices returns, instead of 

the Kalman-Filter technique which requires also futures contracts data and which increases the 

simulation complexity meaningfully. 

 

To validate the proposed methodology, a single layout of concentrate has been assumed while 

expansion and abandonment criteria for the trader operations have been set as a function of potential 

profitability increases or declines as copper concentrate prices vary over time. The Real Options 

methodology, modelled with Monte Carlo simulations, have proven an useful and applicable tool 

for trading operations as well, like they had already been tested for mining operations in multiple 

previous research. 

 

Finally, conclusions, limitations and future research are explained in Chapter 6. The results of our 

research indicate that the copper concentrate benchmark price model is sufficiently accurate for 

short-term price forecasts, delivering reliable estimations of copper concentrates prices for up to one 

year ahead. Additionally, the Linear Exponential Smoothing model is capable of providing a single 

forecast for TC/RC benchmark levels that may give market participants a proper indication of the 
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potential market evolution based on preceding trends, while also being suitable to be included in the 

copper concentrates benchmark price model. 

 

When applied to a real-life case, both the models and the Real Options methodology has 

applications of interest for the market participant to help them optimize their trading operations as 

well as to advert or prevent potentially loss-generating situation as a consequence of future market 

downturns. 

 

On the other hand, the lack of publicly available data on commodity traders’ financials, as well as 

on actual copper concentrates transactions, with precise details on prices and terms, presents the 

main limitation of our research, as well as the main future line of research of interest should further 

data be available. 
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Chapter 2: Theoretical Foundations 

2.1. Theoretical framework 

There is also an abundance of references in literature regarding flows of primary and secondary 

copper (Glöser et al., 2013; Jaunky, 2013; Mudd et al., 2013; Chen et al., 2016), which mainly 

focuses on analysing and quantifying where the copper used in human activities comes from, what 

it used for and what its transformations take place from an aggregated perspective. Many others 

focus their efforts in modelling and forecasting the price of copper and of copper future contracts 

using different methods (Kriechbaumer et al., 2014; Buncic and Moretto, 2015; Wets and Rios, 

2015; Sverdrup, 2016; Liu et al., 2017; Dehghani and Bogdanovic, 2018; Guzmán and Silva, 2018).  

 

It is also frequent to find examples in the literature where cathodic copper is taken as what mines 

produce, leaving out copper concentrates themselves due to their complexity to analyze them, or 

simply taking into consideration the copper content within the concentrates to simplify.  Thus, 

works like Guj and Chandra (2019) use a forecast of cathodic copper prices at the London Metal 

Exchange (LME) and get rid of the complicated process of pricing concentrates through the 

assumption of a Net Smelter Value (NSV), as a percentage to apply to the value of copper in the 

concentrates sold by a certain mine. 

 

Although these kinds of approaches might be valid, even desirable in certain context to specifically 

aimed towards a practical application, we must highlight that the reality, either regarding to mining 

operations, or just trading agreements, is notably different. Most mines produce concentrates 

containing form 20% to 40% of copper (Delbeke and Rodriguez, 2014), being its price linked to 

that of copper in international markets, but also to other important circumstances, as well as 

experiencing significant differences between mines or concentrates layouts, among other factors. 
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Thus, if precision is desired, one cannot assume homogenic prices for concentrates, whereas 

simplifications make no sense. The complex task of pricing copper concentrates implies considering 

both their content and the prices at reference metal markets of those metals that give value to the 

concentrates, such as copper, gold and silver. Also, it becomes necessary to reflect the remaining 

factors that, at least in an indirect way, have an impact on the price that concentrates are sold, such 

as the levels of concentrates supply/demand globally, or the processing capacity of the world’s 

copper smelters at a given time. 

 

The most common price setting method for copper concentrates prices using copper Treatment 

Charges/Refining Charges (TC/RC), along with other discounts and penalties, has scarcely been 

analysed in the literature, despite its importance for copper concentrate trading. Furthermore, 

TC/RC setting has not been analysed in depth, even though they represent the largest part of copper 

smelters’ revenue. Being their levels a factor of major concern for not only smelters, but also copper 

mines and traders around the world. 

 

To find an adequate forecasting model for copper TC/RC benchmark levels, in this research we 

have treated the historical available TC/RC benchmark data as a price timeseries, resorting to the 

available models for commodity price modelling of which there are abundance in the literature. 

In this sense Xiong et al. (2015), compares various forecasting models after applying them to 

agricultural commodities, or Zhang et al. (2015) that employs a mean-reverting model for the price 

of gold, specifically applied to the valuation of a mining project, just like Brennan and Schwartz 

(1985) do for an unidentified commodity in their well-known work.  

 

Finally, despite the great importance of trading activities within commodity markets, there is also a 

remarkable lack of systematic research in literature regarding this crucial aspect for commodities. 
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By the contrary, when the financial aspects of commodities are related to the productive or 

transforming stages, as well as with the extractive phases, literature becomes prolific (Saramak, 

2011; Jovanović and Stanimirović, 2012; Jovanović et al., 2013; Boulamanti and Moya, 2016). 

 

Additionally, the copper mining is also the research topic of many works, where not only the 

technical aspects are analysed, but also those closer to the financial optimization of copper mining 

operations, putting special attention to the uncertainties related to the variability of metals prices 

over time. Works like Dehglani et al. (2014) approach the problem from the Net Present Value 

(NPV) point of view of a mining project applying different techniques to forecast the price of copper 

along the proposed time horizon. 

 

On the other hand, since Brennan & Schwartz (1985) first employed Real Options to value mining 

assets, this has become one of the main approaches, if not the main one, to perform the valuation of 

mining projects. Real Options share a similar view with financial options when valuing tangible 

assets under. They allow the conversion of uncertainty related to a mining project to management 

alternative based on probable situations. 

 

As summarized by Savolainen (2016) in its extensive historical review, many recent works used 

Real Options to value metallic mining projects with different approaches when taking into 

consideration those factors considered to be generators of uncertainty, such as price fluctuations or 

exchange rates. Hence, works like Botín et al. (2012) pursues to find the optimal design for a copper 

mine while trying to maximize the NPV of the project using Real Options to account for the effect 

that horizontal dilution has on the deposit. 
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Another series of works have instead used Real Options to examine the complex process of mine 

design, considering the significant variation that the profitability of the project is prone to experience 

as the price of metals move. In Thompson and Bar (2014) Real Options has been used as a tool to 

determine the optimal cut-off grade to set the mine planning of an open-pit mine, while assuming 

the stochastic behaviour of the prices of any mineral. 

 

Equally, Asad (2007) resorts to Real Options as a tool to develop a decision policy for the active 

design of a copper open-pit mine, looking to maximize its NPV, while simultaneously considering 

the dynamic evolution of prices as well as an increase of costs throughout all its lifetime. 

 

It becomes evident that in high uncertainty environments, particularly in those related to extractive 

industries like mining, the valuation of investment projects is a complex challenge. In the first place, 

widely applied traditional methos like Discounted Cash Flows (DCF) have important deficiencies 

as they require a high level of concretion of future scenarios. This, due to the nature of certain types 

of investments, either requires making too many assumptions or simply unfeasible. As can be seen 

in Samis et al. (2005), Real Options offer clear advantages when the uncertainty of an investment 

is high, provided their ability to treat with flexibility natural resource assets, being capable of 

reflecting the uncertainty of future cash flows in an efficient way. 

 

The advantages that the Real Options method show when valuing mining projects, and especially 

when tackling the variability of metal prices and deposit uncertainties are also explained in Abdel 

Sabour et al. (2008), which compares the Real Option method to traditional discounted cash flow 

methods by making a comparative ranking of twelve possible designs of an open-pit copper mine 

and a gold mine. The results of this analysis show that mine designs chosen following the Real 

Option methodology outperforms those obtained using the other methodology. 
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2.2. Copper concentrates prices 

Market participants lack a market-wide accepted reference for copper concentrates pricing. The 

only possible reference available is the exchanges’ price for cathodic copper for both current and 

future expected prices, as well as certain information on part of the discounts agreed by the largest 

miners and smelters at the LME Week. This is usually provided by some accredited specialized 

consultant, such as Platts or Wood Mackenzie. 

 

Copper concentrates supply agreements set specific mechanisms to price the copper concentrates 

to be traded according to their chemical specifications. Usually, most pricing systems establish the 

price of copper concentrates as the sum of the payable elements present in the concentrates minus 

the deductions and the penalties (Soderstrom, 2008; Seabridge Gold, 2010; Teck, 2012, 2015). 

 

In this research we have followed the same logic to model copper concentrate prices, treating 

payable elements separately from discounts and punishable elements. Thus, determining the price 

of concentrates as the sum of the amount paid for all payable elements, which is the amount paid 

for the copper, gold and silver content in the concentrate, M, minus the sum of deductions applied 

by smelters and refiners, D, along with the sum of penalties, P, due to the presence of impurities and 

punishable elements that worsen the final properties of cathodic copper or make the concentrates 

harder to process.  

𝐶𝐶 = 𝑀𝑀−𝐷𝐷 − 𝑃𝑃 

2.2.1. Payable metal terms 

Contract terms for payable metals may vary depending on the market conditions as well as on the 

layout of the concentrates. Table 1 shows typical recovery factors and minimum deductions for 

copper and silver, which have also been used in this research. 
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Table 1  
Recovery factors (r) and minimum deductions (MD) for copper and silver. 

 r MD 
Cu 96.5% 1.0% 
Ag 90.0% 30 g/dmt 
Source: Own elaboration. Based on Teck (2015), Ghaffari et al. (2016) and OECD et 
al. (2017). 

 

In addition, recovery factors and minimum deductions for gold are shown in Table 2. Unlike copper 

and silver, payable gold usually increases as its grade rises in concentrates. 

 

Table 2  
Recovery factors (r) and minimum deductions (MD) for gold. 

𝑔𝑔 (g/dmt) r MD (g/dmt) 
< 1 00.00% 1 

1 – 3 90.00% 1 
3 – 5 93.00% 1 
5 – 7 95.00% 1 
7 – 10 96.50% 1 
10 – 20 97.00% 1 
20 – 30 97.50% 1 

> 30 97.75% 1 
Source: Own elaboration. Based on Teck (2015), Ghaffari et al. (2016) and OECD et 

al. (2017). 
 

2.2.2. Discounts 

The main discounts involved in copper concentrates price determination are copper Treatment 

Charges and Refining Charges, most commonly known as TC/RC, along with gold and silver 

Refining Charges. These discounts comprise the bulk of deductions in most copper concentrate sale 

agreement. 

 

TC/RC levels for copper concentrates continuously vary throughout the year, relying on private and 

individual agreements between miners, traders and smelters worldwide. Nonetheless, the TC/RC 
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benchmark fixed during the LME week each October is used by market participants as the main 

reference to set actual TC/RC levels for each supply agreed upon for the following year. Hence, the 

year’s benchmark TC/RC is taken here as a good indicator of a year’s TC/RC average levels. 

 

Analysed time series of benchmark TC/RC span from 2004 through to 2018, as shown in Table 3, 

as well as the source each value was obtained from. We have not intended to reflect the continuous 

variation of TC/RC for the course of any given year, though we have however considered 

benchmark prices alone as we intuitively assume that annual variations of actual TC/RC in contracts 

will eventually be reflected in the benchmark level that is set at the end of the year for the year to 

come.  

 

Historical TC/RC benchmark levels in Table 3 have been used as the in-sample dataset for one-

step ahead forecasts in Díaz-Borrego et al. (2019), which seeks the most suitable forecasting model 

for copper TC/RC benchmark levels among frequently-used options for commodity prices. 

 

Copper TC and RC normally maintain a 10:1 relation with different units, with TC being expressed 

in US dollars per metric tonne and RC in US cents per pound of payable copper content in 

concentrates. In fact, historical benchmark data shows that only in 2010 those values of TC and RC 

did not conform to this relation, though it did remain close to it (46.5/4.7).  
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Table 3  
Copper TC/RC benchmark levels. 
 TC (USD/dmt) RC (USc/lb) 
2004 45 4.5 
2005 85 8.5 
2006 95 9.5 
2007 60 6.0 
2008 45 4.5 
2009 75 7.5 
2010 46.5 4.7 
2011 56 5.6 
2012 63.5 6.35 
2013 70 7.0 
2014 92 9.2 
2015 107 10.7 
2016 97.35 9.735 
2017 92.50 9.25 
2018 82.25 8.225 
Note: Data available free of charge. Source: Johansson (2007), Svante 
(2011), Teck (2012), Willbrandt and Faust (2013, 2014), Aurubis AG 
(2015), Drouven and Faust (2015), Shaw (2015), Aurubis AG (2016), 
EY (2017), Schachler (2017), Nakazato (2017). 

 

On the other hand, gold and silver RC have been assumed to remain constant, since  smelters tend 

to apply around 6.00 to 8.00 USD per troy ounce of payable gold content and 0.40 to 0.50 USD per 

troy ounce of payable silver content (Seabridge Gold, 2010; Teck, 2012, 2015; Ghaffari et al., 2016). 

Gold and silver RC may be seen in Table 4. 

 

Table 4  
Gold and silver refining charges values applied. 

 RC (USD/troz) 
Au 7.50 
Ag 0.45 
Source: Own elaboration. Based on Seabridge 
Gold (2010), Teck (2012), Teck (2015) and 
Ghaffari et al. (2016). 
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2.2.3. Penalty terms 

Punishable elements are generally undesired in concentrates since some of them may hinder the 

concentrate smelting and refining process, such as Chlorine, which may condense as hydrochloric 

acid and cause corrosion problems. Others may seriously deteriorate the cathode’s chemical, 

mechanical, thermal or electrical properties, such as Arsenic or Antimony which reduce copper 

conductivity, or could even represent an important hazard for human health and the environment if 

they are not properly managed or mitigated, such as Cadmium, that is a well-known carcinogen, or 

Lead, which is highly contaminating as well as toxic to humans (Organisation for Economic Co-

operation and Development et al., 2017). 

 

Normally, each country custom’s authority sets the maximum allowance of the most toxic elements 

in imported concentrates See Announcement No. 106 of 2017 (AQSIQ, 2017). Nonetheless, 

smelters tend to have stricter requirements than authorities, depending on their ability to process 

these elements, considerably reducing the market for most so-called ‘complex’ concentrates, which 

sometimes are only accepted by traders for blending purposes with cleaner concentrates. Penalties 

applied to concentrates have also assumed to remain at constant levels for each element based on 

limits and unitary penalties outlined on reports by Ghaffari et al. (2016) and the OECD (2017). 

These penalties have hardly changed in recent years, as may be seen if current levels are compared 

with older reports, such as Ghaffari el al.’s (2016) and Seabridge Gold’s (2010), which both assess 

the feasibility of the same mining project. Yet a certain downward pressure on the most 

environmentally harmful elements’ limits is observable as well as a slight increase in some of the 

unitary penalties imposed. The parameters employed to determine penalties due to the excess of 

punishable elements may be seen in Table 5. 
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Table 5  
Penalty parameters for punishable elements. 
 F h 𝛿𝛿 (USD) 
Arsenic (As) 0.10% 0.10% 3.00 
Antimony (Sb) 0.10% 0.10% 3.50 
Bismuth (Bi) 0.03% 0.01% 4.00 
Cadmium (Cd) 10 ppm 10 ppm 3.00 
Chlorine (Cl) 300 ppm 100 ppm 2.00 
Fluorine (F) 300 ppm 100 ppm 1.50 
Lead (Pb) 0.50% 1.00% 2.50 
Mercury (Hg) 10 ppm 10 ppm 2.00 
Nickel (Ni) + Cobalt (Co) 0.50% 0.10% 1.00 
Selenium (Se) 0.05% 0.01% 4.00 
Tellurium (Te) 0.03% 0.01% 4.50 
Zinc (Zn) 2.00% 1.00% 2.50 
Source: Own elaboration. Based on Seabridge (2010), Ghaffari (2016), OECD (2017). 

2.3. Concentrates layout 

According to the statistical assessment made by Delbeke and Rodriguez (2014), 50% of world-

wide copper concentrates grade less than 26.67% of copper, while 30% of the world’s production 

grades more than 28.452% Cu. Also, according to the statistical distribution of punishable elements, 

70% of world’s copper concentrates can be regarded as clean. 

 

On the other hand, less than 10% of all concentrates produced worldwide grade over 34% Cu, 

generally with significant levels of some impurities such as lead or arsenic, which qualifies them as 

complex concentrates. By the contrary, high values of precious metals are rare in concentrates, 

though may be frequent to some extent in those produced by some mines, such as CODELCO’s 

Chuquicamata (CODELCO, 2018).  

 

For the purpose of this research, we have selected five sample concentrates that may be 

representative of the full scope of possibilities according to the statistical distribution exposed by 

Delbeke and Rodriguez (2014). Hence being able to analyze both regular, good quality 

concentrates, as well as dirty concentrates, with too high levels of impurities, or precious 
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concentrates with meaningful levels of either gold or silver. The layouts of the five concentrates 

considered in this study are shown in Tables 6 and 7. 

Table 6  
Concentrates analysed layout. Payable elements. 

 Cu Au Ag 
C1 26.62% 0.7 g/dmt 18.4 g/dmt 
C2 28.10% 38.1 g/dmt 51.6 g/dmt 
C3 27.60% 25.7 g/dmt 187.0 g/dmt 
C4 28.33% 6.7 g/dmt 81.4 g/dmt 
C5 36.71% 2.4 g/dmt 48.3 g/dmt 

Source: Own elaboration. Based on Delbeke and 
Rodriguez (2014) for penalty levels. 
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Table 7  
Concentrates analysed layout. Punishable elements. 

 As Sb Bi Cd Cl F Pb Hg Ni Co Se Te Zn 
C1 0.002% 0.002% 0.003% 50ppm 49ppm 210ppm 0.04% 0ppm 0.004% 0.009% 0.002% 0.001% 0.22% 

              
C2 0.110% 0.010% 0.004% 40ppm 105ppm 128ppm 0.14% 6ppm 0.002% 0.005% 0.004% 0.001% 0.62% 

              
C3 0.272% 0.042% 0.033% 28ppm 332ppm 258ppm 1.47% 1ppm 0.010% 0.024% 0.035% 0.021% 1.87% 

              
C4 0.62% 0.21% 0.051% 73ppm 44ppm 105ppm 3.05% 4ppm 0.000% 0.003% 0.021% 0.005% 3.12% 

              
C5 0.48% 0.32% 0.066% 41ppm 512ppm 405ppm 2.91% 0ppm 0.000% 0.008% 0.012% 0.040% 4.75% 

Source: Own elaboration. Based on Delbeke and Rodriguez (2014) for penalty levels. 
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2.4. Copper concentrates price modelling 

The fundamental problem underlaying beneath the surface of our research is the lack of reference 

for copper concentrates prices which market participants can rely to. Thus, the cornerstone of our 

research is indeed the development of a copper concentrates price model which can be easily used 

as a benchmark tool, that can be implemented to value any copper concentrate, while also capable 

of providing reliable forecasts for prices. 

 

Throughout this research we have employed different approaches to obtain numerical results out of 

the copper concentrates pricing model, depending on whether the forecasting accuracy of the model 

was to be tested or if, on the other hand, we were to perform a practical valuation of a trader’s copper 

concentrates business. The simulating workload was thus adjusted in order to focus in each specific 

objective’s need at each time. 

 

Thus, at time t, the price of the ton of concentrate can be expressed as: 

𝐶𝐶𝑡𝑡 = 𝑀𝑀𝑡𝑡 − 𝐷𝐷𝑡𝑡 − 𝑃𝑃𝑡𝑡 

Though copper concentrates may contain multiple payable elements apart from copper, should 

there be some gold and silver are the most common. Metals in concentrates are paid at market price, 

though the full content is not usually paid, as smelters are normally not capable of recovering all the 

content. Hence, the price of payable metals in the concentrates is calculated as the payable content 

(pp) multiplied by its market price at time t (𝑆𝑆𝑡𝑡). 

𝑀𝑀𝑡𝑡 = 𝐶𝐶𝐶𝐶𝑡𝑡 + 𝐴𝐴𝐶𝐶𝑡𝑡 + 𝐴𝐴𝑔𝑔𝑡𝑡 

𝐶𝐶𝐶𝐶𝑡𝑡 = 𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶 × 𝑆𝑆𝑡𝑡𝐶𝐶𝐶𝐶 

𝐴𝐴𝐶𝐶𝑡𝑡 = 𝑝𝑝𝑝𝑝𝐴𝐴𝐶𝐶 × 𝑆𝑆𝑡𝑡𝐴𝐴𝐶𝐶 

𝐴𝐴𝑔𝑔𝑡𝑡 = 𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴 × 𝑆𝑆𝑡𝑡
𝐴𝐴𝐴𝐴 
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Additionally, the payable copper content in concentrates is also dependent on the metal grade (𝑔𝑔), 

multiplied by a recovery factor (𝑟𝑟), subject to a minimum deduction (MD).  

𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶 = �
𝑔𝑔𝐶𝐶𝐶𝐶 − 𝑀𝑀𝐷𝐷𝐶𝐶𝐶𝐶, 𝑔𝑔𝐶𝐶𝐶𝐶 −𝑀𝑀𝐷𝐷𝐶𝐶𝐶𝐶 < 𝑔𝑔𝐶𝐶𝐶𝐶 × 𝑟𝑟𝐶𝐶𝐶𝐶
𝑔𝑔𝐶𝐶𝐶𝐶 × 𝑟𝑟𝐶𝐶𝐶𝐶, 𝑔𝑔𝑖𝑖 − 𝑀𝑀𝐷𝐷𝑖𝑖 ≥ 𝑔𝑔𝐶𝐶𝐶𝐶 × 𝑟𝑟𝐶𝐶𝐶𝐶

  ∀ 𝑔𝑔𝐶𝐶𝐶𝐶 ≥ 𝑀𝑀𝐷𝐷𝐶𝐶𝐶𝐶 

𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶 = 0  ∀  𝑔𝑔𝐶𝐶𝐶𝐶 < 𝑀𝑀𝐷𝐷𝐶𝐶𝐶𝐶 

On the other hand, precious metals in concentrates are paid only if their content is above the 

minimum deduction levels, otherwise they are priced at zero. The final payable content of precious 

metals is determined by multiplying the metal grade by a recovery factor.  

𝑝𝑝𝑝𝑝𝑖𝑖 = �
0    , 𝑔𝑔𝑖𝑖 ≤ 𝑀𝑀𝐷𝐷𝑖𝑖    

𝑔𝑔𝑖𝑖 × 𝑟𝑟𝑖𝑖 , 𝑔𝑔𝑖𝑖 > 𝑀𝑀𝐷𝐷𝑖𝑖  
 

𝑖𝑖 = 𝐴𝐴𝐶𝐶,𝐴𝐴𝑔𝑔 

In addition, Dt is the sum of deductions applied, including copper Treatment Charges (TC) and 

copper Refining Charges (RCu), as well as gold Refining Charges (RAu) and silver Refining Charges 

(RAg).  

𝐷𝐷𝑡𝑡 = 𝑇𝑇𝐶𝐶𝑡𝑡 + 𝑅𝑅𝑡𝑡𝐶𝐶𝐶𝐶 + 𝑅𝑅𝑡𝑡𝐴𝐴𝐶𝐶 + 𝑅𝑅𝑡𝑡
𝐴𝐴𝐴𝐴 

Discounts linked to copper concentrates pricing, of which copper TC/RC represent the largest share, 

are normally set in each concentrate supply contract agreement between the two parties of the 

contract. Copper TC are quoted in US Dollars per tonne of concentrate, usually expressed on a dry 

basis, while copper RC is quoted in US cents of dollars per pound of payable copper content. 

  

In addition, gold and silver RC are applicable as long as there is gold or silver payable content in the 

concentrate, gold RC being quoted in USD per troy ounce of payable gold content and silver RC in 

USD per gram of payable silver content.  

𝑅𝑅𝑡𝑡𝑖𝑖 = 𝑅𝑅𝐶𝐶𝑡𝑡𝑖𝑖 × 𝑝𝑝𝑝𝑝𝑖𝑖 

Finally, Pt is the overall penalty for an n number of punishable elements in the concentrate which 

negatively affect its quality as well as the chemical, mechanical and electrical properties of the 
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copper products made with that concentrate. These penalties are calculated as a function of the 

excessive content of the punishable element beyond the penalty-free limit, below which the 

concentrate would be exempt of penalty for that element. 

𝑃𝑃𝑡𝑡 = �𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖

 ∀ 𝑡𝑡 

𝑝𝑝𝑖𝑖 = �
0, 𝑔𝑔𝑖𝑖 < 𝐹𝐹𝑖𝑖

(𝑔𝑔𝑖𝑖 − 𝐹𝐹𝑖𝑖) × 𝜌𝜌𝑖𝑖 , 𝑔𝑔𝑖𝑖 ≥ 𝐹𝐹𝑖𝑖
 

Where 𝑔𝑔𝑖𝑖 is the content of the punishable element i, Fi is the penalty-free limit content for that 

element and 𝜌𝜌𝑖𝑖 is the penalty per unit of excessive content of the punishable element i beyond the 

penalty-free limit. The unitary penalty is set as the nominal penalty 𝛿𝛿𝑖𝑖, divided by the nominal 

punishable increment of element i, hi. 

𝜌𝜌𝑖𝑖 =
𝛿𝛿𝑖𝑖
ℎ𝑖𝑖

 ∀ 𝑖𝑖 
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Chapter 3: Looking for an accurate forecasting of Copper TC/RC 

Benchmark Levels 

3.1. Introduction 

There is a lack of research about the price at which mines sell copper concentrate to smelters, while 

numerous investigations have instead focused on forecasting copper prices. Smelters however 

obtain the copper they sell from the concentrate that most mines produce by processing the ore 

which they have extracted. It therefore becomes necessary to thoroughly analyse the price at which 

smelters buy the concentrates from the mines, besides the price at which they sell the copper. In 

practice, this cost is set by applying discounts to the price of cathodic copper, the most relevant being 

those corresponding to the smelters’ benefit margin (Treatment Charges-TC and Refining Charges-

RC). 

 

The valuation of copper concentrates is a recurrent task undertaken by miners or traders following 

processes in which market prices for copper and other valuable metals such as gold and silver are 

involved, as well as relevant discounts or coefficients that usually represent a major part of the 

revenue obtained for concentrate trading, smelting or refining. The main deductions are applied to 

the market value of the metal contained by concentrates such as Copper Treatment Charges (TC), 

Copper Refining Charges (RC), the Price Participation Clause (PP) and Penalties for Punishable 

Elements (Soderstrom, 2008). 

 

These are fixed by the different parties involved in a copper concentrate long-term or spot supply 

contract, where TC/RC are fixed when the concentrates are sold to a copper smelter/refinery. The 

sum of TC/RC is often viewed as the main source of revenue for copper smelters along with copper 

premiums linked to the selling of copper cathodes. Furthermore, TC/RC deductions pose a concern 
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for copper mines as well as a potential arbitrage opportunity for traders, whose strong financial 

capacity and in-depth knowledge of the market make them a major player (Crundwell, 2008, p. 

491).  

 

Due to their nature, TC/RC are discounts normally agreed upon taking a reference which is 

traditionally set on an annual basis at the negotiations conducted by the major market participants 

during LME Week every October and, more recently, during the Asia Copper Week each 

November, an event that is focused more on Chinese smelters. The TC/RC levels set at these events 

are usually taken as benchmarks for the negotiations of copper concentrate supply contracts 

throughout the following year. 

 

Thus, as the year goes on, TC/RC average levels move up and down depending on supply and 

demand, as well as on concentrate availability and smelters’ available capacity. Consultants, such 

as Platts, Wood Mackenzie and Metal Bulletin, regularly carry out their own market surveys to 

estimate the current TC/RC levels. Furthermore, Metal Bulletin has created the first TC/RC index 

for copper concentrates (“Metal Bulletin TC/RC Index,” 2017). 

3.2. The need for accurate forecasts of Copper TC/RC 

The information available for market participants may be regarded as sufficient to draw an accurate 

assumption of market sentiment about current TC/RC levels, but not enough to foresee potential 

market trends regarding these crucial discounts, far less as a reliable tool which may be ultimately 

applicable by market participants to their decision-making framework or their risk-management 

strategies. Hence, from an organisational standpoint, providing accurate forecasts of copper TC/RC 

benchmark levels, as well as an accurate mathematical model to render these forecasts, is a research 
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topic that we have explored in depth. This is a question with undeniable economic implications for 

traders, miners and smelters alike, due to the role of TC/RC in the copper trading revenue stream. 

  

As a first step, our research seeks to determine an appropriate forecasting technique for TC/RC 

benchmark levels for copper concentrates that meets the need of reliability and accuracy. To achieve 

these three different and frequently applied techniques have been preselected from among the 

options available in the literature. Then, their forecasting accuracy at different time horizons have 

been tested and compared. These techniques (Geometric Brownian Motion -GBM-; the Mean 

Reversion -MR- ;Linear Exponential Smoothing -LES-), have been chosen primarily because they 

are common in modelling commodities prices and their future expected behaviour, as well as in 

stock indices’ predictive works, among other practical applications (Pinheiro and Senna, 2016; 

Savolainen, 2016; Zhang et al., 2017; Hloušková et al., 2018). 

 

The selection of these models is further justified by the similarities shared by TC/RC with indices, 

interest rates or some economic variables that these models have already been applied to. Also in 

our view, the predictive ability of these models in commodity prices such as copper is a major asset 

to take them into consideration.  The models have been simulated using historical data of TC/RC 

annual benchmark levels from 2004 to 2017 agreed upon during the LME Copper Week. The 

dataset employed has been split into two parts, with two thirds as the in-sample dataset and one third 

as the out-of-sample one.  

 

With our study we aim to provide a useful and applicable tool to all parties involved in the copper 

trading business to forecast potential levels of critical discounts to be applied to the copper 

concentrates valuation process. To carry out our research, we have based ourselves on the following 

premises: 1) GBM would deliver good forecasts if copper TC/RC benchmark levels vary randomly 
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over the years, 2) a mean-reverting model, such as  the Ornstein-Uhlenbeck Process (OUP), would 

deliver the best forecasts if TC/RC levels were affected by market factors and consequently they 

move around a long-term trend, 3) a moving average model would give a better forecast than the 

other two models if there were a predominant factor related to precedent values affecting the futures 

ones of benchmark TC/RC. 

 

In addition, we have also studied the possibility that a combination of the models could deliver the 

most accurate forecast as the time horizon considered is increased, since there might thus be a 

limited effect of past values, or of sudden shocks, on future levels of benchmark TC/RC. So, after 

some time, TC/RC levels could be ‘normalised’ towards a long-term average. 

 

The remainder of this chapter is structured as follows: Section 3 revises the related work on 

commodity discounts forecasting and commodity prices forecasting techniques, as well as different 

forecasting methods; Section 4 presents the reasoning behind the choice of each of the models 

employed, as well as the historic datasets used to conduct the research and the methodology 

followed; Section 5 shows the results of the simulations of the different models, comparing the 

different error measures used to evaluate the best forecasting alternative for TC/RC benchmark 

levels amongst all those presented; Section 6 contains the conclusions of the chapter and discusses 

the results.  

3.3. Related Work 

The absence of any specific method in the specialised literature in relation to copper TC/RC leads 

us to revisit previous literature in order to determine the most appropriate model to employ for our 

purpose, considering those that have already been used in commodity price forecasting as the logical 

starting point due to the application similarities that they share with ours. 
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Commodity prices and their forecasting have been a topic intensively analysed in much research. 

Hence, there are multiple examples in literature with an application to one or several commodities, 

such as Xiong et al. (2015), where the accuracy of different models was tested to forecast the interval 

of agricultural commodity future prices; Shao and Dai (2018), whose work employs the 

Autoregressive Integrated Moving Average (ARIMA) methodology to forecast food crop prices 

such as wheat, rice and corn; and Heaney (2002), who tests the capacity of commodities future 

prices to forecast their cash price were the cost of carry to be included in considerations, using the 

LME Lead contract as an example research. 

 

Table 8 summarizes similar research in the field of commodity price behaviours.
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Table 8  
Summary of previous literature research 
AUTHOR RESEARCH 
Shafiee & Topal (2010) Validates a modified version of the long-term trend reverting jump and dip diffusion model for 

forecasting commodity prices and estimates the gold price for the next 10 years using historical monthly 
data. 

Li et al. (2012) Proposes an ARIMA-Markov Chain method to accurately forecast mineral commodity prices, testing the 
method using mineral molybdenum prices. 

Issler et al.(2014) Investigates several commodities’ co-movements, such as Aluminium, Copper, Lead, Nickel, Tin and 
Zinc, at different time frequencies, and uses a bias-corrected average forecast method proposed by Issler 
and Lima (Issler and Lima, 2009) to give combined forecasts of these metal commodities employing 
RMSE as a measure of forecasting accuracy. 

Hamid & Shabri (2017) Models palm oil prices using the Autoregressive Distributed Lag (ARDL) model and compares its 
forecasting accuracy with the benchmark model ARIMA. It uses an ARDL bound-testing approach to 
co-integration in order to analyse the relationship between the price of palm oil and its determinant 
factors. 

Duan et al. (2018) Predicts China’s crude oil consumption for 2015-2020 using the fractional-order FSIGM model. 

Brennan & Schwartz (1985) Employs the Geometric Brownian Motion (GBM) to analyse a mining project’s expected returns 
assuming it produces a single commodity. 

McDonald & Siegel (1986) Uses GBM to model the random evolution of the present value of an undefined asset in an investment 
decision model. 

Zhang et al. (2015) Models gold prices using the Ornstein-Uhlenbeck Process (OUP) to account for a potentially existent 
long-term trend in a Real Option Valuation of a mining project. 

Sharma (2016) Forecasts gold prices in India with the Box Jenkins ARIMA method. 
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From the summary above, it is seen that moving average methods have become increasingly 

popular in commodity price forecasting. The most broadly implemented moving average 

techniques are ARIMA and Exponential Smoothing. Both consider the entire time series data as 

well as do not assign the same weight to past values than those closer to the present as they are seen 

as affecting greater to future values. 

 

The Exponential Smoothing models’ predictive accuracy has been tested by Makridakis and Hibon 

(1979), concluding that there are small differences between them (Exponential Smoothing) and 

ARIMA models. Also, GBM and MR models have been intensively applied to commodity price 

forecasting. Nonetheless, MR models present a significant advantage over GBM models which 

allows them to consider the underlying price trend. 

 

This advantage is of particular interest for commodities that, according to Dixit and Pindyck (1994) 

– pp. 74, regarding the price of oil: “in the short run, it might fluctuate randomly up and down (in 

responses to wars or revolutions in oil producing countries, or in response to the strengthening or 

weakening of the OPEC cartel), in the longer run, it ought to be drawn back towards the marginal 

cost of producing oil. Thus, one might argue that the price of oil should be modelled as a mean-

reverting process.” 

3.4. Methodology 

This section presents both the justification of the models chosen to forecast copper TC/RC 

benchmark levels, as well as the core reference dataset used as inputs for each model compared in 

the methodology.  The dataset employed comprises publicly available annual benchmark levels for 

copper TC/RC from 2004 to 2017, which are taken as market-wide reference to agree each years’ 
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contracts specific TC/RC. The steps followed to carry out an effective comparison in terms of the 

forecasting ability of each model are also laid out herein. 

3.4.1. Models in Methodology 

Geometric Brownian Motion (GBM) 

GBM has been used in much earlier research as a way of modelling prices that are believed not to 

follow any specific rule or pattern, hence seen as random. Black and Scholes (Black and Scholes, 

1973) first used GBM to model stock prices and since then others have used it to model asset prices 

as well as commodities, these being perhaps the most common of all, in which prices are expected 

to increase over time, as does their variance (Zhang et al., 2017). Hence, following our first premise, 

concerning whether TC/RC might vary randomly, there should not exist a main driving factor that 

would determine TC/RC future benchmark levels and therefore GBM could to a certain extent be 

a feasible model for them. 

 

GBM can be written as a generalisation of a Wiener, a continuous time-stochastic Markov process, 

with independent increments and whose changes over any infinite interval of time are normally 

distributed, with a variance that increases linearly with the time interval (Dixit and Pindyck, 

1994).process: 

𝑑𝑑𝑑𝑑 = 𝛼𝛼𝑑𝑑𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝑑𝑑𝜎𝜎 

Where, according to Marathe and Ryan (Marathe and Ryan, 2005), the first term is known as the 

Expected Value, whereas the second is the Stochastic component, with α being the drift parameter 

and σ the volatility of the process. Also, dz is the Wiener process which induces the abovementioned 

stochastic behaviour in the model: 

𝑑𝑑𝜎𝜎 = ∈𝑡𝑡 √𝑑𝑑𝑡𝑡  → ∈𝑡𝑡 ~𝑁𝑁(0,1) 
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The GBM model can be expressed in discrete terms according to Equation 3:  

∆𝑑𝑑 = 𝑑𝑑𝑡𝑡 − 𝑑𝑑𝑡𝑡−1 = 𝛼𝛼𝑑𝑑𝑡𝑡−1∆𝑡𝑡 + 𝜎𝜎𝑑𝑑𝑡𝑡−1𝜖𝜖√∆𝑡𝑡 

In GBM percentage changes in x, ∆𝑑𝑑/𝑑𝑑 are normally distributed, thus absolute changes 

in x, ∆𝑑𝑑 are lognormally distributed. Also, the expected value and variance for 𝑑𝑑(𝑡𝑡) are:  

𝔼𝔼[𝑑𝑑(𝑡𝑡)] = 𝑑𝑑0𝑒𝑒𝛼𝛼𝑡𝑡 

𝑣𝑣𝑣𝑣𝑟𝑟[𝑑𝑑(𝑡𝑡)] = 𝑑𝑑02𝑒𝑒2𝛼𝛼𝑡𝑡(𝑒𝑒𝜎𝜎
2𝑡𝑡 − 1) 

Orstein-Uhlenbeck Process (OUP) 

Although GBM or ‘random walk’ may be well suited to modelling immediate or short-term price 

paths for commodities, or for TC/RC in our case, it lacks the ability to include the underlying long-

term price trend should we assume that there is one. Thus, in accordance with our second premise 

on benchmark TC/RC behaviour, levels would move in line with copper concentrate supply and 

demand as well as the smelters’ and refineries’ available capacity to transform concentrates into 

metal copper. Hence, a relationship between TC/RC levels and copper supply and demand is known 

to exist and, therefore, is linked to its market price, so to some extent they move together coherently. 

Therefore, in that case, as related works on commodity price behaviour such as Foo, Bloch and 

Salim (Foo et al., 2018) do, we have opted for the MR model, particularly the OUP model. 

 

The OUP process was first defined by Uhlenbeck and Orstein (Uhlenbeck and Ornstein, 1930) as 

an alternative to the regular Brownian Motion to model the velocity of the diffusion movement of 

a particle that accounts for its losses due to friction with other particles. The OUP process can be 

regarded as a modification of Brownian Motion in continuous time where its properties have been 

changed1 (Tresierra Tanaka and Carrasco Montero, 2016). 

 
1 Stationary, Gaussian, Markov and stochastic process.  
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These modifications cause the process to move towards a central position, with a stronger attraction 

the further it is from this position. As mentioned above, the OUP is usually employed to model 

commodity prices and is the simplest version of a mean-reverting process (Dixit and Pindyck, 

1994): 

𝑑𝑑𝑆𝑆 =  𝜆𝜆(𝜇𝜇 − 𝑆𝑆)𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝑑𝑑𝑡𝑡 

 Where S is the level of prices, µ the long-term average to which prices tend to revert and 𝜆𝜆 the 

speed of reversion. Additionally, in a similar fashion to that of the GBM, σ is the volatility of the 

process and 𝑑𝑑𝑑𝑑𝑡𝑡 is a Wiener process with an identical definition. However, in contrast to GBM, 

time intervals in OUP are not independent since differences between current levels of prices, S, and 

long-term average prices, µ, make the expected change in prices, dS, more likely either positive or 

negative.  

 

The discrete version of the model can be expressed as follows:  

𝑆𝑆𝑡𝑡 = 𝜇𝜇(1 − 𝑒𝑒−𝜆𝜆Δ𝑡𝑡) + 𝑒𝑒−𝜆𝜆Δ𝑡𝑡𝑆𝑆𝑡𝑡−1 + 𝜎𝜎�1−𝑒𝑒−2𝜆𝜆Δ𝑡𝑡

2𝜆𝜆
𝑑𝑑𝑑𝑑𝑡𝑡                       

Where the expected value for 𝑑𝑑(𝑡𝑡) and the variance for (𝑑𝑑(𝑡𝑡) −  𝜇𝜇) are:  

𝔼𝔼[𝑑𝑑(𝑡𝑡)] = 𝜇𝜇 + (𝑑𝑑0 − 𝜇𝜇)𝑒𝑒−𝜆𝜆𝑡𝑡 

𝑣𝑣𝑣𝑣𝑟𝑟[𝑑𝑑(𝑡𝑡) − 𝜇𝜇] = 𝜎𝜎2

2𝜆𝜆
�1 − 𝑒𝑒−2𝜆𝜆𝑡𝑡�                             

It can be derived from previous equations that as time increases prices will tend to long-term average 

levels, µ. In addition, with large time spans, if the speed of reversion, λ becomes high, variance tends 

to 0. 

 

On the other hand, if the speed of reversion is 0 then 𝑣𝑣𝑣𝑣𝑟𝑟[𝑑𝑑(𝑡𝑡)] → 𝜎𝜎2𝑡𝑡 , making the process a 

simple Brownian Motion.  
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Holt’s Linear Exponential Smoothing (LES) 

Both GBM and MR are Markov processes which means that future values depend exclusively on 

the current value, while the remaining previous time series data are not considered. On the other 

hand, moving average methods employ the average of a pre-established number of past values in 

different ways, evolving over time, so future values do not rely exclusively on the present, hence 

behaving as though they had only a limited memory of the past. 

 

This trait of the moving average model is particularly interesting when past prices are believed to 

have a certain, though limited, effect on present values, which is another of the premise for  this 

research. Existing alternatives of moving average techniques pursue considering this ‘memory’ 

with different approaches. As explained by Kalekar (2004), Exponential Smoothing is suitable only 

for the behaviours of a specific time series, thus Single Exponential Smoothing (SES) is reasonable 

for short-term forecasting with no specific trend in the observed data, whereas Double Exponential 

Smoothing or Linear Exponential Smoothing (LES) is appropriate when data shows a cyclical 

pattern or a trend. In addition, seasonality in observed data can be computed and forecasted through 

the usage of Exponential Smoothing by the Holt-Winters method, which adds an extra parameter 

to the model to handle this characteristic. 

 

Linear Exponential Smoothing models are capable of considering both levels and trends at every 

instant, assigning higher weights in the overall calculation to values closer to the present than to 

older ones. LES models carry that out by constantly updating local estimations of levels and trends 

with the intervention of one or two smoothing constants which enable the models to dampen older 

value effects. Although it is possible to employ a single smoothing constant for both the level and 

the trend, known as Brown’s LES, to use two, one for each, known as Holt’s LES, is usually 

preferred since Brown’s LES tends to render estimations of the trend ‘unstable’ as suggested by 
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authors such as Nau (2014). Holt’s LES model comes defined by the level, trend and forecast 

updating equations, each of these expressed as follows, respectively:  

𝐿𝐿𝑡𝑡 = 𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)(𝐿𝐿𝑡𝑡−1 + 𝑇𝑇𝑡𝑡−1) 

𝑇𝑇𝑡𝑡 = 𝛽𝛽(𝐿𝐿𝑡𝑡 − 𝐿𝐿𝑡𝑡−1) + (1 − 𝛽𝛽)𝑇𝑇𝑡𝑡−1 

𝑌𝑌�𝑡𝑡+𝑘𝑘 = 𝐿𝐿𝑡𝑡 + 𝑘𝑘𝑇𝑇𝑡𝑡 

With α being the first smoothing constant for the levels and 𝛽𝛽 the second smoothing constant for 

the trend. Higher values for the smoothing constants imply that either levels or trends are changing 

rapidly over time, whereas lower values imply the contrary. Hence, the higher the constant, the more 

uncertain the future is believed to be. 

3.4.2. Models Comparison Method 

The works referred to in the literature usually resort to different measures of errors to conduct the 

testing of a model’s forecasting capacity regardless of the specific nature of the forecasted value, be 

it cotton prices or macroeconomic parameters. Thus, the most widely errors used include Mean 

Squared Error (MSE), Mean Absolute Deviation (MAD), Mean Absolute Percentage Error 

(MAPE) and Root Mean Square Error (RMSE) (Makridakis et al., 1982; Heaney, 2002; Kalekar, 

2004; Khashei and Bijari, 2010, 2011; Shafiee and Topal, 2010; Gómez-Valle and Martínez-

Rodríguez, 2013; Choudhury and Jones, 2014; Xiong et al., 2015). These error measures come 

defined as follows: 

 

Mean Square Error (MSE)  

𝑀𝑀𝑆𝑆𝑀𝑀 =
1
𝑛𝑛
�(𝑌𝑌�𝑖𝑖 − 𝑌𝑌𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

Where 𝑌𝑌�𝑖𝑖 are the forecasted values and 𝑌𝑌𝑖𝑖 those observed. 
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Mean Absolute Deviation (MAD)  

𝑀𝑀𝐴𝐴𝐷𝐷 =
1
𝑛𝑛
��𝑌𝑌�𝑖𝑖 − 𝑌𝑌��
𝑛𝑛

𝑖𝑖=1

 

Where 𝑌𝑌�𝑖𝑖 are the forecasted values and 𝑌𝑌� the average value of all the observations. 

 

Mean Absolute Percentage Error (MAPE)  

𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀 =
1
𝑛𝑛
�

�𝑌𝑌�𝑖𝑖 − 𝑌𝑌𝑖𝑖�
𝑌𝑌𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

The above formula is expressed in parts-per-one and is the one used in the calculations conducted 

here. Hence, multiplying the result by 100 would deliver percentage outcomes.  

 

Root Mean Square Error (RMSE)  

𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 = √𝑀𝑀𝑆𝑆𝑀𝑀 = �
1
𝑛𝑛
�(𝑌𝑌�𝑖𝑖 − 𝑌𝑌𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

In this research Geometric Brownian Motion (GBM), Ornstein-Uhlenbeck Process (OUP) and 

Linear Exponential Smoothing (LES) models have been used to forecast annual TC/RC benchmark 

levels, using all the four main measures of error mentioned above to test the predictive accuracy of 

these three models. The GBM and OUP models have been simulated and tested with different step 

sizes, while the LES model has been analysed solely using annual time steps. 

 

The GBM and OUP models were treated separately to the LES model, thus GBM and OUP were 

simulated using Monte Carlo (MC) simulations, whereas LES forecasts were simple calculations. 

Monte Carlo simulations (MC) were carried out using Matlab software to render the pursued 
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forecasts of GBM and OUP models, obtaining 1000 simulated paths for each step size. MC 

simulations using monthly steps for the 2013 – 2017 timespan were averaged every 12 steps to 

deliver year forecasts of TC/RC benchmark levels. 

 

On the other hand, forecasts obtained by MC simulations taking annual steps for the same period 

were considered as year forecasts for TC/RC annual benchmark levels without the need for extra 

transformation. Besides, LES model forecasts were calculated at different time horizons to be able 

to compare the short-term and long-term predictive accuracy. LES forecasts were obtained for one-

year-ahead, hence using known values of TC/RC from 2004 to 2016; for two-year-ahead, stretching 

the dataset from 2004 to 2015, and for five-year-ahead, thus using the same input dataset as for the 

GBM and OUP models, from 2004 to 2012. 

 

Finally, for every forecast path obtained, we have calculated the average of the squares of the errors 

with respect to the observed values, MSE, the average distance of a forecast to the observed mean, 

MAD, the average deviation of a forecast from observed values, MAPE, and the square root of 

MSE, RMSE. The results of MSE, MAD, MAPE and RMSE calculated for each forecast path were 

averaged by the total number of simulations carried out for each case. Averaged values of error 

measures of all simulated paths, MSE������, MAD�������, MAPE��������, RMSE��������, for both annual-step forecasts and 

monthly-step forecasts have been used for cross-comparison between models to test predictive 

ability at every step size possible.  

 

Also, to test each model’s short-term forecasting capacity against its long-term forecasting capacity, 

one-year-ahead forecast errors of the LES model were compared with the errors from the last year 

of the GBM and OUP simulated paths. Two-year-ahead forecast errors of LES models were 

compared with the average errors of the last two years of GBM and OUP, and five-year-ahead 
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forecast errors of LES models were compared with the overall average of errors of the GBM and 

OUP forecasts. 

3.4.3. Models Calibration 

In a preliminary stage, the models were first calibrated to forecast values from 2013 to 2017 using 

available data from 2004 to 2012 for TC and RC separately, hence disregarding the well-known 

inherent 10:1 relation. The GBM and OUP models were calibrated for two different step sizes, -

monthly steps and annual steps- in order to compare forecasting accuracy with each step size in 

each model. The available dataset is thus comprised of data from 2004 to 2017, which make the 

calibration data approximately 2/3 of the total. 

 

GBM Calibration 

Increments in the logarithm of variable x are distributed as follows:  

∆(𝑙𝑙𝑛𝑛𝑑𝑑)~𝑁𝑁((𝛼𝛼 −
𝜎𝜎2

2
)𝑡𝑡,𝜎𝜎𝑡𝑡) 

Hence, if m is defined as the sample mean of the difference of the natural logarithm of the time 

series for TC/RC levels considered for the calibration and n as the number of increments of the 

series considered, with n=9:  

𝑚𝑚 =
1
𝑛𝑛
�(𝑙𝑙𝑛𝑛𝑑𝑑𝑡𝑡 − 𝑙𝑙𝑛𝑛𝑑𝑑𝑡𝑡−1)
𝑛𝑛

𝑡𝑡=1

 

𝑠𝑠 = �
1

𝑛𝑛 − 1
�(𝑙𝑙𝑛𝑛𝑑𝑑𝑡𝑡 − 𝑙𝑙𝑛𝑛𝑑𝑑𝑡𝑡−1 − 𝑚𝑚)2
𝑛𝑛

𝑖𝑖=1

 

𝑚𝑚 = 𝛼𝛼 −
𝜎𝜎2

2
 

𝑠𝑠 = 𝜎𝜎 
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OUP Calibration 

The OUP process is an AR1 process (Dixit and Pindyck, 1994) whose resolution is well presented 

by Woolridge (2011) using OLS techniques, fitting the following equation:  

𝑦𝑦𝑡𝑡 = 𝑣𝑣 + 𝑏𝑏𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 

Hence, the estimators for the parameters of the OUP model are obtained by OLS for both TC and 

RC levels independently:  

�̂�𝜆 = −
𝑙𝑙𝑛𝑛𝑏𝑏
Δ𝑡𝑡

 

�̂�𝜇 =
𝑣𝑣

1 − 𝑏𝑏
 

𝜎𝜎� = 𝜀𝜀𝑡𝑡�
2ln (1 + 𝑏𝑏)

(1 + 𝑏𝑏)2 − 1
 

 

LES Calibration 

A linear regression is conducted on the input dataset available to find the starting parameters for the 

LES model, the initial Level, 𝐿𝐿0, and the initial value of the Trend, 𝑇𝑇0, irrespective of TC values 

and RC values. Here, as recommended by Gardner (2006), the use of OLS is highly advisable due 

to the erratic behaviour shown by trends in the historic data, so the obtaining of negative values of 

𝑆𝑆0 is prevented. Linear regression fulfils the following equations:  

𝑌𝑌𝑡𝑡 = 𝑣𝑣𝑡𝑡 + 𝑏𝑏 

𝐿𝐿0 = 𝑏𝑏 

𝑇𝑇0 = 𝑣𝑣 

By fixing the two smoothing constants, the values for the forecasts, 𝑌𝑌�𝑡𝑡+𝑘𝑘, can be calculated at each 

step using the model equations. There are multiple references in the literature on what is the 

optimum range for each smoothing constant; Gardner (2006) speaks of setting moderate values for 
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both parameter less than 0.3 to obtain the best results. Examples pointing out the same may be found 

in Brown (1963), Coutie (1964), Harrison (1967) and Montgomery and Johnson (1976). Also, for 

many applications, Makridakis and Hibon (1979) and Chatfield (1978) found that parameter values 

should fall within the range of 0.3-1. On the other hand, McClain and Thomas (1973) provided a 

condition of stability for the non-seasonal LES model given by:  

�
0 < 𝛼𝛼 < 2

0 < 𝛽𝛽 <
4 − 2𝛼𝛼
𝛼𝛼

 

Also, the largest possible value of α that allows the avoidance of areas of oscillation is proposed by 

McClain and Thomas (1973) and McClain (1974):  

𝛼𝛼 <
4𝛽𝛽

(1 + 𝛽𝛽)2
 

However, according to Gardner, there is no tangible proof that this value improves accuracy in any 

form. Nonetheless, we have opted to follow what Nau (2014) refers to as ‘the usual way’, namely, 

minimising the Mean Squared Error (MSE) of the one-step-ahead forecast of TC/RC for each input 

data series previously mentioned. To do so, Matlab’s fminsearch function has been used with 

function and variable tolerance levels of 1x10-4 as well as a set maximum number of function 

iterations and function evaluations of 1x106 to limit computing resources. In Table 9 the actual 

number of necessary iterations to obtain optimum values for smoothing constants is shown. As can 

be seen, the criteria are well beyond the final results, which ensured that an optimum solution was 

reached with assumable computing usage (the simulation required less than one minute) and with 

a high degree of certainty.  
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Table 9  
Iterations on LES smoothing constants optimization 

 Iteration Function 
Evaluations 

TC 1-Step 36 40 
TC 2-Steps 249945 454211 
TC 5-Steps 40 77 
RC 1-Step 32 62 
RC 2-Steps 254388 462226 
RC 5-Steps 34 66 

3.5. Analysis of Results 

Monte Carlo simulations of GBM and OUP models render 1000 different possible paths for TC 

and RC, respectively, at each time step size considered. Accuracy errors for both annual time steps 

and averaged monthly time steps, for both GBM and OUP forecasts, were first compared to 

determine the most accurate time step size for each model. In addition, the LES model outcome for 

both TC and RC at different timeframes was also calculated and measures of errors for all the three 

alternative models proposed at an optimum time step were finally compared. 

3.5.1. GBM Forecasts 

The first 20 of 1000 Monte Carlo paths for the GBM model with a monthly step size using Matlab 

software may be seen in Figure 3 for both the TC and RC levels compared to their averaged paths 

for every 12 values obtained. The tendency for GBM forecasts to steeply increase over time is easily 

observable in the non-averaged monthly-step paths shown. 
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Figure 3. The upper illustrations show the first 20 Monte Carlo paths for either TC or 

RC levels using monthly steps. The illustrations below show the annual averages of 

monthly step forecasts for TC and RC levels. 

 

The average values of error of all 1000 MC paths obtained through simulation for averaged 

monthly-step and annual-step forecasts are shown in Table 10 for both TC and RC discounts over 

the period from 2013 to 2017, which may lead to preliminary conclusions in terms of an accuracy 

comparison between averaged monthly steps and annual steps. 

Table 10  
Average of main measures of error for GBM after 1000 MC simulations 
from 2013 to 2017. 
 𝑀𝑀𝑆𝑆𝑀𝑀������ 𝑀𝑀𝐴𝐴𝐷𝐷������� 𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀�������� 𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀�������� 
TC Averaged Monthly Steps 5.60x103 46.98 0.50 56.38 
TC Annual Steps 5.20x103 49.02 0.52 58.57 
RC Averaged Monthly Steps 58.74 4.55 0.48 5.46 
RC Annual Steps 50.85 4.91 0.52 5.84 

 



 
 

58 
 

However, a more exhaustive analysis is shown in Table 11, where the number of times the values 

of each error measure is higher for monthly steps is expressed over the total number of MC 

simulations carried out. The results indicate that better values of error are reached the majority of 

times for averaged monthly-step simulations rather than for straight annual ones. 

Table 11  
Number of paths for which measures of error are higher 
for monthly steps than for annual steps in GBM. 
 𝑀𝑀𝑆𝑆𝑀𝑀 𝑀𝑀𝐴𝐴𝐷𝐷 𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀 𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 
TC 457/1000 455/1000 453/1000 453/1000 
RC 439/1000 430/1000 429/1000 429/1000 

 

In contrast, short term accuracy was also evaluated by analysing the error measures of one-year-

ahead forecasts (2013) in Table 12. 

Table 12  
Average for main measures of error for GBM after 1000 MC 
simulations for 2013. 
 𝑀𝑀𝑆𝑆𝑀𝑀������ 𝑀𝑀𝐴𝐴𝐷𝐷������� 𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀�������� 𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀�������� 
TC Averaged Monthly Steps 336.58 14.55 0.21 14.55 
TC Annual Steps 693.81 20.81 0.30 20.81 
RC Averaged Monthly Steps 2.97 1.38 0.20 1.38 
RC Annual Steps 6.57 2.05 0.29 2.05 

 

Two-year-ahead forecasts (2013–2014) are shown in Table 13. The results indicate, as one may 

expect, that accuracy decreases as the forecasted horizon is widened, with the accuracy of averaged 

monthly-step forecasts remaining higher than annual ones as found above for the five-year 

forecasting horizon. 

Table 13  
Average for main measures of error for GBM after 1000 MC simulations 
for 2013-2014. 
 𝑀𝑀𝑆𝑆𝑀𝑀������ 𝑀𝑀𝐴𝐴𝐷𝐷������� 𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀�������� 𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀�������� 
TC Averaged Monthly Steps 994.92 21.87 0.31 24.35 
TC Annual Steps 1.33x103 28.33 0.40 31.04 
RC Averaged Monthly Steps 10.35 2.40 0.34 2.71 
RC Annual Steps 13.13 2.84 0.34 3.11 
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3.5.2. OUP Forecasts 

Long-term levels for TC and RC, µ, the speed of reversion, λ, and the volatility of the process, σ, 

are the parameters determined at the model calibration stage, which define the behaviour of the 

OUP, shown in Table 14. The calibration was done prior to the Monte Carlo simulation for both 

TC and RC, with each step size using available historical data from 2004 to 2012. The OUP model 

was fitted with the corresponding parameters for each case upon MC simulation. 

Table 14  
OUP parameters obtained in the calibration process. 

 µ λ σ 
TC Monthly 63.45 4.792x105 2.534 
TC Annual 63.45 2.974 1.308 
RC Monthly 6.35 4.763x105 2.519 
RC Annual 6.35 2.972 1.305 

 

Figure 4 shows the Mean Reversion MC estimations of the TC/RC benchmark values from 2013 

to 2017 using monthly steps. The monthly forecasts were rendered from January 2012 through to 

December 2016 and averaged every twelve values to deliver a benchmark forecast for each year. 

The averaged results can be comparable to actual data as well as to the annual Monte Carlo 

simulations following Mean Reversion. The lower-side figures show these yearly-averaged 

monthly-step simulation outcomes which clearly move around a dash-dotted red line, indicating the 

long-term run levels for TC/RC to which they tend to revert. 
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Figure 4. The first 20 Monte Carlo paths following the OUP model using monthly steps 

are shown on the upper illustrations for either TC and RC. The annual averaged 

simulated paths every 12 values are shown below. 

 

The accuracy of monthly steps against annual steps for the TC/RC benchmark levels forecast was 

also tested by determining the number of simulations for which average error measures became 

higher. Table 15 shows the number of times monthly simulations have been less accurate than 

annual simulations for five-year-ahead OUP forecasting by comparing the four measures of errors 

proposed. The results indicate that only 25-32% of the simulations drew a higher average error, 

which clearly results in a better predictive accuracy for monthly-step forecasting of TC/RC annual 

benchmark levels. 
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Table 15  
Number of paths for which measures of error are 
higher for monthly steps than for annual steps in 
MR-OUP 5-Steps MC simulation. 
 𝑀𝑀𝑆𝑆𝑀𝑀 𝑀𝑀𝐴𝐴𝐷𝐷 𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀 𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 
TC 311/1000 283/1000 266/1000 266/1000 
RC 316/1000 281/1000 250/1000 250/1000 

 

The averaged measures of errors obtained after the MC simulations of the OUP model for both 

averaged-monthly-steps and annual steps giving TC/RC benchmark forecasts from 2013 to 2017 

are shown in Table 16. 

Table 16  
Average for main measures of error for MR-OUP after 1000 MC 
simulations 2013-2017. 
 𝑀𝑀𝑆𝑆𝑀𝑀������ 𝑀𝑀𝐴𝐴𝐷𝐷������� 𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀�������� 𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀�������� 
TC Averaged Monthly Steps 842.54 26.14 0.27 28.95 
TC Annual Steps 1.14x103 29.31 0.31 33.25 
RC Averaged Monthly Steps 8.40 2.61 0.27 2.89 
RC Annual Steps 11.48 2.94 0.31 3.33 

 

The error levels of the MC simulations shown above point towards a higher prediction accuracy of 

averaged-monthly-step forecasts of the OUP Model, yielding an averaged MAPE value that is 

12.9% lower for TC and RC 5-step-ahead forecasts. In regard to MAPE values, for monthly steps, 

only 26.6% of the simulations rise above annual MC simulations for TC, and 25% for RC 5-step-

ahead forecasts, which further underpins the greater accuracy of this OUP set-up for TC/RC level 

forecasts. A significant lower probability of higher error levels for TC/RC forecasts with monthly 

MC OUP simulations is reached for the other measures provided. In addition, short-term and long-

term prediction accuracy was tested by comparing errors of forecasts for one-year-ahead in Table 

17, two-year-ahead in Table 18, as well as for five-year-ahead error measures above in Table 16. 
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Table 17  
Average for main measures of error for MR-OUP after 1000 MC 
simulations 2013. 
 𝑀𝑀𝑆𝑆𝑀𝑀������ 𝑀𝑀𝐴𝐴𝐷𝐷������� 𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀�������� 𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀�������� 
TC Averaged Monthly Steps 39.14 5.22 0.07 5.22 
TC Annual Steps 366.43 15.55 0.22 15.55 
RC Averaged Monthly Steps 0.39 0.51 0.07 0.51 
RC Annual Steps 3.63 1.54 0.22 1.54 

 

Table 18  
Average for main measures of error for MR-OUP after 1000 MC 
simulations 2013-2014. 
 𝑀𝑀𝑆𝑆𝑀𝑀������ 𝑀𝑀𝐴𝐴𝐷𝐷������� 𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀�������� 𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀�������� 
TC Averaged Monthly Steps 371.65 15.67 0.18 19.00 
TC Annual Steps 682.44 21.85 0.26 23.24 
RC Averaged Monthly Steps 3.76 1.57 0.18 1.91 
RC Annual Steps 6.89 2.19 0.26 2.43 

 

With a closer forecasting horizon error, measures show an improvement of forecasting accuracy 

when average monthly steps are used rather than annual ones. For instance, the MAPE values for 

2013 forecast for TC is 68% lower for averaged monthly steps than for annual steps, also MAPE 

for 2013 – 2014 were 30% lower for both TC and RC forecasts. Similarly, better values of error are 

achieved for the other measures for averaged monthly short-term forecasts than in other scenarios. 

In addition, as expected, accuracy is increased for closer forecasting horizons where the level of 

errors shown above become lower as the deviation of forecasts is trimmed with short-term 

predictions. 

3.5.3. LES Forecasts 

In contrast to GBM and OUP, the LES model lacks any stochastic component, so non-deterministic 

methods such as the Monte Carlo are not required to obtain a forecast. Nonetheless, the LES model 

relies on two smoothing constants which must be properly set in order to deliver accurate 

predictions, hence the values of the smoothing constants were first optimised. The optimisation was 

carried out for one-year-ahead forecasts, two-year-ahead forecasts, and five-year-ahead forecasts by 

minimising the values of MSE for both TC and RC. The different values used for smoothing 
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constants, as well as the initial values for level and trend obtained by the linear regression of the 

available dataset from 2004 through to 2012 are shown in Table 19. 

Table 19  
LES Model Optimised Parameters. 
 L0 T0 α β 
TC 1 year 71.3611 -1.5833 -0.2372 0.1598 
RC 1 year 7.1333 -0.1567 -0.2368 0.1591 
TC 2 years 71.3611 -1.5833 -1.477x10-4 777.4226 
RC 2 years 7.1333 -0.1567 -1.448x10-4 789.8336 
TC 5 years 71.3611 -1.5833 -0.2813 0.1880 
RC 5 years 7.1333 -0.1567 -0.2808 0.1880 

 

Compared one-year-ahead, two-year-ahead and five-year-ahead LES forecasts for TC and RC are 

shown in Figure 5, clearly indicating a stronger accuracy for shorter term forecasts as the observed 

and forecasted plotted lines overlap. 

 

Figure 5. One-step-ahead forecasts (2013), two-step-ahead forecasts (2013-2014) and 

five-step-ahead forecasts (2013-2017) for TC and RC using the Linear Exponential 

Smoothing model (LES). 
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Minimum values for error measures achieved through the LES model parameter optimisation are 

shown in Table 20. The values obtained confirm the strong accuracy for shorter-term forecasts of 

TC/RC seen in the figures. 

Table 20  
LES error measures for different steps-ahead forecasts. 
 𝑀𝑀𝑆𝑆𝑀𝑀������ 𝑀𝑀𝐴𝐴𝐷𝐷������� 𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀�������� 𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀�������� 
TC 1 year 1.0746x10-5 0.0033 4.6831x10-5 0.0033 
RC 1 year 5.1462x10-8 2.2685x10-4 3.2408x10-5 2.2685x10-4 
TC 2 years 189.247 9.7275 0.1057 13.7567 
RC 2 years 1.8977 0.9741 0.1059 1.3776 
TC 5 years 177.5531 7.8881 0.0951 10.8422 
RC 5 years 1.1759 0.7889 0.0952 1.0844 

3.6. Discussion and Model Comparison 

The forecasted values of TC/RC benchmark levels could eventually be applied to broader valuation 

models for copper concentrates and their trading activities, as well as to the copper smelters’ revenue 

stream, thus the importance of delivering as accurate a prediction as possible in relation to these 

discounts to make any future application possible. Each of the models presented may be a feasible 

method on its own with eventual later adaptations to forecasting future values of benchmark TC/RC. 

Nonetheless, the accuracy of these models as they have been used in this research requires, firstly, 

a comparison to determine whether any of them could be a good standalone technique and, 

secondly, to test whether a combination of two or more of them would deliver more precise results. 

 

When comparing the different error measures obtained for all the three models, it is clearly 

established that results for a randomly-chosen simulation of GBM or OUP would be more likely to 

be more precise had a monthly-step been used to deliver annual forecasts instead of an annual-step 

size. In contrast, average error measures for the entire population of simulations with each step size 

employed showing that monthly step simulations for GBM and OUP models are always more 

accurate than straight annual step forecasts when a shorter time horizon, one or two-year-ahead, is 
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taken into consideration. However, GBM presents a higher level of forecasting accuracy when the 

average for error measures of all simulations is analysed, employing annual steps for long-term 

horizons, whereas OUP averaged-monthly-step forecasts remain more accurate when predicting 

long-term horizons. Table 21 shows the error improvement for the averaged-monthly-step forecasts 

of each model. Negative values indicate that better levels of error averages have been found in 

straight annual forecasts than for monthly-step simulations.  

Table 21  
Error Average Improvement for averaged monthly steps before annual steps. 
 
 𝑀𝑀𝑆𝑆𝑀𝑀������ 𝑀𝑀𝐴𝐴𝐷𝐷������� 𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀�������� 𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀�������� 
GBM TC/RC 1 Year 53.26%/56.53% 32.72%/35.87% 33.33%/35.48% 32.72%/35.87% 
GBM TC/RC 2 Years 26.95%/26.35% 25.75%/15.97% 26.19%/2.86% 24.34%/13.69% 
GBM TC/RC 5 Years -11.73%/-11.04% 8.73%/7.09% 9.26%/7.69% 7.47%/5.65% 
OUP TC/RC 1 Year 88.08%/87.08% 63.71%/62.50% 62.91%/63.19% 63.68%/62.24% 
OUP TC/RC 2 Years 46.28%/44.21% 27.71%/26.17% 29.99%/30.75% 22.16%/20.75% 
OUP TC/RC 5 Years 26.02%/25.53% 10.93%/9.97% 13.12%/12.18% 13.06%/12.69% 

 

Considering the best results for each model, and comparing their corresponding error measures, we 

can opt for the best technique to employ among the three proposed in this paper. Hence, GBM 

delivers the most accurate one-year forecast when averaging the next twelve-month predictions for 

TC/RC values, as does the MR-OUP model. Table 22 shows best error measures for one-year-

ahead forecasts for GBM, OUP and LES models. 

Table 22  
TC/RC best error measures for 2013 forecasts after 1000 MC simulations. 
 𝑀𝑀𝑆𝑆𝑀𝑀������ 𝑀𝑀𝐴𝐴𝐷𝐷������� 𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀�������� 𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀�������� 
GBM TC/RC 1 Year* 331.11/3.36 14.25/1.43 0.20/0.20 14.25/1.43 
OUP TC/RC 1 Year* 41.05/0.42 5.36/0.54 0.0766/0.0777 5.36/0.54 

LES TC/RC 1 Year 1.07x10-5/ 
5.14x10-8 

0.003/ 
2.26x10-4 

4.68x10-5/ 
3.24x10-5 

0.003/ 
2.26x10-4 

                                                                                                          *Averaged monthly steps. 

Unarguably, the LES model generates minimal error measures for one-year-ahead forecasts, 

significantly less than the other models employed. A similar situation is found for two-year-ahead 

forecasts where minimum error measures are also delivered by the LES model, shown in Table 23. 
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Table 23  
TC/RC best error measures for 2013 – 2014 forecasts after 1000 MC simulations. 
 𝑀𝑀𝑆𝑆𝑀𝑀������ 𝑀𝑀𝐴𝐴𝐷𝐷������� 𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀�������� 𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀�������� 
GBM TC/RC 2 Steps* 1.03x103/10.06 22.00/2.42 0.31/0.34 24.47/2.71 
OUP TC/RC 2 Steps* 373.31/3.76 15.73/1.58 0.1802/0.1813 19.00/1.91 
LES TC/RC 2 Steps 189.24/1.89 9.72/0.97 0.1057/0.1059 13.75/1.37 

*Averaged monthly steps. 

Finally, accuracy measures for five-year-ahead forecasts of the GBM model might result in 

somewhat contradictory terms for MSE reaching better values for annual steps than for averaged 

monthly steps, while the other figures do better on averaged monthly steps. Addressing the 

definition of MSE, this includes the variance of the estimator as well as its bias, being equal to its 

variance in the case of unbiased estimators. Therefore, MSE measures the quality of the estimator 

but also magnifies estimator deviations from actual values since both positive and negative values 

are squared and averaged. 

 

In contrast, RMSE is calculated as the square root of MSE and, following the previous analogy, 

stands for the standard deviation of the estimator if MSE were considered to be the variance. Though 

RMSE overreacts when high values of MSE are reached, it is less prone to this than MSE since it 

is calculated as its squared root, thus not accounting for large errors as disproportionately as MSE 

does. 

 

Furthermore, as we have compared an average of 1000 measures of errors corresponding to each 

MC simulation performed, the values obtained for average RMSE stay below the square root of 

average MSE, which indicates that some of these disproportionate error measures are, to some 

extent, distorting the latter. Hence, RMSE average values point towards a higher accuracy for GBM 

five-year forecasts with averaged monthly steps, which is further endorsed by the average values of 

MAD and MAPE, thus being the one used for comparison with the other two models as shown in 

Table 24. 
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Table 24  
TC/RC Best error measures for 2013 – 2017 forecasts after 1000 MC simulations. 
 𝑀𝑀𝑆𝑆𝑀𝑀������ 𝑀𝑀𝐴𝐴𝐷𝐷������� 𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀�������� 𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀�������� 
GBM TC/RC 5 Steps* 6.00x103/61.65 46.51/4.59 0.49/0.48 55.71/5.51 
OUP TC/RC 5 Steps* 843.34/8.43 26.16/2.62 0.2715/0.2719 28.96/2.89 
LES TC/RC 5 Steps 177.55/1.17 7.88/0.78 0.0951/0.0952 10.84/1.08 

*Averaged monthly steps. 

The final comparison clearly shows how the LES model outperforms the other two at all average 

measures provided, followed by the OUP model in accuracy, although the latter more than doubles 

the average MAPE value for LES.  

 

The results of simulations indicate that measures of errors tend to either differ slightly or not at all 

for either forecast of any timeframe. A coherent value with the 10:1 relation can then be given with 

close to the same level of accuracy by multiplying RC forecasts or dividing TC ones by 10.  
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Chapter 4: Estimating Copper Concentrates benchmark prices under 

dynamic market conditions 

4.1. Introduction 

Copper concentrates are the primary product sold by copper mines to traders or smelters.  

Their price is set in private agreements following unofficial market practices which, along 

with the fact of the wide variety of concentrates layouts traded worldwide, make 

problematic for any market participant to have a clear price reference for a specific 

concentrate. Despite the large number of transactions of copper concentrates taking place, 

there is no market-wide accepted concentrates price reference from an official, publicly 

accessible and reliable source that can be taken as a benchmark. By the contrary, miners, 

smelters and traders alike are forced to price concentrates following indirect references 

and, sometimes, complex and poorly transparent calculation procedures. 

 

In this research a copper concentrates benchmark price model was developed, which provides 

suitable short-term price estimations based on metals and discounts forecasts, as well as on copper, 

gold and silver spot and future prices data from the LME and COMEX. The model, which redeems 

considerably low forecast error values for the short-term concentrate prices, constitutes a useful and 

applicable tool for miners, traders and smelters to set a benchmark price level for their copper 

concentrate transactions, also helping them optimize their operations, as well as estimate their 

immediate liquidity needs or their actual necessity to hedge the price risks associated to their 

concentrate trading. 
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In addition, five different concentrates layouts have been analysed to test the model’s behaviour 

with the most common specification and blends of copper concentrates demanded by the market, 

as well as to portray the model’s forecasting capacity and its ability to convey information on the 

future relevance of the different components of pricing in the most frequent timeframe in which 

copper concentrate trading takes place. 

 

To address this our concentrates benchmark price model provides suitable short-term price 

estimations as a function of the concentrate’s chemical specifications and the market conditions at 

each moment. Our model puts together separate forecasts for the LME copper and COMEX gold 

and silver spot prices, along with the main deductions and penalties applied by smelters, to achieve 

copper concentrates price forecasts based on their layout. 

 

The model resorts to historical data on spot and futures prices at different maturities for copper, gold 

and silver as well as to historical values on copper TC/RC benchmark levels to render copper 

concentrate price forecasts. These concentrate benchmark price model constitute a powerful source 

of information for market participants, helping them to determine the price optimality of the copper 

concentrates being traded as well as their future conditions. It also serves as an applicable tool for 

miners, smelters and traders alike, allowing them to improve their production planning, to increase 

the benefits from their trading operations, as well as helping them optimize their risk management 

and their short-term liquidity needs.  

4.2. Copper concentrates benchmark price model 

Copper concentrates supply agreements set specific mechanisms to price the copper concentrates 

to be traded according to their chemical specifications, as already explained in Chapter 2. Usually, 

most pricing systems establish the price of copper concentrates as the sum of the payable elements 
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present in the concentrates minus the deductions and the penalties (Soderstrom, 2008; Seabridge 

Gold, 2010; Teck, 2012, 2015). The model presented in this research is based on the same logic, 

treating payable elements separately from discounts and punishable elements, though differing from 

usual market practices in its forecasting capabilities for concentrates prices as metals and copper 

TC/RC are separately modelled instead of employing the available market data, and their values are 

projected ahead. Thus, at time t, the price of the ton of concentrate can be expressed as: 

𝐶𝐶𝑡𝑡 = 𝑀𝑀𝑡𝑡 − 𝐷𝐷𝑡𝑡 − 𝑃𝑃𝑡𝑡 

Though copper concentrates may contain multiple payable elements apart from copper, should 

there be some gold and silver are the most common. Thus, Mt may be defined as the sum of the 

amount paid for all payable elements, which is the amount paid for the copper, gold and silver 

content in the concentrate. Metals in concentrates are paid at market price, though the full content is 

not usually paid, as smelters are normally not capable of recovering all the content. Hence, the price 

of payable metals in the concentrates is calculated as the payable content (pp) multiplied by its 

market price at time t (𝑆𝑆𝑡𝑡). 

𝑀𝑀𝑡𝑡 = 𝐶𝐶𝐶𝐶𝑡𝑡 + 𝐴𝐴𝐶𝐶𝑡𝑡 + 𝐴𝐴𝑔𝑔𝑡𝑡 

𝐶𝐶𝐶𝐶𝑡𝑡 = 𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶 × 𝑆𝑆𝑡𝑡𝐶𝐶𝐶𝐶 

𝐴𝐴𝐶𝐶𝑡𝑡 = 𝑝𝑝𝑝𝑝𝐴𝐴𝐶𝐶 × 𝑆𝑆𝑡𝑡𝐴𝐴𝐶𝐶 

𝐴𝐴𝑔𝑔𝑡𝑡 = 𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴 × 𝑆𝑆𝑡𝑡
𝐴𝐴𝐴𝐴 

Payable metal prices, including the market price for copper, gold and silver, are incorporated 

separately with the inclusion of the Schwartz-Smith’s (2000) two-factor model, which decomposes 

the log-market price of metals as the sum of two stochastic factors: 𝜒𝜒𝑡𝑡, that comprises the short-

term deviation of prices to reflect rapid and temporary changes in market conditions, and 𝜉𝜉𝑡𝑡, 

representing the long-term equilibrium price, thus including the long-term market dynamics in 

prices, such as supply and demand changes. 
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ln�𝑆𝑆𝑡𝑡𝑖𝑖� = 𝜒𝜒𝑡𝑡𝑖𝑖 + 𝜉𝜉𝑡𝑡𝑖𝑖 

𝑖𝑖 = 𝐶𝐶𝐶𝐶,𝐴𝐴𝐶𝐶,𝐴𝐴𝑔𝑔 

Short-term price fluctuations are modelled to revert towards zero, following and Orstein-Uhlenbeck 

process, whereas the long-term equilibrium price level is assumed to follow a Brownian motion 

with drift. 

𝑑𝑑𝜒𝜒𝑡𝑡𝑖𝑖 = −𝜅𝜅𝑖𝑖𝜒𝜒𝑡𝑡𝑖𝑖𝑑𝑑𝑡𝑡 + 𝜎𝜎𝜒𝜒𝑖𝑖 𝑑𝑑𝜎𝜎𝜒𝜒𝑖𝑖  

𝑑𝑑𝜉𝜉𝑡𝑡𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑑𝑑𝑡𝑡 + 𝜎𝜎𝜉𝜉
𝑖𝑖𝑑𝑑𝜎𝜎𝜉𝜉

𝑖𝑖  

𝑑𝑑𝜎𝜎𝜒𝜒𝑖𝑖 𝑑𝑑𝜎𝜎𝜉𝜉
𝑖𝑖 = 𝜌𝜌𝜒𝜒𝜉𝜉

𝑖𝑖 𝑑𝑑𝑡𝑡 

𝑖𝑖 = 𝐶𝐶𝐶𝐶,𝐴𝐴𝐶𝐶,𝐴𝐴𝑔𝑔 

Where 𝜅𝜅 is known as the short-term mean-reversion rate, 𝜎𝜎𝜒𝜒 and 𝜎𝜎𝜉𝜉  are the short-term and the 

equilibrium volatilities, respectively, 𝜇𝜇𝜉𝜉 is the equilibrium drift rate, while 𝑑𝑑𝜎𝜎𝜒𝜒 and 𝑑𝑑𝜎𝜎𝜉𝜉 are two 

correlated increments of standard Brownian motions with correlation parameter 𝜌𝜌𝜒𝜒𝜉𝜉 . According to 

Schwartz-Smith (2000) the log of future spot prices is normally distributed, whereas the spot price 

itself is log-normally distributed, being: 

𝑆𝑆𝑡𝑡𝑖𝑖 = exp (𝜒𝜒𝑡𝑡𝑖𝑖 + 𝜉𝜉𝑡𝑡𝑖𝑖) 

Ε�𝑆𝑆𝑡𝑡𝑖𝑖� = exp (Ε�ln (𝑆𝑆𝑡𝑡𝑖𝑖)� +
1
2

Var�ln�𝑆𝑆𝑡𝑡𝑖𝑖��) 

ln�Ε�𝑆𝑆𝑡𝑡𝑖𝑖�� = Ε�ln�𝑆𝑆𝑡𝑡𝑖𝑖�� +
1
2

Var�ln�𝑆𝑆𝑡𝑡𝑖𝑖�� = 

= 𝑒𝑒−𝜅𝜅𝑖𝑖𝑡𝑡𝜒𝜒0𝑖𝑖 + 𝜉𝜉0𝑖𝑖 + 𝜇𝜇𝜉𝜉
𝑖𝑖 𝑡𝑡 +

1
2
��1 − 𝑒𝑒−2𝜅𝜅𝑖𝑖𝑡𝑡�

�𝜎𝜎𝜒𝜒𝑖𝑖 �
2

2𝜅𝜅𝑖𝑖
+ �𝜎𝜎𝜉𝜉

𝑖𝑖�
2
𝑡𝑡 + 2 �1 − 𝑒𝑒−𝜅𝜅𝑖𝑖𝑡𝑡�

𝜌𝜌𝜒𝜒𝜉𝜉
𝑖𝑖 𝜎𝜎𝜒𝜒𝑖𝑖 𝜎𝜎𝜉𝜉

𝑖𝑖

𝜅𝜅𝑖𝑖
� 

𝑖𝑖 = 𝐶𝐶𝐶𝐶,𝐴𝐴𝐶𝐶,𝐴𝐴𝑔𝑔 
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Hence, the payable amount for metals in concentrates can be rewritten using the notation of the two-

factor model as follows: 

𝐶𝐶𝐶𝐶𝑡𝑡 = 𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝑒𝑒�𝜒𝜒𝑡𝑡
𝐶𝐶𝐶𝐶+𝜉𝜉𝑡𝑡

𝐶𝐶𝐶𝐶� 

𝐴𝐴𝐶𝐶𝑡𝑡 = 𝑝𝑝𝑝𝑝𝐴𝐴𝐶𝐶𝑒𝑒�𝜒𝜒𝑡𝑡
𝐴𝐴𝐶𝐶+𝜉𝜉𝑡𝑡

𝐴𝐴𝐶𝐶� 

𝐴𝐴𝑔𝑔𝑡𝑡 = 𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝑒𝑒
�𝜒𝜒𝑡𝑡

𝐴𝐴𝐴𝐴+𝜉𝜉𝑡𝑡
𝐴𝐴𝐴𝐴� 

𝑀𝑀𝑡𝑡 = 𝐶𝐶𝐶𝐶𝑡𝑡 + 𝐴𝐴𝐶𝐶𝑡𝑡 + 𝐴𝐴𝑔𝑔𝑡𝑡 = 𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝑒𝑒�𝜒𝜒𝑡𝑡
𝐶𝐶𝐶𝐶+𝜉𝜉𝑡𝑡

𝐶𝐶𝐶𝐶� + 𝑝𝑝𝑝𝑝𝐴𝐴𝐶𝐶𝑒𝑒�𝜒𝜒𝑡𝑡
𝐴𝐴𝐶𝐶+𝜉𝜉𝑡𝑡

𝐴𝐴𝐶𝐶� + 𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝑒𝑒
�𝜒𝜒𝑡𝑡

𝐴𝐴𝐴𝐴+𝜉𝜉𝑡𝑡
𝐴𝐴𝐴𝐴� 

Additionally, the payable copper content in concentrates is also dependent on the metal grade (𝑔𝑔), 

multiplied by a recovery factor (𝑟𝑟), subject to a minimum deduction (MD).  

𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶 = �𝑔𝑔𝐶𝐶𝐶𝐶 − 𝑀𝑀𝐷𝐷𝐶𝐶𝐶𝐶, 𝑔𝑔𝐶𝐶𝐶𝐶 − 𝑀𝑀𝐷𝐷𝐶𝐶𝐶𝐶 < 𝑔𝑔𝐶𝐶𝐶𝐶 × 𝑟𝑟𝐶𝐶𝐶𝐶
𝑔𝑔𝐶𝐶𝐶𝐶 × 𝑟𝑟𝐶𝐶𝐶𝐶, 𝑔𝑔𝑖𝑖 − 𝑀𝑀𝐷𝐷𝑖𝑖 ≥ 𝑔𝑔𝐶𝐶𝐶𝐶 × 𝑟𝑟𝐶𝐶𝐶𝐶

  ∀ 𝑔𝑔𝐶𝐶𝐶𝐶 ≥ 𝑀𝑀𝐷𝐷𝐶𝐶𝐶𝐶 

𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶 = 0  ∀  𝑔𝑔𝐶𝐶𝐶𝐶 < 𝑀𝑀𝐷𝐷𝐶𝐶𝐶𝐶 

On the other hand, precious metals in concentrates are paid only if their content is above the 

minimum deduction levels, otherwise they are priced at zero. The final payable content of precious 

metals is determined by multiplying the metal grade by a recovery factor.  

𝑝𝑝𝑝𝑝𝑖𝑖 = � 0    , 𝑔𝑔𝑖𝑖 ≤ 𝑀𝑀𝐷𝐷𝑖𝑖    
𝑔𝑔𝑖𝑖 × 𝑟𝑟𝑖𝑖, 𝑔𝑔𝑖𝑖 > 𝑀𝑀𝐷𝐷𝑖𝑖  

 

𝑖𝑖 = 𝐴𝐴𝐶𝐶,𝐴𝐴𝑔𝑔 

In addition, Dt is the sum of deductions applied, including copper Treatment Charges (TC) and 

copper Refining Charges (RCu), as well as gold Refining Charges (RAu) and silver Refining Charges 

(RAg).  

𝐷𝐷𝑡𝑡 = 𝑇𝑇𝐶𝐶𝑡𝑡 + 𝑅𝑅𝑡𝑡𝐶𝐶𝐶𝐶 + 𝑅𝑅𝑡𝑡𝐴𝐴𝐶𝐶 + 𝑅𝑅𝑡𝑡
𝐴𝐴𝐴𝐴 
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Copper TC are quoted in US Dollars per tonne of concentrate, usually expressed on a dry basis, 

while copper RC is quoted in US cents of dollars per pound of payable copper content. To apply 

copper TC/RC discounts to concentrate pricing, we have assumed that they remain constant at 

benchmark levels throughout their year of validity. TC/RC benchmark levels have been forecasted 

using the Holt’s Linear Exponential Smoothing (LES) method, which delivers the best forecasts of 

those analyzed in Chapter 3, treating TC and RC separately instead of observing the usual 10:1 

relation. Holt’s LES model may be expressed by the combination of level, trend and forecast 

updating equations, written as follows: 

𝐿𝐿𝑡𝑡 = 𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)(𝐿𝐿𝑡𝑡−1 + 𝑇𝑇𝑡𝑡−1) 

𝑇𝑇𝑡𝑡 = 𝛽𝛽(𝐿𝐿𝑡𝑡 − 𝐿𝐿𝑡𝑡−1) + (1 − 𝛽𝛽)𝑇𝑇𝑡𝑡−1 

𝑌𝑌�𝑡𝑡+𝑘𝑘 = 𝐿𝐿𝑡𝑡 + 𝑘𝑘𝑇𝑇𝑡𝑡 

In addition, gold and silver RC are applicable as long as there is gold or silver payable content in the 

concentrate, gold RC being quoted in USD per troy ounce of payable gold content and silver RC in 

USD per gram of payable silver content.  

𝑅𝑅𝑡𝑡𝑖𝑖 = 𝑅𝑅𝐶𝐶𝑡𝑡𝑖𝑖 × 𝑝𝑝𝑝𝑝𝑖𝑖 

Finally, Pt is the overall penalty for an n number of punishable elements in the concentrate which 

negatively affect its quality as well as the chemical, mechanical and electrical properties of the 

copper products made with that concentrate. These penalties are calculated as a function of the 

excessive content of the punishable element beyond the penalty-free limit, below which the 

concentrate would be exempt of penalty for that element. 

𝑃𝑃𝑡𝑡 = �𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖

 ∀ 𝑡𝑡 

𝑝𝑝𝑖𝑖 = �
0, 𝑔𝑔𝑖𝑖 < 𝐹𝐹𝑖𝑖

(𝑔𝑔𝑖𝑖 − 𝐹𝐹𝑖𝑖) × 𝜌𝜌𝑖𝑖 , 𝑔𝑔𝑖𝑖 ≥ 𝐹𝐹𝑖𝑖
 



 
 

74 
 

Where 𝑔𝑔𝑖𝑖 is the content of the punishable element i, Fi is the penalty-free limit content for that 

element and 𝜌𝜌𝑖𝑖 is the penalty per unit of excessive content of the punishable element i beyond the 

penalty-free limit. The unitary penalty is set as the nominal penalty 𝛿𝛿𝑖𝑖, divided by the nominal 

punishable increment of element i, hi. 

𝜌𝜌𝑖𝑖 =
𝛿𝛿𝑖𝑖
ℎ𝑖𝑖

 ∀ 𝑖𝑖 

4.3. Copper concentrates benchmark price forecasting 

Copper concentrates daily prices have been modelled using Matlab software employing historical 

daily official spot and futures data from the two main commodity markets (LME - copper; COMEX 

- gold and silver) obtained from Refinitiv EIKON as well as historical copper TC/RC benchmark 

levels from 2004 to 2018 to calibrate the model. Daily forecasts for each concentrate layout have 

been obtained using Monte Carlo simulations performing 1000 trials for each concentrate to up to 

one year ahead (2019). 

 

This horizon has been chosen as the price of concentrates beyond a year may be of scarce interest 

for market participants as most copper concentrate transaction occur in a shorter timeframe, whilst 

this still allows to understand the model’s behaviour while key pricing components, such as metals 

prices, evolve over time. 

 

Payable metals prices have been modelled separately to each other, calibrating the model within the 

in-sample timeframe of the datasets (2004-2018) using both spot and future data for each metal. 

Metals prices forecasts are put together, along with the projected values of discounts and penalties, 

to build the concentrate forecasts. 
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4.3.1. Parameters estimation 

The whole set of parameters for the Schwartz-Smith two-factor model for metal prices 

(𝜅𝜅𝑖𝑖,𝜎𝜎𝜒𝜒𝑖𝑖 ,𝜎𝜎𝜉𝜉
𝑖𝑖 , 𝜇𝜇𝑖𝑖, 𝜌𝜌𝜒𝜒𝜉𝜉

𝑖𝑖 ) are estimated following the process proposed by Barlow et al. (2004), which 

running the Kalman filter (Kalman, 1960) recursively, like the original approach by Schwartz and 

Smith (2000), maximizing the log-likelihood function calculated with the parameters obtained from 

the previous Kalman filter estimation over the model’s state-space form. The Schwartz-Smith two-

factor model used to obtain the market prices of payable metals in the concentrates is expressed in 

its state-space form by the transition equation and the measurement equation, being the first: 

𝑑𝑑𝑡𝑡 = 𝑐𝑐 + 𝐺𝐺𝑡𝑡−1 + 𝜔𝜔𝑡𝑡, 𝑡𝑡 = 1, … ,𝑛𝑛𝑇𝑇   

where, 

𝑑𝑑𝑡𝑡 ≡ [𝜒𝜒𝑡𝑡, 𝜉𝜉𝑡𝑡], 𝑣𝑣 2 × 1 𝑣𝑣𝑒𝑒𝑐𝑐𝑡𝑡𝑣𝑣𝑟𝑟 𝑣𝑣𝑜𝑜 𝑠𝑠𝑡𝑡𝑣𝑣𝑡𝑡𝑒𝑒 𝑣𝑣𝑣𝑣𝑟𝑟𝑖𝑖𝑣𝑣𝑏𝑏𝑙𝑙𝑒𝑒𝑠𝑠; 

𝑐𝑐 ≡ �0, 𝜇𝜇𝜉𝜉∆𝑡𝑡�, 𝑣𝑣 2 × 1 𝑣𝑣𝑒𝑒𝑐𝑐𝑡𝑡𝑣𝑣𝑟𝑟; 

𝐺𝐺 ≡ �𝑒𝑒
−𝜅𝜅∆𝑡𝑡 0
0 1

� , 𝑣𝑣 2 × 2 𝑚𝑚𝑣𝑣𝑡𝑡𝑟𝑟𝑖𝑖𝑑𝑑; 

With 𝜔𝜔𝑡𝑡 being a 2 × 1 vector of serially uncorrelated, normally distributed disturbances with 

E[𝜔𝜔𝑡𝑡] = 0 and Var[𝜔𝜔𝑡𝑡] = 𝑑𝑑 ≡ 𝐶𝐶𝑣𝑣𝑣𝑣[(𝜒𝜒∆𝑡𝑡, 𝜉𝜉∆𝑡𝑡)], ∆𝑡𝑡 the length of the time period and 𝑛𝑛𝑇𝑇 the 

number of time periods in the dataset. 

Being the measurement equation: 

𝑦𝑦𝑡𝑡 = 𝑑𝑑𝑡𝑡 + 𝐹𝐹′𝑡𝑡𝑑𝑑𝑡𝑡 + 𝑣𝑣𝑡𝑡, 𝑡𝑡 = 1, … , 𝑛𝑛𝑇𝑇 

where 𝑦𝑦𝑡𝑡 ≡ [ln𝐹𝐹𝑇𝑇1, … , ln𝐹𝐹𝑇𝑇𝑛𝑛] is a 1 × 𝑛𝑛 vector of log future prices with time maturities 

𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛; 𝑑𝑑𝑡𝑡 ≡ [𝐴𝐴(𝑇𝑇1), … ,𝐴𝐴(𝑇𝑇2)] is a 𝑛𝑛 × 1 vector, 𝐹𝐹𝑡𝑡 ≡ [𝑒𝑒−𝜅𝜅𝑇𝑇11, … , 𝑒𝑒−𝜅𝜅𝑇𝑇𝑛𝑛1] is a 𝑛𝑛 × 2 

matrix and 𝑣𝑣𝑡𝑡 is a 𝑛𝑛 × 1 vector of serially uncorrelated, normally distributed disturbances with 

E[𝑣𝑣𝑡𝑡] = 0 and 𝐶𝐶𝑣𝑣𝑣𝑣[𝑣𝑣𝑡𝑡] = 𝑉𝑉. 
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The parameters estimation procedure has been run independently for each payable metal using spot 

and futures data from 2004 to 2018. The different maturities of contracts considered for the 

parameters estimation for each metal are shown in Table 25. The maximum number possible of 

maturities of contracts have been considered to calibrate the models in order to increase the metal’s 

price forecasts reliability and longer-term accuracy. Furthermore, according to Schwartz-Smith 

(2000), the model’s state variable may ultimately be estimated within a range of around ±8% if only 

spot data are used, whereas if multiple future contracts with different maturities are used the 

uncertainty will be reduced. 

Table 25  
Contracts considered for parameters estimation. 

 Exchange Contracts 
Cu LME Cash, 3M, 15M, 27M, 63M 
Au COMEX Cash, 2M, 3M, 6M, 9M, 12M, 15M, 18M, 20M 
Ag COMEX Cash, 2M, 3M, 6M, 9M, 12M, 15M, 18M, 20M 

4.4. Metals and Copper TC/RC Forecasts 

In-sample daily metals prices from 2004 to 2018 along with their estimation using 

Schwartz and Smith’s (2000) model with parameters adjusted through the Kalman filter 

maximum likelihood recursive method proposed by Barlow (2004) are shown in Figure 

6. 

 

Figure 6. Observed and Schwartz and Smith’s two-factor model estimation for 2004-

2018 daily metals prices. 
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The optimum parameters estimations obtained using historical daily data of spot and futures prices 

for each metal are shown in Table 26, along with the different error estimations for the measurement 

equation with the future contracts employed with each metal at every maturity. Values of the log 

likelihood function have been maximized to achieve the parameters that render the best forecast for 

each commodity, thus enhancing the model fitting to historical data and forecasting capacity of 

metal prices and of concentrates prices consequently.  

Table 26  
Parameters values for Schwartz and Smith’s model for Copper, Gold 
and Silver obtained through the Kalman Filter and maximum 
likelihood using futures and spot prices data from 2004 to 2018. 

 Copper Gold Silver 
𝜅𝜅 0.2427 0.0440 0.0455 
𝜎𝜎𝜒𝜒 0.2418 0.4369 0.4139 
𝜇𝜇 0.0958 0.0606 -0.2718 
𝜎𝜎𝜉𝜉  0.3121 0.4660 0.4230 
𝜌𝜌𝜒𝜒𝜉𝜉  -0.2889 -0.8852 -0.5549 
𝑙𝑙𝑣𝑣𝑔𝑔𝐿𝐿 5.5948 × 104 1.3311 × 105 1.2112 × 105 

s1 8.8710 × 10−5 1.155 × 10−5 5.038 × 10−6 
s2 1.3519 × 10−4 2.401 × 10−7 1.017 × 10−5 
s3 1.000 × 10−7 2.757 × 10−6 1.114 × 10−5 
s4 0.0040 1.865 × 10−6 8.453 × 10−6 
s5  1.047 × 10−6 2.549 × 10−6 
s6  2.044 × 10−4 6.944 × 10−5 
s7  0.002 5.695 × 10−4 
s8  0.0055 0.0236 

 

On the other hand, the LES model’s forecasts for 2019 are 84.1247 USD/dmt for TC and 8.4125 

USc/lb for RC. As it may be seen, the usually observed 10:1 historical relation in TC/RC levels 

slightly differs in the values obtained, as TC and RC have been modeled individually. The LES 

model has been calibrated following the procedure explained in Chapter 3, minimizing the Mean 

Absolute Percentage Error (MAPE) for the one-year-ahead forecast, achieving a value of 4.12%. 
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4.5. Copper concentrates benchmark price forecasts and errors 

The five different copper concentrates, whose layouts have been defined in Chapter 2, have been 

used to test the model’s fitting errors and forecasting accuracy. As previously explained, these five 

concentrates have been used to be able to check the model’s behaviour in common conditions, 

pricing regular clean concentrates, as well as complex concentrates, having high levels of 

punishable elements, or concentrates with meaningful levels of gold or silver. 

 

Figure 7. Estimations of concentrates 1 and 2 prices compared to objective price for the 

in-sample period (2004 - 2018). 

 

Model price estimations for the in-sample period (2004 – 2018) for concentrates 1 and 2 compared 

to their objective price calculated with spot data are shown on Figure 6. In addition, fitting errors for 

the five concentrates considered are shown on Table 27. Error values have been measured with 

respect to their market price calculated using historical spot metals prices during the same historical 

period. 
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Table 27  
Fitting errors for concentrates price estimation (2004 – 2018). 
 C1 C2 C3 C4 C5 
MD -4.0332 -0.9911 -1.8450 -3.6765 -5.3456 
MAD 10.2647 10.1856 10.1189 10.7307 14.1090 
MSE 279.4339 236.0696 243.5428 299.6983 525.5189 
RMSE 16.7163 15.3646 15.6059 17.3118 22.9242 
MPE -0.0018 −4.0298 × 10−5 −4.0160 × 10−4 -0.0014 -0.0017 
MAPE 0.0071 0.0041 0.0046 0.0064 0.0069 

 

For the 2019 out-of-sample forecasts of concentrates prices we have performed 1000 simulations 

for each of the five concentrates during the period considered. The first forecast obtained for every 

concentrate is shown on Figure 8 compared to the objective concentrates prices for the same year, 

as well as to the averages of the 1000 simulations for the one-year ahead daily prices forecasts for 

each concentrate considered, which represent the expected values for the concentrates’ prices by the 

model over time. 

 

Figure 8. 2019 Model's forecasts for concentrates, expected prices and objective spot 

prices. 
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Short-term and longer-term average forecasting error measures achieved for each concentrate may 

also be seen on Table 28. Forecasting error measures have also been calculated by comparing 

forecasted values with concentrates prices calculated for the year 2019 using SPOT prices data of 

payable metals. 

Table 28  
Errors for concentrates price forecasting. 

 C1 C2 C3 C4 C5 Average 

1 day 

MD -1.452 4.320 2.816 -0.365 -1.554 0.753 
MAD 21.448 36.414 32.476 25.591 30.707 29.327 
MSE 699.021 2006.750 1598.975 996.447 1433.446 1346.928 
RMSE 21.448 36.414 32.476 25.591 30.707 29.327 
MPE -0.001 0.001 0.001 0.000 -0.001 0.000 
MAPE 0.016 0.012 0.013 0.015 0.015 0.014 

5 days 

MD -26.908 -12.971 -16.123 -25.393 -35.894 -23.458 
MAD 45.171 62.898 57.549 50.514 63.286 55.883 
MSE 3403.150 6694.986 5595.886 4278.982 6694.282 5333.457 
RMSE 45.171 62.898 57.549 50.514 63.286 55.883 
MPE -0.020 -0.004 -0.006 -0.015 -0.018 -0.013 
MAPE 0.033 0.021 0.023 0.030 0.032 0.028 

1 month 

MD -13.209 3.010 -0.883 -10.518 -16.861 -7.692 
MAD 73.552 120.444 107.985 86.825 104.925 98.746 
MSE 9419.109 25761.431 20670.874 13223.143 19216.173 17658.146 
RMSE 73.552 120.444 107.985 86.825 104.925 98.746 
MPE -0.010 0.001 0.000 -0.006 -0.009 -0.005 
MAPE 0.053 0.040 0.042 0.050 0.052 0.048 

3 
months 

MD 41.757 64.676 58.815 48.841 59.422 54.702 
MAD 134.769 220.363 197.857 159.356 192.387 180.946 
MSE 31407.277 84012.894 67726.073 43933.814 64014.626 58218.937 
RMSE 134.769 220.363 197.857 159.356 192.387 180.946 
MPE 0.027 0.020 0.022 0.026 0.027 0.025 
MAPE 0.092 0.070 0.075 0.087 0.090 0.083 

6 
months 

MD -2.881 4.668 3.158 -1.298 -3.251 0.079 
MAD 183.731 301.582 270.094 217.130 262.186 246.945 
MSE 60179.870 159490.231 128294.522 83681.170 122385.032 110806.165 
RMSE 183.731 301.582 270.094 217.130 262.186 246.945 
MPE -0.004 0.001 0.001 -0.002 -0.004 -0.002 
MAPE 0.128 0.097 0.103 0.121 0.126 0.115 

1 year 

MD -100.988 -23.680 -41.838 -90.147 -132.711 -77.873 
MAD 267.058 424.151 378.967 309.632 378.378 351.637 
MSE 137882.891 322525.588 260476.025 181401.640 274961.672 235449.563 
RMSE 267.058 424.151 378.967 309.632 378.378 351.637 
MPE -0.076 -0.008 -0.016 -0.052 -0.068 -0.044 
MAPE 0.193 0.133 0.142 0.175 0.188 0.166 
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MAPE values for concentrates price forecasts barely exceed 1.5% for the one-day ahead horizon, 

and 5% for the one-month ahead. On the most frequent horizons for copper concentrates trading, 

the one-month ahead and the three-month ahead, average MAPE values of the model varies from 

4.8% for the first and 8.3% for the latter, thus giving reasonable estimations over the final price that 

market participants would pay for concentrates, as well as a clearer picture of the level of 

commodity-price-related risk their taking, their short-term liquidity needs or their hedging 

necessities, among other concerns they face. Additionally, non-existing references in literature on 

copper concentrate pricing, making this the first research to address the lack of an appropriate model 

for this, impedes comparing the values of errors achieved with any pre-existing benchmark.  

 

The influence of high gold or silver grade is clearly a driving factor as may be understood by the 

prime paid for C2 and C3 in comparison to the rest of the concentrates. We also find that the 

presence of high levels of gold and silver in the concentrate act as a stabilizing factor for concentrates 

prices as precious metals tend to stay less volatile than copper. This has a direct impact in the 

model’s accuracy when forecasting the future prices of these kind of concentrates. Thus, MAPE 

values for C2 and C3 for the three-month horizon stay between 7.0-7.5%, whereas it goes above 

8.5% for C4 and 9.0% for C1 and C5. This effect is amplified as the forecasting horizon is extended, 

reaching differences in MAPE values of 2.4 percentage points between C3 and C5 and 6.0 

percentage points between C1 and C2 for the one-year horizon.  

 

Taking the full scope of concentrates layout considered and using MAPE as the benchmark to 

compare the model’s forecasting ability for a particular concentrate, the group of those presenting 

higher levels of precious metals are forecasted more accurately by the model (C2 and C3). On the 

other hand, the price of those with lower levels of precious metals are tougher to forecast by the 

model (C4, C5 and C1). By the contrary, RMSE values for the different concentrates indicate a 
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larger dispersion of residuals for C2 and C3, as well as the opposite for the others, at every horizon 

studied, indicating that the influence of high levels of gold and silver, whilst stabilizing the average 

forecast, may be tending to introduce a higher variance in individual predictions. 

 

In addition, high values of copper may even compensate the amounts of penalties due to punishable 

elements in the concentrate and make them commercially feasible as is the case of C5, grading over 

8 percentage points more of copper than C4. Nevertheless, the difference in value between highly 

complex concentrates due to high levels of payable elements, such as C4, and clean concentrates 

with an average content of payable elements, such as C1, might not be sufficient to compensate the 

complexity and additional costs incurred in treating the most complex ones at specialized smelters 

versus the cleanest. In this case, this difference in value is an average of 24.4% more for C4 than C1 

for the one-year ahead forecast.  

4.2.1. Effects of discounts and punishable elements over the price of concentrates 

The value of the discounts as well as the penalties due to punishable elements and the total amount 

of deductions applied expressed in USD per dry metric tonne of concentrate for the year 2019 (one-

year ahead forecast) may be seen in Table 28 for each of the concentrates considered. According 

to our results, the impact of punishable elements on the overall deduction, and thus on the final price 

paid for concentrates is considerable, as they just represent 8.35% of the total amount subtracted for 

C1, which is regarded as a clean concentrate, while it is a 30.43% for C5, with a net increment of 

54.02 USD/dmt, over four times as much as for the previous case. 

Table 28 
Discounts and Penalties in USD/dmt of concentrate for the 2019 forecast. 

 C1 C2 C3 C4 C5 
Cu TC 84.12 84.12 84.12 84.12 84.12 
Cu RC 47.52 50.26 49.33 50.69 65.70 
Au RC 0.00 8.98 6.04 1.53 0.52 
Ag RC 0.00 0.67 2.43 1.06 0.63 
Penalties 12.00 9.30 14.83 55.93 66.02 
Total 143.64 153.34 156.76 193.33 216.99 
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Notwithstanding, the copper content in C5 is noticeably higher than for C1 which presumably to 

some extent offsets the increase in penalties and in copper RC. On the other hand, regarding C4, the 

penalties have increased by 366% compared to the first concentrate, now accounting for 28.93% of 

the overall deductions, while the copper content has barely increased from 26.62% to 28.33%. This 

could even make C4 less valuable than C1 if it were not for the important difference in gold and 

silver content which helps boost its price. 

 

Finally, the discounts’ relative weight with respect to payable metals content fluctuates over time 

for a specific concentrate layout as metal prices and discounts themselves also do. The forecasted 

relative weight of the overall discounts on the payable metal content of each of the concentrates is 

represented by the boxplots in Figure 9.  

 

Figure 9. Discounts’ relative weight in payable metal content in concentrate. 

 

The mean value of the discounts’ relative weights with respect to the payable metals content for 

each concentrate is shown by the middle line of the boxplots, while the lower and upper limits 
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represent the 25th and 75th percentiles, respectively. Also, the whiskers stretch to the furthermost 

values in the forecasted timeseries that have not been considered as outliers.  
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Chapter 5: Managing a High Uncertainty Scenario through a Real 

Option Assessment: Evidence from a Copper Concentrate Trader 

5.1. Introduction 

Most commodity traders participate to some extent in the extraction or processing stages of the 

commodities supply chain. However, independent traders, also known as trading houses, neither 

produce nor process the commodities that they trade with, and yet they play a major role in 

commodity markets. Independent traders buy and sell a commodity seeking to take advantage of 

potentially profitable arbitrage opportunities in time and space, connecting primary producers to 

processors. Their activity normally involves bespoke agreements to ensure supply, while mastering 

logistics and simultaneously merging financial markets with physical transactions to mitigate risks 

and ensure margins. 

 

As a subset of commodity traders, metal traders focus on the most universally used industrial and 

precious metals, not limiting themselves to the refined form of the metals, but also engaging in the 

trading of unrefined forms, semi-processed or raw ores. For the case of copper, copper concentrate 

is the main form of unrefined copper and the primary product sold by most copper miners, being 

massively traded by independent trading houses. 

 

Traders acquire copper concentrate from miners, taking the other side of the trade from smelters 

and refiners, which process concentrates to obtain copper cathodes. Their role is predominant in the 

global copper market. An example is Glencore, which in 2020 traded 3.4 million tons of metal 

copper and concentrates, almost as much as the mining production of Peru and China combined, 

the second and third leading copper producers in the world respectively. Meanwhile, its main 
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competitor, Trafigura, traded 11.1 million tons of copper, zinc, lead and nickel concentrates as well 

as alumina and cobalt hydroxide just in 2020 alone (Trafigura Beheer B.V., 2021).    

 

Consequently, in this chapter we analyse the copper concentrate trading business resorting to the 

Real Options methodology to assess the high volatility and uncertainty which dominates in this area 

of commodity markets. The results obtained indicate that this method can be applied by copper 

concentrate traders to separate the price uncertainty from their business operative and financial 

planning for the future. This provides them with a reliable tool to lower the level of uncertainty 

affecting their long-term goals, as well as keeping the risk that they are taking under control. It also 

gives them higher managerial flexibility. 

5.2. Related Work 

Traditionally, commodity trading houses have developed their activities in utter discretion, having 

little incentive to disclose their most sensitive information, if any at all. Hence, details related to the 

conditions of the agreements that traders reach with either primary producers or their clients, the 

pricing mechanisms for concentrates, as well as for most of the commodities they trade with, or the 

structure of some usual financial tools that they employ such as the pre-payment and pre-finance 

agreements, are widely unknown except by those directly involved in commodity trading. 

 

This lack of understanding of the behaviour of commodity traders has not been straightforwardly 

addressed in the academic literature either. This has mainly focused on studying commodities 

pricing methods, such as Brennan and Schwartz (1985), Schwartz and Smith (2000), Liu et al. 

(2017), and Dehghani and Bogdanovic (2018), who analyse different alternatives to forecast copper 

prices as well as assessing the value of commodity-related projects.  Jia and Kang (2022) formulate 
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two claims about spot and future price predictions by investigating six industrial metals traded in 

the London Metal Exchange (LME). 

 

Furthermore, a significant number of works have instead centred on evaluating the feasibility of 

commodity-related investments, such as Sarkis and Tamarkin’s (2005), which applies Real Options 

analysis to a particular petroleum project that would generate greenhouse gases emissions permits. 

Many works have employed Real Options as their main tool to assess a certain project’s feasibility 

and its long-term value. Real Options are quite suitable to determine the value of projects which rely 

on commodities, either energy, mineral, agricultural or soft commodities, and which require the 

estimation of financial statements. This method also helps to draw more accurate financial plans as 

it allows considering a stretch of different possible scenarios. 

 

Many researchers have employed Real Options specifically focused on mining projects, as 

summarised by Savolainen (Savolainen, 2016), such as Inthavongsa et al. (Inthavongsa et al., 2016), 

who employ a real-option approach to analyse a hypothetical gold mine project. Similar research 

by Zhang et al. (2015) evaluated a gold mine with price uncertainty as well as analysing its optimal 

long-term production strategy. This has been extensively examined in the literature (Ajak and 

Topal, 2015; Aminrostamkolaee et al., 2017; Guj and Chandra, 2019; Hazra et al., 2019; Siña and 

Guzmán, 2019). 

 

On the other hand, another branch of research has focused on valuing companies that extract, 

process and trade with commodities without considering the trading aspect of their business as a 

standalone element, or even as a key aspect for their profitability or for their company value (Kaiser, 

2013; 2015). In this sense, Misund et al. (2015) valued a series of US and non-US oil and gas 

companies considering the primary factors affecting production. Sabet and Heaney (2017) 
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examined the relation between oil and gas firms share prices, and the return, volatility and drilling 

activity of crude oil and natural gas, neither having taken into consideration the trading side. 

Moreover, Amram and Kulatilaka (1998) focused on using Real Options to manage the uncertainty 

of investments.  Barton and Lawryshyn (2011) fit managerial cash flows estimates to a continuous 

cash flow process with changing growth and volatility parameters. Damodaran (2012) had in large 

part laid the basis for most of the currently-used investment valuation tools. 

 

This chapter focuses on the copper concentrate trading business. Here the degree of uncertainty is 

notably higher than for other commodities because of the absence of a price reference for copper 

concentrates, which prevents market participants from discovering price outright, opposite to what 

happens with copper cathodes for instance. It also very seriously hinders their ability to hedge their 

exposure to the commodity. In contrast to all the previous research, this research analyses copper 

concentrate trading as a single and independent element of commodity markets. This is done 

through its highest exponent, represented by independent commodity traders, tackling the 

remarkable void in the literature on commodity traders’ operations, financials, and inner mechanics, 

particularly regarding copper concentrates. 

 

The copper concentrate trading business model is reviewed in our research through the valuation of 

a standardised copper concentrate trading house, which neither produces nor processes any copper 

concentrate, using classical discounted cash flows valuation techniques and Real Options. The main 

factors affecting the activity of copper concentrate trading are considered stochastically, resorting to 

publicly available historical data on spot prices for copper, gold and silver from COMEX and the 

London Metal Exchange (LME), and forecasted five years ahead to assess the trader’s business 

future performance. 
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The methodology laid out in this chapter constitutes a first approach to commodity traders’ 

dynamics, albeit a full-scale analysis would involve taking into account long-term hedging practices 

with futures and options. Nonetheless, this procedure enables assessing the impact that strategical 

decisions have on the future financial performance of any commodity trader, which is also subdued 

by commodities price fluctuations, among other factors, if an appropriate hedge is not implemented. 

Additionally, even though we have focused on copper concentrate trading, the process developed 

in this paper may well be applicable to commodity traders regardless of the commodity or 

commodities that they are trading with. This is because its main utility is to provide continuous 

managerial flexibility under very volatile contexts, such as those which unfold in commodity 

markets.  

5.3. Materials and Method 

To assess the valuation of the copper concentrate trading company a five-year timeframe has been 

set from the years 2021 to 2025. 2020 being the last full fiscal year completed by the trader. The 

reference economical and financial data employed to develop the projections have been based on a 

commodity trader’s 2020 annual income statement and balance sheet. Given the complexity of 

copper concentrate physical trading, the starting information has been limited to exclusively 

portraying the copper concentrate trades carried out by the company, not the remaining possible 

associated deals that it might have conducted. On the other hand, exchange rate fluctuations in the 

long run have not been accounted for to model the behaviour and profitability of the trader’s activity, 

thus assuming a perfectly currency-hedge trader, with null foreign currency exposure. 

5.3.1. Concentrate Price 

The trader’s activity has been modelled employing a standard concentrate whose chemical layout 

has been detailed in Table 29. The concentrate’s specifications were set in accordance with the 
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statistical classification described in Delbeke and Rodriguez (2014), fitting the concentrate used 

within the 60th percentile of this classification, containing low levels of gold and silver. 

Table 29  
Copper Concentrate Specifications. (Source: Own elaboration 
based on Delbeke and Rodriguez (2014). 

 % Ppm g/DMT 
Cu 27.25%   
Au   1.50 
Ag   30 
As 0.002% 20  
Sb 0.002% 20  
Bi 0.003% 30  
Cd 0.005% 50  
Cl 0.005% 49  
F 0.021% 210  
Pb 0.040% 400  
Hg 0.000% 0  
Ni 0.004% 40  
Co 0.009% 90  
Se 0.002% 20  
Te 0.001% 10  
Zn 0.220% 2200  

Humidity 8.00%   
 

The expected annual prices for the copper concentrate in each period, t, comprising the years from 

2021 to 2025, have been obtained by averaging out 500 individual daily price paths for the copper 

concentrate over this timespan. The selling price for the concentrate on each day d, expressed in 

United States Dollars per dry metric ton (USD/DMT), is determined by the price model developed 

in Chapter 4. 

 

To obtain the concentrate daily price paths over the forecasting horizon we have employed a slightly 

simplified, less computing-demanding procedure than the one exposed in Chapter 4. Hence 500 

individual daily price paths for Copper, Gold and Silver have been first obtained, following the 

process shown in Figure 10. The Anderson – Darling test has been used to find out the distribution 

best fitting the historical data on daily spot prices returns from 2010 to 2020 of each metal. The 
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Anderson – Darling test has also been applied to obtain the distribution best fitting the historical data 

on annual TC benchmark levels from 2004 to 2021. 

 

Figure 10. Concentrate price paths calculation process. (Source: Own elaboration). 

 

Daily returns for Copper, Gold and Silver, 𝑠𝑠𝑑𝑑𝑘𝑘, for the N working days in each year from  2021 to 

2025, thus 𝑠𝑠𝑑𝑑𝑘𝑘 = �𝑠𝑠1𝑘𝑘, … , 𝑠𝑠𝑁𝑁𝑘𝑘� , as well as annual values for copper Treatment Charges benchmark 

levels, 𝑇𝑇𝐶𝐶𝑡𝑡, from 2022 to 2025, have been forecasted by performing 500 independent Monte Carlo 

simulations for each metal and for TC using the corresponding best-fitting statistical distribution 

shown in Table 2. Historical annual benchmark values from 2010 to 2021 used in Chapter 3 have 

been used to estimate expected annual TC benchmark levels. Additionally, forecasts and 

distribution fittings have been obtained using Oracle’s Crystal Ball add-in for Microsoft Excel. 

Table 30  
Statistical Distribution of Historical 
daily returns of metal prices. (Source: 
Own elaboration). 

 Distribution 
Cu Logistic (0; 0.01) 
Au t – Student (0; 0.01) 
Ag t – Student (0; 0.01) 
TC Weibull (66.34; 3.39) 

 

To find an adequate number of independent simulations to achieve reliable forecasts for both metal 

prices daily returns and TC benchmark levels, while also avoiding an unnecessarily high number of 

Cu price simula�on

Au price 
simula�on

Ag price simula�on

TC levels 
simula�on

Distribu�on 
fi�ng

Concentrate price paths 
calcula�on

(2021 – 2025)

Addi�onal parameters 
determina�on

(RC, Penal�es, …)

Input 
data
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simulations, we have pursued the stabilisation of the simulated timeseries’ standard deviation rate 

of decrease as the number of simulations is incremented as seen in Figure 11. 

 

 

Figure 11. Rate of decrease of sigma for different number of simulations for each metal 

price forecasts. 

 

Metals prices each day d, 𝑆𝑆𝑑𝑑𝑘𝑘, have been projected alternatively to the method presented in Chapter 

4, in which a basket of future contracts was the necessary input for the model to deliver a valid 

forecast for the metal prices. To deliver a more purposeful approach that stays in line with the main 

objective of valuating the activity of the trader, rather than giving extremely precise and reliable 

price forecasts, a purely statistical method has been implemented.  

 

This method, which sacrifices some precision in favour of simplicity, sets the closing price for each 

metal on December 31, 2020, as the initial reference, 𝑆𝑆0𝑘𝑘, for the forecasted timeseries of metal 

prices. The 500 simulated independent timeseries of daily returns of each metal have been used to 

determine the expected accumulated annual returns over the 2021 – 2025 timespan. The expected 
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accumulated annual returns to date, 𝑣𝑣𝑑𝑑𝑘𝑘, for each metal have been employed to draw individual 

expected price paths for copper, gold, and silver. 

𝑠𝑠𝑑𝑑𝑘𝑘 = �𝑠𝑠1𝑘𝑘, … , 𝑠𝑠𝑁𝑁𝑘𝑘� 

𝑣𝑣𝑑𝑑𝑘𝑘 = ��1 + 𝑠𝑠𝑑𝑑𝑘𝑘�
𝑑𝑑

 

𝑆𝑆𝑑𝑑𝑘𝑘 = 𝑆𝑆0𝑘𝑘 × �1 + 𝑣𝑣𝑑𝑑𝑘𝑘� 

𝑘𝑘 = 𝐶𝐶𝐶𝐶,𝐴𝐴𝐶𝐶,𝐴𝐴𝑔𝑔;  𝑡𝑡 = 1, … ,5 

∀ 𝑑𝑑 ≤ 𝑁𝑁 × 𝑡𝑡 

Additionally, annual expected benchmark values for copper Treatment Charges (TC), the main 

deductions along with Refining Charges (RC) that smelters apply to determine copper concentrates 

prices, have only been projected from 2022 to 2025, as the benchmark level for 2021 is already 

known by the end of 2020. On the other hand, copper RC levels have not been projected 

independently as a nominal 10:1 relation throughout the historical data employed has been 

observed, following the explanation in Chapter 3. 

 

Hence, the same relation for copper TC/RC has been used to project RC values based on projections 

of TC over the 2022 – 2025 period. On the other hand, the remaining parameters for copper 

concentrate pricing, shown in Table 31, are set at constant levels over the full timeframe applying 

the same unitary values previously used and calculated for the concentrate’s specific layout. 

Table 31  
Constant parameters for Concentrate Pricing 
(2021 – 2025). (Source: Own elaboration). 

 Value 
Gold RC 10.13 USD/DMT 
Silver RC 12.15 USD/DMT 
Penalties 12.00 USD/DMT 
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Lastly, individual forecasted price paths for each metal in the concentrate have been merged with 

the projections of copper TC/RC benchmark levels as well as with the remaining discounts to 

deliver 500 daily price paths for the copper concentrate over the 2021 – 2025 period. Daily price 

paths for the concentrate have not been used to model the trader’s financial performance over the 

projected period, instead the concentrate’s expected annual average price for each year have been 

employed. To obtain the expected annual average price for the concentrate, the daily price paths 

have been transformed into annual average price paths. The 500 annual average price paths have 

been averaged out to give a single expected annual price for the concentrate. Price paths have been 

converted into EUR/DMT, as that is the company reference currency, employing a fixed USD/EUR 

rate of 1.10. 

5.3.2. Copper concentrate trading companies valuation model 

The value of the trader within the established five-year horizon is based upon the approach of 

fundamental analysis that matches risk and return (Gajek and Kuciński, 2017; Li and Mohanram, 

2019). This can be expressed as the sum of the value of the company’s trading business, 𝑉𝑉0, 

developed in accordance with the initial planning, along with the added value that the company may 

reach due to variations from this initial business plan, 𝑉𝑉′. Thus, the company’s initial valuation, 𝑉𝑉0, 

which is also deemed to be the most likely, is expressed through the discount of Expected Equity 

Free Cash Flows (EFCF) along with the business’ Terminal Value, 𝑇𝑇𝑉𝑉𝑛𝑛, at the end of the timeframe 

considered, 𝑛𝑛 = 5.  

𝑉𝑉 = 𝑉𝑉0 + 𝑉𝑉′ 

𝑉𝑉0 = �
𝑀𝑀𝐹𝐹𝐶𝐶𝐹𝐹𝑡𝑡

(1 + 𝐾𝐾)𝑡𝑡 +
𝑇𝑇𝑉𝑉𝑛𝑛

(1 + 𝐾𝐾)𝑛𝑛

𝑛𝑛

𝑡𝑡=1

        𝑛𝑛 = 5 

On the other hand, the potential added value alternatives, 𝑉𝑉′, are analysed through Real Options, 

expressed as the sum of the expected company value if each option is exercised multiplied by its 

respective exercise probability as schematised in Figure 12. 𝐶𝐶1𝑣𝑣 and 𝐶𝐶2𝑣𝑣 are the company’s values 
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if either the first grow option or the second is exercised, whereas the 𝑑𝑑1𝑣𝑣 is the company’s value 

should the abandon option be exercised. 

 

Figure 12. Real Options valuation scheme. (Source: Own elaboration). 

 

𝑉𝑉′ = 𝑝𝑝[𝑝𝑝1𝐶𝐶1𝑣𝑣 + 𝑝𝑝2𝐶𝐶2𝑣𝑣] + (1 − 𝑝𝑝) [𝑑𝑑1𝑣𝑣] 

5.3.3. Equity free cash flows 

Equity free cash flows (Damodaradan, 2006; Yaari et al., 2016; Aharon et al., 2019; Smith and 

Pennathur, 2019) in each projected period, 𝑀𝑀𝐹𝐹𝐶𝐶𝐹𝐹𝑡𝑡, are obtained through the application of the 

Market Strategy, the Financial Strategy, the Capital Strategy, the Financial Policy and the Working 

Capital Strategy. 

𝑀𝑀𝐹𝐹𝐶𝐶𝐹𝐹𝑡𝑡 = 𝑆𝑆𝐹𝐹𝑡𝑡 + 𝑑𝑑𝑡𝑡 − 𝐼𝐼𝑡𝑡 + 𝐹𝐹𝑡𝑡 

Where both the self-financing at the end of each period, 𝑆𝑆𝐹𝐹𝑡𝑡, and the dividends perceived by 

shareholders during that period, 𝑑𝑑𝑡𝑡, are fixed by the Financial Strategy, in which the distribution of 

V’

d1v

u1v

u2v

Growth – Step 1

Growth – Step 2
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1-p
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returns or Earnings Before Interest Taxes Depreciation and Amortisation (EBITDA) is materialised. 

Seeking the preserving of the trader’s financial capabilities, as well as minimising the necessity to 

resort to external capital, the Financial Strategy has set dividends payments to zero, 𝑑𝑑𝑡𝑡 = 0, 

throughout the company’s entire lifespan. On the other hand, the trader’s self-financing at each 

period t, 𝑆𝑆𝐹𝐹𝑡𝑡, has been calculated as the generated EBITDA, minus the financial expenses, 𝑜𝑜𝑡𝑡, and 

the amount of taxes paid by the company, 𝑇𝑇𝑇𝑇𝑡𝑡. 

𝑆𝑆𝐹𝐹𝑡𝑡 = 𝑀𝑀𝐸𝐸𝐼𝐼𝑇𝑇𝐷𝐷𝐴𝐴𝑡𝑡 − 𝑜𝑜𝑡𝑡 − 𝑇𝑇𝑇𝑇𝑡𝑡 

On the other hand, EBITDA (Rozenbaum, 2019), is obtained through the Market Strategy. This 

sets up the trader’s operative over the projected timeframe 2021 – 2025 by projecting the number 

of standard containers the trader is expected to sell in each period, expressed in Twenty-foot 

Equivalent Units (TEU), as well as the annual increase rate of sales of containers. The sold mass of 

containers in each period, expressed in Dry Metric Tons (DMT), 𝑉𝑉𝑡𝑡, is a function of the nominal 

loading capacity of each container, 27.6 MT/TEU, as well as the humidity of the concentrate. 

𝑀𝑀𝐸𝐸𝐼𝐼𝑇𝑇𝐷𝐷𝐴𝐴𝑡𝑡 = (𝑉𝑉𝑡𝑡 × 𝐶𝐶𝑡𝑡) − 𝐶𝐶𝑀𝑀𝑡𝑡 − 𝐶𝐶𝑀𝑀𝑡𝑡 − 𝑂𝑂𝑀𝑀𝑡𝑡 

The EBITDA in each period is hence calculated as the net value of sales, this being the mass of dry 

tons of copper concentrates sold multiplied by their forecasted price in €/DMT, 𝑉𝑉𝑡𝑡 × 𝐶𝐶𝑡𝑡, minus the 

costs of acquiring the concentrates, 𝐶𝐶𝑀𝑀𝑡𝑡, the costs of employees, 𝐶𝐶𝑀𝑀𝑡𝑡, and the operative expenses, 

𝑂𝑂𝑀𝑀𝑡𝑡. These costs and expenses that the trader faces in its business operation have been set in 

accordance with the observed data from the trading company taken as a reference, the cost of the 

concentrates being indirectly determined by fixing a gross margin over the sales value. 

 

Next, by the application of the Capital Strategy, particularly through the Investment Policy, the 

company’s investment needs, or Capital Expenditures (CAPEX), for each period t have been 

outlined, these being defined as the increases of the non-current assets, ∆𝑁𝑁𝐶𝐶𝐴𝐴, minus their 

decrements, ∇NCA𝑡𝑡, plus the change in the net working capital, ∆∇𝑁𝑁𝑑𝑑𝐶𝐶𝑡𝑡. 
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𝐶𝐶𝐴𝐴𝑃𝑃𝑀𝑀𝑇𝑇𝑡𝑡 = ∆𝑁𝑁𝐶𝐶𝐴𝐴𝑡𝑡 − ∇NCA𝑡𝑡 ± ∆∇𝑁𝑁𝑑𝑑𝐶𝐶𝑡𝑡 

 

Additionally, as part of the Investment Policy the Working Capital Strategy has been designed. This, 

given the nature of physical trading, and in a simplified form, establishes that payments to suppliers 

are executed only once the copper concentrates purchased are served at the trader’s designated port 

for loading. On the other hand, the collection of payments from customers is estimated to be made 

once the cargo has been delivered at the destination port. The trader’s business model has been 

standardised, restricting its activity to fetch concentrates from different origins in South America 

and delivering to smelters in China.  

 

Finally, through the Financial Policy, the indebting capacity of the company has been projected, this 

being described as the increases of the non-current liabilities, ∆𝑁𝑁𝐶𝐶𝐿𝐿𝑡𝑡, minus their decrements, 

∇𝑁𝑁𝐶𝐶𝐿𝐿𝑡𝑡, plus capital increases, 𝐶𝐶𝑆𝑆𝑡𝑡. 

𝐹𝐹𝑡𝑡 = ∆𝑁𝑁𝐶𝐶𝐿𝐿𝑡𝑡 − ∇𝑁𝑁𝐶𝐶𝐿𝐿𝑡𝑡 + 𝐶𝐶𝑆𝑆𝑡𝑡 

5.3.4. Terminal value 

The Terminal Value depicts the expected income the trader should obtain beyond the year set as a 

limit for the planification horizon, year n, this being 2025. It can be established assuming as a 

constant the equity free cash flow from that moment on, 𝑀𝑀𝐹𝐹𝐶𝐶𝐹𝐹𝑛𝑛, discounted at a factor K. 

𝑇𝑇𝑉𝑉𝑛𝑛 =
𝑀𝑀𝐹𝐹𝐶𝐶𝐹𝐹𝑛𝑛
𝐾𝐾

 

5.3.5. Discount factor 

The discount factor for future cash flows, K, has been determined employing the formulation in the 

Capital Asset Pricing Model, based on Markowitz (1952) and Markowitz (1959), and later 

developed in subsequent works by Sharpe (1964) and Makwasha et al. (2019). This is a function of 

the perceived risk-free rate, 𝑅𝑅𝑓𝑓, plus the market risk premium, denoted as the difference between 
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the demanded return by investors, 𝑅𝑅𝑚𝑚, with the risk-free rate, multiplied by a factor that correlates 

the risk of the company with the market, 𝛽𝛽.  

𝐾𝐾 = 𝑅𝑅𝑓𝑓 + �𝑅𝑅𝑚𝑚 − 𝑅𝑅𝑓𝑓� × 𝛽𝛽 

The 𝛽𝛽 employed has been determined qualitatively, given the inconvenience of calculated betas for 

non-publicly traded companies, which cannot be compared to one that is and concerning which 

there are enough historical data. For the specific case of the copper concentrates trader, there is no 

availability of data from a similar company that could be employed for the calculation of a generic 

beta. It is also unfeasible to fall back on data from large publicly traded corporations as these have 

a vertically integrated structure, the extractive, processing, trading, and supplying steps of the 

commodities supply chain being developed altogether. 

 

Consequently, the MASCOFLAPEC method for qualitative betas described in Fernandez and 

Carabias (2007) has been used, adjusting the weighing to the ones shown in Table 32. The answers 

to two separate surveys undertook independently by executive staff from the reference trader, where 

each question could be answered grading from 1 to 5 according to the interviewed person’s 

perceived level of risk from low to remarkably high, have been averaged out. The overall result of 

each questionnaire has also been normalised by employing a factor of 0.5 in both surveys, thus 

ensuring that the values of the qualitative betas fall within a reasonable range from 0.5 to 2.5. 
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Table 32  
MASCOFLAPEC weighing. (Source: Own elaboration).  

  Weight 
M Management 10.0% 
A Assets; Business; Industry/Product 25.0% 
S Strategy 3.0% 
C Country risk 15.0% 
O Operative leverage 10.0% 
F Financial leverage 15.0% 
L Liquidity of investment 5.0% 
A Access to sources of funds 5.0% 
P Partners 2.0% 
E Exposure to other risks 5.0% 
C Cash flow stability 5.0% 

 

5.3.5. Real options 

The different long-run managerial alternatives have been considered as the business faces 

uncertainties that might either play in its favour or against it. Should market conditions become 

favourable enough, the trader could opt for expanding its supply capacity at differentiated steps 

whether conditions are more or less advantageous. On the other hand, in the event of a critical 

market downturn the trader would choose to terminate its operations rather than continuing with the 

base case. The expected value of the trading company as a function of the possible modifications of 

the original business plan has been assessed using the Real Options method (Savolainen, 2016; 

Aminrostamkolaee et al., 2017; Berk and Podhraski, 2018; Yeh and Lien, 2020). 

  

To value the different alternatives to be considered, mean annual concentrate prices at each year 

between 2021 – 2025 have been calculated based on previous simulations. As shown in Figure 13, 

each of the 500 simulated timeseries of daily concentrate prices have been averaged annually so 

each of the 1310 components is funnelled to just 4 elements. Mean annual prices are hence taken to 

populate a discrete distribution that allows for real option modelling under the concentrate price 

uncertainty.  
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Figure 13. Global average concentrate prices and Company Expected Value calculation 

workflow. (Source: Own elaboration). 

To assess the different scenarios the trader’s management would face throughout the company’s 

lifetime, three different kinds of real options have been considered: Abandonment, Continuity and 

Growth. The abandonment option has been first considered to model the company’s terminal value 

if adverse market conditions occur. The option is set to be exercised if the company’s expected 

value falls below the opportunity cost, which has been assumed to be the company’s value estimated 

through the DCF method previously developed. 

  

On the other hand, a growth option with two differentiated incremental steps has been modelled in 

which supply capacity would be first increased by 25 percentage points, or ultimately by 50 

percentage points, rounded to give complete containers. These increases in the trader’s supply 

capacity are meant to cope with sudden increases in copper concentrate prices. The increases in 

prices are considered as demand-driven, hence underpinning the expansion of the trader’s supplying 

capacity as the whole concentrates’ availability is assumed to be sold. 
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Both the two increase steps have been chosen over narrower alternatives, where smaller increments 

were considered and more steps were possible, since the differences in the company value become 

meaningful as steps are wider. In addition, provided that the defined growth options are exercised 

according to copper concentrate prices, smaller increments pose lower exercise thresholds. These 

would usually carry an inappropriately high exercise probability linked to the volatility of copper 

concentrates prices. 

 

As any expansion in the trader’s supply capacity is assumed to get immediately sold out, the trader 

would therefore to a certain extent be willing to pay a higher price for the concentrates acquired 

from producers, whilst it is also keen on marketing them to its customer at a less optimal price 

aiming to maximise sales. Hence, for each supply capacity increasement step, a selling penalty is 

borne by the trader, whilst the gross margin on the concentrates’ acquisition costs also shrinks, 

indicating the traders wish to purchase the required concentrate tonnage. The two increase steps for 

the trader’s supply capacity are displayed in Table 33 as a percentage of the capacity fixed at the 

baseline scenario, where the corresponding selling price penalisation and gross margin decrease 

amount is also shown. 

Table 33  
Trader’s supply capacity increasement steps (Selling price penalty/Gross margin 
decrease). (Source: Own elaboration). 

  25% 50% 

Step 1 Selling price penalty -250 USD/DMT  
Gross margin decrease -125 bp  

Step 2 Selling price penalty  -500 USD/DMT 
Gross margin decrease  -250 bp 

 

The exercise thresholds for the abandonment option have been determined by running 2000 

independent Monte Carlo simulations for the price of the concentrate for each year, while the 

remaining prices for the following and previous years have been left at the global annual average 

prices. The minimum price levels are marked by the discount factor employed. To achieve price 
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thresholds, the company valuation at each price level when the Monte Carlo simulation is carried 

out is compared to the company baseline valuation defined by the DCF method.  

 

To determine the exercise threshold for each step of the growth option, 280 trials have been run with 

Crystal Ball’s Opt Quest at incremental steps of 10 USD/DMT each for the threshold value, 

performing 2000 Monte Carlo simulations per trial. The minimisation of the mean of the company’s 

expected value using the discounted EFCF method is sought. This is restricted to being higher than 

the base case set by the DCF valuation. In addition, each step’s threshold and expected company 

mean value has been limited down to the levels reached in the previous steps, while the first step’s 

threshold has been limited to the 2025 global annual average price. 

 

Finally, the exercise probabilities, along with the company’s expected value in either case have been 

estimated carrying out 2000 Monte Carlo simulations. The inverse cumulative distribution 

functions for each year between 2021 – 2025 for copper concentrate prices, as shown in Figure 14, 

have been employed to model Real Options. Each year’s discrete distribution of concentrate prices 

has been taken directly from the results of the preceding simulations, thus disposing of 500 possible 

concentrate prices for each year within the valuation horizon. 
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Figure 14. ICDF for annual Copper Concentrates prices used for ROV. (Source: Own 

elaboration). 

5.4. Results and Discussion 

5.4.1. Concentrate price forecasts 

Five sample paths for copper concentrate price, determined as explained in subchapter 5.3.1., are 

shown in Figure 15 out of the 500 paths simulated. Respectively, the annual average prices for each 

of the five sample paths are shown in Figure 16. Additionally, each year’s expected annual average 

price for each year used to perform the trader’s valuation through the DCF method are shown in 

Figure 17, being the average of the 500 annual average prices. The average daily price path is also 

shown in Figure 17. 
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Figure 15. Five sample price paths for copper concentrate 2021 – 2025. (Source: Own 

elaboration). 

 

 

Figure 16. Annual average price paths for copper concentrates 2021 – 2025. (Source: 

Own elaboration). 
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Figure 17. Average price path for 500 forecasts and expected annual average price for 

copper concentrate 2021 – 2025. (Source: Own elaboration). 

The expected annual average prices for the copper concentrate used to model the trader’s activity 

are also shown in Table 34. 

Table 34  
Expected Annual Average Price for Copper Concentrate 2021 – 2025. (Source: 
Own elaboration). 

 2021 2022 2023 2024 2025 
Concentrate Price 
(USD/DMT) 2,732.89 2,814.79 2,899.35 2,965.68 3,061.59 

Concentrate Price 
(EUR/DMT) 2,484.45 2,558.90 2,635.77 2,696.07 2,783.27 

5.4.2. Equity free cash flows 

The trader’s expected Equity Free Cash Flows (EFCF) have been estimated following a self-

financing approach, where dividends have not been paid out to shareholders, leaving any possible 

external source for financing the company’s activities untapped. The initial levels of self-financing 

achieved, shown in Table 7 alongside the forecasted levels for Equity Free Cash Flows, may only 

be feasible thanks to the relational capital that the project’s promotors count on. This is provided 

from an initial and stable market share, knowledge of the commodity processes, as well as of their 

prices and trading mechanics. 
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Table 35  
Expected Annual Average Price for Copper Concentrate 2021 – 2025. (Source: 
Own elaboration). 

 2021 2022 2023 2024 2025 
Self-financing 125,619.27 85,091.33 116,812.90 159,045.64 215,089.70 
Dividends - - - - - 
CAPEX 118,176.64 71,679.89 59,914.91 76,030.16 99,049.76 
Financing - - - - - 
EFCF 7,442.63 13,411.44 56,897.99 83,015.47 116,039.94 

 

Expected EFCF levels achieved by the trader each year between 2021 to 2025 are subject to the 

annual forecasted price for the concentrate, along with the different strategies and policies 

preliminarily set by the company. The projected tonnage sold for each year has been assumed to 

increase at a constant level of around 25%, rounded to full containers. The value of sales for each 

year, on the other hand, varies at a different pace as it also depends on the forecasted fluctuation of 

concentrate prices. The price of concentrate has been set per dry metric ton of concentrate (DMT); 

that is, excluding the humidity. Nonetheless, humidity is to be accounted for as transportation costs 

are measured on the global tonnage carried, expressed in metric tons (MT).  

 

The trader’s anticipated EFCF levels are expected to increase on a yearly basis, although the rate of 

increase presents some deceleration beyond the year 2022 as this shows the effect of the trader’s 

normalising its creation of stockpiles of concentrates in comparison with the first two years of 

operation. This is also the primary factor driving EBITDA up in 2021, as net concentrates stockpiles 

variations in the year levels up to 116,746.69 €, with EBITDA being 166,742.36 €. On the other 

hand, the net stockpiles variations in 2022 are less than a third of the increase shown in 2021, whilst 

EBITDA, excluding stockpile variations, increased by 58.03%, dropping 32.41% if concentrate 

stockpile variations are added in. 

 

Additionally, EBITDA, and thus EFCF levels, are driven by the steady increase in sales during the 

whole timespan considered. On the other hand, the cost of the concentrates sold has been projected 
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as a fraction of their sale price, as traders usually apply higher discounts to miners to determine the 

price paid for the concentrate that they acquire. The gross margin between the acquisition price and 

the sale price for the given concentrate has been observed to be at around 8.75%2. In addition, the 

efficiency and scalability of commodity traders help them to optimise structural costs, thus 

Personnel Costs have been assumed to remain constant at observed levels despite the projected 

increase in the trader’s sales volume. This is because the additional workload caused by the increase 

in sales is assumed to remain sufficiently manageable by the trader’s current staff. 

 

Also, Operative Expenses increase at a constant pace of 1.35% annually. Hence, higher business 

revenues with marginal increments of main expenses, and maybe slight fluctuations in margins, are 

to be expected throughout the trader’s lifetime. This is clearly shown in Figure 18 and Figure 19, 

where the net increases (decreases) of revenues, EBITDA and self-financing are shown along with 

their relative yearly variations. 

 

Figure 18. Revenue, EBITDA, Self-financing variations. (Source: Own elaboration). 

 
2. As observed from non-publicly available and confidential economical and financial data employed as reference.  
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Figure 19. Revenue, EBITDA, Self-financing relative variations. (Source: Own 
elaboration). 

 

As can clearly be seen, revenues experience a somewhat steadily increase while EBITDA and self-

financing behave likewise, reaching a certain stabilisation of their respective rates of increase around 

2024 even though operative expenses, excluding the costs of the concentrates sold, maintain their 

previously described control rise. Further detail on the trader’s EBITDA construction as well as its 

planned Market Strategy may be found in Table 36 and 37. 

 

Financial expenses have also been assumed to remain constant throughout the entire projected 

timespan, as most financial resources needed by the company are self-supplied. Just a small short-

term recurring loan is available, with a maximum available amount of 40,000.00 EUR, of which 

10,000.00 EUR are on average disposed of yearly. This loan has a fixed interest rate of 4.50% with 

an annual fee of 2.00%, being fully reimbursed at the end of every period. The trader lacks any other 

outstanding debt, either short- or long-term.
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Table 36  
Market Strategy 2021 – 2025 (EUR, unless otherwise stated). 

 2021 2022 2023 2024 2025 
Sales (TEU) 23 29 36 45 56 
Sales (DMT) 584.02 736.37 914.11 1142.64 1421.95 
Operating Revenue 1,450,955.90 1,884,292.08 2,409,391.48 3,080,640.54 3,957,667.29 
Cost of Concentrate 1,334,212.32 1,732,682.37 2,215,532.39 2,832,772.91 3,639,234.29 
Cost of Employees 47,160.00 47,160.00 47,160.00 47,160.00 47,160.00 
Other Operative Expenses 19,587.90 25,437.94 32,526.78 41,588.65 53,428.51 

Table 37  
Expected Income Statements 2021 – 2025 (EUR). 

 2021 2022 2023 2024 2025 
Revenues 1,450,955.90 1,884,292.08 2,409,391.48 3,080,640.54 3,957,667.29 
Cost of Concentrates Sold -1,334,212.32 -1,732,682.37 -2,215,532.39 -2,832,772.91 -3,639,234.29 
Cost of Employees -47,160.00 -47,160.00 -47,160.00 -47,160.00 -47,160.00 
Other Operative Expenses -19,587.90 -25,437.94 -32,526.78 -41,588.65 -53,428.51 
Stockpile Variations 116,746.69 33,693.34 40,828.24 52,191.86 68,191.77 
EBITDA 166,742.36 112,705.10 155,000.54 211,310.85 286,036.26 
Amortisations -6,000.00 -6,000.00 -6,000.00 -6,000.00 -6,000.00 
Provisions - - - - - 
Financial Expenses -1,250.00 -1,250.00 -1,250.00 -1,250.00 -1,250.00 
EBT 159,492.36 105,455.10 147,750.54 204,060.85 278,786.26 
Taxes -39,873.09 -26,363.78 -36,937.63 -51,015.21 -69,696.57 
Net Result 119,619.27 79,091.33 110,812.90 153,045.64 209,089.70 
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On the other hand, projected annual CAPEX values have been calculated as the variations of the 

asset’s book value, along with the net yearly requirements for working capital. Here current assets 

and liabilities are accounted for, including accounts payable, stockpile variations and tax payments. 

The trader’s free cash flows are greatly decreased by heightened levels of CAPEX, mainly inflated 

due to working capital necessities. Unfortunately, this is a major disadvantage of almost any 

physical commodity trading operation, as payments to commodities suppliers, miners in the case of 

copper concentrates, need to be made earlier, whereas collecting accounts pending for the sale of 

the same concentrates to customers is deferred more or less time depending on the conditions agreed 

for shipping the commodities, usually Cost Freight (CFR) or Cost Insurance Freight (CIF) at the 

destination port. Thus, prior to collecting payments from customers, the concentrates must be 

shipped to the customers, usually at large distances, and several tests and proceedings need to be 

conducted. To reflect this effect, we have assumed the average accounts payable days to be 5, while 

accounts receivable days are 30 and days inventory outstanding are 25.  

5.4.3. Discounted Cash Flows Valuation 

Projected free cash flows have been discounted at a rate of 10.69% yearly. The employed discount 

factor, K, has been calculated using the parameters shown in Table 38, the risk-free rate being the 

10-year yield of US treasuries, while the demanded return by investors is the mean daily annual 

returns of the MSCI World Index from 2010 to 2020. Also, the value of 𝛽𝛽, which has been 

determined following the MASCOFLAPEC method previously explained under the chapter of 

Discount Factor, has been found to be 1.470. 

Table 38  
Values for the calculation of the Discount Factor, K. (Source: 
Own elaboration). 

 Reference Value 
𝑅𝑅𝑓𝑓 US T-BILL 10Y 0.50% 
𝑅𝑅𝑚𝑚 MSCI World Index 7.43% 
𝛽𝛽 MASCOFLAPEC 1.470 
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Additionally, the trader’s expected cumulative discounted EFCF throughout the whole timespan 

considered from 2021 to 2025 amounts to 184,776.60 €, according to Table 39, this being the most 

likely valuation horizon. Also, the EFCF obtained by the trader in the last year of operations, 2025, 

is projected to be 116,039.90 €, which gives a TV for the company of 1,803,983.94 €. Equity free 

cash flows are estimated to remain constant from the year 2025 on, as further assumptions beyond 

this point on concentrates prices, market conditions or the company operation itself are hardly 

quantifiable. 

Table 39  
Discounted Equity Free Cash Flows 2021 – 2025 (EUR). (Source: Own elaboration). 

 2021 2022 2023 2024 2025 
EFCF 7,442.63 13,411.44 56,897.99 83,015.47 116,039.94 
Discount Factor 1.1069 1.2252 1.3561 1.5010 1.6614 
Discounted EFCF 6,724.02 10,946.65 41,957.14 55,305.84 69,842.93 
Most likely 
Valuation Horizon 184,776.60 

Terminal Value 1,803,983.94 
Company Value 1,988,760.54 

 

Finally, the overall Company Value, calculated as the sum of the TV and the discounted cumulative 

EFCF obtained from 2021 to 2025, or the most likely cumulative value, is 1,988,760.54 €. This, if 

compared to the TV of the trader’s equity shown on the expected Balance Sheets for the year 2025, 

811,658.83 €, is 145% higher, giving a positive outlook for the trader’s business and therefore for 

its growth perspectives. 

5.4.4. Real options valuation 

The optimised exercise concentrates price thresholds for the growth option’s capacity increase steps 

can be seen in Table 40, while each year’s optimum exercise price thresholds for the abandonment 

option are shown in Table 41. Also, as no scale-down or reversal option has been considered, the 

increases in the trader’s supplying capacity or the closure of the company are thus made irreversibly 

once a certain price threshold has been exceeded. Additionally, so long as the market price for the 
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concentrate stays within the limits marked by the abandonment option price thresholds and the price 

threshold of the first step of the growth option, the trader’s operative will remain unaltered. 

Table 40  
Concentrate exercise price for growth option increase steps 
(USD/DMT). (Source: Own elaboration). 

 Growth 25% Growth 50% 
Exercise Price 3,810 5,780 

 

Table 41  
Concentrate exercise price for abandonment option in each year (USD/DMT). 
(Source: Own elaboration). 

 2021 2022 2023 2024 2025 
Exercise Price 2,732 2,811 2,895 2,965 3,057 

5.4.5. Abandonment option 

The trader would consider halting its activity in the event of the price of copper concentrates 

dropping below the threshold levels for each year. In this case, the sales of the company in the 

remaining time until the end of 2025 after the triggering event occurred are expected to be zero. 

Also, the abandonment option has been supposed to be exercised at the end of the corresponding 

year, thus both the exercise year’s incomes and costs are fully realised. Nonetheless, subsequent 

annual cash flows from the exercising option are assumed to be zero, as no remaining stock still 

possessed by the company would be sold and neither would other assets be liquidated afterwards. 

Table 42  
Discounted Equity Free Cash Flows 2021 – 2025 (EUR). (Source: Own elaboration). 

 2021 2022 2023 2024 2025 
Exercise Probability 52.60% 53.95% 57.00% 56.05% 59.55% 
Company Mean 
Expected Value 
(EUR) 

6,724.02 17,670.68 59,627.82 114,933.67 184,776.60 

Option Value (EUR) 3,536.83 9,533.33 33,987.86 64,420.32 110,034.47 
 

In Table 42 the exercise probabilities of the abandonment option in each year are shown along with 

the mean expected value of the company and the option value itself if the option were exercised at 
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the end of that year. The company mean expected value when the option is to be exercised is 

calculated as the sum of the discounted equity free cash flows up to that moment, excluding the 

business’ terminal value, as it will not resume operations later. Thus, the intrinsic option value can 

be calculated as the sum of the realised option value at each execution opportunity, hence being 

221,512.81 €. 

5.4.6. Growth Option 

On the contrary, should the price of the concentrate exceed the exercise threshold levels, the trader 

would automatically expand its capacity in accordance, albeit assuming certain rises in the price it 

pays to acquire the concentrate from suppliers. The option exercise probability is 54.55%, existing 

44.10% of just expanding capacity by 25% as the second threshold would not be surpassed. 

Nevertheless, there is a 10.45% probability of the trader increasing its capacity by 50%, as the price 

of concentrate would soar pass the mark of 5,780 USD/DMT at some point between 2021 and 

2025.  

Table 43  
Growth Option Probabilities and Value. (Source: Own elaboration). 

 Growth 25% Growth 50% 
Exercise Probability 44.10% 10.45% 
Mean Expected Value (EUR) 1,800,234.94 530,913.92 
Option Value (EUR) 793,903.61 55,480.50 

 

In Table 43 the results achieved for the two steps of the growth option can be seen. An expectancy 

of 793,903.61 € is estimated if the first step of the growth option is triggered, while an additional 

expectancy of 55,480.50 € would be added if the second step is too. Consequently, the total value 

of the growth option is assumed to be 849,384.11 €. 

 

The time effect has not been taken into consideration for the growth option to make the valuation 

more straightforward. However, it is worth mentioning that the results present a quite meaningful 
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level of dispersion certainly due to this factor, as it would not have the same impact on the company 

value to exercise the option in an earlier stage than later. This is because the trader would enjoy a 

higher selling tonnage and, presumably, higher incomes. But it is also true that the contrary might 

well happen, mainly when the triggering event takes place early in the company’s life. As 

concentrate prices have much more time to freely fluctuate and hence fall back below the growth 

threshold, the business model that is developed when the growth step is taken, which contemplates 

the worsening of the buying and selling prices of the copper concentrate, can easily become 

inefficient, as it is notably more price sensitive. 

5.4.7. Company Value 

The company value resides not only in the management’s projections which allow setting a baseline 

valuation scenario, but also in the potential behind the developing opportunities the company could 

come across along the way. These opportunities need to be assessed to attain a fair valuation of the 

company, hence accounting for the initial plan as well as for the evolution potential. As for the 

copper concentrate trading company, the DCF method brings forward the most likely value of the 

company, this being kept within the original volume of tons sold per year and its forecasted average 

annual price from 2021 to 2025. Moreover, the potential within the business model is portrayed by 

the Real Options Valuation method. This allows considering price uncertainty, which is indeed the 

main source of risk and of returns the trader is exposed to. 
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Figure 20. Real Options valuation alternative for Copper Concentrate Trader. (Source: 

Own elaboration). 

As shown in Figure 20 the company would develop its business model reaching a total value 

slightly under 2.0 M€ if everything goes as initially planned. This implies that concentrate prices, 

and therefore metal prices and annual benchmark TC/RC levels, stay within the range delimited by 

the exercise thresholds of both the growth and the abandonment options. Also, so long as reference 

prices remain within limits, the minimum demanded return to the trader’s business would be met, 

making it undesirable for investors to move away to look for higher-yielding investment 

opportunities elsewhere. On the other hand, if the opportunity cost is reached because the company 

fails to deliver the returns required, the abandonment option shall be executed by investors, who 

would then seek for investments that yielded at least what concentrate trading was meant to. In such 

a case, as time passes, investors would have accumulated more cash flows from their investment in 

the trader, thus increasing the value of the abandonment option over time. 

GROWTH OPTION

ABANDON OPTION

BASELINE

2021

2022

2023

2024

2025

DCF

25%

50%

1,988,760.54 €

1,992,297.37 €

1,998,293.87 €

2,022,748.40 €

2,053,180.86 €

2,782,664.15 €

2,044,241.04 €

2,098,795.01 €

P = 52.60%

P = 53.95%

P = 57.00%

P = 56.05%

P = 59.55%

P = 44.10%

P = 10.45%
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When it comes to capacity growth, the company valuation is increased as the growth option is 

exercised in either of its steps. However, the potential improvement for the company valuation if 

the trader’s supply capacity is increased by 50% instead of 25% is not as much for the first step as 

for the second. This, nonetheless, can still be interpreted as a strategical decision by the company’s 

management that, while optimising the moment to take the increase decision, perceives that 

expanding the supply capacity would eventually lead to a higher market share which, in the end, 

could be traduced as a competitive advantage as well as higher survival odds for the company in 

the long run. 
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Chapter 6: Conclusions 

Throughout this research we have developed a copper concentrates benchmark price model that 

provides market participants involved in copper concentrates production, processing or trading of a 

neutral, unbiased price reference. The methodology proposed resorts to copper, gold and silver spot 

and futures data, as well as well-known forecasting techniques, to circumvent the problem of 

lacking a market-wide reference for copper concentrates. 

 

Despite not having access to most confidential contract terms of copper concentrate supply 

agreements, the findings of this research suggest that some of the developments may well be of 

application by market participants. For instance, the ability to forecast with a sufficient degree of 

accuracy the TC/RC benchmark levels can have a great financial importance for either copper 

miners and smelters, as both can manage to set in advance more advantageous TC/RC for their 

contracts if considering the information delivered by the model. 

 

Furthermore, the practical usability and potential advantages of using the benchmark price model 

for copper concentrates by a copper concentrates trader has also been analysed using Real Options, 

which additionally shows how having good forecasts of copper concentrates prices can substantially 

improve the trader’s financial performance, while also allows to take to action when prices are 

expected to fall. 

6.1. Implications of developing forecasts for Copper TC/RC 

Copper TC/RC are a keystone for pricing copper concentrates which are the actual feedstock for 

copper smelters. The potential evolution of TC/RC is a question of both economic and technical 

significance for miners, as their value decreases the potential final selling price of concentrates. 
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Additionally, copper miners' revenues are more narrowly related to the market price of copper, as 

well as to other technical factors such as ore dilution or the grade of the concentrates produced.  

 

Smelters, on the contrary, are hugely affected by the discount which they succeed in getting when 

purchasing the concentrates, since that makes up the largest part of their gross revenue, besides other 

secondary sources. In addition, eventual differences between TC/RC may give commodity traders 

ludicrous arbitrage opportunities. Also, differences between short and long-term TC/RC 

agreements offer arbitrage opportunities for traders, hence comprising a part of their revenue in the 

copper concentrate trading business, as well copper price fluctuations and the capacity to make 

economically optimum copper blends.  

 

As far as we are aware, no rigorous research has been carried out on the behaviour of these 

discounts. Based on historical data on TC/RC agreed upon in the LME Copper Week from 2004 to 

2017, three potentially suitable forecasting models for TC/RC annual benchmark values have been 

compared through four measures of forecasting accuracy at different horizons. The models chosen 

in this research were chosen, firstly, due to their broad implementation and proven capacity in 

commodity prices forecasting that they all share and, secondly, because of the core differences in 

terms of price behaviour with each other. 

 

Our research contributes by delivering a formal tool for smelters or miners to make accurate 

forecasts of TC/RC benchmark levels. The level of errors attained indicates the LES model may be 

a valid model to forecast these crucial discounts for the copper market. In addition, our work further 

contributes to helping market participants to project the price of concentrates with an acceptable 

degree of uncertainty, as now they may include a fundamental element for their estimation. This 

would enable them to optimise the way they produce or process these copper concentrates. Also, 
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the precise knowledge of these discounts’ expected behaviour contributes to let miners, traders and 

smelters alike take the maximum advantage from the copper concentrate trading agreements that 

they are part of. As an additional contribution, this work may well be applied to gold or silver RC, 

which are relevant deduction concentrates when these have a significant amount of gold or silver. 

6.2. Accuracy of TC/RC benchmark levels forecasts 

Focusing on the MAPE values achieved, those obtained by the LES model when TC and RC are 

treated independently have been significantly lower than for the rest of the models. Indeed, one-

year-ahead MAPE measures for TC values for the GBM model (20%) almost triple those of the 

OUP model (7.66%), in contrast with the significantly lower values from the LES model 

(0.0046%). This gap tends to be narrowed when TC/RC values are forecasted at longer horizons, 

when most measures of error become more even. The GBM and OUP models have proven to 

deliver better accuracy performance when the TC/RC values are projected monthly and then 

averaged to obtain annual benchmark forecasts. Even so, the LES model remains the most accurate 

of all with MAPE values of 10% at two-year-ahead forecasts, with 18% and 31% for TC for OUP 

and GBM, respectively.  

 

Despite TC and RC being two independent discounts applied to copper concentrates, they are both 

set jointly with an often 10:1 relation as our data reveals. This relation also transcends to simulation 

results and error measures, hence showing a negligible discrepancy between the independent 

forecasting of TC and RC, or the joint forecasting of both values, keeping the 10:1 relation. This is, 

for instance, the case of the five-year-ahead OUP MAPE values (0.2715/0.2719) which were 

obtained without observing the 10:1 relation in the data. A similar level of discrepancy was obtained 

at any horizon with any model, which indicates that both values could be forecasted with the same 

accuracy using the selected model with any of them and then applying the 10:1 relation. 
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Our findings thus suggest that both at short and long-term horizons TC/RC annual benchmark levels 

tend to exhibit a pattern which is best fit by an LES model. This indicates that these critical discounts 

for the copper trading business do maintain a certain dependency on past values. This would also 

suggest the existence of cyclical patterns in copper TC/RC, possibly driven by many of the same 

market factors that move the price of copper. 

6.3. The importance of having a benchmark on copper concentrates prices 

We have developed a copper concentrates benchmark price model which aims to address the 

absence of market-wide accepted references that can orientate market participants to set a fair price 

for the copper concentrates they trade with. The relevance of a reliable reference to set the price of 

copper concentrates is key as its trade involve most copper mines, smelters and commodity traders 

worldwide, which are currently forced to employed indirect references and incomplete information 

to find out the just price of these. 

 

The methodology followed helps to deliver estimations on copper concentrates pricing, enabling 

comparing physical trades agreements to a comprehensible benchmark based on both official, 

publicly available metal spot and future prices and main deductions forecasts. The model has been 

formulated in a way that makes it suitable for pricing any concentrate available in the market as 

there is not a typical concentrate layout, though we have standardized our simulations by carrying 

them out with five sample concentrates, being all representative of the complete spectrum of layouts 

from a statistical standpoint. 

 

In addition, our model offers a deep insight into the different components of the price of concentrates 

by giving further understanding of the future role that each of the elements involved in pricing the 
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concentrates will have as the market conditions evolve. Thus, this tool brings new possibilities for 

optimizing mining production, using the expected value of the concentrate and the expected role of 

penalties to target the ores that would maximize profits according to the expectations provided by 

the model. Also, as the model provides greater foresight on the behavior of penalties regarding the 

final price of concentrates, blending activities, mainly carried out by miners and traders, may be 

optimized to obtain the maximum return possible for more complex concentrates that require some 

level of blending before being sold. 

6.4. Applying the models and methodologies to anticipate future business performance   

A copper concentrate trading company has been valued, computing the uncertainties related to 

copper concentrate price fluctuations over time through the modelling of copper concentrate prices. 

Alternative valuations for the trading company have been determined employing Real Options, 

where the growth or abandon conditions for the trader’s activity have been linked to the copper 

concentrate price in each year. 

 

Our research focuses on the trading of copper concentrates as a standalone element, being separated 

from the extraction or the transformation stages, which fills a gap in literature. The outcome suggests 

that the methodology laid out in this paper may well be employed by commodity traders, regardless 

of the commodities they trade with, to anticipate potentially profitable opportunities or avoid 

unnecessary risks. 

 

As far as we know, this research manages for the first time to separate the trading element from the 

extraction and processing factors in commodity markets, tackling the existent void in the literature 

by shedding light on trading houses’ financials. At the same time it provides further insight into 

physical commodity trading and, more specifically, on how copper concentrate traders run their 



 
 

122 
 

businesses. The results of our research indicate that the methodology employed can be applied for 

estimating the future performance of copper concentrate traders through the valuation of their 

company. 

 

The outcome achieved suggests that the methodology explained in this research may well be 

employed primarily, but not exclusively, by copper concentrate traders to anticipate potentially 

profitable opportunities that may arise in the foreseeable future. It may also add flexibility to their 

strategical decisions or help to mitigate upcoming threats for their businesses. 

 

To better understand the physical commodities trading business and the uncertainties associated 

with it, a copper concentrate trading company has been valued, using copper concentrate trading as 

a sample of the richer and more complex physical commodities trading business model. The 

uncertainties under which copper concentrate trading is carried out have been reckoned to properly 

address the valuation problem with precision. An acceptably reliable outcome is also obtained, such 

as prices and discount fluctuations, resorting to real market data to reflect the conditions a copper 

concentrate trader is submitted to, as well as estimating its most likely evolution. 

6.5. Limitations and future lines 

As a limitation of this research, mainly with what regards to TC/RC forecasts, we should point out 

the timespan of the data considered, compared to those of other forecasting works, on commodity 

prices for example, which use broader timespans. For our case, we have considered the maximum 

available, and sufficiently reliable data on TC/RC benchmark levels, starting back in 2004, as there 

is no reliable data beyond this year.  
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In addition, we have used four measures of error which are among the most frequently used to 

compare the accuracy of different models. However, other measures could have been used at an 

individual level to test each model’s accuracy. Once TC/RC annual benchmark levels are able to be 

forecasted with a certain level of accuracy, future research should go further into this research 

through the exploration of the potential impact that other market factors may have on these 

discounts. 

 

Furthermore, a similar problem appears when analysing trading companies’ activities through Real 

Options, since publicly available data from companies engaged in concentrates trading, processing 

or production is fairly limited as well. These companies tend to keep utter discretion in relation to 

the economic and technical details of their transactions. Nonetheless, the reliability of our 

methodology is very dependable on the accuracy of the individual forecasting techniques employed 

for each of the components that build up the price of concentrates. In this sense, one of the limitations 

of our research is the fact that our copper concentrate benchmark price model’s forecasting accuracy 

decreases for further-out forecasting horizons, mainly beyond six months or one year, although it 

doesn’t have a serious impact in the practical usefulness of the model, as copper concentrate 

transactions usually occur in shorter time periods. 

 

The accuracy of the copper concentrate benchmark price model is also a function of the concentrate 

layout, even though it is related to the accuracy of Schwartz and Smith’s two-factor model and that 

of the Linear Exponential Smoothing model for TC/RC forecasting, having different levels of 

accuracy for concentrates with only one payable element than for those with more than one. Future 

research should strive to contrast the model’s outcomes with data from market participants if they 

became available to evaluate potential ways of improvement if needed. 
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Our research has centred on copper concentrate trading to understand the usefulness of our 

methodology in a context of high uncertainty with low available information and where price 

volatility tends to be on the upper side. Nonetheless, the main limitation lies on making a well-

balanced approach to the trader’s business model without adding excessive complexity to the 

analysis. Thus, as a first approach, long-term supply contracts normally priced below broader 

market conditions, in combination with hedging practices, mostly to secure contango margins 

(higher prices in further-out future contracts), have not been included in this research. Future 

research should also consider these common practices of commodity traders to help differentiate 

more from a common retailer and to define more precisely the specificities of commodity trading. 

 

In addition, further extensions of this research should be adapted to not only contemplate 

abandonment as the only alternative if market conditions become adverse, hence introducing a 

scale-down or diversification options. These different Real Options approaches may help give a 

clearer picture of the strategical decisions implemented by commodity traders. They would more 

probably rather diversify their commodity portfolio or simply reduce their trading operations to a 

minimum level if market conditions are not favourable, instead of shutting down their operations 

completely. This is provided there is a low level of their fixed costs along with the importance of 

keeping their relational capital. 

 

On the other hand, the access to useful and reliable data on copper concentrate traders is notably 

constrained, as most major traders are still in private hands and therefore are not required to disclose 

much of the information regarding their operations or assets ownership. Deeper access to data from 

larger and more diversified commodity traders would thus provide more accurate results. This is 

one of the most relevant lines of development for this research. Additionally, the inclusion of several 

frequent activities in copper concentrates trading which are key to maximise returns, such as 
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blending, would certainly provide a richer perspective. Nonetheless, as the market becomes more 

volatile and unstable, also given the situation stemming from the COVID-19 pandemic, the 

usefulness of the real option technique has become more interesting, as it can also be adapted to 

different sectors and business models. This enables companies across the board to anticipate key 

managerial decisions without having to take them in a rush and under pressure due to a critical 

market downturn. 

 

Finally, Environmental, Social and Governance criteria (ESG) have not been taken into account in 

this research, as we have focused in purely technical and financial challenges within copper 

concentrate markets. However, future research should consider including ESG impact on copper 

concentrate market, as copper concentrate prices might ultimately get affected by restrictions 

imposed onto the importation of copper concentrate with high levels of certain punishable, highly 

contaminating elements. The effects of ESG policies over the copper concentrates trading business 

would also be another topic of interest for potential future research, analysing how observing the 

elemental practices of ESG would impact the traders’ normal workflow and financials.   
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