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A B S T R A C T

Background : Among all the cancers known today, prostate cancer is one of the most commonly diagnosed
in men. With modern advances in medicine, its mortality has been considerably reduced. However, it is still
a leading type of cancer in terms of deaths. The diagnosis of prostate cancer is mainly conducted by biopsy
test. From this test, Whole Slide Images are obtained, from which pathologists diagnose the cancer according
to the Gleason scale. Within this scale from 1 to 5, grade 3 and above is considered malignant tissue. Several
studies have shown an inter-observer discrepancy between pathologists in assigning the value of the Gleason
scale. Due to the recent advances in artificial intelligence, its application to the computational pathology field
with the aim of supporting and providing a second opinion to the professional is of great interest.
Method: In this work, the inter-observer variability of a local dataset of 80 whole-slide images annotated by a
team of 5 pathologists from the same group was analyzed at both area and label level. Four approaches were
followed to train six different Convolutional Neural Network architectures, which were evaluated on the same
dataset on which the inter-observer variability was analyzed.
Results : An inter-observer variability of 0.6946 𝜅 was obtained, with 46% discrepancy in terms of area size
of the annotations performed by the pathologists. The best trained models achieved 0.826±0.014𝜅 on the test
set when trained with data from the same source.
Conclusions: The obtained results show that deep learning-based automatic diagnosis systems could help
reduce the widely-known inter-observer variability that is present among pathologists and support them in
their decision, serving as a second opinion or as a triage tool for medical centers.
1. Introduction

Among all the pathologies that affect society, cancer is one of those
in which the number of cases has increased the most. In 2020, 1.41
million new cases were diagnosed, representing the cause of around
375,000 deaths worldwide. It is known that prostate cancer is one of the
most aggressive type of cancers that can be diagnosed [1]. According to
GLOBOCAN [1], in countries with higher Human Development Index
(HDI), life expectancy is higher and, consequently, higher incidences of
cancer are recorded. This explains why Europe, with 9% of the world’s
population, accounts for 23% of the world’s cancer cases [1]. Late
diagnosis is a negative factor for the patient’s prognosis, while early
diagnosis greatly favors recovery and overcoming the pathology. The
stages of cancer depend on the size of the tumor and how far it has
spread throughout the rest of the body.
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Cancer can be diagnosed on the basis of different medical tests
performed on the patient. The following imaging tests may be requested
to establish this diagnosis: Computed Tomography (CTI), Magnetic
Resonance Imaging (MRI), Nuclear Tomography, Bone Scan, Positron
Tomography (PET), Ultrasound, X-ray or Biopsy.

Histology is the branch of biology that studies the composition,
structure and characteristics of the organic tissues of living beings.
From a biopsy extracted from a patient, a pathologist can perform a
histological study of the tissue and, based on its structure, report the
details of the diagnosis. Prostate biopsy consists in obtaining samples
of prostate tissue by means of a needle that punctures a region deter-
mined by a transrectal ultrasound process. These tissue samples are
then processed in a laboratory and scanned, resulting in very high
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resolution Whole-Slide Images (WSIs), which are subsequently analyzed
and inspected by pathologists.

The aggressiveness of prostate cancer can be determined by a
scoring system called Gleason Grading System (GGS) [2]. GGS scores
a prostate cancer based on its histological appearance considering five
different malignant cell patterns called Gleason patterns (GPs), which
range from 1 to 5. Pathologists examine the structure of the cells in
WSIs and assign a lower or higher GP to different malignant areas
depending on how much they differ from healthy or normal tissue. The
two most predominant patterns are summed up to assign the Gleason
score (GS), which ranges from 2 to 10. However, scores of 2-5 are
almost never used, since Gleason patterns 1 and 2 are very uncom-
mon [3]. This score is subsequently used by the physician to determine
the most appropriate treatment for the patient. However, many studies
have reported inter-observer variability between pathologists in the
process of labeling cancerous sections of tissue (more than 30% of
discrepancy in Gleason scoring) [4–6].

Numerous research centers and hospitals have studied different
approaches with the purpose of reducing the inter-observer variability
among pathologists. In this regard, artificial intelligence has demon-
strated potential to be used as a supporting service in diagnostic
imaging tasks, such as radiology, dermatology and histopathology [7–
9], among others. These systems, called Computer-Aided Diagnosis
(CAD) systems, are automatic or semi-automatic algorithms with the
purpose of supporting the professional when making a diagnosis or
interpreting an image.

One of the most widely-used algorithms in artificial intelligence are
Artificial Neural Networks (ANNs). ANNs are inspired by the operations
performed by the human brain. These networks, like the human brain,
receive information from the environment through a training process,
where the synaptic weights store the acquired knowledge. Different
types of ANNs can be found based on the type and degree of con-
nections, as well as on the number of layers. Convolutional Neural
Networks (CNNs) are a type of ANN that has become popular in recent
years, since they are very effective for machine vision tasks, such
as image classification and segmentation, among other applications.
Recently, many researchers have studied the application of CNNs in the
diagnosis of numerous types of diseases that involve image interpreta-
tion. Some works, such as [10–14], have demonstrated the potential of
this kind of deep learning algorithms in many different visual pattern
classification problems involving medical imaging.

Campanella et al. [15] developed a deep learning-based system
to distinguish between cancer and non-cancer slides using more than
44000 WSIs from breast, skin and prostate tissue without pixel-wise
annotations. In that paper, the authors presented a novel framework
based on the multiple instance learning approach, which generates
a semantically rich feature representation. A Recurrent Neural Net-
work (RNN) is used to integrate the extracted information in order
to report the final classification result, reporting an Area Under the
Receiver Operating Characteristic Curve (AUC) of 0.986 for prostate
cancer detection [15]. In [16], a CNN architecture is presented to
distinguish between low (GS6-GS7) and high (GS8 to GS10) Gleason
scores using 895 Tissue Microarrays (TMA) images. A total of 641
TMAs were used for training the CNN, which was then evaluated on an
independent test set consisting of 245 TMAs annotated by two different
pathologists. The authors report agreements of 0.75 and 0.71 (in terms
of Cohen’s quadratic kappa statistic) between the system and each
pathologist, respectively, which were comparable with the agreement
obtained between the pathologists (0.71). Strom et al. [17] presented
two CNNs ensembles (each consisting of 30 InceptionV3 [18] models
pre-trained on ImageNet [19]) to perform binary classification (benign
or tumor) and GPs prediction. The authors used 6682 WSIs for training
the system, 1631 WSIs for an independent test and 330 WSIs for an
external validation. The system achieved an AUC of 0.997 (independent
test) and 0.986 (external validation) for the binary task. Regarding the
2

Gleason grading, the authors obtained a mean pairwise kappa of 0.62,
which was within the range of the inter-observer variation between 23
pathologists (0.60-0.73).

In this work, the inter-observer variability of a group of 5 pathol-
ogists that annotated a dataset containing slides from Clinic Hospital
in Barcelona was analyzed at different levels. Different deep learning
architectures were trained using Prostate cANcer graDe Assessment
(PANDA) [20], the largest publicly available dataset, and Clinic dataset
in four different approaches, comparing the aforementioned variability
with the performance of the models.

The main contributions of this work include the following:

• A study of the inter-observer variability of a team of patholo-
gists from the same hospital where the WSIs were sourced was
performed.

• A set of deep learning architectures were trained with four dif-
ferent methods including the largest publicly-available prostate
cancer dataset and evaluated on the same dataset of which the
inter-observer variability was analyzed.

• A total of 240 CNN models were evaluated and compared, includ-
ing a broad discussion of the inter-observer variability analysis
and the performance obtained by the neural networks.

• The best results were obtained with DenseNet121 models, which
achieve a higher quadratic Cohen’s kappa score (0.826 ± 0.014)
than the inter-observer variability (0.6946), proving the viability
of deep learning-based systems for supporting pathologists in the
diagnosis.

The rest of the paper is structured as follows: Section 2 presents the
materials and methods used, including the dataset (Section 2.1), the
pre-processing applied to the images (Section 2.2), an introduction of
the different CNN models used (Section 2.4), a brief description of the
experiments performed (Section 2.5) and the metrics that were consid-
ered to evaluate the trained models (Section 2.6). Then, in Section 3,
the results are presented, dividing them into those related to the inter-
observer variability analysis (Section 3.1) and those related to the CNN
models (Section 3.2). In Section 4, the results obtained are discussed,
and, finally, the conclusions of this work are presented in Section 5.

2. Materials and methods

2.1. Dataset

In this work, a local dataset of pathological biopsy images ob-
tained from prostate cancer patients from Clinic Hospital (Barcelona,
Spain) was used. These cases consisted of different samples obtained by
means of needle core biopsy and prepared with haematoxylin and eosin
(H&R) stain in the laboratory. The samples were then digitized using a
VENTANA iScan HT (Roche Diagnostics) scanner at 40× magnification
(0.25 μm per pixel). A total of 80 different WSIs were obtained, which
were then pixel-wise annotated by a team of five pathologists from the
same hospital from which the samples were acquired. Since annotating
WSIs with that level of detail is very time consuming, each of the
pathologists annotated only around a third part of the total amount
of images (each WSI was annotated by, at least, two pathologists).
Pixel-wise annotations (also called strong annotations) were performed
using digital graphic tablets and the QuPath software [21], labeling
malignant tissue regions with Gleason patterns 3, 4 and 5. Although
the five pathologists that annotated the WSIs work in the same team,
they did not ask each other nor shared any information regarding the
annotation process in order not to bias the inter-observer variability
study performed in this work. Thus, this dataset was first used to
analyze this aspect in a quantitative and statistical manner, and then
for training different deep learning architectures in order to compare
the results.

Since deep learning algorithms require a highly heterogeneous

training dataset in order to generalize well on unseen data, another
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Table 1
Distribution of the WSIs used from Clinic Hospital and PANDA challenge datasets.

Dataset GS6 GS7 = 3+4 GS7 = 4+3 GS8 GS9-10 Total

Clinic Hospital 42 12 10 7 9 80
PANDA challenge 802 673 909 764 964 4112

dataset was used in combination with the one obtained from Clinic
Hospital for this purpose. This was the Prostate cANcer graDe Assess-
ment (PANDA) Challenge dataset [20], which is public and contains
11000 WSIs of digitized H&R-stained biopsies from Radboud Univer-
sity Medical Center (Nijmegen, Netherlands) and Karolinska Institutet
(Stockholm, Sweden), of which 5060 images are pixel-wise annotated.
This makes PANDA the largest publicly-available prostate cancer digital
pathology dataset at present.

Table 1 summarizes the WSIs used from each dataset, specifying
their corresponding ground-truth Gleason score.

2.2. Image pre-processing

WSIs are gigapixel-resolution images whose size can be greater than
1 GB. Current GPUs and neural networks are unable to process these
images due to their memory limitations. Therefore, a pre-processing
step was applied. A widely-known solution to overcome this prob-
lem is patch-sampling the WSIs, which consists in extracting smaller
subimages, called patches, from the source images, thus allowing them
to be used as input for neural networks. This process is the current
and most widely-used method to work with WSIs in deep learning,
and has been used in previous publications, such as [15,16,22–24],
among many others. In this work, the size of the patches extracted were
set to 750 × 750 pixels at 40× magnification, since it was previously
sed in other studies [16]. The patches were densely extracted, which
eans that no overlapping between them was set. Then, these were

ubsampled to 224 × 224 pixels in order to reduce computation and
lso due to the fact that it is the default input size in the pre-trained
NN models that were used (see Section 2.4).

Pathologists’ annotations were used to delimit malignant areas
ithin WSIs. Patches were only extracted from these areas, since they

ontained labeled regions of tissue corresponding to the three Gleason
atterns considered in this work (GP 3-5). An 80% overlapping thresh-
ld with the annotations was set when extracting the patches from the
SIs, meaning that a patch had to overlap at least by that amount
ith an annotation in order to be considered for the dataset, discarding

hose with high background content and avoiding the addition of noisy
nformation in the dataset. As a result, 17632 patches were obtained
rom the Clinic dataset, and 87824 from the PANDA dataset after
pplying the patch-sampling process.

The patches obtained were used to train and validate different CNN
odels, leaving part of the patches from Clinic to test them and com-
are the results with the inter-observer variability measured among the
athologists. Tables 2 and 3 show the training, validation and testing
artitions used for the Clinic and the PANDA dataset, respectively, with
heir corresponding GP distribution. The partitions were carried out
aking into account that all the patches obtained from the same patient
ere only involved in a single set.

The lack of standardization in the H&E staining process leads to
olor variations not only between images from different medical centers
r digitized with different scanners, but also from the same source
ue to possible variations that may occur in the image preparation
rocess [25,26]. Therefore, there is a tendency to alleviate this problem
y means of stain normalization and color augmentation techniques.
hese techniques help deep learning algorithms focus on the relevant
eatures of the images during the training step, while also homog-
nizing color variations that may be present among them. This is
articularly important when working with images from different cen-
ers and scanners where a different H&E staining process was followed.
3

Table 2
Patch distribution used in the training, validation and test subsets with their
corresponding GP from the Clinic dataset.

GP3 GP4 GP5 Total

Train 3794 5424 2047 11265
Validation 1309 1718 728 3755
Test 657 833 1122 2612

Total 5760 7975 3897 17632

Table 3
Patch distribution used in the training and validation subsets with their corresponding
GP from the PANDA challenge dataset.

GP3 GP4 GP5 Total

Train 19954 38995 6019 65868
Validation 6604 13357 1995 21956

Total 26558 53252 8014 87304

Different techniques, such as Histogram Equalization (HE), Color Space
Transformation (CST) and Color Deconvolution (CD) can be found in
the literature.

2.2.1. Histogram equalization
The basic idea behind HE is to transform the intensity values of

the pixels in an image so that the resulting image has a uniform
distribution of intensities. The transformation is achieved by computing
the cumulative distribution function (CDF) of the pixel intensities in the
image and using it to map the original intensity values to new ones. The
new intensity values are chosen such that the CDF of the new intensities
is a linear function [27].

The result of this transformation is an image where the intensity
values are spread out over a wider range, increasing the contrast of
the image. However, histogram equalization can also result in the
over-amplification of noise in the image, so it is important to use
the technique with caution. To solve this problem, there are sev-
eral adaptations of the method as seen in [28], where the use of
Adaptive Histogram Equalization (AHE) and Contrast Limited Adaptive
Histogram Equalization (CLAHE) is proposed.

2.2.2. Color space transformation
CST is based on changing the color space of an image, such as RGB

to grayscale or HSV. After that, filters are applied to these color spaces
and transformed back to RGB [29]. In [30], the authors developed a
method to transform a source image into a target image in the Lab
color space. This was achieved by calculating the mean and standard
deviation for each channel. After completing the transformation, the
normalized image was then converted back to the original RGB color
space.

2.2.3. Color Deconvolution
CD is a technique that separates the contributions of different dyes

or stains used in histological images. The goal of color deconvolution
is to isolate the individual color channels in an image so that each
component can be analyzed and processed independently.

Histological images are often stained with multiple dyes in order to
highlight different structures within the tissue. For example, one dye
may be used to stain the nuclei, while another is used to stain the
cytoplasm. By separating the contributions of the different dyes, it is
possible to better visualize and analyze the tissue.

Stain Color Adaptive Normalization Algorithm (SCAN) [31] is based
on CD. It has been proposed as a solution to enhance the contrast
between the histological tissue and the background while preserving
the local structures in the image. This is achieved without altering the
color of the lumen and the background.

In [32], an Adaptive Color Deconvolution algorithm is proposed

for stain separation and color normalization of H&E-stained samples.
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The process of normalization is accomplished using a uniform color
transformation that maps pixels from the source image to the template
image. This approach does not require the classification of stains.
Instead, the parameters for color normalization are determined through
an integrated optimization process that takes into account the distribu-
tion of pixel values. This results in the preservation of the structural
information present in histological images.

On the other hand, it is possible to find models that use more than
one technique, as in the case of [33], where a retinex model is designed
that applies first the color space transformation and then the color
deconvolution.

2.3. Data augmentation

Increasing the number of images and the heterogeneity of the
dataset is a very relevant aspect to consider when training a CNN, since
it makes the system more robust, improves its generalization over un-
seen data and prevent overfitting [34]. The relevance of applying data
augmentation in computational pathology has been studied and proved
in the literature [35]. Thus, data augmentation techniques have been
applied to increase the number of images and the heterogeneity of the
dataset during the training process. Different transformations were per-
formed to the original patches, thus, for each training patch, horizontal
and vertical flips were applied, along with 90 degrees rotations.

In order to tackle the problem of image and stain variability,
training patches were augmented in color in their HSV (hue, saturation,
value) representation within a specific limited range ([−15, 8] for the
hue, [−20, 10] for the saturation and [−8, 8] for the value). Soft color
augmentation has proven to be one of the most optimal approaches
for tackling the stain variability problem [22,36]. Rotations, flips and
color augmentation were performed automatically at training time with
50% probability for each of the mentioned processes. To this end, the
open-source Albumentations library [37] was used.

2.4. Convolutional neural network models

Among all the existing types of neural networks, CNNs have proven
to be one of the most accurate and successful algorithms for image
analysis [38]. By means of convolution layers, the network is able to
extract the main features of the images, which are then fed to a set of
fully-connected layers in order to perform the classification. In addition
to convolutions, CNNs consist of other types of layers that improve and
speed up the learning and inference steps by reducing the amount of
processed information.

In this work, different CNN models were trained and evaluated
in order to compare their results with the inter-observer variability
between pathologists in the Clinic dataset. Among them, the widely-
known VGG16 [39], DenseNet121 [40] and InceptionV3 [18] were
used. All these models were trained based on pre-trained weights
from the Imagenet dataset [19]. Along with these, a Grid Search algo-
rithm [41] was performed, in which different custom models containing
from one convolution stage (convolution + pooling + activation layers)
and a fully-connected layer up to a total of 10 convolutional stages were
explored and evaluated, varying the number and size of the convolution
filters. Custom models have shown improved performance for some
specific cases compared to pre-trained ones in the literature [42].

The Adam optimizer [43] was used when training all of the models,
considering different learning rates ranging from 1 × 10−3 to 1 × 10−6,

hich varied depending on the model. This optimizer was selected
ased on the evolution of the training and validation losses.

In this work, TensorFlow1 [44] version 2.2.0, which is a well-
nown Deep Learning Python library that allows designing, training
nd evaluating deep neural networks, was used for that purpose.

1 https://www.tensorflow.org
4

As can be observed in Tables 2 and 3, the patch distribution between
the three different GPs is not balanced. This could make the training
process focus on classes with a larger number of images when updating
the weights of the network. This potential problem was avoided by
using the class_weights parameter in TensorFlow, which makes the
backpropagation algorithm to compensate classes during the training
step based on the number of occurrences.

2.5. Training strategy and experiments

Different experiments were carried out in order to, firstly, analyze
the inter-observer variability on the Clinic dataset and, then, compare
the results with the performance of different CNN models.

Regarding the inter-observer variability analysis, two different ex-
periments were carried out. The first, called Overlapping Annotated
Area Analysis (OAAA), consisted in measuring the overlapping area
of annotations by different pathologists corresponding to the same
region of the slide. To this end, only those annotations that overlap on
the same WSI were analyzed. The second experiment, called Labeling
Discrepancy Analysis (LDA) follows an approach that is similar to that
performed in the previous one. However, instead of measuring the
inter-observer variability in terms of the area size of the annotated
malignant tissue regions, an analysis regarding the label that was set
for each of the annotations was performed.

Regarding the CNN experiments that were proposed and performed,
the following different training approaches were considered:

• Experiment 1: Training and validating the models using Clinic
dataset only.

• Experiment 2: Training and validating the models using PANDA
dataset only.

• Experiment 3: Training and validating the models with PANDA
dataset, and then fine-tuning the models using Clinic dataset
(after applying transfer learning).

• Experiment 4: Training and validating using both PANDA and
Clinic datasets combined.

The test partition in each of the experiments consisted of patches
extracted from the Clinic dataset. For each of the experiments, six
different CNN architectures were considered: three of them were ob-
tained using Grid Search (in order to achieve faster and less complex
models [42]), while the other three correspond to widely-known pre-
trained networks, including VGG16, DenseNet121 and InceptionV3.
Fig. 1 shows a block diagram explaining the experiments performed.

Transfer learning [45] is a well-known Deep Learning technique in
which the feature-extraction layers (convolutional layers) of a previously
trained model are frozen, and the weights of the last layers are updated
by training them with a different dataset (fine-tune), allowing the
network to be adapted to a new dataset [46].

The partitions used in all the experiments are presented in Ta-
bles 2 and 3. As was previously mentioned, the test of the models was
performed using the corresponding partition of Clinic dataset. Since
PANDA was only considered to train and validate the models due to
its size and heterogeneity, no testing partition can be seen in Table 3.

2.6. Evaluation metrics

Different evaluation metrics can be used to determine the effec-
tiveness of neural networks. Among them, accuracy, specificity and
sensitivity are some of the most used ones. The former reports a global
idea of how the network performs, although it has a main drawback: it
treats all classes as equal. This means that, in terms of accuracy, there
is no difference on classifying a cheetah as a cat or as a dolphin (both
would be considered as a misclassification of the network). Sensitivity
and specificity are widely used in medical applications, but they are
mainly useful for binary classification problems.

https://www.tensorflow.org
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Fig. 1. Block diagram of the experiments performed. The upper part (blue box) shows the analysis of the annotations provided by 5 pathologists from the Clinic dataset,
distinguishing between the overlapped annotated area analysis and the labeling discrepancy analysis. On the bottom part (orange box), four different training strategies performed
with deep learning algorithms are depicted, using patches extracted from the annotated regions of the WSIs, obtained both from PANDA and Clinic datasets.
Therefore, to evaluate the performance of the models trained in
this work, Cohen’s kappa coefficient (𝜅) [47] was used. This metric
measures the agreement or disagreement between two raters (which,
in our case, are the annotations from pathologists and the predicted
class from the network, or even the annotations that two pathologists
assigned to the same tissue region). A value of 1 means a complete
agreement of both raters. On the other hand, a score of 0 represents
a random agreement. The quadratic version of the score was used
(see Eq. (1)), which penalizes disagreements between the two raters
depending on the class difference in a quadratic manner (instead of
linearly, which would be the default 𝜅). This score has been extensively
used in previous works in the field of computational pathology [16,
17,22,48,49]. That way, a disagreement between GP3 and GP5 would
result in a stronger penalization in 𝜅 than that of a disagreement
between GP3 and GP4.

𝜅 = 1 −

∑𝑘
𝑖,𝑗 𝑤𝑖,𝑗𝑂𝑖,𝑗

∑𝑘
𝑖,𝑗 𝑤𝑖,𝑗𝐸𝑖,𝑗

, 𝑤𝑖,𝑗 =
(𝑖 − 𝑗)2

(𝑁 − 1)2
(1)

In Eq. (1), 𝑖 and 𝑗 are the CNN output classes, ranging from 0 to 2 for
GP classification (0: GP 3, 1: GP 4, 2: GP 5; 𝑁 = 3). 𝑂𝑖,𝑗 is the multiclass
confusion matrix, which is an 𝑁×𝑁 histogram representing the number
of images that were classified with a specific pattern 𝑖 by the first
evaluator and 𝑗 by the second. 𝐸𝑖,𝑗 is an 𝑁×𝑁 matrix of expected
results, i.e., a histogram with the expected number of images classified
as 𝑖 by the first evaluator and as 𝑗 by the second. The weighted matrix,
𝑤 , is calculated as a function of the difference between the true and
5

𝑖,𝑗
predicted class, and it is used to penalize predictions more strongly the
more different they are from the true value. In this matrix, the main
diagonal is always 0, while the outer values of the anti-diagonal are
1. More information regarding quadratic weighted kappa can be found
in scikit-learn’s cohen_kappa_score function.2 and in Data Science Bowl
2019 Evaluation page3

3. Results

The results of the experiments performed are divided into two main
subsections: firstly, the inter-observer variability among pathologists of
the Clinic dataset is studied and evaluated in Section 3.1; then, different
deep learning models were trained and evaluated on the same dataset
used in 3.1, and the results obtained using the aforementioned metrics
(see Section 2.6) are presented in Section 3.2.

3.1. Inter-observer variability analysis

The inter-observer variability of the Clinic dataset was analyzed at
two different levels. Firstly, the overlapping area of the annotated re-
gions from the different pathologists was measured. Then, a comparison

2 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_
kappa_score.html

3 https://www.kaggle.com/c/data-science-bowl-2019/overview/
evaluation

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html
https://www.kaggle.com/c/data-science-bowl-2019/overview/evaluation
https://www.kaggle.com/c/data-science-bowl-2019/overview/evaluation
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Fig. 2. Overlapping Annotated Area Analysis procedure. Annotations from two different pathologists (P1 and P2) that intersect at a minimum of 15% between them are used for
the calculation (see Eq. (2)).
of the label of intersecting annotations from different pathologists was
performed.

3.1.1. Overlapping annotated area analysis (OAAA)
As mentioned in Section 2.5, this experiment consisted in mea-

suring the overlapping area of annotations by different pathologists
corresponding to the same region of the slide. To this end, only those
annotations that overlap on the same WSI were analyzed.

Some problematic cases can appear, such as those in which the same
malignant region is annotated by two pathologists in complete different
ways (e.g., one of them selects a large tissue region as GP3, while the
other annotates smaller subregions inside the large one with the same
label). In order to prevent these cases from affecting the results, the
area of all the small subregions were summed up and then compared
to the larger one, instead of performing a simple pairwise comparison.
Moreover, a 15% overlap between annotation areas was set to avoid
outliers.

The overlapping area ratio between two annotations was obtained
by means of the intersection over union, taking into account the
aforementioned (see Eq. (2)).

𝑂𝐴𝐴𝐴 = (1 −
𝐴𝑎𝑐𝑢𝑚

𝐴1 + 𝐴𝑎𝑐𝑢𝑚 − 𝐴𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐
) ∗ 100 (2)

Where 𝐴𝑎𝑐𝑢𝑚 is the sum of the areas annotated by pathologist P1 that
intersect at a minimum of 15% with 𝐴1 (a larger annotation performed
by pathologist P2), and 𝐴𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐 is the area of the intersection between
the annotations. A total of 145 pairs of intersecting annotations were
analyzed. Among these, only 3 pairs did not exceed the 15% overlap-
ping threshold set. For each pair of annotations, expression (2) was
applied. Fig. 2 shows the whole procedure followed for the OAAA
calculation. As a result, a mean pairwise area discrepancy of 46% was
obtained on overlapping annotations by different pathologists.

3.1.2. Labeling discrepancy analysis (LDA)
As mentioned in Section 2.5, an analysis regarding the label that

was set for each of the annotations was performed. To this end, Cohen’s
kappa score was used (see Section 2.6). Two lists of GPs were defined
to obtain the result, where index 𝑖 refers to a tissue area annotated as
𝐺𝑃 1[𝑖] by one pathologist and as 𝐺𝑃2[𝑖] by another pathologist.

The amount of pairs of annotations from the same tissue region
that share the same label was calculated, which resulted in 74.34%
agreement (25.66% discrepancy). The ground-truth confusion matrix
obtained from the two aforementioned lists of annotations can be seen
in Fig. 3. A total of 2116 pairs of annotations were analyzed, of which
543 (25.66%) did not share the same pattern. Consequently, a quadratic
Cohen’s kappa of 0.6946 was obtained.
6

Fig. 3. Confusion matrix and kappa score of the ground-truth annotations provided by
the group of pathologists from Clinic Hospital that annotated the slides.

Table 4
Test accuracy (𝑡𝑒𝑠𝑡_𝑎𝑐𝑐) and Cohen’s quadratic Kappa score (𝜅) of the 10 models
designed by means of the Grid Search algorithm using Clinic dataset for training,
validating and testing.

test_acc 𝜅

IT 1 0.445 0.367
IT 2 0.501 0.429
IT 3 0.570 0.617
IT 4 0.487 0.609
IT 5 0.522 0.604
IT 6 0.636 0.727
IT 7 0.605 0.713
IT 8 0.658 0.739
IT 9 0.319 0
IT 10 0.319 0

3.2. CNN experiments results

As introduced in Section 2.5, different CNN models were trained
using both datasets described in Section 2.1 in order to compare the
results with the discrepancy of the group of pathologists that was
evaluated in the previous experiment.

In order to report robust results, each of the networks was trained
10 times each. The results from each network architecture are reported
as the mean and the standard deviation of the Cohen’s quadratic kappa
statistic (see Section 2.6).
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Fig. 4. Diagram of the architecture of the three custom models (Custom 1, Custom 2 and Custom 3) used. CS stands for Convolutional Stage, which consists of a convolution
layer, a max-pooling layer and an activation layer.
Table 5
Kappa score achieved on the Clinic test set for the 10 models trained for each CNN architecture with the Clinic dataset. The mean and standard
deviation are also reported for each architecture.

VGG16 InceptionV3 DenseNet121 Custom 1 Custom 2 Custom 3

Model 1 0.680 0.779 0.845 0.727 0.669 0.735
Model 2 0.708 0.772 0.838 0.675 0.632 0.702
Model 3 0.692 0.808 0.833 0.779 0.733 0.749
Model 4 0.698 0.767 0.817 0.710 0.658 0.753
Model 5 0.653 0.813 0.811 0.698 0.751 0.714
Model 6 0.586 0.805 0.830 0.747 0.717 0.664
Model 7 0.795 0.818 0.796 0.644 0.626 0.741
Model 8 0.773 0.800 0.841 0.708 0.717 0.705
Model 9 0.680 0.794 0.832 0.746 0.694 0.736
Model 10 0.732 0.810 0.821 0.662 0.752 0.747

Mean 0.700 ± 0.056 0.797 ± 0.017 0.826 ± 0.014 0.709 ± 0.040 0.695 ± 0.044 0.725 ± 0.027
3.2.1. Clinic training
As was explained in Section 2.5, the first experiment regarding the

use of CNNs consisted in training different architectures with the Clinic
dataset and then evaluating them with an external partition of the same
dataset. Table 4 presents the results obtained with the Grid Search
algorithm. In each iteration, a convolution layer was added together
with a batch normalization layer and a 2D max pooling layer. The
best results were obtained in iterations 6 (0.727 𝜅), 7 (0.713 𝜅) and 8
(0.739 𝜅), which, from now on, will be referred to as Custom 1, Custom
2 and Custom 3 models, respectively. Fig. 4 shows a representation of
the architecture of these three custom models.

These three models, together with VGG16, InceptionV3 and
DenseNet121 were trained ten times each, and the results for each of
them can be seen in Table 5.

Fig. 5 presents the confusion matrices for the best models of each
of the trained architectures. As can be observed, all the models achieve
very high accuracy on GP3 and GP5, which is not the case for GP4, as
it is very often confounded with GP3.

3.2.2. PANDA training
The second experiment consisted in training each of the architec-

tures proposed with the PANDA dataset, which were then tested on the
Clinic dataset. Table 6 presents the results for each of the ten models
trained for each architecture, along with the mean 𝜅 and standard
deviation. As expected, the models achieved a lower performance with
respect to the previous experiment, since the training and validation of
the networks was performed on a dataset (PANDA) different than the
one used for the final evaluation with which the metrics were obtained
(Clinic).

co 6 presents the confusion matrices of the model that achieved
the best results for each of the architectures considered. As can be
seen, the models tend to classify GP3 as GP4 in most of the cases. It
should also be mentioned that these matrices are obtained from the best
models, which correspond to extreme positive outliers not representing
the average case, as can be seen in Table 6.
7

3.2.3. Transfer learning
Since the results obtained in the previous experiment were not as

good as expected, the same models were used in a transfer learning
experiment in order to improve the results. To this end, the weights of
the feature extraction layers of the trained models (trained only with
the PANDA dataset) where frozen, and the fully-connected layers where
fine-tuned with the train and validation partitions of the Clinic dataset.

The results obtained after testing the fine-tuned models with the test
partition of the Clinic dataset are presented in Table 7. The best overall
result was achieved by the VGG16 models, which obtained an average
of 0.746 ± 0.030𝜅. Among them, the best model was able to achieve a 𝜅
of 0.789. A clear improvement can be observed on the results obtained
for each of the architectures compared to the previous experiment.

Fig. 7 presents the confusion matrices obtained with the best model
of each of the evaluated architectures. A behavior similar to that of the
first experiment is observed, in which the models tend to classify GP4
as GP3, even for those cases with the highest 𝜅.

3.2.4. Clinic and PANDA datasets combined
In this subsection, the models have been trained with both datasets

in order to improve the notorious confusion between GP3 and GP4
found in the predictions of the models. In this case, no layers were
frozen, and all of them were trained from scratch with both datasets
at the same time (see Fig. 8 and Table 8).

4. Discussion

The inter-pathologist variability is widely-known in the computa-
tional pathology field and, particularly, in prostate cancer classifica-
tion. The high heterogeneity of the digitized tissue samples, the lack of
very precise rules to follow when choosing the specific GP to assign to
a tissue region (the pattern is assigned based on the extent to which the
tissue resembles native tissue) and the subjectivity of the pathologists
that perform the annotations are some of the main factors that increase
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Fig. 5. Confusion matrices of the best models trained with Clinic dataset.
the aforementioned variability. This, together with the recent advances
in artificial intelligence, suggests that deep learning algorithms could
be used as a support system for pathologists in order to help them in
the analysis task and to reduce the inter-observer variability.

In this work, different experiments were performed in order to ana-
lyze the inter-observer variability of a local dataset from Clinic Hospital
(Barcelona, Spain) that was annotated by a group of 5 pathologists,
which was then compared to four different deep learning-based training
approaches including 6 different CNN architectures.

In Section 3.1.1, the size of the tissue areas annotated by the
pathologists was analyzed. To this end, a pairwise comparison between
8

coincident annotated regions was performed, resulting on an average
discrepancy of 46% in size. Such high discrepancy can be attributed
to the subjectivity of annotating WSIs by hand in a manual process,
in which a pathologist may have been very strict in making the an-
notations while others may have annotated in a more general way
without being too specific. This also includes cases where a pathologist
may have marked a whole tissue region as a region of interest, while
others may have annotated a set of smaller tissue areas within that
same region. These cases are considered in the OAAA calculation, since
smaller annotations from a pathologist that overlap with a larger one
from a different pathologist are summed up before calculating the
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Table 6
Kappa score achieved on the Clinic test set for the 10 models trained for each CNN architecture with the PANDA dataset. The mean and
standard deviation are also reported for each architecture.

VGG16 InceptionV3 DenseNet121 Custom 1 Custom 2 Custom 3

Model 1 0.454 0.526 0.389 0.499 0.427 0.082
Model 2 0.450 0.552 0.516 0.195 0.021 0.084
Model 3 0.501 0.483 0.483 0.162 0.101 0.186
Model 4 0.512 0.385 0.446 0.424 0.213 0.046
Model 5 0.539 0.432 0.563 0.142 0.236 0.409
Model 6 0.584 0.456 0.420 0.062 0.372 0.225
Model 7 0.484 0.204 0.469 0.020 0.158 0.018
Model 8 0.470 0.576 0.530 0.333 0.288 0.381
Model 9 0.529 0.579 0.420 0.389 0.358 0.336
Model 10 0.634 0.560 0.529 0.298 0.276 0.083

Mean 0.516 ± 0.055 0.475 ± 0.109 0.476 ± 0.055 0.252 ± 0.152 0.245 ± 0.120 0.185 ± 0.139
Table 7
Kappa score achieved on the Clinic test set for the 10 models trained for each CNN architecture with the PANDA dataset and then fine-tuned
with Clinic. The mean and standard deviation are also reported for each architecture.

VGG16 InceptionV3 DenseNet121 Custom 1 Custom 2 Custom 3

Model 1 0.755 0.737 0.725 0.584 0.516 0.523
Model 2 0.763 0.739 0.729 0.539 0.632 0.586
Model 3 0.770 0.742 0.727 0.579 0.558 0.492
Model 4 0.789 0.706 0.734 0.547 0.603 0.626
Model 5 0.713 0.723 0.739 0.542 0.632 0.603
Model 6 0.727 0.712 0.735 0.580 0.641 0.558
Model 7 0.690 0.752 0.732 0.564 0.564 0.591
Model 8 0.747 0.691 0.730 0.583 0.532 0.373
Model 9 0.724 0.727 0.713 0.606 0.570 0.584
Model 10 0.783 0.703 0.740 0.640 0.560 0.354

Mean 0.746 ± 0.030 0.723 ± 0.019 0.731 ± 0.007 0.579 ± 0.028 0.581 ± 0.042 0.529 ± 0.091
Table 8
Kappa score achieved on the Clinic test set for the 10 models trained for each CNN architecture with the PANDA and Clinic datasets combined.
The mean and standard deviation are also reported for each architecture.

VGG16 InceptionV3 DenseNet121 Custom 1 Custom 2 Custom 3

Model 1 0.685 0.666 0.739 0.783 0.763 0.761
Model 2 0.562 0.729 0.807 0.802 0.728 0.603
Model 3 0.837 0.767 0.722 0.601 0.794 0.694
Model 4 0.610 0.742 0.751 0.754 0.798 0.738
Model 5 0.775 0.708 0.751 0.760 0.668 0.607
Model 6 0.851 0.758 0.770 0.822 0.724 0.631
Model 7 0.814 0.719 0.743 0.762 0.756 0.627
Model 8 0.798 0.674 0.729 0.606 0.805 0.753
Model 9 0.810 0.754 0.686 0.780 0.736 0.724
Model 10 0.773 0.764 0.762 0.781 0.610 0.721

Mean 0.751 ± 0.094 0.728 ± 0.034 0.746 ± 0.030 0.745 ± 0.074 0.738 ± 0.058 0.686 ± 0.059
discrepancy between them, although all the stroma and benign cells
included in the larger annotation would be considered, representing a
decent increase of that discrepancy.

On the other hand, with respect to the inter-observer variability
analysis regarding the labels of the annotations performed in Sec-
tion 3.1.2, the result obtained (0.6946 𝜅 between pathologists) is
consistent with that presented in [16], which reports a similar 𝜅 value
analyzed on TMAs instead of WSIs.

Regarding the CNN experiments presented in Section 3.2, four
different training approaches were considered in order to compare
the performance obtained with the inter-observer variability that was
previously analyzed. These experiments were aimed at comparing the
different training methods in terms of patch-level results on the test set.

Firstly, in Section 3.2.1, six different neural network models were
trained with strongly-annotated patches extracted from the Clinic
dataset. Among them, three widely-known CNN architectures (VGG16,
DenseNet121 and InceptionV3) were used, together with the three best
custom models obtained by means of a Grid Search algorithm, which
automatically explored different architectures from one convolution
stage up to ten with different hyperparameters and filter sizes. In
Table 4, it can be observed that the models from iteration 8 onward,
9

which contain 9 and 10 convolution stages, are not functional. Each
convolution stage reduces the size of the feature maps, making them
very small and lose relevant information after 8 consecutive convolu-
tion stages, which explains why the fully-connected layers are no longer
able to classify the extracted features correctly. On the other hand,
iterations 6, 7 and 8 report the best results. These three architectures
together with VGG16, DenseNet121 and InceptionV3 were trained ten
times each, reporting the mean and the standard deviation of the
results. This approach is commonly followed to reduce undesired effects
introduced by the stochastic gradient descent optimizer adopted during
the model optimization. From the results reported in Table 5, it can be
seen that the best overall results were obtained by the DenseNet121
models with 𝜅 = 0.826 ± 0.014, while the best result was obtained
by one of the InceptionV3 models reporting 𝜅 = 0.845. Although
these results were already higher than the inter-observer variability
analyzed on the Clinic dataset (𝜅 = 0.6946), other training methods
were explored in order to avoid biased results obtained from models
that were trained and tested on the same dataset. To this end, the
largest publicly-available prostate cancer dataset was used to train the
models in different ways, which allows for a higher generalization of
the model due to the heterogeneity of the dataset.

The results of the experiment in which the networks were trained

with PANDA and tested on Clinic (see Section 3.2.2) show a decrease
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Fig. 6. Confusion matrices of the best models trained with PANDA dataset.
on the performance of the models in terms of 𝜅 compared to the first
experiment, where Clinic was used for both training and testing. These
results were expected due to the high heterogeneity of the data and the
stain variability. In these cases, models tended to classify GP3 as GP4
or vice versa in most cases. Nevertheless, complex models like VGG16
managed to overcome this aspect and achieve decent average results.

Additionally, in Section 3.2.3, the models trained with PANDA were
used in a transfer learning experiment in which they were fine-tuned
using the Clinic dataset. This approach allows having a more versatile
and generalized model that could be used for a specific medical center
after a simple and fast retraining of the last fully-connected layers.
The results obtained using this method (see Table 7) show that the
custom models did not perform as well as in the first experiment (see
10
Section 3.2.1). One of the reasons that may explain this situation is
the simplicity of the models, which are much smaller than VGG16,
DenseNet121 and InceptionV3 and, thus, the feature extraction from
input images is not as robust as in these models. On the other hand,
the PANDA dataset has a much larger number of samples and is more
heterogeneous than Clinic, which also explains the need for more
complex architectures. The best results were obtained with VGG16,
reporting an average result of 𝜅 = 0.746 ± 0.030, with one of the
models achieving 𝜅 = 0.789.

As an additional experiment, instead of training the models with
either Clinic or PANDA (also considering fine-tuning), both datasets
were combined in order to increase the variability of the training
data. The results show a clear overall improvement when compared to
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Fig. 7. Confusion matrices of the best models trained with PANDA dataset and fine-tuned with Clinic dataset.
the previous experiment, particularly for the custom models. The best
results are obtained with VGG16, which achieve 𝜅 = 0.751 ± 0.094 on
average, closely followed by Custom 1 models (𝜅 = 0.745 ± 0.074).
More publicly-available datasets could have been added on this exper-
iment in order to create models able to generalize better on unseen
data. Nevertheless, achieving the best results or the highest general-
ization was not the main goal of this work, but to compare a few
11
approaches with a test set with which the results could be compared
to the inter-observer variability of a group of 5 pathologists from
the same medical center. To this end, we considered using PANDA,
the largest publicly-available prostate cancer dataset, for the proposed
experiments.

Table 9 shows a general overview of the results obtained for each of
the experiments performed, together with the mean 𝜅 and its standard
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Fig. 8. Confusion matrices of the best models trained with PANDA and Clinic datasets combined.
deviation. As can be seen, widely-known architectures achieve better
results than the custom models, which sacrifice on performance while
benefiting from faster computation time.

An interesting aspect to note is the fact that custom models obtained
by means of the Grid Search method performed in a similar way as
deeper pre-trained architectures in the last experiment (and also in
the first one for some cases), while the former perform significantly
worse in the PANDA training experiment and the fine-tuning exper-
iment (experiments 2 and 3, respectively). This could be caused by
12
two different factors. On the one hand, the Grid Search models were
specifically tailored for being trained on the Clinic dataset, which could
clearly lead to better performance in those cases where the dataset
is used for training the models from scratch. On the other hand, in
the fine-tuning experiment, the models were pre-trained with PANDA,
which is a vast dataset compared to Clinic. The large amount of samples
and the heterogeneity of the dataset, which consists of images from
different sources, may require deeper architectures to extract more
complex features and generalize better. This aspect would explain why
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Table 9
Summary of the average results obtained for each of the trained models on the different experiments performed. The mean 𝜅 across the different
experiments is also reported for comparison purposes.

VGG16 InceptionV3 DenseNet121 Custom 1 Custom 2 Custom 3

Exp1: Clinic training 0.700 ± 0.056 0.797 ± 0.017 0.826 ± 0.014 0.709 ± 0.040 0.695 ± 0.044 0.725 ± 0.027
Exp2: PANDA training 0.516 ± 0.055 0.475 ± 0.109 0.476 ± 0.055 0.252 ± 0.152 0.245 ± 0.120 0.185 ± 0.139
Exp3: Transfer learning 0.746 ± 0.030 0.723 ± 0.019 0.731 ± 0.007 0.579 ± 0.028 0.581 ± 0.042 0.529 ± 0.091
Exp4: Combined datasets 0.751 ± 0.094 0.728 ± 0.034 0.746 ± 0.030 0.745 ± 0.074 0.738 ± 0.058 0.686 ± 0.059

Mean 0.678 ± 0.059 0.681 ± 0.045 0.698 ± 0.027 0.571 ± 0.074 0.565 ± 0.066 0.531 ± 0.079
pre-trained networks achieved better results than custom models when
PANDA was introduced.

Gleason grading is still an open problem due to many factors
including the heterogeneity of the samples and the stain variability
across different sources. The recent advances in the deep learning field
and computational pathology pave the road for the future integration
of CAD systems into medical centers for supporting pathologists. The
inter-observer variability in Gleason grading tasks is a well-known fact,
and has been analyzed particularly in this work for a local dataset
of WSIs obtained from Clinic Hospital (Barcelona, Spain), which was
annotated by a group of 5 different pathologists from the same center.
The results obtained using different training approaches and CNN
architectures prove that this kind of algorithm can achieve similar
results compared to those of the inter-observer variability, which was
used as the baseline, and even improve them when more heterogeneous
datasets are used for training deeper neural networks.

As a future work, we would like to include the trained models
that achieved the highest performance in a fully automatic Gleason
grading and Gleason scoring diagnostic system. To this end, a two-
stage model, which performs a binary classification of benign and
malignant images and then performs Gleason grade classification on
the images previously classified as malignant would be considered.
On the other hand, the Clinic dataset will be released for public use
in the near future. This includes releasing the WSIs with the ground
truth diagnostic together with the pixel-wise annotations performed by
pathologists. It is intended to be an incremental dataset, meaning that
it will be updated with new data upon reception and anonymization.

5. Conclusions

In this work, a comparative study of the inter-observer variability in
pixel-wise annotations of prostate cancer WSIs sourced from Clinic Hos-
pital (Barcelona, Spain) was carried out, considering Gleason patterns
3-5. This analysis was first performed at the annotation level, studying
the discrepancy among five pathologists from the same source at both
annotation size and label assigned. A mean pairwise area discrepancy
of 46% was obtained on overlapping annotations, while a quadratic
Cohen’s kappa of 0.6946 was achieved when comparing the labels of
the annotations. These results were compared to the performance of six
CNN architectures that were trained using four different approaches. In
these experiments, both the Clinic dataset, which will be public in the
near future, and the largest publicly-available prostate cancer dataset
(PANDA) were used. The best results were obtained by DenseNet121,
which was able to obtain a mean 0.826±0.014𝜅. Most of the trained

odels achieved a quadratic Cohen’s 𝜅 that is similar to or even higher
han the inter-observer variability of the Clinic dataset, except for
xperiments where this dataset was not introduced in the training loop.

The different training approaches explored in this work could help
ther researchers focus on the best methods for benefiting from datasets
btained from different sources in order to improve current CAD sys-
ems.

The inter-observer kappa score of 0.6946 obtained from the team
f pathologists was outperformed by several CNN models presented in
his work. These results prove that the application of Deep Learning
n the field of computational pathology could serve as a support for
athologists in the diagnosis process, providing a second opinion or
ven serving as a triage tool for experts to focus on more aggressive
13

ases first.
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