This is a post-peer-review, pre-copyedit version of an article published in Journal of Food Science and Technology. The final authenticated version is available online at: https://doi.org/10.1007/s13197-020-04567-3

Phenolic compounds from virgin olive oil obtained by natural deep eutectic solvent (NADES): effect of the extraction and recovery conditions

Elisa Rodríguez-Juan · Cristina Rodriguez-Romero · Juan Fernandez-Bolaños · María C Florido⁺ · Aranzazu Garcia-Borrego*

Instituto de la Grasa, Spanish National Research Council (CSIC), Campus University Pablo de Olavide, Building 46, 41013, Seville, Spain.

⁺Escuela Técnica Superior de Ingeniería Agronómica (ETSIA), University of Seville. Ctr. Utrera km 1 -41013 - Seville. Spain.

*Corresponding author: <u>aranzazu@ig.csic.es</u>; Tel.:+34-954-611-550 (Ext 342)

Phenolic compounds from virgin olive oil obtained by natural deep eutectic solvent
 (NADES): effect of the extraction and recovery conditions

3

4 Abstract

Environmentally friendly natural deep eutectic solvents (NADES) have been shown to 5 6 efficiently extract a wide range of phenolic compounds from virgin olive oil (VOO). The objective of this work was to optimize the yield of olive oil phenols extracted by NADES 7 based on choline chloride/xylitol (Xyl/ChCl). Different extraction and recovery 8 9 conditions were investigated, including the effect of different extraction operating parameters (temperature, time, VOO:NADES ratio) and subsequent recovery conditions 10 (XAD resin height, wash-water and eluent volume and pH). The highest concentration of 11 phenols (555.36 mg/kg VOO) was obtained from extraction at 40° C for 1 h, with a 1:1 12 ratio, using an adsorption resin XAD-16 with bed height of 10 cm, 250 mL acidified 13 14 wash-water and 300 mL EtOH 100% as eluent. No statistically significant loss of the sum of phenolic compounds was observed when compared with the concentration values 15 obtained by direct analysis in HPLC without the elimination of NADES. Additionally, a 16 17 sequential desorption with different concentration of ethanol was used to determine the effect of the solvent concentration on polyphenol yield. Polar compounds, such as 18 hydroxytyrosol and tyrosol, were recovered at 81.7 % and 83.6 %, respectively; however, 19 20 100% ethanol was required for the complete elution of oleacein (3,4-DHPEA-EDA) and oleocanthal (p-HPEA-EDA). In this paper we present an effective process for the extraction of 21 22 polyphenols from VOO by NADES for direct analysis in HPLC and for the recovery and concentration of polyphenols by removing the solvent (NADES) with no losses of yield and 23 solvent recycling. 24

25 Keywords

26 Phenolic compounds, Natural Deep Eutectic Solvent, Virgin Olive Oil, Extraction,

27 Recovery.

28

29 Introduction

30 Natural deep eutectic solvents (NADES) are currently an alternative to conventional solvents for the extraction of phytochemicals, such as phenolic compounds, from diverse 31 32 sources, among them olive fruits and derived products including olive oil (Ferrone et al. 2018; Garcia et al. 2016). In the present day, consumers demand natural bioactive 33 products for multiple purposes, which have been obtained using sustainable production 34 35 techniques, challenging many conventional procedures. Many organic solvents, e.g., alcohols, chloroform, and ethyl acetate, are still extensively employed for extraction of 36 biologically active compounds (Gavahian et al. 2019; Mark et al. 2019; Francisco et al. 37 2019), although they contribute to environmental pollution and leave undesirable solvent 38 deposits in the extracts. This is the reason why significant progress has recently been 39 made in the development of new extraction methods for substances of interest, such as 40 phenolic compounds, that avoid or minimize the use of organic solvents, and that allow 41 obtaining extracts or purified compounds, useful both in research and in the food, 42 43 pharmaceutical or cosmetic industries.

An alternative to these solvents are the so-called NADES (Dai et al. 2013a), a group of eco-friendly solvents (Jiang et al. 2019; Athanasiadis et al. 2018), with properties such as low volatility at room temperature, non-flammability, a wide range of polarity, and high biodegradability. Dai et al. (2014) included the term NADES to define liquids

obtained from natural products as primary metabolites, including organic acids, amino 48 49 acids, sugars, alcohol or amines with a wide variety of applications (Dai et al. 2013b). NADES are considered to form an ionic bond to give a liquid crystal at room temperature 50 whose melting temperature is much lower than that of the starting components. Such 51 interactions are formed by the combination of compounds of high melting point, generally 52 solid to form a liquid due to the delocalization of the charge, caused by hydrogen bonding, 53 generating a eutectic point whose melting temperature is much lower than the starting 54 compounds. Since NADES are constituted by natural and innocuous substances, they are 55 very interesting for the extraction of bioactive compounds from different matrices (Dai et 56 57 al. 2013c).

58 Phenolic compounds are a group of structurally diverse secondary metabolites in plants that are essential for plant growth, development, stress adaptation, and defense and exhibit 59 60 numerous beneficial properties for health (Villard et al. 2019; Gutierrez et al. 2019). They have attracted a large amount of interest in recent years due to their antioxidant capacity 61 (Franco et al. 2014; Fuentes et al. 2018), which has been associated with beneficial 62 effects for health, such as a reduced risk of coronary heart disease, prevention of several 63 types of cancers (Reboredo-Rodríguez et al. 2018), modification of immune and 64 65 inflammatory responses, antihypertension, antimicrobial and cholesterol-lowering properties (Hounsome et al. 2008). 66

Virgin olive oil (VOO) contains at least 30 phenolic compounds, whose main classes are secoiridoids aglycons such as the dialdehydics forms of elenolic acid linked to hydroxytyrosol (3,4-DHPEA-EDA) or tyrosol (*p*-HPEA-EDA), oleuropein and ligtroside aglycons (3,4-DHPEA-EA, *p*-HPEA-EA) respectively, phenolic alcohols such as hydroxytyrosol (Hy) and tyrosol (Ty), the lignans acetoxypynoresinol and pinoresinol, and flavonoids such as luteolin and apigenin. Most phenolic compounds present a broad

spectrum of antioxidant, free radical scavenger and anti-inflammatory effects and their 73 74 biological properties have been wide investigated (Serreli and Deiana 2018). Among 75 them, secoiridoid derivatives of oleuropein and ligstroside are considered bioactive compounds because they can be hydrolyzed to Hy before reaching human plasma (Fitó et 76 77 al. 2007). In addition, p-HPEA-EDA has demonstrated anti-inflammatory activity with the ability to inhibit COX-1 and COX-2 enzymes similar to ibuprofen (Beauchamp et al. 78 2005). Furthermore, this phenolic compound is able to inhibit the phosphorylation of c-79 Met kinase in vitro, a proto-oncogene receptor with a significant oncogenic role in many 80 tumors, (Akl et al. 2014) and suppress the growth of luminal breast cancer cells, in part, 81 82 by reducing total levels of ERa in cell culture and animal studies (Ayoub et al. 2017). The antibacterial effect of 3,4-DHPEA-EDA against a broad spectrum of bacteria is also 83 well described, together with its antioxidant and antiproliferative properties (Castro et al. 84 85 2007). Lignans such as acetoxypinoresinol and pinoresinol possess antioxidant activity and they have been associated with antitumor effects. Pinoresinol exerts anti-inflamatory 86 87 activity and antifungal activity against several human pathogen fungi, neuroprotective and hypoglycaemis actions (López-Biedma et al. 2016). Flavonoids like apigenin and 88 luteolin showed effect in suppressing colorectal cancer cell by slowing their growth by 89 90 cell cycle arrest. (Borzi et al. 2019). Phenolic compounds in olive oil have been traditionally extracted by means of organic solvents such as methanol, ethanol, their 91 aqueous mixtures or others solvents such as N,N-dimethylformamide, with liquid-liquid 92 93 or solid-phase extraction (Brenes et al. 2000). In the organic solvent extraction, parameters such as the ratio VOO:solvent, temperature or the extraction time are slightly 94 95 variable. Phenolic compounds in oil such as secoiridoids derivatives can be hydrolyzed with high temperature when extracted and concentrated with organic solvents or their 96 aqueous mixtures, for that reason, temperatures below 35 °C are used to obtain a phenolic 97

extract without hydrolyzing. The official method for extraction of phenolic compounds 98 99 from VOO by the International Olive Council Testing Method uses 80% (v/v) methanol at room temperature. However, Garcia et al. (2016) demonstrated that extraction of 100 phenolic compounds from the VOO by eutectic solvents was more effective than 101 extraction by methanol 50% or 80% (v/v) at temperature of 40°C. The removal of organic 102 solvent for the concentration of polyphenols from the extracts is done by low temperature 103 104 evaporation. For the removal of eutectic solvents from phenolic extracts, resin adsorption was used, it is not known how different parameters of this process affect the phenolic 105 106 content of the extracts.

However, different factors can affect the extraction and recovery of phenolic compounds
from VOO. The objective of this work was to determine the optimal conditions for the
extraction and recovery of phenolic compounds from VOO using an NADES-based
method.

111

112 Materials and Methods

113 Samples, standards, and reagents

114 VOO of the Hojiblanca variety was purchased from commercial suppliers and preserved at -20° C until its use. The standard compounds tyrosol, luteolin, apigenin and pinoresinol 115 116 were purchased from Sigma-Aldrich (St. Louis, MO). Hydroxytyrosol was obtained by the method described by Fernández-Bolaños et al. (2004). Oleacin, oleocanthal, 117 118 oleuropein aglycone, ligstroside aglycone and 1-acetoxypinoresinol were obtained from VOO separated in an analytic C-18 column and eluted with MeOH:H₂O, as described by 119 120 García et al. (2001). HPLC grade methanol was purchased from Panreac-Applichem. Milli-Q water was used acidified with 6N TFA. 121

122 Xylitol, and 1,2-choline chloride were obtained from Sigma Aldrich. Resin Amberlite123 XAD-16 was purchased from Vivaqua, Spain.

124

125 Preparation of Natural Deep Eutectic Solvent (NADES)

Natural deep eutectic solvent (NADES) was prepared according to the evaporating method described by Dai et al. (2013b). Briefly, a choline chloride, xylitol and water mixture (ChCl:Xyl:Water) with a ratio (2:1:3) was heated with a rotary evaporator in a round-bottomed flask until a homogeneous colorless liquid was formed.

130 Extraction of phenolic compounds

The control extraction procedure was performed by mixing 14 g VOO with 14 g of NADES with agitation in a water bath at 40 °C for 1 h. The 1:1 VOO: NADES mixture was centrifuged at 1200 g during 10 min and the NADES-phase was recovered. This procedure was repeated and the extracts pooled. The extract was analyzed by direct injection in HPLC without elimination of NADES. The NADES phase was washed four times with hexane to eliminate residual oil and bubbled with nitrogen to eliminate residual hexane.

In order to evaluate the effect of different conditions on the extraction of polyphenols, the procedure described above was modified. To investigate the effect of extraction time, extraction times of 0.5 h, 2 h and 6 h were used and compared to the control time of 1 h at a temperature of 30 and 40 °C and with a 1:1 VOO: NADES ratio. The effect of temperature on the extraction was analyzed at 30, 60 and 90 °C and compared to the control temperature of 40 °C, with extraction time 1 h and 1:1 VOO: NADES ratio. Finally, the effect of the VOO: NADES ratio was determined applying the ratios 1:3, 1:4, 145 1:7, and compared to the 1:1 control ratio with an extraction time of 1 h and temperature146 of 40 °C.

147 Recovery of phenolic compounds

NADES extracts (20 mL) were passed through an amberlite XAD-16 adsorbent filled 148 column with 2.3 cm inside diameter to give a bed height of 10 cm. The adsorbent was 149 pre-treated with 50 mL of ethanol and washed with 50 mL of MO water prior to loading 150 151 of the phenolic extracts. Extracts were washed with 250 mL of MQ water and the captured phenols eluted from the resin with 300 mL of ethanol 100%. Eluted samples were dried 152 under vacuum at 30 °C, dissolved in 1 mL of MeOH and filtered through a 0.45 µm nylon 153 154 filter for analysis by HPLC-DAD. This procedure was considered the control recovery 155 protocol.

The control conditions that had been used in the recovery of phenols were modified to 156 determine their possible effect on the final concentration. For this, the effect of column 157 158 bed height on the adsorption of phenolic compounds from the NADES extract was analyzed, using 10 cm, control height, and doubling it to 20 cm. In the processes of pre-159 160 treatment of the column and elution of the phenols, all volumes were doubled with respect 161 to the control. Thus, 100 mL of ethanol followed by 100 mL of MQ water were used in the pre-treatment of the adsorbent, then 20 mL of NADES extract was loaded, it was 162 washed with 500 mL of MQ water, and then eluted with 600 mL of 100% ethanol. 163

The possible effect of pH on the recovery of phenolic compounds from the extract was studied. Thus, the washing water used during the pretreatment of the column and in the phenol elution process, was adjusted to pH 4 with acetic acid. The possible effect of the type of solvent, ethanol or methanol used in the column pre-treatment and phenol recovery processes was also determined. Finally, the effect of the aqueous solvent mixtures on the desorption of the polyphenols
was assayed using a column bed of 20 cm, with sequential elution performed with 100
mL of 50, 80 and 100% ethanol.

172 HPLC-DAD analysis of phenolic compounds

The chromatographic system consisted of a HP 1100 Series gradient HPLC (Agilent 173 Technologies, Santa Clara, California). A Mediterranea SEA 18 column (250 mm 4.6 mm 174 i.d. 5 µm, Teknokroma, Barcelona, Spain) was used for the separation. Detection was 175 performed with a HP diode array detector (DAD): the wavelength used for the 176 177 quantification of luteolin and apigenin was 340 nm, and 280 nm for the rest of the compounds. The mobile phases used to perform the separation consisted of methanol and 178 water. Elution was achieved using an elution gradient with an initial composition of 90% 179 180 water (with pH adjusted to 2.5 with 6 N trifluoroacetic acid) and 10% methanol. The concentration of methanol was increased to 30% in 10 min and maintained for 10 min. 181 Then, the methanol percentage was raised to 40% in 10 min and maintained for 5 min. 182 Finally, the methanol percentage was increased to 60%, 70%, and 100% in 5-min periods. 183 The initial conditions were reached in 15 min. The flow rate used was 1 mL/min. 184 185 Quantification of phenolic compounds was performed using the reference compounds obtained from commercial suppliers or preparative HPLC, as previously described 186 187 (Section 2.1). The concentration of polyphenols was expressed in mg/kg of VOO.

188 Statistical analysis

All studies were performed in duplicate and means and standard deviations werecalculated. One-way and two-way statistical analyses were completed by ANOVA test

using IBM.SPSS Statistics (Version 25). The significance of the results was compared using p < 0.05.

193

194 Results and discussion

NADES are solvents that allow the efficient extraction of molecules, including 195 polyphenols, from different matrices such as olive oil. In this work, we performed the 196 extraction of polyphenols from VOO using a NADES formulation based on Xyl/ChCl 197 that was chosen for its high extractive efficiency compared to other NADES formulations 198 199 and conventional solvents (García et al. 2016). The most favorable conditions for 200 obtaining phenolic compounds and eliminating the solvent from the extracts by means of adsorption resins were studied. This method permits the concentration of polyphenols for 201 202 later use.

The content of the phenolic compounds obtained from NADES extracts was determined 203 204 by quantitative analysis by HPLC-UV, the results are shown in Figure 1. A direct injection analysis of the phenolic extract obtained without solvent removal was performed 205 by the control extraction procedure (Fig. 1a). The results were compared with those 206 obtained from the extract after solvent removal using the control recovery protocol (Fig. 207 1b). Direct injection of the extract is a useful analysis when no concentration of the 208 209 phenolic compounds in the extract is required. However, the use of concentrated solventfree phenolic extracts is useful in many analytical and industrial applications. Results 210 showed that chromatographic profiles of the two analytical determinations are similar. 211 212 The sum of all the polyphenols is also statistically similar. When analyzing the compounds individually, the concentrations of secoiridoid aglucones were higher in the 213

concentrated extract while the alcohols hydroxytyrosol and tyrosol showed higher 214 215 amounts in the extract analyzed by direct injection, the differences were not statistically significant except for hydroxytyrosol. These losses could have been produced by the 216 washing during the recovery stage of these highly water-soluble phenols. NADES have 217 low volatility, hence it was difficult to eliminate the solvent from the extracts obtained 218 and therefore the yield for downstream analytical applications is somewhat limited. In 219 220 order to concentrate the phenolic extracts obtained by NADES, methods such as the adsorption of polyphenols to resins followed by elution with organic solvent can be used. 221 The effect of parameters - including time, temperature and ratio - on the capacity of 222 223 NADES to extract polyphenols from VOO were analyzed sequentially, and the optimal extraction conditions for each parameter were defined. Figure 1b shows the 224 chromatogram of the phenolic compounds concentrated and obtained under optimal 225 226 extraction conditions.

227 Effect of temperature

The effect of different temperatures (30, 40, 60 and 90 °C) on the extraction efficiency of 228 the phenolic compounds from VOO obtained with Xylitol-Choline Chloride based 229 230 NADES (Xyl/ChCl-NADES) (g/g) in a 1:1 ratio during 1 h of extraction was evaluated. The solvent exhibited a higher extractive capacity at 30 and 40 °C for the four most 231 abundant secoiridoid derivatives in VOO (Fig. 2a), with the most favorable temperature 232 being 40 °C for the extraction of 3,4-DHPEA-EDA (oleacein) and p-HPEA-EDA 233 234 (oleocanthal), followed by oleuropein aglycon (3,4-DHPEA-EA) and ligstroside aglycon (p-HPEA-EA). The simple phenols hydroxytyrosol (Hy) and tyrosol (Ty) were extracted 235 236 in the highest concentrations at 30 and 40 °C for Hy and at 40 °C for Ty (Fig. 2b). The extractability of these compounds decreased significantly (p < 0.05) with the increase of 237

temperature from 40 to 60 and 90 °C. The increase in temperature may reduce the 238 239 viscosity of NADES and thus improve its extraction efficiency (Dai et al. 2013a; Moghimi and Roosta 2019; Lapeña et al. 2019) and/or it could degrade secoiridoid 240 aglycons (Brenes et al. 2002; Lee et al. 2007). However, no increase was detected in the 241 simple molecules derived from hydrolysis, hence the increase in temperature decreased 242 the overall extraction capacity. For the rest of the phenolic compounds analyzed, the 243 244 lignans 1-acetoxypinoresinol and pinoresinol were stable at high temperatures (Brenes et al. 2002), and neither significant differences in concentration of the flavonoids luteolin 245 and apigenin, which remained stable even at 60 and 90 ° C, nor improvements in the 246 extraction of phenols by NADES were observed. Therefore, temperatures of 30° and 40° 247 248 C were selected to perform the next experiment.

249 Effect of extraction time

The effect of extraction time at two different temperatures 30 and 40 °C was conducted 250 for the extraction of phenols during 0.5, 1, 2 and 6 h, with a 1:1 ratio of VOO: Xyl/ChCl-251 NADES (g/g) (Table 1). The extract obtained with NADES at 40 °C for 1 h had the highest 252 concentration of the four secoiridoids, followed by the extraction at 0.5 h, which yielded 253 254 10%, 17% and 43% lower amounts of 3,4-DHPEA-EDA, p-HPEA-EDA and 3,4-DHPEA-EA, respectively (Fig. 3). The amount of secoiridoids decreased significantly 255 256 with longer extraction times, with lowest yields at 6 h. This may reflect the degradation 257 of these compounds with longer extraction times, which occurred even at 30 °C. However, 258 a slight but significant increase of Hy and Ty was observed after 6 h of treatment at 40 °C, which could be related to the decrease in their secoiridoids derivatives by hydrolysis 259 260 and release of the phenolic alcohols, highest concentration of lignan 1-acetoxipinoresinol was obtained for 6 h of extraction at 40 °C; this increase was also detected after 6 h at 30 261

°C which would correspond with the greater stability of the lignans. The rest of the phenolic compounds analyzed showed similar recovery yields at 30 and 40 °C and were stable during all extraction times.

265 Effect of the oil/solvent ratio

Different ratios of VOO: Xyl/ChCl-NADES (1:1, 1:3, 1:4 and 1:7) were used in order to 266 determine the influence of the oil/solvent ratio on the yield of phenolic compounds 267 extracted using the control conditions of 1 h at 40 °C. The 1:1 ratio extracted significantly 268 higher concentrations of the secoiridoids 3,4-DHPEA-EDA, p-HPEA-EDA and 3,4-269 270 DHPEA-EA (Fig. 4a), yielding 22.5%, 31.7% and 46 % higher mean concentrations than for ratios of 1:3, 1:4 and 1:7, respectively. The alcohols Hy and Ty showed similar 271 behavior, with the 1:1 ratio producing the most efficient extraction (Fig. 4b). However, 272 no significant differences (p < 0.05) were found for the extraction of lignans and the 273 274 flavonoids between the different ratios assessed.

The highest phenolic extractive yields were obtained using the control conditions, 40 °C during 1 h with a 1:1 VOO: Xyl/ChCl-NADES ratio (Table 1), with which a concentration of 555.36 mg/kg VOO was obtained.

278 Removal of solvent from the NADES extract

To remove the solvent, the NADES extracts were passed through a column filled with XAD-16 resin, the solvent was washed with deionized water with no acidification, and the adsorbed phenols were eluted by organic solvent. The influence of the bed height, acidity of the wash water and the solvent used for the desorption of phenols and its concentration were analyzed.

In order to recover and concentrate the phenols from the NADES extracts, a 284 285 macrophorous adsorbent resin XAD-16 was used. To study the effect of height on the 286 adsorption capacity of the phenolic compounds from the NADES extract on the resin, 2 beds heights were assayed, 10 and 20 cm. Following adsorption, the adsorbate-laden 287 column was washed first by acidified and then non-acidified desionized water with the 288 objective of protecting the phenolic compounds until all the NADES was eluted 289 290 (Mylonaki et al. 2008). The effect of wash-water acidity on the recovery of phenolic compounds was studied by washing a 10 cm and 20 cm bed height with acidified and 291 non-acidified wash water. Results showed no significant differences due to the 2 beds 292 293 heights of resin analyzed or to the wash-water acidity on the recovery of phenolics.

Significant difference were only found in the sum of phenolic compound recovery from these extracts after washing with acidified water at a bed height of 10 cm, obtaining 555.36 mg/kg of phenols in these conditions and 447.08 mg/kg of phenols desorpting with non-acidified wash water. A bed height of 10 cm and acidified water were used in the following desorption assay.

299 Then a 100 mL sequential desorption with different concentrations of ethanol (50, 80 and 300 100%) was used in order to determine the effect of solvent concentration on the polyphenol extraction yield. Table 2 shows the concentration of simple phenols, 301 302 secoiridoids, lignans and flavonoids recovered at the different ethanol concentrations. It 303 should be noted that the most polar compounds, the simple phenols Hy and Ty, were 304 recovered in higher proportions (81.7% and 83.6%), with the lowest concentrations of 305 ethanol, 50% and 80%, respectively. The most abundant compounds present in the olive 306 oil studied, 3,4-DHPEA-EDA and p-HPEA-EDA, remained in the resin in high proportions (26.8-31.5% of the total amount recovered) after elutions with 50% and 80% 307

ethanol; it was necessary to increase the ethanol concentration to 100% for their complete 308 309 recovery. Less polar compounds 3,4-DHPEA-EA, p-HPEA-EA, luteolin and apigenin were recovered in high proportions 93.4%, 69%, 96% and 98%, respectively after elution 310 with 80% and 100% ethanol. However, the desorption of lignans, 1-acetoxypinoresinol 311 and pinoresinol, with a similar polarity according to their behavior in HPLC under the 312 conditions of this study, showed a similar trend and reached maximum values at an 313 314 ethanol concentration of 100%. The content of lignan remained low even at high ethanol concentrations, with a concentration of 100% ethanol necessary to recover 74.9% and 315 78.3% of 1-acetoxypinoresinol and pinoresinol, respectively. Therefore, 100% ethanol 316 317 was selected as the appropriate desorption solution for all the phenolic compounds extracted with NADES from VOO. When 100% methanol was used as elution solvent, 318 319 the amounts of recovered phenolic compounds were statistically similar (p < 0.05) to those eluted with 100% ethanol, except for 3,4-DHPEA-EDA. Bertin et al. (2011) found the 320 321 highest desorption rates were obtained with ethanol, which mobilized almost all polyphenols adsorbed onto XAD-16 resins. Thus, all the solvents used in this extraction 322 process are "green" solvents, such as water and ethanol. Moreover, the NADES could be 323 reused several times, reducing the associated cost of the extraction process. 324

325 Conclusion

The present work reports an effective method for the extraction of phenolic compounds from VOO using NADES based on xylitol and ChCl, as well as the recovery of the phenolic compounds and the removal of NADES from a macroporous resin was developed. The most effective extraction conditions were 1 h at 40 °C with a VOO: Xyl/ChCl ratio of 1:1 for the highest percentage extraction of all the phenolic compounds without degradation. The most efficient conditions for the recovery of phenolic

compounds and removal of NADES-based Xyl/ChCl was a column bed height of 10 cm, 332 333 250 mL of acidified wash water and 300 mL of ethanol as eluent, which allowed the recovery of a total of 555.36 mg/kg phenolic compounds. These results are comparable 334 to those obtained by direct analysis of phenols without removal of NADES whose sum 335 was 527.36 mg/kg of phenols. This indicates that no phenols were significantly lost in the 336 solvent removal process under these conditions. This work presents an eco-friendly and 337 highly efficient method for the extraction of phenolic compounds from VOO, and their 338 recovery and concentration from NADES. 339

340

341 Acknowledgements

342 This work was supported by the Spanish Government (Project AGL2016-76820-R)

AEI/FEDER, UE) and by the Spanish FPI funding program (MEIC) (BES-2017-079648).

344

345 **References**

Akl MR, Ayoub NM, Mohyeldin MM, Busnena BA, Foudah AI, Liu YY, Ei Sayed, KA
(2014) Olive phenolics as c-Met inhibitors:(-)-Oleocanthal attenuates cell
proliferation, invasiveness, and tumor growth in breast cancer models. PLoS One
9(5):1-15

Athanasiadis V, Grigorakis S, Lalas S, Makris DP (2018) Highly efficient extraction of
antioxidant polyphenols from *Olea europaea* leaves using an eco-friendly
glycerol/glycine deep eutectic solvent. Waste and Biomass Valorization 9(11):
1985–1992.

354 Ayoub NM, Siddique AB, Ebrahim HY, Mohyeldin MM, El Sayed KA (2017) The olive

- oil phenolic (-)-oleocanthal modulates estrogen receptor expression in luminal breast
 cancer in vitro and in vivo and synergizes with tamoxifen treatment. Eur J Pharmacol
 810:100–111
- Beauchamp GK, Keast RSJ, Morel D, Lin J, Pika J, Han Q, Breslin PAS (2005)
 Ibuprofen-like activity in extra-virgin olive oil. Nature 437:45–46
- 360 Bertin L, Ferri F, Scoma A, Marchetti L, Fava F (2011) Recovery of high added value

natural polyphenols from actual olive mill wastewater through solid phase

362 extraction. Chem Eng J 171:1287-1293

361

- Borzi, AM,Biondi, A, Basile, F, Luca, S, Vicari, ESD, Vacante, M (2019) Olive oil effects
 on colorectal cancer Nutrients 11(1)1-16
- Brenes M, García A, Dobarganes MC, Velasco J, Romero C (2002) Influence of thermal
 treatments simulating cooking processes on the polyphenol content in virgin olive
 oil. J Agric Food Chem 50(21):5962–5967
- 368 Brenes M, Garcia A, Garcia P, Garrido A (2000) Rapid and complete extraction of
- phenols from olive oil and determination by means of a coulometric electrode array
 system. J. Agric. Food Chem. 48:5178-5183
- Castro A de, Romero C, García A, Medina E, Brenes M (2007) Main Antimicrobial
 Compounds in Table Olives. J Agric Food Chem 55(24):9817–9823
- 373 Dai Y, Varypataki EM, Golovina EA, Choi YH, Verpoorte R (2013a) Natural deep
- eutectic solvents and their application in natural product research and development.
- Published doctoral thesis Chapter 8:149-169
- 376 DaiY, Witkamp GJ, Verpoorte R, Choi YH (2013b) Natural deep eutectic solvents as a

- new extraction media for phenolic metabolites in *Carthamus tinctorius L*. Anal
 Chem 85(13):6272–6278
- Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH (2013c) Natural deep eutectic
 solvents as new potential media for green technology. Anal Chim Acta 766:61–68
- 381 Dai Y, Verpoorte R, Choi YH (2014) Natural deep eutectic solvents providing enhanced
 382 stability of natural colorants from safflower (*Carthamus tinctorius*) Food Chem
 383 159:116–121
- Fernández-Bolaños J, Rodríguez G, Gómez E, Guillén R, Jiménez A, Heredia A,
 Rodríguez R (2004) Total recovery of the waste of two-phase olive oil processing:
 Isolation of added-value compounds. J Agric Food Chem 52(19):5849–5855
- Ferrone V, Genovese S, Carlucci M, Tiecco M, Germani R, Preziuso F, Epifano F,
 Carlucci G, Taddeo VA (2018) A green deep eutectic solvent dispersive liquid-liquid
 micro-extraction (DES-DLLME) for the UHPLC-PDA determination of
 oxyprenylated phenylpropanoids in olive, soy, peanuts, corn, and sunflower oil.
 Food Chem 245:578–85
- Fitó M, De La Torre R, Covas MI (2007) Olive oil and oxidative stress. Mol Nutr Food
 Res 51(10):1215–1224
- Francisco V, Ruiz-Fernandez C, Lahera V, Lago F, Pino J, Skaltsounis L, Gonzalez-Gay
 MA, Mobosheri A, Gómez R, Scotece M, Gualillo O (2019) Natural Molecules for
 Healthy Lifestyles: Oleocanthal From Extra Virgin Olive Oil. J Agric Food Chem
 67:3845-3853
- 398 Franco MN, Galeano-Díaz T, López Ó, Fernández-Bolaños JG, Sánchez J, De Miguel C,

- Gil MV, Martin-Vertedor D (2014) Phenolic compounds and antioxidant capacity
 of virgin olive oil. Food Chem 163:289–298
- Fuentes E, Paucar F, Tapia F, Ortiz J, Jimenez P, Romero N (2018) Effect of the
 composition of extra virgin olive oils on the differentiation and antioxidant
 capacities of twelve monovarietals. Food Chem 243:285–294
- García A, Brenes M, Martínez F, Alba J, García P, Garrido A (2001) High-performance
 liquid chromatography evaluation of phenols in virgin olive oil during extraction at
 laboratory and industrial scale. J Am Oil Chem Soc 78(6):625–629
- García A, Rodríguez-Juan E, Rodríguez-Gutiérrez G, Rios JJ, Fernández-Bolaños J
 (2016) Extraction of phenolic compounds from virgin olive oil by deep eutectic
 solvents (DESs). Food Chem 197:554–561
- 410 Gavahian M, Mousavi Khaneghah A, Lorenzo JM, Munekata PES, Garcia-Mantrana I,
- 411 Collado M, Meléndez-Martínez A, Barba F (2019) Health benefits of olive oil and
- 412 its components: Impacts on gut microbiota antioxidant activities, and prevention of
- 413 noncommunicable diseases. Trends Food Sci Technol 88:220–227
- 414 Gutierrez-Albanchez E, Kirakosyan A, Bolling SF, García-Villaraco A, Gutierrez-
- 415 Mañero J, Ramos-Solano B (2019) Biotic elicitation as a tool to improve strawberry
- 416 and raspberry extract potential on metabolic syndrome-related enzymes in vitro. J
- 417 Sci Food Agric 99:2939-2946
- Hounsome N, Hounsome B, Tomos D, Edwards-Jones G (2008) Plant metabolites and
 nutritional quality of vegetables. J Food Sci 73:48-65
- 420 Jiang ZM, Wang LJ, Gao Z, Zhuang B, Yin Q, Liu EH (2019) Green and efficient

421 extraction of different types of bioactive alkaloids using deep eutectic solvents.
422 Microchem J 145:345–353

423	Lapeña D, Lomba L, Artal M, Lafuente C, Giner B (2019) The NADES glyceline as a
424	potential Green Solvent: A comprehensive study of its thermophysical properties
425	and effect of water inclusion. J Chem Thermodyn 128:164-172
426	Lee J, Lee Y, Choe E (2007) Temperature dependence of the autoxidation and
427	antioxidants of soybean, sunflower, and olive oil. Eur Food Res Technol 226:239-
428	246
429	López-Biedma A, Sánchez Quesada C., Delgado-Rodríguez M, Gaforio JJ (2016) The
430	biological activities of natural lignans from olive and virgin olove oils: A review. J
431	Funct Foods 26:36-47.
432	Mark R., Lyu X, Lee JJL, Parra-Saldívar R, Chen WN (2019) Sustainable production of
433	natural phenolics for functional food applications. J Funct Foods 57:233-254
434	Moghimi M, Roosta A (2019) Physical properties of aqueous mixtures of (choline
435	chloride + glucose) deep eutectic solvents. J Chem Thermodyn 129:159–165
436	Mylonaki S, Kiassos E, Makris DP, Kefalas P (2008) Optimisation of the extraction of
437	olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and
438	response surface methodology. Anal Bioanal Chem 392:977–985
439	Reboredo-Rodríguez P, Varela-López A, Forbes-Hernández TY, Gasparrini M, Afrin S,
440	Cianciosi D, Zhan J, Manna PP, Bompadre S, Quilles JL, Battino M (2018) Phenolic
441	Compounds Isolated from Olive Oil as Nutraceutical Tools for the Prevention and
442	Management of Cancer and Cardiovascular Diseases. Int J Mol Sci 19:2305. (

19

- 443 Serreli G, Deiana M (2018) Biological Relevance of Extra Virgin Olive Oil Polyphenols
- 444 Metabolites. Antioxidants 7(170): 1-19
- 445 Villard C, Larbat R, Munakata R, Hehn A (2019) Defence mechanisms of Ficus:
- 446 pyramiding strategies to cope with pests and pathogens. Planta 249:617–633

447

Table 1 Sum of the polyphenol content (mg/kg) obtained with the different assayed conditions: temperature (30, 40, 60 and 90° C), time (0.5, 1, 2 and 6 h at 30° and 40° C), and VOO: Xyl/ChCl-NADES ratio (1:1, 1:3, 1:4 and 1:7).

Temperature	time of extraction 1h, V	/00:1	NADES ratio (1:1)			
30 °C	477.11 ± 0.110	c				
40 °C	555.36 ± 21.93	d				
60 °C	408.00 ± 26.69	b				
90 °C	345.93 ± 254.58	а				
Time	VOO:NADES ratio (1:1)					
	temperature of extraction		temperature of extraction			
	30 °C		40 °C			
0,5 h	430.08 ± 5.42	c	466.47 ± 1.554 d			
1 h	477.11 ± 0.10	d	555.36 ± 21.93 e			
2 h	420.71 ± 25.81	c	333.03 ± 18.99 ab			
6 h	351.84 ± 14.42	b	$313.92\pm4.86\qquad a$			
Ratio VOO:NADES	temperature of extraction	on 40	°C, time of extraction 1 h			
1:1	555.36 ± 21.93	b				
1:3	422.04 ± 21.55	a				
1:4	$428.52\ \pm 356.01$	а				
1:7	400.68 ± 4.43	a				

Values are expressed as mean \pm SD (n=2). One-way ANOVA (p < 0.05). In each experiment the value of different treatments followed by different letters are significantly different according to the Duncan test (p < 0.05).

Table 2 Polyphenol content (mg/kg) expressed as a function of the concentration of ethanol used on desorption on column and percentage of recovery of phenolic compounds (% R). The conditions used to extract the phenolic compounds from 14 g of VOO were, extraction time of 1 h, temperature 40 °C, VOO: Xyl / ChCL-NADES ratio (1: 1). For the recovery of the phenolic compounds, a column bed height of 10 cm of XAD-16 resin was used, pre-treated with 50 mL of ethanol followed by 50 mL of acidified water, washed with 250 mL of acidified water and a sequential desorption was performed with 100 mL of 50, 80 and 100% ethanol.

	EtOH 50%		EtOH 80%		EtOH 100%	
Phenolic compounds	Mean±SD	% R	Mean±SD	%R	Mean±SD	% R
Hydroxytyrosol	$2.62\pm3.09~^a$	21.27	$7.44 \pm 2.75^{ m a}$	60.39	$2.26\pm0.9~^a$	18.34
Tyrosol	$0.96\pm1.06~^a$	16.90	$3.79\pm1.52 \ ^{\mathrm{a}}$	66.73	$0.93\pm0.28^{\ a}$	16.37
3, 4- DHPEA-EDA	$19.33 \pm \! 15.18 ^{a}$	10.02	$121.91 \pm 12.78 \\ ^{b}$	63.16	$51.77 \pm 10.38 \\ ^{a}$	26.82
p-HPEA-EDA	$1.95\pm0.12^{\ a}$	3.02	$42.18\pm0.47~^{\text{c}}$	65.42	$20.35\pm1.03~^{\text{b}}$	31.56
3,4-DHPEA-EA	$2.00\pm0.35\stackrel{a}{}$	7.32	$13.16\pm0.36^{\text{b}}$	48.9	12.15 ± 1.72 ^b	44.49
<i>p</i> -HPEA-EA	$1.48\pm0.19~^{ab}$	30.14	$0.12\pm0.04~^{\rm a}$	2.44	$3.31\pm1.06\ ^{\text{b}}$	67.41
1-acetoxypinoresinol	$1.84\pm0.07~^{b}$	17.31	0.83 ± 0.04 $^{\text{a}}$	7.81	$7.96\pm0.54^{\circ}$	74.88
Pinoresinol	$0.12\pm0.01~^{a}$	14.46	$0.06\pm0.01~^{a}$	7.23	$0.65\pm0.14^{^b}$	78.31
Luteolin	$0.33\pm0.07~^a$	4.47	$4.42\pm1.61^{\text{ b}}$	59.89	$2.63\pm0.03~^{ab}$	35.64
Apigenin	$0.04\pm0.04~^{a}$	2.26	$0.66\pm0.17^{\ b}$	37.29	$1.07\pm0.02~^{\rm c}$	60.45

Values are expressed as mean \pm SD (n=2). Means with different superscript letters in every line are significantly different according Duncan test (p < 0.05).

Figure Captions

Fig. 1 HPLC chromatogram of phenolic compounds in virgin olive oil and their concentrations extracted by NADES using a time of extraction of 1 h, ratio of virgin olive oil: NADES (1 : 1), temperature 40 °C. Direct injection of the NADES extract (**a**), concentration of the extract and solvent removal with 10 cm of XAD-resin bed height, washing with acidified water, and desorption with 300 ml of ethanol 100 % (**b**). The concentrations are expressed as mg/kg of VOO \pm SD (n = 2).

Fig. 2 Effect of temperature on the concentration of phenolic compounds in virgin olive oil (VOO). (**a**) oleacein (3,4-DHPEA-EDA); oleocanthal (*p*-HPEA-EDA); oleuropein aglycon (3,4-DHPEA-EA) and ligstroside aglicon (*p*-HPEA-EA). (**b**) hydroxytyrosol (Hy), tyrosol (Ty), 1-acetoxypinoresinol, pinoresinol, luteolin, apigenin. The results are expressed as mg/kg of VOO \pm SD (n = 2). The letters represent significant differences, absence of letters indicate non-significant differences according to Duncan's test (*p* < 0.05).

Fig. 3 Effect of the extraction time on the concentration of the phenolic compounds in virgin olive oil (VOO). At 30 °C and 40 °C. (**a**), (**c**) oleacein (3, 4-DHPEA-EDA); oleocanthal (*p*-HPEA-EDA); oleuropein aglycon (3, 4-DHPEA-EA) and ligstroside aglicon (*p*-HPEA-EA). (**b**), (**d**) hydroxytyrosol (Hy), tyrosol (Ty), 1-acetoxypinoresinol, pinoresinol, luteolin, apigenin. The results are expressed as mg/kg of VOO \pm SD (n = 2). The letters represent significant differences, absence of letters indicate non-significant differences according to Duncan's test (*p* < 0.05).

Fig. 4 Effect of ratio virgin olive oil (VOO): Xyl/ChCl-DES on the concentration of phenolic compounds in VOO. (**a**) oleacein (3, 4-DHPEA-EDA); oleocanthal (*p*-HPEA-EDA); oleuropein aglycon (3,4-DHPEA-EA) and ligstroside aglicon (*p*-HPEA-EA). (**b**) hydroxytyrosol (Hy), tyrosol (Ty), 1-acetoxypinoresinol, pinoresinol, luteolin, apigenin. The results are expressed as mg/kg of VOO \pm SD (n = 2). The lowercase letters represent significant differences, absence of letters indicate non-significant differences according to Duncan's test (*p* < 0.05).

Figure 1

Figure 2

Figure 4

Extraction and recovery of phenolic compounds from virgin olive oil under the control conditions.

Phenolic compounds from virgin olive oil obtained by natural deep eutectic solvent (NADES): effect of the extraction and recovery conditions Journal of Food Science and Technology

Elisa Rodriguez-Juan . Cristina Rodriguez-Romero . Juan Fernandez-Bolaños . María C Florido . Aranzazu Garcia-Borrego*

*Corresponding author: aranzazu@ig.csic.es