
ar
X

iv
:c

on
d-

m
at

/0
01

02
59

v1
  [

co
nd

-m
at

.s
tr

-e
l]

  1
8 

O
ct

 2
00

0

Ab initio determination of an extended
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Abstract

Accurate ab initio calculations on embedded Cu4O12 square clusters, fragments of the
La2CuO4 lattice, confirm a value of the nearest neighbor antiferromagnetic coupling (J=124
meV) previously obtained from ab initio calculations on bicentric clusters and in good agree-
ment with experiment. These calculations predict non negligible antiferromagnetic second-
neighbor interaction (J ′=6.5 meV) and four-spin cyclic exchange (K=14 meV), which may
affect the thermodynamic and spectroscopic properties of these materials. The dependence
of the magnetic coupling on local lattice distortions has also been investigated. Among
them the best candidate to induce a spin-phonon effect seems to be the movement of the
Cu atoms, changing the Cu-Cu distance, for which the variation of the nearest neighbor
magnetic coupling with the Cu-O distance is ∆J/∆dCu−O ∼1700 cm−1Å−1.
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1 Introduction

Fifteen years after the discovery of the high-Tc superconductivity in cuprates, numerous theo-
retical and experimental studies pay still attention to these materials and their parent undoped
compounds in an attempt to explain their electronic properties[1]. Regarding the undoped
materials, the CuO2 layers, where superconductivity takes place after doping, can be seen as
two-dimensional spin lattices, where each Cu atom bears an unpaired electron, which is anti-
ferromagnetically coupled with the nearest-neighbors(NN). The value of this NN coupling has
been estimated from Raman scattering 128±6 meV[2, 3] and Neutron diffraction experiments
134±5 meV[4, 5, 6], assuming a simple Heisenberg Hamiltonian, where only NN interactions are
considered:

H = J
∑

<ij>,NN

SiSj (J > 0) (1)

where < ij > represents a pair of NN sites. However, this simple model does not satisfactorily
reproduce the whole Raman spectra of undoped cuprates [7, 8, 9, 10, 11, 12], and extended-
Heisenberg Hamiltonians have been proposed [13, 14, 15, 16]. The sophistications introduce
some of the following effects:
- spin-phonon interactions,
- next-nearest neighbor (NNN) magnetic couplings, J ′, and
- four-spin cyclic (4SC) exchange, K.

The spin-phonon coupling, i.e. the dependence of the magnetic coupling on the vibrational
distortions of the lattice, has been recently invoked as possibly responsible for the asymmetry of
the B1g peak on the Raman spectra of cuprates [13, 17, 18, 19, 20]. The spin-phonon interaction
modifies the magnetic coupling J through the dependence of the hopping integral (tpd) and the
charge transfer energy (∆CT ) on the Cu-O distance [21, 22, 23]. A maximum contribution of ± 54
meV to the NN magnetic coupling coming from spin-phonon interactions has been suggested [13],
based on the linear dependence of J on the Cu-O distance observed in the M2CuO4 family [23]
and the spin-wave approximation. However, the calculations explicitly including the phonon-
spin interaction, using an adiabatic approximation for the phonons, [17], requiere unrealistic
values of disorder to reproduce the width and asymmetry of the B1g peak. It seems necessary
to introduce additional terms (as NNN coupling and 4SC exchange) to reproduce the structure
of the Raman spectra [13].

The existence of the NNN magnetic coupling J ′ and the 4SC exchange K can be established
from a one-band Hubbard model [24, 25, 26, 27]. The NNN interactions may be either a second
order effect in form of ∼ t′2/U , where t′ is a second-neighbor hopping integral and U is the
classical on-site Coulomb repusion, or fourth-order effects scaling as ∼ t4/U3, where t is the NN
hopping integral. The 4SC exchange is a fourth-order term in the Hubbard model, involving
circulation of the electrons around the square and scaling as λt4/U3, where λ is a large numerical
factor ( λ =40 [24, 25] or λ =80 [26, 27], depending on the formal writting of the operator),
as shown in early works in quantum chemistry [24, 25] and solid state physics [26, 27]. Recent
experiments have shown that four-spin cyclic exchange exists in the two dimensional solid 3He
[28, 29, 30], in the 2D Wigner solid of electrons formed in a Si inversion layer [31] and in the bcc
3He [32, 33, 34].

As was previously shown, oxygen atoms play a crucial role in the spin exchange between Cu
atoms in these materials [21, 22, 35, 36]. In this context, the one-band model is not suficient
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to bear all the physics of such materials and cannot fix the ratios J ′/J and K/J . The multiple
parameters contained in an extended Heisenberg Hamiltonian and the spin-phonon coupling
cannot be univocally fixed from the collective properties of the material and, as far as possible,
a prejudiceless evaluation of them will be welcome.

In the recent past, ab initio quantum chemical calculations, using large basis sets and accurate
treatment of the electronic correlation by means of extensive configuration interaction (CI)
expansions of the wave functions, have been performed on bicentric clusters (Cu2O7 and Cu2O11)
[21, 22], properly embedded in the Madelung field of the infinite crystal, crucial to correctly
represent the electronic structure of these systems[23]. These calculations provided satisfactoy
values of J (138 meV) and of the first-neighbor hopping integral for the hole-doped system
(t=-0.55-0.57 eV). In both cases, the evaluation of the effective interaction goes through the
calculation of the spectrum of the dimer.

An extension of this strategy is proposed here which provides an evaluation of J ′ and K
from the calculation of the spectrum of four-Cu sites square embedded clusters. By the way,
the transferability of the J value from the two-center to the four-center clusters will be verified.
To estimate the spin-phonon coupling, the bimetallic cluster Cu2O7 has been used, calculating
the dependence of the singlet-triplet separation on different geometry distortions.

2 Next-nearest neighbor coupling and four-spin cyclic exchange

2.1 Strategy to extract the effective interactions

A square cluster containing four Cu atoms and their nearest twelve in-plane oxygen atoms (a
plaquette) will be used to extract these parameters (Figure 1). Each Cu atom contains an
unpaired electron in an in-plane dx2-y2-type orbital. For such frame, the four center-four spin
model space is spanned by six neutral determinants. If one calls a, b, c and d the magnetic
orbitals, centered in each Cu atom, there are two kinds of determinants with Sz=0, the fully
spin-alternant determinants |ab̄cd̄| and |ābc̄d| and four partially-frustrated determinants |abc̄d̄|,
|āb̄cd|, |ab̄c̄d| and |ābcd̄|. The effective Hamiltonian spanned by such a model space can, in full
generality, be written as:

|ab̄cd̄| |ābc̄d| |abc̄d̄| |āb̄cd| |ab̄c̄d| |ābcd̄|
−4h− g4 g4 h h h h

−4h− g4 h h h h
−2h− 2h′ − g′4 g′4 h′ h′

−2h− 2h′ − g′4 h′ h′

−2h− 2h′ − g′4 g′4
−2h− 2h′ − g′4

where the zero of energy is that of the ferromagnetic quintet state and the equivalences between
different elements are due to symmetric reasons, imposed by the structure of the plaquette. For
instance, the elements 〈ab̄cd̄|Heff |abc̄d̄〉 represents the exchange of the spins in b and c. In the
plaquette, this interaction must be equivalent to the exchange between a and d, that is, the
element 〈ab̄cd̄|Heff |āb̄cd〉, and different from the 〈āb̄cd|Heff |ab̄c̄d〉 element, which exchanges
the spins on the diagonals.
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The six eigenstates of this matrix belong to different spin-space symmetry irreducible repre-
sentations. The spectrum can be easily written from the basic parameters as shown in Figure 2.
There are only four energy-differences, and then the four parameters can be univocally defined.
If we now perform an accurate calculation of the six lowest eigenstates of this system, employing
the best ab initio techniques, we will obtain four level spacings which enable us to determine
the four desired effective interactions.

2.2 Ab initio calculations

As was previously mentioned, to estimate the NNN and 4SC interactions a square cluster con-
taining four Cu atoms and the first twelve in-plane oxygen atoms has been considered, where all
the atoms are treated explicitly. The most internal electrons of the Cu atoms (1s22s2p63s2) have
been replaced by an effective core potential and the rest of the electrons (3p6d9 for Cu+2 and
1s22s2p6 for O−2, a total of 156 electrons) are explicitly treated in the basis sets of triple-zeta
quality (double-zeta for O atoms) [37]. In order to model the infinite lattice, a well-established
approach has been used, which consists in replacing the first-shell of neighbors (in-plane and
out-of-plane) by pseudopotentials, which incorporate both electrostatic and exclusion effects of
these ions, and in considering the Madelung field of the remote atoms of the periodic lattice,
according to Evjen’s technique [38].

A restricted open-shell self-consistent field calculation (ROHF) for the quintet state has
been carried out, which determines the four magnetic orbitals (a, b, c, d or their symmetry-
adapted combinations corresponding to the irreducible representations a1g, b3u and eu in the
D4h symmetry group) (Figure 3). These four orbitals define a valence-space with one-electron
and one-orbital per site, in one-to-one correspondence with the model spaces of the Heisenberg
Hamiltonian or the parent one-band Hubbard Hamiltonian.

The diagonalization of the valence CI matrix (CASCI), that is, a matrix with dimension 36
in the delocalized basis set, gives a value of -28 meV for the NN antiferromagnetic coupling,
which is very far from the experimental estimation. This very limited CI only contains the
Anderson mechanism in the bare one-band model. This level of description misses two important
phenomena, namely intermediate charge-transfer from the oxygen atoms to the Cu atoms and
the dynamical polarization effects of the internal electrons and the surrounding atoms, which
react to the fluctuation of the field created by the active electrons. The treatment of these effects
requires much larger CI expansions.

In order to take into account the first effect, namely the hopping between oxygen and Cu
atoms, it is crucial to identify the doubly-occupied orbitals of the oxygen atoms which con-
tribute to this mechanism. They are not necessarily canonical orbitals, i.e. eigenstates of the
Fock operator. The most-relevant ligand-centered orbitals will be obtained as energy-difference
dedicated molecular orbitals [39]. These orbitals have been obtained as follow:
1.- From the four-electrons in four-orbital active space, a CI calculation has been performed,
limited to the single excitations on the top of all the valence space determinants.
2.- The density matrices, RS and RQ, for the lowest singlet and quintet states have been calcu-
lated. The excitation-energy dedicated MOs are the eigenvectors of the difference of the density
matrices RS−RQ, restricted to the nearly doubly occupied MOs. The eigenvalues of this matrix
difference, called ’implication numbers’, give a measure of the participation of the corresponding
orbital to the energy difference, hence to the antiferromangetic mechanism responsible for the
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lowering ot the energy of the singlet state. The MOs of largest implication numbers are essen-
tially spanned by 2p atomic orbitals of the bridging oxygen atoms, as shown in Figure 4.
3.- Now these four orbitals will be added to the magnetic ones to define an enlarged valence space
involving 12 electrons in 8 MOs, corresponding to a two-band Hubbard model since it includes
both the 3d-like orbital of the Cu atoms and 2p orbitals of the bridging oxygen directed along
the Cu-O bonds, with optimized delocalization tails on the external oxygen atoms. The effect of
the dynamical polarization will be taken into account by performing all the single excitations on
the top of this enlarged valence space. The resulting CI vectors are expanded on a large space
(∼ 5 · 106 determinants).

When applied to the dimeric cluster Cu2O7 the same strategy provides a value of J=128
meV, in good agreement with the experimental evaluations and our previous CI estimates 138
meV[21, 22], which involved d basis functions on the bridging oxygen atoms (which had to be
deleted here to make feasible the calculations on the plaquette).

The identification of the ab initio calculated spectrum of the tetrameric clusters with the
expected spacings of Figure 2 leads to the following values of the effective interactions:

h = 60.22meV ; h′ = 5.01meV

g4 = 7.00meV ; g′4 = 0.49meV

From these values it is possible to establish the interactions as written in the usual spin
formulation of the four-body operator [13, 14, 15]:

H =
∑

<ij>NN

J(SiSj −
1

4
) +

∑

<ij>NNN

J ′(SiSj −
1

4
) +

+ K
∑

<ijkl>

[(SiSj)(SkSl) + (SiSl)(SjSk)− (SiSk)(SjSl)−
1

16
]

where the higher multiplet energy is zero, J corresponds to the NN interaction, J ′ to the NNN
coupling and K to the four-spin cyclic exchange. Notice that the last term produces the cyclic
permutation of the four spins on the plaquette plus ordinary two-spins exchanges of all the pairs
of spins of the plaquette including those on the diagonals. Written in the basis of the six Sz=0
determinants of the abcd configuration, this Hamiltonian has the following form:

|ab̄cd̄| |ābc̄d| |abc̄d̄| |āb̄cd| |ab̄c̄d| |ābcd̄|
−2J K/2 J/2−K/8 J/2−K/8 J/2 −K/8 J/2−K/8

−2J J/2−K/8 J/2−K/8 J/2 −K/8 J/2−K/8
−J − J ′ 0 J ′/2 +K/8 J ′/2 +K/8

−J − J ′ J ′/2 +K/8 J ′/2 +K/8
−J − J ′ 0

−J − J ′

Identifying the two matrices and omitting the negligible g′4 term, one obtains:

K = 2g4 → K = 14meV

J = 2h+
K

4
→ J = 124meV

J ′ = 2h′ −
K

4
→ J ′ = 6.5meV
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The value of the NN antiferromagnetic coupling (J) is in good agreement with both the
previous estimation on the dimer (J=128 meV) and also with the experimental evaluations
(128±6 meV[2, 3] and 134±5 meV[4, 5, 6]). Our estimate of the NNN magnetic coupling
(J ′=6.5 meV) is in accord with the limit of |J ′| ≤9 meV, proposed for this compound from
Raman experiments[6]. Concerning the four-spin cyclic exchange, experimental evaluations are
not available and it is only possible to compare with theK/J ratios used in some recent numerical
simulations of the absorption spectrum. The here-presented values of K and J give K/J ∼
0.11, which is lower than the value of 0.25 assumed by Honda et al. [15] and than the value
of 0.30 taken by Lorenzana et al.[14] (from an earlier suggestion by Schmidt and Kuramoto
[40]) but larger than the critical value, (K/J)c=0.05 ±0.04, estimated by Sakai and Hasegawa
[16] for the appearance of a magnetization plateau at half the saturation value in the S = 1

2

antiferromagnetic spin ladders. The ratio of the NNN and NN interactions is J ′/J=0.051,
somewhat larger than the value accepted by Lorenzana et al. (J/J ′=0.04) [14].

3 Spin-phonon interactions

Additional calculations have been performed to evaluate the dependence of the magnetic coupling
constant on local geometrical distortions of the lattice. This evaluation proceeds through ab
initio calculations on bimetallic clusters using the same strategy as in the preceding section (same
basis set, same kind of optimization of the molecular orbitals and same type of Configuration
Interaction calculations).

Five different local distortions have been considered, as shown in Figure 5. Table 1 gives their
corresponding force constants, associated frequency and the derivative ∆J/∆dCu−O. Concerning
strongly localized movements, these frequencies are different from the real frequencies of the
lattice, but offer an insight on the softness of the different motions. Among the distortions,
the movement of the bridging oxygen atom along the Cu-Cu bond, lengthening one Cu-O bond
and shortening the other one (mode 2), has a small force constant (ω ∼ 750 cm−1), but does
not affect significantly the J value. The movements out of the Cu-Cu axis, either in-plane or
along the c axis (modes 3, 4 and 5), induce strong changes on J value but the force constant
and frequencies are large and, then these distortions do not seem to be responsible for the
dispersion of J . The movement shortening (or lengthening) the Cu-Cu bonds (mode 1) has
both a significant impact on J (∆J/∆dCu−O=1700 cm−1· Å−1) and a low frequency (ω ∼ 800
cm−1). These values should be compared with those assumed in a recent work[13], which takes
∆J/∆dCu−O=4350 cm−1· Å−1 and invokes the experimental frequencies 550 and 690 cm−1. Our
roughly calculated vibrational frequency is on line with the experimental one but the calculated
dependence of J on the Cu-O distance is half smaller that the value previously proposed [13].

4 Conclusions

This work has evaluated the amplitudes of the different interactions generally invoked to explain
the spectral features of CuO2 layers which do not fit with the simple Heisenberg Hamiltonian
restricted to nearest neighbor coupling. Neither the spin-phonon coupling nor the next-nearest
neighbor magnetic interactions nor the four-body cyclic effects are negligible, they appear to be
of the order of magnitude sometimes assumed in numerical simulations of the collective effects.
The here-presented ab initio calculations are free from the simplifications of a one-band or even
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of a two-band model Hamiltonian. We believe that the so-obtained values of the generalized
distance-dependent Heisenberg Hamiltonian are reliable enough to deserve to be used in the
evaluation of the collective properties of the material.
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Table 1

Force constants (K), frequencies of vibration (ω) and variation of J with the Cu-O distance
(∆J/∆dCu−O) of different local distortions (see Figure 5) in La2CuO4.

mode K(cm−1·Å−2) ω(cm−1) ∆J/∆dCu−O (cm−1·Å−1)
mode 1 6.53·105 833 -1693
mode 2 2.78·105 763 ∼ 0
mode 3 8.69·105(*) 2549 -1246
mode 4 6.76·105(*) 2246 -1213
mode 5 2.45·106(*) 8568 -2098

(*) K in cm−1 · rad−2
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Figure captions

Figure 1. Fragment of the La2CuO4 lattice, containing the cluster Cu4O12, which atoms are
explicitly treated in the ab initio calculations, and its first-shell of neighbor atoms, where pseu-
dopotentials have been placed to avoid an artificial polarization of the electronic density of the
terminal oxygen atoms.
Figure 2. Spectrum of the plaquette, corresponding to an occupation of one-electron per Cu site,
written in the basis of the parameters of the effective Hamiltonian. On the right, the symmetry
of the different states in the D4h group has been included.
Figure 3. Linear combinations of the 3dx2 − y2-type of orbitals, containing non-negligible delo-
calization tails on the neighbor oxygen atoms. These orbitals correspond to the A1g (a), Eu(b
and c) and B3u irreducible representation of symmetry in D4h group.
Figure 4. Most-implicated dedicated molecular orbitals centered in the ligands. These orbitals
correspond to the A1g (a), Eu(b and c) and B3u irreducible representation of symmetry in D4h

group.
Figure 5. Different local distortions in the Cu2O9 cluster. Modes 1, 2 and 3 correspond to the
distortions in the CuO2 plane. Mode 1 represents the symmetric streching of the Cu-Obridge

bond. The Cu atoms have been symmetrically displaced along the y-axis. Modes 2 and 3 rep-
resent the displacement of the bridging oxygen atom along the y and the x axis, respectively.
Mode 4 corresponds to the movement of the central oxygen atom out of the xy plane. Mode
5 represents a collective distortion, where the four oxygen atoms, coordinated to one of the Cu
atoms, go out of the plane.
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