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ABSTRACT The metagenomic sequences of the prokaryotic microbiota from the brine
of a crystallizer pond with 42% (wt/vol) salinity of a saltern located in Isla Cristina, Huelva,
southwest Spain, were obtained by Illumina. Haloarchaea and members of the bacterial
genus Salinibacter were the most abundant prokaryotes.

Solar salterns are multipond systems used for the commercial production of salt by
evaporation of salted water, and they are excellent models for the study of the microbial

communities living in a wide range of salt concentrations, from seawater to salt saturation
(1). One of the salterns that has been extensively studied is Santa Pola saltern, located on
the Mediterranean coast in Spain (2). In contrast, Atlantic salterns have received less
attention. Isla Cristina saltern has been revealed as a source of interesting new prokaryotic
microorganisms (3–12). In 2014, we reported early studies based on a metagenome obtained
by pyrosequencing (Roche 454 GS-FLX technology) from the brine of an intermediate pond
with 21% (wt/vol) salts (13). The analysis of this metagenome (designated IC21) indicated
that Euryarchaeota (84%), mainly represented by the haloarchaeal genera Halorubrum
(65.8%), Natronomonas (3.2%), and Haloquadratum (1.9%), was the most abundant phylum,
followed by Bacteroidota (8.0%), dominated by the genus Psychroflexus (4.6%), and
Gammaproteobacteria (7.0%), with the genus Spiribacter (1.1%) being the most abundant
(14). In this report, we describe the sequencing of two metagenomic databases from the
prokaryotic fraction of an Isla Cristina saltern crystallizer pond, in which salts precipitate,
with a salinity of 42% (wt/vol). These were designated 20IC42-1 and 20IC42-2 and were
obtained by Illumina technology.

Specifically, an 8-L brine sample was collected from the surface of a crystallizer pond
with 42% (wt/vol) total salts (GPS coordinates 37°12939.999N, 7°19938.699W), on 20 July 2020.
The pH and temperature of the brine at the time of sampling were 6.7 and 41.3°C, respec-
tively. The sample was stored cold until transported to the laboratory and immediately was
sequentially filtered through 5.0- and 0.22-mm-pore polycarbonate filters (Millipore, USA),
obtaining four 0.22-mm filters that retained the desired prokaryotic fraction.

The total prokaryotic DNA was obtained with phenol-chloroform-isoamyl alcohol as
previously described (15, 16). Two different DNA extractions were carried out from two
0.22-mm-pore filters each. Sequence libraries were constructed from the purified prokaryotic
DNA using the Novogene NGS DNA library prep set (catalog no. PT004). Metagenomic
sequencing was accomplished at a read length of 2 � 150 bp by Novogene Europe
(Cambridge, United Kingdom) on an Illumina NovaSeq 6000 platform. Totals of 72,606,726
and 49,798,159 reads were obtained for the two replicates 20IC42-1 and 20IC42-2,
respectively. Read quality control was performed with the “read_qc” module as
implemented in MetaWRAP v.1.3.2 using default parameters (17). The taxonomic
distribution was estimated from quality filter reads using Braken v.2.8 (18). The
most abundant taxa were Halorubrum (34% and 32%), Haloquadratum (10% and 13%),
and Salinibacter (10% and 8%) for the 20IC42-1 and 20IC42-2 metagenomic data sets,
respectively.
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These obtained metagenomic data sets will be used to describe the phylogenetic
and functional diversity of a crystallizer pond of Isla Cristina saltern and to evaluate the
biochemical pathways encoded under extremely-high-salinity conditions by haloarchaea
and extremely halophilic bacteria.

Data availability. The sequences obtained in this project have been deposited in
the NCBI Sequence Read Archive under accession no. SRR21894959 and SRR23092357 for
20IC42-1 and 20IC42-2, respectively.
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