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Resumen

Esta Tesis Doctoral tiene como objetivo explorar las ventajas ofrecidas por las cámaras

de eventos en la robótica aérea, en particular, en robots de ala batiente en los que la

visión basada en eventos se encuentra prácticamente inexplorada. Esta Tesis Doctoral

propone un conjunto de herramientas y algoritmos de percepción para aprovechar las

ventajas de la visión basada en eventos en aplicaciones de robótica aérea. Los métodos

propuestos se validan experimentalmente en dos tipos de robots aéreos: multirotores

y ornitópteros. Estas plataformas suponen varios desaf́ıos para la percepción basada

en visión artificial. Por ejemplo, el movimiento ágil de los multirotores y los aleteos

causados por los ornitópteros generan imágenes con desenfoque por movimiento (o en

ingles motion blur) que pueden afectar al rendimiento de algoritmos de percepción

basados en imágenes. Adicionalmente, los ornitópteros y multirrotores que realizan

maniobras rápidas requieren algoritmos de percepción que actualicen rápidamente la

información usada para la navegación del robot. Además, ambos tipos de plataformas

tienen carga útil y potencia reducidas lo que limita el tipo y la cantidad de hardware

de percepción a bordo. Equipar ornitópteros con sensores de percepción es una

tarea compleja, ya que estas plataformas tienen una carga útil muy restringida y

una distribución estricta de peso. Las cámaras de eventos ofrecen varias ventajas

para la percepción en robótica: ṕıxeles con resolución de microsegundos, robustez al

desenfoque por movimiento, alto rango dinámico y bajo consumo de enerǵıa. Esta

Tesis Doctoral se enfoca en aprovechar estas ventajas para el desarrollo de sistemas

de percepción para robots aéreos y validar su uso a bordo de estas plataformas.

Primero, esta Tesis Doctoral presenta un conjunto de algoritmos de procesamiento

de eventos de bajo nivel. Estos métodos tienen como objetivo contribuir a la comunidad
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de visión basada en eventos proporcionando un conjunto de algoritmos que procesan

directamente el flujo de eventos en lugar de utilizar representaciones adicionales basadas

en imágenes. Los métodos desarrollados se integran en los diferentes algoritmos de

percepción de alto nivel descritos a lo largo de esta Tesis Doctoral.

En segundo lugar, esta Tesis Doctoral propone un método de guiado basado en

eventos para robots aéreos. El método incluye un conjunto de algoritmos para detectar

y seguir un patrón de referencia que define la configuración objetivo. Un método de

control por realimentación visual basado en eventos calcula los comandos de velocidad

para guiar al robot hacia el objetivo. El esquema de guiado es validado inicialmente

en un multirotor y posteriormente en un ornitóptero.

Tercero, esta Tesis Doctoral presenta un método de evitación de obstaculos para

robots de ala batiente. El método detecta obstáculos dinámicos aprovechando la

habilidad de las cámaras de eventos para proporcionar información sobre los objetos

en movimiento en la escena. Este algoritmo también utiliza una estrategia de evitación

de obstáculos reactiva que evalúa posibles situaciones de riesgo de colisión y activa

maniobras evasivas si es necesario. El sistema se valida experimentalmente en un

robot ornitóptero.

En cuarto lugar, esta Tesis Doctoral propone un sistema de monitorización de

intrusos basado en eventos para multirotores. El método incluye un algoritmo de

detección de intrusos y un método que permite ajustar de manera autónoma los

parámetros de dicho algoritmo. El sistema es validado en un multirotor que realiza

misiones de vigilancia en escenarios con diferentes fondos y condiciones de iluminación.

Finalmente, esta Tesis Doctoral presenta dos herramientas de percepción para el

desarrollo de algoritmos de visión basados en eventos para robots aéreos, especialmente

ornitópteros. La primera es una arquitectura de simulación que emula las medidas de

los sensores de percepción generadas durante la ejecución de trayectorias bioinspiradas

de aterrizaje. La segunda herramienta describe un dataset grabado a bordo de un

robot de ala batiente, que incluye medidas de varios sensores de percepción y datos de

la posición del robot.
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Abstract

This Ph.D. Thesis aims at contributing to the robot perception community by exploring

the advantages of event cameras for aerial robotics, in particular on flapping-wing

robots in which event-based vision is almost unexplored. It proposes a set of tools and

perception algorithms to leverage the advantages of event-based vision in aerial robot

applications. The proposed methods are experimentally validated in two types of aerial

robots: multirotors and ornithopters. These platforms describe several challenges

for vision-based perception. For instance, the agile motion of multirotors and the

flapping strokes caused by ornithopters generate blurred images which may hinder

the performance of frame-based approaches. Further, ornithopters and multirotors

performing fast maneuvers require quick perception algorithms to update as soon as

possible the perception information for robot navigation. Besides, both types of robots

have limited payload and power capacity to mount and feed perception hardware. In

particular, equipping ornithopter robots with additional sensors is a complex task as

they have very constrained payload and strict weight distribution. Event cameras

offer relevant advantages for robot perception such as microsecond pixel resolution,

robustness to motion blur, high dynamic range, and low power consumption. This

Ph.D. Thesis focuses on leveraging these advantages for aerial robot perception and

validating the use of event-based vision on board these platforms.

First, this Ph.D. Thesis presents a set of event-based low-level processing algorithms.

These methods intend to contribute to the event-based vision community by providing

a set of low-level algorithms that directly process the event stream instead of using

frame-based representations. The proposed methods are integrated into the different

high-level perception algorithms described in this Ph.D. Thesis.
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Second, this Ph.D. Thesis proposes an event-vision guidance method for aerial

robots. It includes a set of event-based algorithms to detect and track a reference

pattern that defines the goal configuration. An Event-Based Visual Servoing (EBVS)

method computes the velocity commands to guide the robot toward the goal. The

guidance scheme is initially validated in a multirotor and later in an ornithopter.

Third, a dynamic sense-and-avoid method for large-scale flapping-wing robots is

described in this Ph.D. Thesis. It exploits the event cameras’ property of triggering

pixel information from moving objects to detect dynamic obstacles. The reactive

avoidance policy evaluates possible collision risk situations and activates evasive

maneuvers if necessary. The system is extensively evaluated in a large-scale ornithopter.

Fourth, this Ph.D. Thesis proposes an event-based intrusion monitoring system for

multirotors. It includes a specific method to detect moving intrudes by analyzing the

spatial-temporal information of events, and an automatic tuning method to adjust

the parameters of the detection algorithm. The system is validated in a multirotor

platform that performs surveillance missions in scenarios with different background

configurations and illumination conditions.

Finally, this Ph.D. Thesis presents two perception tools for the development of

event-based algorithms for aerial robots, especially ornithopters. The first tool is a

simulation architecture that emulates the sensor measurements generated during the

execution of bioinspired landing trajectories. The second tool describes a dataset

collected on board a large-scale flapping-wing robot. It includes measurements from

different perception sensors and ground truth robot position data.
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Chapter 1

Introduction

1.1 Motivation

Multirotors are the most used aerial platforms in robotics [1]. Compared to other aerial

vehicles (e.g., fixed-wing platforms), they are preferred due to their easy deployment,

relatively low cost, extended payload, and hovering capabilities. Many works have

reported the benefits of integrating perception sensors and algorithms on multirotors

in applications such as surveillance [2] [3], inspection [4] [5] [6], object transportation

and delivery [7] [8] [9], maintenance [10] [11], and autonomous navigation [12] [13]

[14], among many others. However, many of these applications enclose relevant

challenges for the onboard perception systems by being subject to fast motions, high

vibrations, and strong changes in the illumination conditions (e.g., passing from an

indoor scenario to an outdoor space). For instance, the sensing rate of the majority

of commercial Laser imaging Detection and Ranging (LiDAR) sensors (≤ 20Hz [15])

limits their use in applications where the robot moves at high velocities. Moreover,

perception algorithms relying on frame-based cameras are particularly prone to the

aforementioned conditions. These sensors suffer from motion blur, which hinders the

performance of traditional image-based perception methods. Besides, the typical 60 dB

dynamic range of standard cameras [16] limits their use in applications where the

robot flies in environments describing large variations in the illumination conditions

[17]. Moreover, although multirotors report a higher payload compared to other aerial

1
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platforms (e.g., fixed-wing and flapping-wing robots), they require sensors with low

power consumption to enlarge their flight time in applications such as inspection

[18] and monitoring [19]. The aforementioned challenges suggest the integration of

novel sensors providing low latency sensing, high dynamic range, and low power

consumption to solve the sensing issues presented on multirotor flight. Finally, there

are relevant open challenges for multirotors platforms. First, they require efficient

schemes to optimize their energy consumption to enlarge their flight time. Second,

although the current multirotor technology aims at providing safety platforms for

human-robot interaction, these platforms still represent a potential danger due to their

rotary propellers. Current research on aerial robot design focuses on the development

of novel user-friendly platforms which represent the lowest possible danger to their

users.

In the last years, there has been a significant research effort in the development of

aerial vehicles that solve the above challenges. For instance, soft aerial robots [20]

[21] [22] use flexible, soft, energy-storing, and adaptive structures and materials to

save energy [23], increase user safety [24], extend time-of-flight [25], among others.

Moreover, aerial platforms with morphing capabilities modify their geometry to

improve their flight stability and maneuverability [26], and enhance their versatility to

perform different tasks [27] [28] [29]. Flapping-wing robots, also known as ornithopters,

are bioinspired aerial robots that mimic the wing motion of birds and insects during

flight. Some of these platforms integrate soft materials and morphing mechanisms

to perform perching [30] and improve their flight performance [31] [32]. Ornithopters

generate lift and trust by flapping their wings. They are considered less dangerous

than multirotors by being manufactured with lightweight materials and using soft

wings instead of rigid propellers. Additionally, there is a relevant R&D interest in

developing lightweight ornithopters that report lower power consumption [33]. The

current research in ornithopter technology also focuses on the development of novel

flying and perching mechanisms [34] [35] [36], the validation of their aerodynamic

models [37] [38], and the design of novel flight controllers [39], among others.
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However, there is still a huge gap to close between the implementation and

validation of perception systems for these platforms and the development of flapping-

wing robots with fully autonomous capabilities. Ornithopters present several challenges

to robot perception. First, the restricted payload of these platforms together with their

complex weight distribution limit the installation of perception sensors and processing

units. The majority of works integrating perception algorithms in flapping-wing

robot applications use either external sensors [40], or specialized processing units that

directly gather and compute the perception information [41]. Additionally, the flapping

strokes produced by ornithopters and their agile motion represent additional challenges.

For instance, the strong flapping strokes exerted by large-scale ornithopters produce

motion blur in intensity images [42], which limits their use with standard frame-based

computer vision algorithms for robot perception. Besides, performing agile maneuvers

in outdoor scenarios tends to produce large variations in the illumination conditions

[43]. This affects standard frame-based cameras due to their limited dynamic range

to adapt to these conditions. Further, the fast flight velocities of medium-scale and

large-scale ornithopters (e.g., 16m s−1 [44]) suggest the use of perception sensors and

methods that provide low-latency perception estimations. Finally, ornithopter robots

mount lightweight batteries with limited power capacity (e.g., 0.6W [41] and 7.5W

[34]), which restricts the use of perception sensors with high power requirements (e.g.,

LiDARs and depth cameras). The previously presented challenges for flapping-wing

robot perception indicate the use of novel sensors and methods to provide robust and

low latency perception estimations for ornithopter robots.

During the last decades, advances in vision sensor technology have led to novel

devices trying to imitate the behavior of human and animal visual systems. This

is the case with event cameras, which are neuromorphic sensors that mimic the

neural architecture of the eye. Unlike frame-based cameras that measure absolute

brightness at a constant frame rate, event cameras measure asynchronous per-pixel

brightness changes in the scene. An event is triggered when a brightness increment

in a pixel exceeds a predefined magnitude at a specific time. Hence, event cameras

asynchronously provide pixel information with high temporal resolution. The event

stream may be interpreted as a sequence of asynchronous data representing changes
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in brightness on individual pixels of the sensor array. Events are mainly transmitted

using the address-event representation (AER) protocol [45] [46]. Event cameras

offer several advantages compared to standard frame-based sensors including high

temporal resolution, high dynamic range, robustness to motion blur, and low power

consumption. Their high temporal resolution is due to their analog circuitry, and

digital read-out (e.g., using a 1MHz clock [47]) that allows triggering timestamped

events with microsecond resolution. Thus, event cameras are robust to motion blur by

capturing per-pixel information of very fast motions, different from standard frame-

based sensors. Moreover, the logarithmic functioning scale of their photoreceptors

together with their per-pixel operation provide a high dynamic range (i.e., [90-140 dB]

[16]) compared to the 60 dB of traditional image-based cameras. This feature makes

event cameras robust to strong variations in illumination, from daylight to pitch-dark

conditions. Additionally, these sensors report low power consumption compared to

other vision sensors by transmitting only per-pixel brightness variations instead of

redundant intensity frame data. Different works [48] [49] [50] have reported power

consumptions of ∼ 100mW using event camera systems directly interfaced to an

embedded processor. Recently, a complete survey on event-based vision has been

published [16]. It briefly explains the principle of operation of event cameras, highlights

the advantages offered by these sensors compared to traditional cameras, and describes

their applications in robotics, neuromorphic computing, and computer vision.

Event cameras have been used in different computer vision and robotic applications,

that benefit from the outstanding properties of these sensors. Some of these works

regard to feature tracking [51], optical flow estimation [52], 3D reconstruction [53],

visual internal odometry [54], and image reconstruction [55], among others. The

aforementioned properties suggest event cameras as a suitable sensor for multirotor

and flapping-wing robot perception by addressing several of the challenges entailed

during the flight of these platforms.

This Ph.D. thesis focuses on exploring the use of event-based vision methods

in two types of aerial robots; multirotors, and ornithopters. The advantages of

event cameras compared to other vision sensors suggest them as a suitable solution

for aerial robot perception. However, event cameras represent a new paradigm for
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robot perception as most state-of-art vision-based algorithms input frames instead

of single-pixel information. Thus, the event stream requires further adaptations for

being processed with traditional methods, and novel algorithms are needed to directly

exploit the advantages of event cameras. Additionally, despite there is strong interest

in developing flapping-wing platforms with perception capabilities, there are few

ornithopter platforms that have mounted perception sensors [56]. This Ph.D. Thesis

also aims to contribute toward the use of event-based sensors on flapping-wing robots.

1.2 Objectives

Event cameras offer several outstanding properties suitable to deal with the perception

challenges caused by multirotor and flapping-wing robot flight. However, the current

state-of-the-art reports few works that leverage these advantages on the perception

of board aerial robots. Besides, to the best of our knowledge the use of event-based

vision on flapping-wing robots is a novelty, which has been preliminary studied in

our previous work [42]. The main objective of this Ph.D. Thesis is to explore the use

of event-based vision on aerial robots by proposing a set of software algorithms and

resources that contribute to the development of event-vision methods and systems

suitable for multirotors and ornithopter robots.

The research enclosed in this Ph.D. Thesis proposes a set of low-level event-vision

algorithms that leverage the asynchronous generation and microsecond resolution

of event cameras. These algorithms intend to serve as low-level modules for more

complex event-based perception methods. Furthermore, this Ph.D. Thesis presents

a set of high-level perception schemes and algorithms for aerial robot perception.

These methods propose event-based solutions for aerial robot applications where event

cameras gain significant relevance by dealing with some of the challenges presented

during the flight of multirotor and ornithopter platforms. Moreover, this research

proposes a simulation tool to emulate bioinspired landing trajectories to narrow the

gap toward the development of perception algorithms for bioinspired aerial robots.

Finally, the current event-vision literature reports a few datasets including event

information collected on board aerial platforms. This Ph.D. Thesis provides a set
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of event datasets recorded on board multirotors and flapping-wing robots to pave

the way toward the study and development of specific event-vision methods for these

platforms.

The GRVC Robotics Laboratory is a well-known research group for its work on

aerial robotics research, offering a unique opportunity to develop perception systems

for aerial robots. Multirotors are the main platforms used in the group to develop

diverse robotic applications due to their versatility and relative low cost. Moreover,

this Ph.D. Thesis is mainly enclosed within the context of the GRIFFIN ERC project

that focuses on the development of flapping-wing robots with diverse robot capabilities.

Thus, offering an ideal environment for designing and validating event-based algorithms

on ornithopter platforms.

1.3 Context

This Ph.D. Thesis has been developed within the context of several projects funded by

the European Commission, and by the Spanish Ministry for Science and Innovation.

Each of these projects are related to the development of perception systems for aerial

robots. The Ph.D. candidate designed, implemented, and validated the developments

presented in this Thesis within the GRVC Robotics Laboratory of the University of

Seville.

• GRIFFIN 1 (ERC-2017-ADG-788247). The ERC Advanced Grant GRIFFIN

project aims at developing flying robots with dexterous manipulation capabilities.

The robots will use foldable wings with flapping capabilities. The GRIFFIN

robots will mount sensors and boards to run autonomous and reactive perception

methods. New software tools will be developed to facilitate the design and

implementation of these complex robots and their perception algorithms. The

GRIFFIN flapping-wing robots will be able to land autonomously using vision-

based perception. The GRIFFIN project is the main funder of this Ph.D. Thesis.

It mainly motivates this research and provides the ornithopter robots used to

1https://griffin-erc-advanced-grant.eu/
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validate the proposed perception algorithms. This Ph.D. Thesis describes several

of the perception methods developed on the GRIFFIN project by exploring the

advantages of event cameras for flapping-wing robot perception.

• H2020 AERIAL-CORE 2 (H2020-2019-871479). The inspection and maintenance

of large infrastructure is a big challenge for engineers and represents a major

economic activity. Robot technologies can help increase efficiency, reduce costs,

and keep workers out of hazardous conditions. The EU-funded AERIAL-CORE

project develops an integrated aerial cognitive robotic system to assist human

workers in inspection and maintenance activities. Specifically, it will integrate

aerial robots for long-range and very accurate inspection of the infrastructure

capability. Perception algorithms will be developed to detect operators and

power lines for inspection and maintenance tasks. This Ph.D. Thesis provides a

basis for the development of these perception methods using event-based vision

together with traditional computer vision methods.

• ROBMIND (PDC2021-121524-I00). This project from the Spanish National

Prueba de Concepto R&D Programme will develop novel robotic prototypes

for the inspection and maintenance of industrial plants. It will develop robotic

prototypes for contact and contactless inspection as well as simple maintenance

tasks, allowing industrial companies to adopt more agile and frequent predictive

maintenance. Perception is particularly sensitive in complex environments

with a lack of structure. Critical aspects are accuracy and robustness against

lack of features in many industrial settings, e.g., inside a vessel or a storage

tank. These industrial scenarios report low illumination conditions that increase

the perception challenges for inspection and maintenance. This Ph.D. Thesis

provides an initial step toward the development of perception methods for the

inspection of industrial scenarios under low illumination conditions.

• HAERA (PID2020-119027RB-I00). This project funded by the Spanish National

RETOS R&D Programme aims at developing flapping-wing platforms to collect

2https://aerial-core.eu/
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samples and monitor the environment. The robot platforms integrate different

perception and control modules that allow them to perform autonomous flight and

monitoring operations. Besides, these platforms integrate specific mechanisms

for takeoff and landing in the water. This Ph.D. Thesis serves as an initial study

to explore the advantages of using event-based cameras for aerial monitoring

tasks.

1.4 Contributions

This section summarizes the contributions of this Ph.D. Thesis.

1.4.1 Contribution 1: Event-vision UAS guidance

The problem of visual guidance for aerial robotics has been extensively studied in

the literature. One of its main limitations is the given by the restriction imposed by

frame-based cameras such as limited dynamic range, fixed frame rate, and motion

blur. This contribution presents a guidance method for aerial robots using event-based

vision. The method also includes a bioinspired time-to-contract trajectory generator to

mimic the trajectories followed by birds while landing. The method has been initially

validated in a multirotor platform and afterward on an ornithopter robot. To the

best of our knowledge, this research describes the first event-based guidance method

adapted for a flapping-wing platform. The results of this research were published in

[57] and [58]. Figure 1.1 shows an experiment in which the E-Flap ornithopter flies

toward its goal using the proposed guidance system.

1.4.2 Contribution 2: Event-based dynamic sense-and-avoid

for flapping-wing robots

Avoiding dynamic obstacles with large-scale flapping-wing robots requires fast percep-

tion processing and response to guide the ornithopter toward a collision-free direction

before colliding with the obstacle. Event cameras trigger events due to the changes of

illumination in the scene which in many cases are caused by the movement of objects



1.4 Contributions 9

Figure 1.1: An outdoor guidance validation experiment using the GRIFFIN E-Flap
ornithopter.

in the scenario. Thus, event cameras directly provide pixel information from moving

objects. The research associated with this contribution focuses on exploiting the

properties of event cameras for the sense-and-avoid (i.e., obstacle avoidance) problem

with large-scale ornithopters. It proposes a sense-and-avoid pipeline which is evaluated

in several experiments with the E-Flap ornithopter. The results show the outstanding

capabilities of the pipeline for evading dynamic obstacles. The research associated

with this contribution lead to the publication in [59]. Figure 1.2 shows an example

of a sense-and-avoid experiment in which the E-Flap ornithopter evades a dynamic

obstacle.

Figure 1.2: The GRIFFIN E-Flap ornithopter robot performing a sense-and-avoid
maneuver.
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1.4.3 Contribution 3: Event-based intrusion monitoring for

multirotors

This contribution describes an event-based intrusion monitoring system for multirotors.

The high dynamic range and the robustness to motion blur of event cameras make

them a suitable candidate for intrusion monitoring and surveillance on board aerial

robots. The high dynamic range of these sensors enables performing the monitoring

under different illumination conditions without requiring additional sensors. The

perception module of the system is described by several event-processing algorithms

which extract and analyze events to detect intruders in the scene. The system includes

an automatic tuning method to adjust the parameters of the event-based algorithms for

different scenarios and conditions. The system has been tested in different multirotor

platforms in several experiments varying the weather, scenes, and light conditions.

The research enclosed by this contribution is described in [60], [3], [61], and [62].

Figure 1.3 shows an example of a monitoring mission in which an intruder is detected

by the proposed method.

Figure 1.3: Intrusion monitoring results on board a quadrotor platform.
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1.4.4 Contribution 4: Simulation tool for bioinspired landing

perception

This contribution describes a perception simulation tool to retrieve the perception

sensor measurements collected while performing bioinspired landing trajectories. The

simulation tool integrates several relevant perception sensors for aerial robotics such as

LiDARs, Lasers, Inertial Measurement Units (IMUs), traditional cameras, and event

cameras. Besides, the tool includes a trajectory generator that provides bioinspired

landing trajectories similar to those performed by birds during landing. A dataset

with some of the sensing samples recorded in different landing experiments is publicly

available. The research enclosed within this contribution corresponds to publications

[63] and [64]. Figure 1.4 shows the block diagram of the proposed simulation tool.

Figure 1.4: Block diagram of the ROSS-LAN simulation tool.

1.4.5 Contribution 5: A dataset for flapping-wing robot per-

ception

Currently, the lack of available ornithopters together with the payload restrictions of

these platforms limit the study of perception algorithms for flapping-wing perception.

Allocating perception sensors and computing hardware on board a flapping-wing robot
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is a challenging task, the weight of the perception hardware must satisfy the payload

specifications of the platforms without harming the robot’s maneuverability and flight

performance. This contribution describes the first perception dataset for flapping-

wing perception. It integrates sensor measurements from a frame-based camera, two

IMUs, an event camera, and ground truth pose samples from external sensors (e.g., a

TotalStation and a motion capture system). The dataset has been recorded on board

the Eye-Bird ornithopter, a flapping-wing robot designed and manufactured at the

GRVC Robotics Laboratory. The dataset has been validated with a state-of-the-art

Visual Inertial Odometry (VIO) method. The work related to this contribution is

described in publications [42] and [43]. Figure 1.5 depicts the Eye-Bird robot flying

during a dataset collection experiment.

Figure 1.5: A dataset recording experiment using the GRIFFIN Eye-Bird ornithopter.

1.4.6 Contribution 6: Event-based algorithm validation on

ornithopters

In the last few years, the interest in using event cameras for computer vision and

robotics has increased exponentially. Currently, the development of lighter and high-

resolution event-based vision sensors is constantly improving. However, there is

still a huge gap to close toward the use of event cameras in robotics due to their
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limited commercial availability and relatively new state-of-the-art. Additionally, the

development of event-vision methods for ornithopter platforms is mainly constrained

by their weight and power limitations. This contribution refers to the experimental

work developed in this Ph.D. Thesis by integrating event cameras and validating event-

based perception methods in ornithopter robots. This is a challenging task due to the

complexity of integrating sensors and processing boards on flapping-wing robots with

strict payload and weight distribution specifications. Further, performing experiments

with these platforms requires planning and coordination. Several experiments were

conducted in challenging conditions where standard frame-based cameras may fail

such as in low-illumination conditions and by performing fast motions with the robot.

The majority of the articles enclosed in this research took part in this contribution

[64], [42], [43], [57], [58], and [59]. Besides, this research also includes experiments

performed with diverse multirotor platforms, which led to additional publication [60],

[3], [61], and [62].

Figure 1.6: One of the GRIFFIN ornithopters designed and built at the GRVC
Robotics Laboratory.
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1.4.7 Contribution 7: Event-vision resources

This contribution corresponds to the set of event-vision algorithms, datasets, and tools

publicly released during the development of this Ph.D. Thesis. These resources are

available online to contribute to the event-perception community. The algorithms per-

form event-by-event processing adapting to the asynchronous event generation without

requiring any additional pre-processing step to input the event stream. Moreover,

the datasets intend to pave the way for the development of event-vision algorithms

for robotics. Although the interest in using event cameras in robotic applications

has increased in the last decade, there are still few event-vision available datasets

compared to the number of perception datasets containing intensity frames from

standard cameras. These resources are part of the research conducted in publications

[64] [60] [3] [43], and [59].

1.4.8 Publications

The research described in this Ph.D. Thesis has been published in 8 conferences

and 3 Journals. Among the most important conferences where the work on this

research has been presented there are the IEEE International Conference on Robotics

and Automation (ICRA) (4 contributed papers), and the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (2 contributed papers).

This Ph.D. Thesis also produced publicly available resources including 3 datasets

and 3 open-code algorithms, which are left available to the community.

1.4.8.1 Journals

• J. P. Rodŕıguez-Gómez, R. Tapia, M. d. M. G. Garcia, J. R. Mart́ınez-d. Dios

and A. Ollero, Free as a Bird: Event-Based Dynamic Sense-and-Avoid for

Ornithopter Robot Flight. IEEE Robotics and Automation Letters 7.2 (2022),

pp. 5413-5420. Links: Video, [59].

• J.P. Rodŕıguez-Gómez, R. Tapia, R, J. Paneque, P. Grau, A. Gómez Egúıluz, J.R.

Mart́ınez-de Dios and A. Ollero. The GRIFFIN Perception Dataset: Bridging

https://www.youtube.com/watch?v=cBMcw5jRnfU
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the Gap Between Flapping-Wing Flight and Robotic Perception. IEEE Robotics

and Automation Letters 6.2 (2021), pp. 1066–1073. Links: Dataset, Video,

Code, [43].

• J. P. Rodŕıguez-Gómez, A. Gómez Egúıluz, J.R. Mart́ınez-De Dios, and A.

Ollero. Auto-Tuned Event-Based Perception Scheme for Intrusion Monitoring

With UAS. IEEE Access 9 (2021), pp. 44840–44854. Links: Video, [3].

1.4.8.2 International conferences

• J.P. Rodŕıguez-Gómez, A. Gómez Egúıluz, J.R. Mart́ınez-de Dios, and A. Ollero

ROSS-LAN: RObotic Sensing Simulation Scheme for Bioinspired Robotic Bird

LANding. Robot 2019: Fourth Iberian Robotics Conference. Springer Interna-

tional Publishing, 2020, pp. 48–59. Links: Dataset, [64].

• J.P. Rodŕıguez-Gómez, Cicco, M. D., Nardi, S., and Nardi, D Mapping Infected

Crops Through UAV Inspection: The Sunflower Downy Mildew Parasite Case.

International Conference on Industrial, Engineering and Other Applications of

Applied Intelligent Systems. Springer Cham, 2019, pp. 495–503. [63].

• A. Gómez Egúıluz, J.P. Rodŕıguez-Gómez, J.L. Paneque, P. Grau, J.R. Mart́ınez

de Dios and A. Ollero. Towards flapping wing robot visual perception: Opportu-

nities and challenges. Workshop on Research, Education and Development of

Unmanned Aerial Systems (RED UAS). 2019, pp. 335–343. [42].

• J.P. Rodŕıguez-Gomez, A. Gómez Egúıluz, J.R. Mart́ınez-de Dios, and A. Ollero.

Asynchronous event-based clustering and tracking for intrusion monitoring in

UAS. IEEE International Conference on Robotics and Automation (ICRA). 2020,

pp. 8518–8524. Links: Dataset, Code, [60].

• J.R. Mart́ınez-de Dios, A. Gómez Egúıluz, J.P. Rodŕıguez-Gómez, R. Tapia and

A. Ollero. Towards UAS Surveillance using Event Cameras. IEEE International

Symposium on Safety, Security, and Rescue Robotics (SSRR). 2020, pp. 71–76.

[61].

https://grvc.us.es/eye-bird-dataset/
https://www.youtube.com/watch?v=ymCRnlWxX24&list=PL-Kzs2T7Hx3K-IDKsgUwPUnzHmk8Pcsek&index=2
https://github.com/grvcPerception/eye_bird_dataset_utils
https://www.youtube.com/watch?v=I5Qgb77iouA&list=PL-Kzs2T7Hx3K-IDKsgUwPUnzHmk8Pcsek&index=3
https://grvc.us.es/bioinspired-landing-trajectory-sensor-dataset/
https://grvc.us.es/davis-dataset-for-intrusion-monitoring/
https://github.com/grvcPerception/grvc_ef_tracker/
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• A. Gómez Egúıluz, J.P. Rodŕıguez-Gómez, J.R. Mart́ınez-de Dios, and A. Ollero.

Asynchronous Event-based Line Tracking for Time-to-Contact Maneuvers in

UAS. IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). 2020, pp. 5978–5985. Links: Video, [57]

• J.P. Rodŕıguez-Gómez, R. Tapia, A. Gómez Egúıluz, J. R. Mart́ınez-de Dios and

A. Ollero. UAV human teleoperation using event-based and frame-based cam-

eras. 2021 Aerial Robotic Systems Physically Interacting with the Environment

(AIRPHARO). 2021, pp. 1–5. [62].

• A. Gomez Eguiluz, J.P. Rodriguez-Gomez, R . Tapia, J. Maldonado, J.A. Acosta

and J.R. Martinez-de Dios and A. Ollero. Why fly blind? Event-based visual

guidance for ornithopter robot flight. IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). 2021, pp. 1935–1942. Links: Video,

[58].

• J.P. Rodriguez-Gomez, G. Gallego, J.R. Martinez-de Dios and A. Ollero. Stabi-

lizing Event Data on Flapping-wing Robots for Simpler Perception. Workshop on

Challenges of Flapping-wing aerial robots of the IEEE International Conference

on Robotics and Automation (ICRA) 2022. [65].

1.4.8.3 Datasets

• The event dataset for intrusion monitoring. The dataset contains events and

grayscale frames recorded in several intrusion monitoring situations. It was

recorded on a multirotor flying in industrial scenarios under different illumination

conditions. This dataset is part of the contributions of the work in [60]. Dataset

• The perception dataset for bioinspired robot landing. A dataset including syn-

thetic sensing information from several perception sensors while simulating

bioinspired landing trajectories. This dataset is part of the contributions of the

work in [64]. Dataset

• The GRIFFIN Perception Dataset. A perception dataset recorded on board a

large-scale flapping-wing robot. It includes measurements from different sensors

https://www.youtube.com/watch?v=u9G_oT8psac&list=PL-Kzs2T7Hx3K-IDKsgUwPUnzHmk8Pcsek&index=4
https://www.youtube.com/watch?v=6aJJSEVStUE&list=PL-Kzs2T7Hx3K-IDKsgUwPUnzHmk8Pcsek&index=1
https://grvc.us.es/davis-dataset-for-intrusion-monitoring/
https://grvc.us.es/bioinspired-landing-trajectory-sensor-dataset/
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relevant to flapping-wing perception. The dataset is enclosed in the contributions

of the paper in [43]. Dataset

1.4.8.4 Software

• dvs data tools. A software tool to visualize event data in event images together

with a set of scripts to transform rosbag files into text files and frames. The tool

is set to receive events from either a Dynamic Vision Sensor (DVS) or a DAVIS

camera. Code

• grvc ef tracker. A feature tracking algorithm that directly processes the event

stream following an event-by-event processing approach. This algorithm is part

of the perception modules of the work in [60]. Code

• grvc e clustering. An asynchronous clustering method to group events based

on their spatial-temporal distribution. The clustering method is part of the

perception modules of the work in [60]. Code

• Eye-Bird Dataset Utils. A repository with a set of useful scripts to handle the

sensing information of the dataset in [43]. Code

1.5 Document structure

This Ph.D. Thesis describes the design, implementation, and evaluation of several

event-based methods and schemes for multirotor and flapping-wing robot perception.

Figure 1.7 shows a block diagram highlighting the relationship between the different

chapters of this Ph.D. Thesis. A brief description of the document structure is reported

as follows:

Chapter 2 describes a set of low-level processing algorithms for event-based vision.

They intend to offer low-level perception primitives for the development of high-level

event-based methods. Each algorithm leverages the asynchronous nature and microsec-

ond resolution of event cameras by considering the spatial-temporal distribution of the

event stream. Most of these algorithms are used as perception modules in the pipelines

https://grvc.us.es/davis-dataset-for-intrusion-monitoring/
https://github.com/grvcPerception/dvs_data_tools.git
https://github.com/grvcPerception/grvc_ef_tracker.git
https://github.com/grvcPerception/grvc_e_clustering.git
https://github.com/grvcPerception/eye_bird_dataset_utils
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Figure 1.7: Block diagram depicting the relationship between the chapters (Ch in the
diagram) of this Ph.D. Thesis.

and schemes presented in the following Chapters. The presented methods are enclosed

in Contribution 1, Contribution 2, Contribution 3, and Contribution 7 of

this Ph.D. Thesis.

Chapter 3 describes an event-based guidance approach for aerial robots designed

to cope with the perception challenges that occur during the execution of fast guidance

maneuvers. The proposed approach includes an event-based algorithm to detect

and track line features defining the goal reference pattern. It includes as well a

time-to-contact method to compute bioinspired landing trajectories. The method has

been validated in two aerial platforms, a small quadrotor, and a large-scale flapping-

wing robot. The experimental validation was performed in indoor and outdoor

scenarios while varying the illumination conditions of the scene. This Chapter encloses

Contribution 1, and its experimental validation is part of Contribution 6 of this

Ph.D. Thesis.

Chapter 4 introduces an event-based dynamic sense-and-avoid method designed

and validated in an ornithopter. The proposed method focuses on detecting dynamic

obstacles in the scene and reacting as fast as possible to prevent possible collisions with

the robot’s body. The perception module analyzes the event stream to extract event

information from moving objects and estimate their direction of motion. An avoidance



1.5 Document structure 19

strategy together with the onboard controller guides the flapping-wing robot in a

collision-free direction. The method was validated in a large-scale ornithopter designed

and manufactured by the GRVC Robotics Laboratory. Several experiments were

performed to validate the method in indoor and outdoor scenarios. This Chapter de-

scribes Contribution 2, and its experimental validation and software implementation

are part of Contribution 6 and Contribution 7 of this Thesis.

Chapter 5 presents an event-based intrusion monitoring scheme for multirotors.

It exploits the capabilities of event cameras to trigger pixel information from moving

objects to detect possible intruders in the monitoring area. The scheme includes as

well an auto-tuning approach to automatically adjust the parameters of the perception

algorithms to improve the system performance. The proposed scheme offers a complete

solution for autonomous intrusion monitoring using multirotor platforms equipped

with event cameras. The system is validated in several experiments in diverse scenarios

under different weather and illumination conditions. This Chapter corresponds to

Contribution 3, and the collected datasets are part of Contribution 7 of this Ph.D.

Thesis.

Chapter 6 presents two different tools aiming to reduce the current gap between

bioinspired aerial robotics and vision-based perception. In particular, both solutions

have been designed to provide event-vision data, as event cameras offer a suitable

solution for several of the perception challenges that arise during ornithopter flight.

The first tool is a simulator that provides synthetic perception information during the

execution of bioinspired landing trajectories. This tool corresponds to Contribution

4 of this Ph.D. Thesis. The second tool is the first perception dataset recorded onboard

a large-scale ornithopter. It includes sensing information from an event camera, a

frame-based camera, two IMUs, and ground truth measurements of the robot pose. The

perception dataset corresponds to Contribution 5, and its experimental validation

and software tools are part of Contribution 6 and Contribution 7 of this Ph.D.

Thesis.

Chapter 7 summarizes the conclusions of this Ph.D. Thesis highlighting the open

challenges and future opportunities of using event-based perception for aerial robots.
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Chapter 2

Event-based Low-level Perception

2.1 Introduction

Event cameras represent a new paradigm for traditional computer vision. These

sensors provide single-pixel information with microsecond temporal resolution instead

of the intensity images provided by frame-based cameras. Although event cameras

offer many novel advantages over traditional vision sensors, the event stream cannot

be directly processed by state-of-the-art computer vision algorithms. Rendering event

pixels into frames is the simplest frame representation to use event data with frame-

based perception methods. However, these frames do not provide the same brightness

information as grayscale and colored images, which is used by many computer vision

and Deep Learning (DL) algorithms. Additional processing is required to render event-

images with enhanced information similar to the brightness information provided by

traditional images [66].

Conversely, novel algorithms have been designed to exploit the asynchronous

generation and format of events. Most of these algorithms process events in batches

of accumulated events or by processing single events in an event-by-event manner.

The latter leverages the nature of event cameras by analyzing asynchronous events

individually allowing fast perception response and low latency processing. This Chapter

presents a set of low-level event-by-event algorithms useful for event processing that

have been developed in this Ph.D. Thesis. These algorithms are designed to cope with

21



22 Event-based Low-level Perception

the event stream format. Besides they can be integrated with other event-by-event

algorithms to develop high-level event-based perception methods [60] [3] [59].

The algorithms presented in this Chapter are included in the perception methods

and systems of Contribution 2, Contribution 3, Contribution 4, and Contri-

bution 7 of this Ph.D. Thesis. Additionally, the research presented in this Chapter

led to publications [60], [3], [62], [59], and [65].

This Chapter is organized as follows. Section 2.2 reports a summary of the main

works related to the topics addressed in this Chapter. A set of low-level algorithms

performing event-by-event processing is presented in Section 2.3. These algorithms

are integrated with the majority of the perception methods developed in this Ph.D.

Thesis. Section 2.4 describes the experimental validation of the proposed algorithms

and includes a discussion of their possible use for a specific perception task. Finally,

the conclusions and future work are presented in Section 2.5.

2.2 Related work

During the last decades, the neuromorphic and event-vision communities have designed

and implemented a wide variety of methods to leverage the advantages of event cameras

for computer vision, neuromorphic engineering, and robot applications. Some of the

first works proposed frame representations of events that can be applied directly to

state-of-the-art computer vision algorithms. These representations follow the concept

of building 2D maps with the same sensor resolution. One of the simplest approaches

is to build histograms of events H ∈ R
2 [67]. Each incoming event with coordinates

x increases the value of the histogram at H(x). Thus, the histogram describes a

map highlighting the areas with high spatial occurrence over time. The histogram

is typically normalized to obtain a bounded representation of the event occurrence

(e.g., ranging between [0, 1] or [−1, 1] considering the event polarity). This frame

representation of events is known in the literature as Image of Warped Events (IWEs),

event frames, and event images, among others. Many other 2D map representations

have been proposed in the literature. Authors in [68] introduce the concept of Surface

of Active Events (SAE), also known as Time Surfaces, as a map that keeps the
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temporal information of the last event occurring at location x. The work in [69]

proposes Time Surfaces with exponential time decay. The decay function considers the

activity of events during a specific period of time, reducing the influence of old samples

on the map. Inspired by the same concept, an exponential kernel decay approach is

proposed in [70]. The exponential kernel computes the time decay of each new event

in the neighborhood around it. The kernel spreads the influence of past events while

providing information about the past activity in the event neighborhood.

Despite frame-based event representations are suitable inputs for traditional com-

puter vision techniques, they do not leverage the asynchronous capabilities of event

cameras. Conversely, event-by-event approaches process each event independently

allowing asynchronous perception responses. Additionally, event-by-event processing

methods avoid the latency produced by accumulating events to build meaningful event

images. Some works [71] [72] have reported event processing rates similar to the event

temporal resolution (i.e., 1 µs). Besides, event-by-event methods avoid computing

redundant information of the entire frame by processing single events and their past

information occurring in their spatial-temporal neighborhood [73] [74] [72]. Thus, they

process only visual information triggered by the camera motion and the dynamic of

the scene.

Feature extraction is one of the first event-vision topics reporting event-by-event

processing methods. The work in [73] proposes an event implementation of the Harris

corner detector [75] with similar accuracy to the frame-based version. The method

reports outstanding detection accuracy with a high processing latency compared to

the event resolution. Authors in [74] propose a fast event-based corner detector relying

on the temporal information of an SAE. This method performs comparison operations

in a circle around the input event to detect corners. Following the same principle,

the approach in [72] compares arcs greater than 180° to enhance detection speed and

accuracy. The method also proposes a tool to avoid processing redundant events

which significantly reduces the number of events processed by the method. The work

in [71] proposes an adaption of eHarris method in [73] including the event filter in

[72] to increase the responsiveness of the corner detector. The work includes as well a

detailed comparison between different event-based corner detectors highlighting the
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advantages of the proposed method. Recently, authors in [76] present an event-based

corner detector with high event throughput and similar accuracy to the original Harris

algorithm. Authors claim that the proposed descriptor overcomes the state-of-the-art

of event-based corner detection algorithms providing additional metrics and evaluations

compared to previous works.

Several additional low-level event-by-event methods have been proposed in the

literature. The method in [51] presents a corner tracking method based on graph

trees to discard unreliable corners. The method is evaluated with benchmarking event

datasets reporting significant improvements in terms of accuracy and computational

efficiency. A patch-feature tracking approach is presented in [77] which considers

the feature tracking task as an optimization problem of matching a feature template

with the current tracking state. Feature templates are defined by square patches of

accumulated events occurring in the neighborhood of the current tracked feature. The

method reports remarkable results providing fast and stable feature tracks compared to

the work in [51]. The authors in [78] present an event-based cluster tracking algorithm

inspired by the state-of-the-art mean-shift method in [79]. The mean-shift solution is

formulated as a gradient descent problem of matching the current input event with the

feature space. A Kalman Filter is used to perform multi-target clustering providing

smooth tracking trajectories. The method demonstrates robustness to different cluster

shapes and different camera speeds. The work in [68] presents an optical flow method

relying on an SAE describing the temporal evolution of previous events. The surface

is updated with each new event, and flow is computed by analyzing the previous

temporal information around the event location in the SAE. Authors in [80] propose a

block-matching approach for event-based optical flow. The flow is computed based on

previous time information on slice windows similar to time surfaces. The method is

extended in [81] by including an adaptive time reference to update the slice windows.

The adaptative time reference is given by a grid of accumulated events that updates

the slice windows based on the event occurrence in different areas of the image plane.
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2.3 Low-level perception algorithms

This Chapter presents four low-level event-based algorithms following event-by-event

computation. The set of algorithms intends to serve as a tool to build complex pipelines

for event-based vision. Several of these algorithms are used in the next Chapters of

this Ph.D. Thesis to build more complex methods for robot perception. As many

computer vision and perception algorithms, the proposed methods include internal

parameters to adjust the algorithm behavior to the user application and the scene

configuration. Their correct adjustment leads to improvements in the algorithm’s

performance, as it is discussed in Section 2.4 and the following Chapters. Table 2.1

provides a summary of the parameters of each method.

Each event is defined by the tuple e(x, ts, p), where x represents the event coordi-

nates (x, y), ts corresponds to the timestamp of the event, and p ∈ {+1,−1} is the

event polarity. The previous notation is used throughout this Ph.D. Thesis to refer to

an event and its parameters. The following subsections describe each of the proposed

algorithms.

2.3.1 Asynchronous feature tracking

Feature tracking is a relevant topic for several vision applications such as optical

flow estimation, visual odometry, and vision-based Simultaneous Localization And

Mapping (SLAM). This module focuses on tracking features obtained from the event

stream following an event-by-event processing approach. Each feature is represented

by f = {x, ts}, where x is the feature coordinates x = (x, y), and ts its timestamp

(i.e., the timestamp of the event that triggered the feature). Inspired by the concept

of Surface of Active Events, the proposed method defines Surfaces of Active event

Features (SAeF), Sf ∈ R
2, as a map of the timestamps of previous features. The

SAeF represents a spatial-temporal memory of previous features. Features on Sf are

also buffered in buffer BT . Each new feature updates Sf and BT by adding the new

feature and removing the oldest sample such that they keep a maximum of nT features.

Thus, Sf describes a time-varying memory that adapts to the event generation, which
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Algorithm Symbol Description

Feature Tracker

f Feature.
fc Feature candidate.

f̂i Feature track i.

F̂ List of features.
MT

fc
Feature track candidate list of feature fc.

Sf SAeF.
AT Neighborhood area.
εT Tracker proximity threshold.
BT Event tracking buffer of size nT .
τT Oldest timestamp in nT .

Clustering

c Cluster.
µc Centroid of cluster c.
µ̂ Cluster moving average.
Lc List of events associated to cluster c.
MC

e Cluster candidate list for event e.

Ĉ List of clusters.
BC Event clustering buffer of size nC .
τC Oldest timestamp in BC .
κc Cluster proximity sampling number.

Attention Priority Map

Ω Attention Priority Map.
BA Event buffer for APM of size nA

τA Oldest timestamp in BA.
l Update window size.
νA Filtering threshold.

Time Filter
St Surface of events.
τt Time filtering threshold.
βτt Complementary velocity gain.

Table 2.1: Notation used in Feature Tracking, Clustering, APM, and Time Filter
methods.

mainly depends on the dynamics of the scene and camera motion. For instance, fast

camera motions produce a Sf representation of features detected in a smaller time

window than the representations obtained with slow camera motions.

The proposed method filters input features to avoid possible noisy samples. It

discards event features with a number of neighbors in Sf lower than the threshold εT ,

typically set to 2. Valid filtered features are considered as feature candidates fc for

tracking. The set of feature tracks is represented by the list F̂ = [̂f1, . . . f̂i], where f̂i is

the i− th feature tracked. The proposed tracker performs data association between

the elements in F̂ and fc producing either a new track or a tracking update. Candidate

association is performed by analyzing the occurrence of each of the previous tracks f̂i
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in a neighborhood area AT around the candidate fc. Previous tracks within AT are

appended to the list of associated tracks MT
fc
. If MT

fc
has only one element, the track

is updated with the values of fc. Conversely, if M
T
fc
has more than one element, only

the oldest track is updated. The method prioritizes older tracks as they provide a

larger temporal consistency over time. Moreover, if MT
fc
= ∅ a new feature track is

created and appended to F̂.

Moreover, the proposed tracker discards tracks in the list F̂ in two cases. First,

candidate tracks in MT
fc
that are not considered for tracking update are eliminated from

F̂. Second, feature tracks f̂i with a timestamp lower than the dynamic reference time

τT are canceled from the list of feature tracks. τT is a time-varying forgetting horizon

obtained from the timestamp of the oldest feature in BT . Thus, only tracks updated

within the time window defined by τT are kept in the list F̂. The proposed approach

adopts a time-varying reference instead of a fixed value as the event generation in a

specific time interval is affected by changes in the camera velocity and scene dynamics

[82]. Finally, Algorithm 1 summarizes the functioning of the proposed event-based

feature tracker.

Algorithm 1: Asynchronous event-based feature tracking

Input: f(x, ts)
Output: F̂
if isCandidate(f , fc,S, ε

T ) then

MT
fc
←− SearchMatch(F̂,AT ,fc) ⊲ Find matches in F̂.

if M
T
fc
= ∅ then

F̂←− Append(fc) ⊲ Add a new feature to F̂.
end

else

F̂←− Update(fc) ⊲ Update oldest track by fc.
end

end

F̂←−DiscardTracks(MT
fc
, τT ) ⊲ Remove old features.

return F̂ ⊲ Return list of tracks.
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2.3.2 Asynchronous event-based clustering

The events’ format together with their asynchronous generation set a new paradigm

for traditional computer vision. This Section describes a clustering approach for event

data. It aims at clustering events triggered by objects in the image plane with a

similar spatial-temporal distribution. Thus, it considers the spatial occurrence of

events and their temporal resolution. The proposed method performs event-by-event

processing to exploit the asynchronous nature of event cameras. Its spatial-temporal

proximity criterion groups events without prior information about the scene geometry.

Unlike methods using the cluster centroid as a reference for data association [78], the

proposed method clusters events with spatial-temporal continuity by evaluating the

proximity of new events to random samples associated with the cluster. This approach

benefits event-by-event clustering as events are mostly triggered at the object contour

which is often distant from its centroid.

Algorithm 2 describes the proposed event-based clustering method. The list

Ĉ = [c1, . . . ci] corresponds to the list of active clusters, where ci is the i− th cluster

in the list. Each cluster ck ∈ Ĉ is defined by its centroid µck , its weighted moving

average µ̂ck
, and its list of associated events Lck . The proximity of an event e to a

cluster ck is evaluated using the distance from e to µ̂ck
, and to κck random samples in

Lck . The Manhattan distance is used due to its efficiency for high-dimensional data

problems. An event is close to cluster ck if any of these distances is below a threshold

r (typically r = 10). A new event e assigned to cluster ck updates µ̂ck
as follows:

µ̂ck
=
αx+ (1− α)µ̂ck

2
, (2.1)

where x = (x, y) corresponds to the event coordinates and α ∈ [0, 1] is the weight

parameter. α is typically set > 0.5 to assign priority to new events. Each new event

creates a list MC
e of cluster candidates, if an event is close to a cluster ck ∈ Ĉ, it is

appended to MC
e . An event e is assigned to ck in the two different cases. First, if

|MC
e |= 1, e is appended to the cluster, where |·| refers to the cardinality of the list.

Second, if MC
e contains more than one element (i.e., |MC

e |> 1), the clusters in MC
e

are merged and e is added to the merged cluster. Otherwise, if MC
e = ∅, a new cluster
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is created with the event. Each new event-cluster assignation updates µ̂ck
and Lck

of cluster ck. Additionally, following the idea of an adaptable forgetting horizon, the

clustering algorithm includes a mechanism to delete old samples. A buffer BC keeps

the nC most recent events. BC is updated with each incoming event by adding the

new event, and removing the oldest event in BC if its size is greater than nC . The

forgetting horizon τC corresponds to the timestamp of the oldest event in BC . Events

on the lists L1 . . .Li are periodically deleted if their timestamp is lower than τC . Thus,

each cluster keeps an event representation that follows the event generation over time.

Finally, if all events are removed from cluster ck (i.e., Lck = ∅) the cluster is removed

from the list of active clusters Ĉ.

Algorithm 2: Asynchronous event-based clustering

Input: e, r, κc
Output:
if |MC

e | = 1 then

Ĉ←− AddTo(e, MC
e ) ⊲ Add event to cluster.

end
else if |MC

e | > 1 then

Ĉ←− MergeAndAdd(e, MC
e ) ⊲ Merge clusters & add event.

end
else

Ĉ←− CreateNew(e) ⊲ Create new cluster.

end

for c ∈ Ĉ do
Lc ←− DiscardSamples(c, τC) ⊲ Discard old events in the cluster.
if |Lc| = 0 then

Remove(c, Ĉ) ⊲ Remove the empty cluster.
end

end
return

2.3.3 Attention priority map (APM)

Event cameras trigger events due to the changes in illumination in the scene. These

illumination variations are mainly caused by the camera motion and the movement
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of objects in the camera’s Field of View (FoV). The latter is also known as the

scene dynamics. Previous works have tackled the problem of distinguishing events

triggered from the background (i.e., due to the camera motion) from those produced

by dynamic objects [83] [84] [85]. Despite those approaches report remarkable results,

they require either data from additional sensors or solving optimization processes

that limit their real-time processing capabilities. This Section describes an algorithm

to assign priority to events with high spatial-temporal occurrence using only event

information. Following the event processing approach of methods in Section 2.3.1

and Section 2.3.2, the algorithm performs event-by-event computation to leverage the

asynchronous capabilities of event cameras.

Inspired by neuroscience, the proposed approach uses the term Attention Priority

Map (APM ) to refer to a map Ω ∈ R
2 that highlights regions triggering more events

within a time window. Thus, Ω describes the zones with high event occurrence in the

image plane. Assuming that moving objects trigger significantly more events than

the static background, the zones in Ω with high occurrence correspond to moving

objects. The APM (Ω) has the same resolution as the event camera, and it is updated

asynchronously. Each new event e updates the APM by increasing the event occurrence

in a window of length l around the event coordinate x = (x, y). The APM is updated

as follows:

Ωij = Ωij + l −D(x,y) + 1, (2.2)

where D(·) is the Manhattan distance, y = (i, j), i ∈ [x − l−1
2
, x + l−1

2
], and j ∈

[y − l−1
2
, y + l−1

2
]. Conversely, the APM discards events with a timestamp older than

τA. This time reference is obtained from the last event saved in buffer BA of size nA.

Events are discarded from the APM as follows:

Ωij = Ωij +D(x,y)− l − 1 (2.3)

The map Ω is normalized within the range [0, 1] for simplicity. A coordinate (x, y)

is considered to draw attention when Ω(x) is greater or equal than νA ∈ [0, 1]. The

threshold νA defines the regions in Ω considered with high attention. The value of νA
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is selected depending on the scene dynamics and the camera motion. For instance,

when the camera motion is considerably lower than the object motion, small values of

νA are enough to differentiate events triggered by dynamic objects. Conversely, when

the camera velocity is close to the object velocity higher values of νA are required to

differentiate events produced by moving objects.

2.3.4 Time filter

Different from frame-based vision sensors, event cameras provide pixel information

with microsecond resolution. Several works have exploited the time resolution of events

to perform event contrast maximization [86], high dynamic range video reconstruction

[87], video deblurring [88], and high-speed frame interpolation [89], among others.

The high time resolution of events can be used to differentiate events triggered by

dynamic objects from those triggered by the camera motion. This Section introduces

the Time Filter algorithm, a fast method to distinguish events produced by moving

objects based on their temporal information. The method assumes a considerable

velocity difference between the camera and the moving object.

The Time Filter saves the temporal information of previous events in the time

surface St ∈ R
2. This time surface maps the event coordinates x with the timestamp

ts of the last occurring event at St(x). Under the assumption that dynamic objects

move faster than the camera, the proposed method differentiates events triggered from

moving objects using the temporal difference ∆t between the input event ek and the

previous timestamp at St(ek). If the difference ∆t = tsk − St(xk) is lower than τt, the

event is considered to belong to a moving object. Afterwards, ek updates the time

surface by St(xk) = tsk for the future evaluations.

The threshold τt works as a Time Filter and its value directly impacts the per-

formance of the method. Small values of τt impose a strong filtering action while

large values of τt allow noise samples. In the simplest case, where the camera moves

with a constant velocity, a fixed value of τt is enough to filter events belonging to the

background. However, when the camera motion varies the selection of τt requires a
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different approach. Assuming that the camera velocity is known, τt can be represented

as a function of the linear speed vc and the angular speed ωc of the camera:

τt = βτtτvc + (1− αc)τωc , (2.4)

where τvc and τωc represent the time contribution due to each speed and βτt ∈ [0, 1].

τv and τω are defined as follows:

[

τvc

τωc

]

=

[

τH

τH

]

− (τH − τL)

[

(‖vc‖ − ‖vL‖)(‖vH‖ − ‖vL‖)
−1

(‖ωc‖ − ‖ωL‖)(‖ωH‖ − ‖ωL‖)
−1

]

, (2.5)

where [‖vL‖, ‖vH‖] and [‖ωL‖, ‖ωH‖] are the typical speed ranges of the camera, and

the operational range [τL, τH ] can be found empirically. The camera speed ranges vary

depending on the application and may be set experimentally.

2.4 Experiments

This Section describes the experimental validation of the Tracking and Clustering

methods along with a discussion of the advantages and disadvantages of the APM

and Time Filter algorithms for the problem of moving object detection. The following

validation does not intend to compare the proposed algorithms with the methods in

[51], [90], and [91]. Some of them are not publicly available for comparison [51], or

they describe different processing approaches [90] [91] to ours. Instead, this validation

aims at evaluating the event-by-event capabilities of the proposed algorithms for

their integration into more complex event-based processing schemes for aerial robot

perception.

2.4.1 Tracking

This subsection validates the tracking capabilities of the method proposed in Section

2.3.1. Ground truth tracking references were obtained from the Kanade-Lucas-Tomasi

algorithm [92]. The validation was divided into two experiments. In the first set

of experiments, reference features were directly extracted from the event stream
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to avoid tracking failures due to False Negative detections from feature detection

algorithms. Thus, input events corresponded to the set of features to track using

the proposed method. In the second set of experiments, a corner detector algorithm

was used to extract the set of features to track (i.e., corners) with the proposed

method. These experiments were performed with data recorded in complex scenarios

where a feature detection algorithm is needed to identify features in the event stream.

Both experiments focused on validating the lifetime and Mean Absolute Error (MAE)

metrics of the tracking method. In this validation, tracking lifetime was computed

as tT/tF , where tT corresponds to the time that the tracker successfully followed the

reference feature, and tT is the time that the feature occurred during the experiment.

Besides, the MAE was calculated as the mean difference between the location of the

GT samples and the tracking features. The visual sensing data used in the experiments

were provided by DAVIS cameras integrating both a Dynamic Vision Sensor (DVS)

and an Active Pixel Sensor (APS).

The proposed algorithm and the method in [92] receive as input feature samples,

which are usually provided by a feature detector (e.g., a corner detector). Thus, if

the detector fails due to misdetection issues, it might affect the tracking performance.

To avoid this issue, the first set of experiments focused on evaluating the proposed

method when it received input features extracted directly from the event stream. The

experiment required a special setup, where feature samples were provided by a set of

laser beams emitting over a black canvas. The beams triggered events and produced

white pixels in intensity images. A DAVIS346 provided events and grayscale frames

during each experiment. The laser light generates brightness changes on the scene,

triggering events while producing grayscale images with white pixels representing the

laser beam. Figure 2.1 shows a grayscale frame with the laser lights displayed on

the canvas, and its equivalent event image created by accumulating events in time

windows of 250ms.

Ground truth features were extracted from frames by normalizing the image (e.g.,

black and white frame), and defining white pixels as features. Multiple nearby white

pixels were clustered such that there is only one feature per laser light. Conversely,

event features are extracted from the event stream using only positive samples.
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(a) (b)

Figure 2.1: (a) Grayscale frame and (b) event image showing the laser beams emitted
over a black canvas. The event image was rendered by accumulating events for 250ms.
The colors on the images (red, green, blue, and magenta) indicate the correspondence
between the laser beams in the frame and their equivalent in the event image.

Negative polarity events were discarded. The MAE and lifetime were computed by

comparing the ground truth tracking references extracted at tI , with their equivalent

event-based tracking references with the closest timestamp to tI . The time reference

tI corresponds to the timestamp of the grayscale frame provided by the APS.

Three types of experiments were performed by emitting a different number of

laser beams on the canvas; one, two, and four. Each experiment was repeated 10

times with a duration of ∼ 120 s where the laser lights moved in different directions

within the canvas. Figure 2.2 shows an example of a tracking experiment where a

single laser beam moved in the scenario. Table 2.2 shows the results obtained at

each experiment. The proposed event-based algorithm reported an average feature

lifetime of 95.21 %. Tracking errors occurred when the distance between two or more

reference features was < 5 px. The proposed method performs data association by

evaluating the occurrence of new features in a neighborhood window AT centered

at each tracker location. When this spatial condition was satisfied by several tracks,

only the oldest was updated. Afterward, the newest track was either updated after

the feature overlapping or deleted by τT . Moreover, the tracking MAE was 1.86 px

among all experiments similar to the error reported by the method in [72]. Finally,
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Figure 2.2: Validation results of an experiment where a laser beam moves (red) in
different directions on the canvas while being successfully tracked by the proposed
algorithm (blue). The black dot represents the initial location of the laser beam, while
the green dot corresponds to the location after 7 s.

the proposed tracker reported an average event processing time of 1.1 µs, close to the

temporal resolution of the DAVIS346 event camera (i.e., 1 µs).

No. of Laser beams Lifetime MAE (px)

1 99 % 1.87
2 94 % 1.57
4 90 % 2.43

Table 2.2: Experimental results of tracking laser beams. Each row describes an
experiment with a fixed number of laser moving in the camera field of view.

In the second set of experiments, the proposed algorithm was validated with some

sequences of the datasets in [64] and [93]. Ground truth features were extracted

using the state-the-of-art Harris corner detector [75]. Similarly, event corner features

were obtained using *eHarris corner detector with remarkable accuracy and False

Positive Rate. *eHarris was implemented using the event-based version of the Harris

algorithm in [73] combined with the filter in [72]. The synthetic sequences of the

dataset in [64] describe perception data collected during the execution of bioinspired
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landing trajectories. These sequences are relevant for the development of perception

algorithms for bioinspired aerial robots. Moreover, the dataset in [93] describes real

and synthetic event data recorded in challenging conditions and complex scenarios.

The dataset includes grayscale frames with motion blur due to the strong motion

described by the camera. The experiments performed with this dataset used only the

first 8 s of each set of sequences to avoid ground truth corner detection and tracking

errors due to motion blur on the intensity frames. A total of six experiments were

performed using three sequences from each dataset; shapes translation, shapes rotation,

and boxes translation from [93], and warehouse 1, warehouse 2, and refinery 3 from

[64].

Table 2.3 shows the Mean Absolute Error (MAE) and lifetime results obtained

with the samples of each dataset. The proposed method reported remarkable results

with the sequences of the synthetic dataset (i.e., rows 2 to 4 of Table 2.3). The

most challenging synthetic dataset was refinery 3, where the robot described faster

motions in a more complex environment. Conversely, the method’s performance

considerably decreased with two sequences of the dataset [93] (i.e., rows 6 and 7 of

Table 2.3). The shapes rotation dataset includes sequences with strong variations in the

camera orientation. The rotational motion hindered the performance of the algorithm.

However, it reported acceptable results using only a spatial-temporal approach for

data association. Furthermore, the boxes translation dataset includes sequences with

several nearby corners in the image plane, which hindered the algorithm’s performance

due to the size of the window AT .

Dataset Lifetime MAE (px)

warehouse 1 94 % 1.92
warehouse 2 95 % 1.98
refinery 3 88 % 2.25

shapes translation 90 % 1.87
shapes rotation 80 % 2.6
boxes translation 61 % 2.02

Table 2.3: Validation of the proposed tracking algorithm in different sequences of two
publicly available event-vision datasets.
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2.4.2 Clustering

This subsection aims at validating the clustering capabilities of the algorithm pre-

sented in Section 2.3.2. Clustering algorithms aim at grouping input samples such that

elements of the same cluster are more similar to each other than samples belonging to

other groups (i.e., clusters). The proposed clustering algorithm gathers events with a

similar spatial-temporal distribution. Thus, it considers the temporal resolution of

each event to add or delete it from a cluster considering the dynamics of the event

generation. Additionally, the proposed method performs event-by-event processing

which exploits the asynchronous nature of events. This evaluation focuses on validating

the capabilities of the proposed algorithm. It does not aim to compare the proposed

algorithm with state-of-the-art clustering methods as they are not designed to consider

the spatial-temporal resolution of events and their asynchronous generation. Despite,

algorithms such as K-means [94], DBSCAN [95], and Gaussian Mixture Model Clus-

tering [96] might be adapted to cluster event data, their implementation, adaptation,

and validation to process single events is out of the scope of this Ph.D. Thesis.

The algorithm validation was divided into two parts. The first evaluation consisted

of validating the method’s capability to adapt to the event generation. The second

validation focused on evaluating the noise rejection capability of the algorithm, which

was estimated by measuring the number of wrong-grouped events per cluster. In both

validations, the proposed algorithm clustered event data describing the contour of

different objects in a static scene. Thus, each cluster should include events triggered

by a single object. This evaluation assumes that objects do not overlap in the image

plane, which is the typical study case for centroid-based clustering algorithms [97].

The first validation aims at evaluating the ability of the clustering algorithm to

adapt to the event generation. Despite the main goal of the proposed algorithm is

to gather events with similar spatial-temporal information, clustering asynchronous

events over time leads to large clusters with redundant information. This affects the

clustering process as the trace of events generated by each object (see Figure 2.5-a)

may overlap with events triggered by other objects in the scene producing wrong

event-cluster associations. Besides, clusters with a high number of elements increase
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the computational load by keeping in memory a large amount of redundant information.

This first validation focuses on evaluating the algorithm’s capability to adapt to the

event generation such that each cluster includes enough samples to describe an object

in the scene. The adaptive forgetting horizon of the proposed algorithm τC allows

discarding event samples to keep a reduced but valid representation of the object

shape. A wrong selection of τC might lead to clustering issues. For instance, setting

a small value of τC causes a fast event discarding when the events in the clusters

do not satisfy the forgetting condition. Conversely, a large value of τC leads to a

redundant representation of the object causing wrong event-cluster associations. In

the context of this evaluation, a redundant representation corresponds to clusters

with several events describing the same edges and corners of the object contour.

Conversely, a non-redundant cluster includes event samples that describe the contour

of the associated object without enlarging its shape with redundant information.

Two metrics were considered in these experiments; the number of valid clusters and

the number of redundant events in each cluster. These metrics were obtained by using

as reference an image mask IM describing an enlarged version of objects’ shapes in the

image plane. The number of redundant events in the cluster was defined by the number

of clustered events lying outside the mask IM . The shapes sequences of the dataset

[93] were used for this validation, where a DAVIS camera moved in a real scenario with

different objects in its FoV. The reference masks were obtained from the grayscale

frames provided by the APS device of the DAVIS camera. Each grayscale frame was

processed to find the contour of each object in the scene. Afterward, contours were

filled with white pixels, and the image was binarized. The binary images represented

the mask IM , where the objects’ shapes were defined by groups of white pixels in the

image. Additionally, the object shapes were enlarged to increase their area in IM .

In these experiments, enlarging the object shapes by 1 px reported a good trade-off

between considering enough events to describe the object and avoiding clusters with

redundant event information. Figure 2.3 shows an example of a grayscale image and

its equivalent mask IM .

The parameter nC (i.e., the size of the buffer BC) intrinsically sets the value of τC

as it corresponds to the timestamp of the oldest event in the buffer. In this validation,



2.4 Experiments 39

(a) (b)

Figure 2.3: (a) A grayscale frame and (b) its equivalent reference Mask IM from the
samples of the shapes 6DoF dataset.

the size of the buffer was varied in the range between 1000 and 20000 to determine the

value that provides the best results. Values of nC lower than 1000 were not considered

for two reasons. First, they led to clusters with an incomplete representation of the

object shape (e.g., missing edges and line segments) Second, by setting nC < 1000

many clusters were fastly deleted by the τC forgetting horizon producing unnecessary

clustering errors with the dataset in [93]. Moreover, only clusters containing more

than 15 events and with an area bigger than 5× 5 px were considered for comparison.

The proposed algorithm might create new clusters from events not associated with

previous groups (i.e., clusters). This led either to clusters describing new objects in

the camera FoV, or clusters of noisy events. The latter were quickly discarded by the

forgetting horizon condition. The timestamps of both grayscale frames and events

were used to synchronize the validation mask IM and the output of the clustering

algorithm.

Figure 2.4 shows the validation results of varying nC in the specified range. The

y-axes of the plot correspond to the average ratio of noise samples (left) and the

mean number of valid clusters obtained in each experiment (right). The ratio of noise

samples was defined by ηn/ηC , where ηn is the number of wrong-grouped events, and

ηC is the number of events in the cluster. The Figure confirms the previous intuitions.
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Large values of nC led to a large ratio of noise samples while decreasing the number

of valid clusters. The best results were obtained with buffer sizes of 1000 and 1500

events while setting nC > 5000 led to a reduction in the number of valid clusters.

In this case, several events triggered by different objects were gathered in a single

cluster. Figures 2.5-b and d show the clustering results using two values of nC , 1500

and 15000. The event images (i.e., Figures 2.5-a and c) correspond to the events

accumulated during the last 25ms. Figure 2.5-d shows that using a large value of nC

produced wrong event-cluster associations and cluster merging. Moreover, setting nC

to 1500 (see Figure 2.5-b) provided a valid trade-off between obtaining a good cluster

representation with a small number of redundant events.

Figure 2.4: Experimental results obtained by varying the value of nC in the range
[1000, 20000] using the sequences of the shapes 6DoF dataset.

(a) (b) (c) (d)

Figure 2.5: (a,c) Event images of accumulated events within a time window of 25ms,
and (b) their cluster representation using the proposed clustering algorithm with nC

= 1500, and (d) nC = 15000.
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The second validation aims at determining the noise rejection capabilities of the

algorithm using additional datasets. Following the previous experimental results (e.g.,

setting nC = 1500), the clustering algorithm was validated in the shapes translation

and shapes rotation datasets. Table 2.4 depicts the mean ratio of wrong classified

samples obtained with each dataset. The proposed algorithm reported an average noise

ratio of 1.73 %, which was mainly due to noisy events or events triggered by other small

objects in the scene. The worst results were obtained with the shapes rotation dataset.

In this dataset, the camera performed strong rotational motions, which increased

the number of wrong-cluster samples. Figure 2.6 shows several events grouped in

different clusters and their representation after being rendered over the mask IM .

Event samples out of the reference mask correspond to noise samples.

(a) (b)

Figure 2.6: (a) Clusters of events obtained by using the proposed method, and (b)
their equivalent representation after being rendered over the mask IM . The color of
each event sample (i.e., colored pixels) indicates the cluster identifier.

2.4.3 APM and time filter

This Section provides a discussion about the advantages and disadvantages of using

the APM and Time Filter methods (see Sections 2.3.3 and 2.3.4) for the problem

of detecting moving objects with event data. These algorithms intend to provide an

initial approach to distinguish events triggered by moving objects from those generated
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Dataset Average Noise Ratio Average number of events per cluster

shapes translation 0.9% 197
shapes rotation 2.5 % 191
shapes 6DoF 1.8 % 196

Table 2.4: Average clustering noise ratio obtained by validating the proposed algorithm
with the shapes sequence in [93]. The second column represents the average number
of events per cluster among all the experiments.

from the scene background, assuming that dynamic objects move at a higher speed

than the camera. Under this assumption, fast-moving objects trigger more events

than the static background of the scene. Thus, events generated by moving objects

may be detected by analyzing only their spatial-temporal information.

Despite both algorithms follow a similar approach, their design and implementation

are considerably different. The Time Filter discards events with low spatial occurrence

by comparing the time difference ∆t with the threshold τt. ∆t corresponds to the

difference between the timestamp of the event and the previous time reference at the

global time surface St. The timestamp comparison requires only a few computational

operations and provides low-latency responses. The method relies on the camera

velocity estimations to dynamically adapt τt. The camera velocity can be retrieved

from either additional sensors (e.g., Inertial Measurement Units (IMUs) and navigation

devices) or specialized perception methods [98] [99]. The Time Filter is suitable for

perception systems with low-latency requirements and very limited computational

capacity due to its simplicity and adaptability to the changes in the camera motion.

However, its dependence on camera velocity estimations constrains its use in platforms

with reduced hardware or limited computational resources to run additional perception

methods to estimate the camera velocity. Conversely, the APM evaluates the spatial-

temporal information of events on the map Ω, which describes the regions in the

image plane with a high event occurrence within a variable time window τA. The

forgetting horizon (i.e., τA) allows adapting Ω to the event generation, which mainly

varies due to the camera motion and the scene dynamics. Ω is updated with each

incoming event. The update operation modifies the values of Ω in an l × l region
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around the event location. Despite the number of computational operations to update

Ω is limited by l, a large number of input events considerably increases the number

of operations to update the APM. Empirical results (see Chapter 5) show that the

method performs well in applications where the camera triggers less than 0.1Mevent/s

using l=10. However, adaptively sampling event approaches such as the method

proposed in Section 5.3.2 and the framework in [100] may be used to reduce the

number of events to process while keeping the method’s performance (see Chapter

5). The APM is suitable in applications where no additional sensing information is

available to distinguish events triggered by dynamic objects moving faster than the

camera. However, it requires additional pre-sampling approaches when the number of

events to process is higher than 0.1Mevent/s.

The previous considerations indicate that the method selection to distinguish

events triggered by dynamic objects depends on the operational requirements (e.g.,

the number of triggered events per second) and the availability of additional sensing

information. Chapter 4 and Chapter 5 describe two different perception methods

related to the problem of detecting moving objects in different robotic applications.

Chapter 4 describes a sense-and-avoid perception system that uses the Time Filter

to detect dynamic objects while running on board a large-scale flapping-wing robot.

Moreover, Chapter 5 presents a surveillance system that integrates the APM algorithm

in a perception pipeline to detect intruders in unstructured scenarios. Finally, it is

worth mentioning that the proposed algorithms perform under the assumption that

dynamic objects move with a higher velocity than the camera. However, more complex

approaches (e.g., [101]) are required to provide a general solution to fully address the

problem of detecting moving objects with event cameras.

2.5 Conclusions

Event cameras represent a new paradigm for computer vision and robotic perception.

The event representation limits the direct use of event information with traditional

computer vision methods. Although several approaches have been proposed to con-

vert the event stream into frames, these representations do not fully exploit the
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asynchronous nature of event cameras. Conversely, event-by-event approaches allow

individual event processing offering asynchronous algorithm responses. This Chapter

presents a set of event-by-event algorithms for low-level event-based perception. The

algorithms have been carefully designed to exploit the spatial-temporal information of

event data while providing fast responses.

This Chapter presents four event-by-event processing methods for low-level per-

ception. The Tracking and Clustering algorithms provide event-based solutions for

feature tracking and event clustering. Both algorithms have been validated with

publicly available datasets showing remarkable results. They are integrated in more

complex perception pipelines in Chapter 4 and Chapter 5. Moreover, the APM and

Time Filter methods propose two tools to distinguish events triggered by moving

objects from those triggered by the scene background. Both methods assume that

dynamic objects move with a higher velocity than the camera. Thus, these methods

do not intend to provide a general solution to segment events triggered by dynamic

objects. A motion segmentation algorithm requires more sophisticated methods [101]

[102], which are more computationally expensive than the algorithms described in

this Chapter. Instead, the proposed methods were designed for being integrated with

perception systems that require distinguishing events triggered by moving obstacles

while satisfying some velocity conditions [103] [104] [60] [59].

The future work focuses on exploring additional low-level event perception al-

gorithms such as novel visual descriptors or event-by-event optical flow algorithms.

Although the number of research works on event-vision has considerable growth during

the last decade, the literature reports few event-based low-level methods compared to

the number of high-level perception algorithms for SLAM [105] [106], pattern recog-

nition [107] [108] [109], and video reconstruction [87] [88], among others. Moreover,

future work includes the development of an event-by-event fast and robust method

to segment events triggered by moving objects. Despite some works have reported

valid solutions for moving object event segmentation [101] [102], few methods follow

an event-by-event processing approach [84].



Chapter 3

Event-based Visual Guidance for

Aerial Robots

3.1 Introduction

The interest in performing fast and agile maneuvers with aerial platforms has increased

during the last decades [110]. However, these types of maneuvers entail relevant

challenges for the onboard perception sensors and systems. First, perception methods

should provide fast responses to feed the onboard controllers that guide the robot

along the maneuver. Second, the perception sensors should be robust to the fast

motions of the robot to avoid issues such as motion blur in frame-based cameras.

Third, the onboard perception hardware should satisfy the payload limitations of the

aerial platforms. The challenges mentioned above suggest using novel sensors and

perception methods for the guidance of fast and agile aerial robots.

Vision-based perception together with visual servoing provide a suitable solution

for the guidance of aerial robots. Visual servoing approaches have been adopted

in different guidance solutions [111] [112]. In particular, the Image-Based Visual

Servoing (IBVS) method uses mainly visual information in the image plane to guide

the robot toward a goal configuration without requiring additional pose information.

Although IBVS methods have reported outstanding results for aerial robot guidance

[113] [114], their adaptability for fast maneuvering is prone to the intrinsic limitations

45
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of frame-based cameras (e.g., low dynamic range and motion blur). Event cameras

overcome those limitations by providing a high dynamic range, low power consumption,

and robustness to motion blur, making them a suitable solution for visual servoing.

Nevertheless, the literature lacks approaches exploring the use of event cameras for

visual servoing that precedes the research described in this Ph.D. Thesis.

This Chapter presents an event-based perception scheme for aerial robot visual

guidance. The proposed method is initially validated in a quadrotor platform, and

afterward it is extended to run on board a large-scale ornithopter and validated in

diverse experimental conditions. The design of the perception modules considers the

hardware and software limitations to run onboard platforms with limited computational

capacity. Further, it has a biological inspiration using event-based vision, which

mimics biological retinas by providing asynchronous data information due to changes

in illumination in the scene. Besides, the proposed scheme includes a Time-To-Contact

(TTC) trajectory approach that aims at matching the retinal separation between the

current and the goal visual references. The proposed approach uses visual servoing

and low-level controllers to guide the robot to the goal configuration. Although some

works focus on the design of novel controllers for robot guidance, the development

of these techniques is out of the scope of our objectives as we mainly focus on the

event-based perception method for robot guidance. Additionally, to the best of our

knowledge, this research describes the first visual servoing approach that

integrates event data as visual input. This approach is known in the literature

as Event-Based Visual Servoing (EBVS) [115].

This Chapter describes Contribution 1, and its experimental validation is part

of Contribution 6 of this Ph.D. Thesis. Besides, the research conducted in this

Chapter motivated the development and publication of the works in [57] and [58].

This Chapter is organized as follows. Section 3.2 briefly summarizes the main works

in the topics addressed in the Chapter. The general scheme of the proposed guidance

method is presented in Section 3.3 including event-based perception algorithms together

with a visual servoing approach for robot guidance. Section 3.4 describes the event-

based line detector algorithm. The event-based line tracking algorithm is presented in

Section 3.5. The EBVS approach including a bioinspired time-to-contact trajectory
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algorithm is described in Section 3.6. The experimental results of the validations

performed in a quadrotor and in an ornithopter robot are presented in Section 3.7.

Finally, Section 3.8 describes the conclusions of the Chapter.

3.2 Related work

Visual guidance methods for robotics integrate perception algorithms and control

methods to perform the guidance task. Several methods extract visual information

from the scene to feed a visual servoing approach that guides the robot toward its final

configuration. Visual Servoing strategies are divided into Pose-Based Visual Servoing

(PBVS) and Image-Based Visual Servoing (IBVS). PBVS uses visual information to

compute the robot’s 3D pose and exert the guidance action. This method has been

mainly used in applications using robot manipulators [116] [117]. Moreover, most of

the visual servoing approaches for mobile robots rely on IBSV strategies as they do

not require computing the pose information for robot control. In the context of aerial

robotics, several works have proposed different IBVS strategies. The work in [111]

proposes an IBVS method to control the 3D translational motion and yaw rotation of

a quadrotor that works in both image and Cartesian spaces. Simulation experiments

in both perturbed and nominal conditions were performed to validate the proposed

approach. The method in [112] describes a guidance approach based on IBVS for

a multirotor with a manipulator. It adopts a passive-based controller for velocity

control to guide the robot toward the goal using visual information of the scenario. An

IBVS approach for grasping tasks with micro aerial vehicles is proposed in [113]. The

method considers planar systems for the grasping maneuvers as they predominantly

occurred in the longitudinal plane. The method is validated through simulation and

experiments with a real quadrotor. Despite the previous IBVS works report successful

results for visual guidance, the intrinsic limitations of frame-based cameras such as

the reduced dynamic range, fixed frame rate, and sensitivity to motion blur limit

the application of IBVS methods for fast guidance maneuvering. Event cameras

offer several advantages to deal with the aforementioned issues. Several event-based

perception methods for robotics have been recently reported in the literature [16],
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which suggests event cameras as a suitable perception alternative for the guidance of

fast and agile aerial robots.

In the last few years, several works have proposed event-based methods for robot

perception. However, few of these works have tackled the problem of visual guidance

in robotics. The work in [118] uses a Convolutional Neural Network (CNN) in the

context of a predator/prey scenario. A CNN receives grayscale frames and event

images to detect the robot pray. The CNN outputs the steer commands to guide the

predator robot toward the prey keeping a minimum distance between them. The work

in [115] proposes an Eye-In-Hand visual servoing approach for a robotic manipulator.

The method uses an event camera mounted on the end effector of the robot to detect

corner features of a reference pattern in the scenario. Event-based features feed an

EBVS approach that guides the robot toward a suitable configuration to perform

grasping tasks. The work in [119] presents an autonomous Micro Aerial Vehicle (MAV)

landing approach based on event optical flow from a single event camera. Optical

flow information is used as a reference to guide the robot toward the desired landing

location while decreasing the descendent speed. The work includes a comparison

between some frame-based methods and their event-based solution highlighting that

the proposed solution provides higher accuracy. Authors in [120] propose a robot

pursuit application using two event cameras. A CNN detects the moving object (a

leader robot) and uses its information as a reference to guide the follower robot in the

pursuit task. Recently, the work in [121] uses event images to estimate the position

and yaw orientation of a quadrotor. The proposed scheme intends to stabilize the

quadrotor using visual information while the platform experiences rotor failures during

flight. To the best of our knowledge, the research conducted in this Chapter describes

the first event-based guidance approach validated on an ornithopter robot.

Moreover, detecting and tracking robust visual features is crucial for the success of

the visual guidance task. Lines represent simpler and robust visual features compared

to other features such as corners and edges. Previous works have performed line

detection from event data. The work in [122] tracks lines of a square pattern to

estimate the pose of a flying drone. The method in [123] proposes an event-based

implementation of the Line Segment Detector (LSD) [124]. Line segments are obtained
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by clustering events describing lines in the image plane. Authors in [125] detect lines

by using least-squares on optical flow measurements. The line segments are computed

by estimating the end-point of each detected line. The work in [126] clusters events to

estimate planes containing lines in the 3D spatial-temporal space (i.e., x− y− t). The

method reports remarkable results although it is prone to errors by detecting lines

describing rotational motions. Despite previous approaches provide valid solutions

for line detection, most of them were validated in simple scenarios where the camera

performed either small motions or none. Only the work in [122] performs line detection

with a moving event camera mounted on a quadrotor. In the context of visual guidance,

this Chapter proposes an event-based line detection and a tracking method to provide

fast visual references for robot guidance. These algorithms are specifically designed

to cope with the hardware issues occurring in aerial platforms with very limited

payload (e.g., small multirotors and ornithopters). Besides, the methods perform

event-by-event processing differently from the majority of the event-based algorithms

previously described. The robustness of the methods is evaluated in challenging

scenarios with a variety of illumination conditions. Initially the proposed method is

validated in a multirotor platform performing landing trajectories. Afterward, the

method is adapted to execute on a large-scale ornithopter and validated in several

guidance experiments while the robot performs forward flight.

3.3 General scheme

This section briefly describes the proposed guidance scheme based on event vision. It

assumes a robot mounting an event camera that collects perception information of the

environment. The method guides the robot toward a goal pose defined by a reference

pattern, which is assumed always within the camera’s Field of View (FoV) during the

guidance maneuver. The reference pattern is defined by a group of straight lines in

the image. Line segments are geometric features commonly used for robot perception

[127] [128]. They define several shapes and contours of the scene structure and offer a

richer geometric structure than features such as corners. The pattern is defined offline,
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e.g., knowing its coordinates at the goal location, or selected online while the robot

navigates. Figure 3.1 shows a general diagram of the guidance approach.

The proposed scheme detects and tracks the lines defining the reference pattern

using event information. The event camera triggers events due to the changes in

illumination in the scene. In this case, events are mainly caused by the camera

motion while approaching the goal. The event perception algorithm includes two main

modules: a line detector and a line tracker (see Figure 3.1). The first detects lines

from event images using the line representation on the Hough Space [129], while the

second performs line tracking using a Kalman Filter (KF) combining an event-by-event

processing method and an event image approach.

Figure 3.1: General scheme of the proposed event-based guidance approach. Green
blocks represent the perception modules, while red blocks the control modules. The
TTC trajectory module is optional, and its integration depends on the robot platform.

A visual servoing approach computes the velocity reference for robot guidance. It

is based on an Event-Based Visual Servoing (EBVS in Figure 3.1) that is inspired by

the well-known IBVS. The velocity reference feeds a low-level controller that operates

over the aerial robot actuators. The controller selection varies depending on the robot

platform, in the experiments of this Chapter: a quadcopter and a flapping-wing robot.

Finally, line information is optionally used to provide time-to-contact trajectories.

The TTC trajectory module provides the line references to guide the robot towards the

goal within a specific time using tau-theory. This module is optional, as the controlled

platform needs to be capable of following the trajectory references within the specified

time interval. Otherwise, a fixed-line reference (e.g., the initial configuration of the

pattern) replaces the module, and the EBVS computes the velocity commands to

guide the platform toward the goal.



3.4 Line detection 51

3.4 Line detection

Line detection is performed using the Hough transform [129]. Under this representation,

each straight line with parameters (m, b) is described by the point (θ, ρ) in the Hough

space. The detector receives as input binary event images (denoted as Ie in this

Chapter) which are processed for line extraction. The method samples pixels in Ie to

the Hough space by r = x cos θ + y sin θ, where (x, y) represents the pixel coordinates

and θ is ranged in [0, 2π]. Thus, each sampled pixel leads to multiple line hypotheses

in the Hough space. To reduce computational costs only pixels describing an event in

Ie are considered for sampling. In the work [130], line hypotheses with high occurrence

in the Hough Space correspond to lines, however, many of these hypotheses could

represent the same line depending on the Hough space resolution. The proposed

method clusters high-occurrence hypotheses to avoid multiple line representations

while providing a better approximation to the line parameters.

The set of clustered lines defines the set of detected lines LC = [l1, . . . , lm], each

one with a centroid (ρ, θ). This set is used as input for line tracking in the next Section.

It is worth mentioning that the line detector is compatible with intensity images, as it

receives as input standard frames. However, in this work, the method is fed only with

event images to provide a full event-based method for line detection and tracking.

3.4.1 Event coordinates undistortion

Image undistortion focuses on removing the deformations on the image produced by

the lens distortion. Undistorting algorithms map the coordinates of distorted pixels to

their undistorted equivalent in the image. This procedure is particularly relevant to

detect straight lines as many of them are deformed by lens distortion (i.e., radial and

tangential). The proposed approach undistorts events coordinates (i.e., x) by using

the distortion coefficients D = [k1, k2, k3, k4, k5, k6, p1, p2], and the camera matrix Kc:

Kc =









fx 0 cx

0 fy cy

0 0 1









, (3.1)



52 Event-based Visual Guidance for Aerial Robots

where fx and fy represent the camera focal length in pixels, and cx and cy are the

optical center. Contrary to the frame-based undistortion algorithm in [131], the

proposed method undistorts single events for event-by-event processing. The process

of removing rectilinear lens distortion from event coordinates is described by the

following equations:

x̄′ = [x̄− 2p1x̄ȳ − p2(r
2 + 2x̄2)]α, (3.2)

ȳ′ = [ȳ − p1(r
2 + 2ȳ2)− 2p2x̄ȳ]α, (3.3)

r2 = x̄2 + ȳ2, (3.4)

α =
1 + k4r

2 + k5r
5 + k6r

6

1 + k1r2 + k2r5 + k3r6
, (3.5)

where (x̄, ȳ) are the calibrated coordinates of the event, and (x̄′, ȳ′) are the calibrated

and undistorted event coordinates. Afterward, the undistorted event coordinates (x′, y′)

are mapped to the image plane (x̄′, ȳ′) by using the camera matrix. In summary, the

process of undistorting event coordinates is described by the following steps:

1. Transform the event coordinates x(x, y) to the calibrated coordinates (x̄, ȳ) using

K−1
c , the inverse of the camera matrix.

2. Undistort the calibrated event coordinates by using Eqs. (3.2) and (3.3).

3. Map the calibrated and undistorted event coordinates to the image using Kc.

It is worth mentioning that this approach does not perform an intensity inter-

polation mapping (e.g., bilinear voting) to reduce the computational cost of the

undistortion process. Despite this generates some empty spaces in undistorted event

images, it does not considerably affect the line detector based on the Hough transform.

Furthermore, the undistortion process is performed at initialization only by mapping

all possible event coordinates to their undistorted equivalent x 7→ x′. The mapping

is locally saved and queried each time an incoming event is received from the event

stream.
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3.5 Line tracking

The proposed line tracker uses event information as input to track lines represented in

the Hough space. The set of tracking lines is represented by the list LT = [l1, . . . , ln]

with n the number of lines defining the reference pattern. The line tracker fuses

tracking information from two modules: an event-by-event line tracker and an event

image line tracker. For each tracked line, a KF combines the information from

both modules. The event-by-event tracking estimations are used for KF Prediction

while those from the event image correspond to the KF Update. To avoid statistical

inconsistency, events are subsampled such that each tracker is fed with different events.

The gains γee and γei (s.t. γee + γei = 1) define the amount of input events assigned

to the event-by-event and the event image tracking modules respectively.

3.5.1 Event-by-event line tracker

The event-by-event line tracking approach is inspired by the work in [122], it includes

additional mechanisms to enhance tracking robustness while keeping a similar compu-

tational burden. Each tracking line l is defined by the tuple (θl, ρl, Pl), where (θl, ρl)

defines the line in the Hough Space, and Pl is a set of prototype events with their

coordinates distributed along l in the image plane (Pl = [x1, . . . ,xNP
]). Further, the

coordinates of events in Pl are projected to the Hough space and buffered in Bl keeping

current and last prototypes in the Hesse normal form. Pl and Bl are bounded to NP

and NB to prevent line over-representation.

The line tracker is initialized by the set of lines L0 describing the reference pattern.

Thus at initialization, the set of tracking lines is LT = L0. Then, the set of prototypes

Pl is initialized with input events. Events are assigned to a line li ∈ LT based on

their distance in the Hough space. Each coordinate xe of event e is represented in the

Hough space by (θli , ρe), where ρe = xe cos θli +ye sin θli , and θli is the angle parameter

of line li. If the distance between (θli , ρli) and (θli , ρe) is lower than ηH , e is assigned

to the list of prototypes Pli , and (θli , ρe) to Bli . Besides, when |Pli | > 1, with |·| the

cardinality of the set, e is appended to Pli if the distance between xe and the nearest
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element in Pli is greater than the distance threshold ηC . This additional condition

ensures a better distribution of prototypes by separating them by a distance ηC along

the line. The previous initialization procedure iterates until Pli of each line li contains

Np prototype events. After prototype initialization, the line parameters (θli , ρli) are

updated by the centroid of the prototypes in Bli .

Algorithm 3 summarizes the functioning of the event-by-event line tracker after

the line initialization process. Each new event ej is processed by the event-by-event

line tracker by evaluating the consistency of ej with every line li ∈ LT . The evaluation

follows the procedure to assign prototype samples to Pli . This consistency evaluation

is equivalent to a data association process by assigning new events to the elements

in LT . If event ej is associated with more than one line, it is discarded to avoid line

misalignment. This multiple association case typically occurs with events triggered

at line intersections. If ej is associated with only one li ∈ LT , it is assigned to li.

Afterward, if the distance between xej and the nearest prototype Pli is higher than

ηC , the event is discarded as being considered a spurious sample. Otherwise, Pli and

Bli are updated with ej. That is, the event ej replaces the prototype sample, and

its equivalent in the Hough space updates Bli . Figure 3.2 shows an example of three

lines described by several prototypes and their equivalent representation in the Hough

space.

The previous step updates as well the line parameters (θli , ρli) with the centroid

of the prototypes in Bli . This operation corresponds to the Prediction stage of the

KF. The centroid update requires few operations, adding the contribution of the new

event to the current centroid, and dividing the result by the new size of the buffer Bli .

A similar operation updates (θli , ρli) when removing elements of the buffer. Element

removal occurs either when the buffer size is equal to the bound NB, or when the

timestamp of old samples is lower than τL. The variable forgetting horizon τL follows

the working principle of τF and τB (see Chapter 2). τL corresponds to the timestamp

of the oldest event in the global buffer BL, which is updated with the timestamp of

each analyzed event and it is bounded by nL.
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Algorithm 3: Asynchronous event-by-event line tracking

Input: ej
Output: lk
candidates← 0
for li ∈ LT do

if consistentWithLine(ej,li) then
candidates← candidates+ 1
k ← i ⊲ Index of the last consistent line li.

end

end
if candidates = 1 then

Plk = getPrototypeList(lk)
if validUpdatePrototype(ej, Plk) then

updateSamples(ej, Plk , Blk)
lk ← updateLineComponents(Blk) ⊲ Update (θlk , ρlk).

end

end
else

lk ← ∅
end
τL ← updateGlobalBuffer(ej)
return lk

3.5.2 Event-image line tracker

This module tracks lines in the Hough space using the reference provided by the line

detector of Section 3.4. The algorithm receives as input the set of lines candidates

LC . Each input line lk ∈ LC is associated with the elements of LT . Line association

consists of evaluating the occurrence of line lk in a rectangle area Au around each line

lj ∈ LT in the Hough space. Au is defined by lθ × lρ. If lk is associated with only one

line, it directly updates the line associated with it. If lk is associated with more than

one element of LT , it updates the line closer to lk. Otherwise, lk is discarded. The

proposed line tracker corresponds to the Update stage of the KF by tracking the set

of lines LC provided by the detector described in Section 3.4.

The event-image line tracker can perform either synchronously or asynchronously

depending on the event-image Ie generation. As it is described in Section 3.4, Ie is
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(a) (b)

(c)

Figure 3.2: The event-by-event line tracker in one example: (a) processed input events
(red and blue) and prototype coordinates of each line Pli (big green, orange, and purple
points); (b) tracked lines in the image plane; (c) event Hough space representation
showing the tracked lines (green, orange, and purple).

produced by accumulating events either by time or by a fixed number of events. A

constant time window leads to a synchronous Ie generation while building Ie with a

fixed number of events produces asynchronous event-images. Moreover, it is worth

mentioning that this tracker is compatible with lines detected from intensity images

as it performs line tracking from frames instead of single events.

3.6 Visual servoing

The proposed visual servoing approach focuses on reducing the error between visual

features given by the desired line configurations LD and the current line tracking

estimations LT . Thus, it follows an image-based visual servoing approach instead of a

position-based visual servoing scheme that reduces the position error in the 3D space.
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In general, the control law that computes the error velocity using visual features is

given by:

ν(t) = −KpJ
∗
v ev(t), (3.6)

where Kp is a positive definite diagonal matrix, ev(t) is the error between the desired

and current visual features, and J∗
v is the pseudoinverse of the Jacobian Jv. This

Jacobian describes the variation of the visual features with respect to the camera

velocity, and it is also known as the interaction matrix. The previous notation is general

and applies to different types of visual features. Among the most common visual

features there are feature points p(x, y), lines l(θ, ρ), and ellipses s(x, y, µ1, µ2, µ3).

The structure of the Jacobian in Eq. 3.6 varies depending on the type of feature. For

instance, the Jacobian for line features is described as follows:

J lv =

[

λθs(θ) λθc(θ) ρλθ −ρs(θ) −ρc(θ) −1

λρs(θ) λρc(θ) ρλρ −c(θ)(1 + ρ2) s(θ)(1 + ρ2) 0

]

, (3.7)

where s(·) and c(·) stand for sine and cosine respectively, and λθ and λρ are defined

by:

λθ =
c−1(θ)− Bs(θ)

D
, (3.8)

λρ =
ρ(As(θ) + Bc(θ)) + C

D
, (3.9)

where AX + BY + CZ + D = 0 defines the plane that contains the line l(θ, ρ).

Moreover, the equivalent Jacobian for point features is given by Eq. 3.10:

Jpv =

[

− f
Z

0 x
Z

xy
f

−f2+x2

f
y

0 − f
Z

y
Z

f2+y2

f
−xy

f
−x

]

, (3.10)

where f represents the focal length and Z is the depth to the point. Feature points

p(x, y) can be extracted directly from the image or computed by the intersection of

lines. The latter is preferred in this work as lines provide robust features than points
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in the image. The Jacobians of Eqs. 3.10 and 3.7 are used in the experiments of

Section 3.7 for visual guidance of aerial robots.

The interaction matrix Jv of Eq. 3.6 is computed by concatenating row-wise

Jacobians Jvi of each individual feature. In the case of point and line features, each

visual feature provides a Jacobian Jvi . At least three features are required to obtain

full rank Jv. However, additional features can be used to enhance accuracy and avoid

singularities.

Both J lv and J
p
v Jacobians depend on the depth Z, which can be estimated using

visual information or obtained from external sensors. For instance, in [132], the depth

is computed by deteriorating the optical flow of point features in the image. Conversely,

Time of Flight (ToF) cameras provide an approximation of the depth of each pixel

in the image. A simpler hardware solution is the use of 1D range sensors when the

scene surface is assumed as flat and parallel to the camera. This last option could be

feasible for the landing of Vertical Take-Off and Landing (V-TOL) platforms on flat

surfaces.

3.6.1 Time-to-contact velocity guidance

IBVS and EBVS approaches for robot guidance hold for platforms capable of exerting

the required velocities such that the visual error tends to zero. This is feasible for

quadrotor platforms moving in different directions, and flapping-wing robots under

very specific conditions (i.e., a slow guidance maneuver describing mainly a forward

motion). Despite these visual servoing approaches represent feasible guidance solutions,

they do not intrinsically include a trajectory guidance strategy.

This section proposes a guidance strategy based on tau-theory. A detailed explana-

tion of tau-theory concepts can be found in Chapter 6 including its main assumptions

and mathematical expressions. This section describes only the most relevant aspects

of this theory. It postulates that animals use a set of simple actions and the time τ

to guide the majority of their intended movements. τ represents the time that an

observer would require to make contact with a surface, and corresponds to a first-order

approximation of the TTC for a given gap. The proposed velocity guidance approach
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uses the tracked lines LT to compute the robot velocity commands such that the set

LT follows the desired TTC trajectories in the image plane. The difference between

the desired line configuration LD and the initial tracked lines L0 defines the set of

gaps to close using tau-theory. The adopted intrinsic-Tau guidance closes the main

gap within a defined time (see Eq. 6.2), and zero velocity and acceleration. Assuming

the camera is calibrated (i.e., Kc is available) and the reference pattern geometry

at the goal is known, the desired line features LD are computed by projecting the

reference pattern in the image plane. This step is performed once before starting the

guidance maneuver.

The intrinsic-Tau guidance approach for a single gap is described as follows. For

a given gap χ(t), τ(t) provides a first order approximation of the time-to-contact

computed as τ (t) = χ(t)/χ̇(t) (see Eq. 6.1), where χ̇(t) represents the gap closing rate

at time t. The gap χ(t) is defined always negative and it closes when χ̇(t) is positive.

The previous gap definition is valid for each line feature at time t. Hence, a gap

distance χ(t), its closure velocity rate χ̇(t), and its closure acceleration χ̈(t) are defined

for each feature. The proposed approach focuses on maneuvers starting at a still initial

position (i.e., χ(0) 6= 0, χ̇(0) = χ̈(0) = 0), accelerating, and decelerating to the goal at

time Tg (i.e. χ(Tg) = χ̇(Tg) = χ̈(Tg) = 0). These are typical conditions for landing

and perching maneuvers starting from a hovering state. Following the approach in

[133], the intrinsic-tau guidance is computed as follows:

χ(t) =
χ

T
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g

(
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(3.11)

where kτ defines the trajectory kinematics, and it is typically in the range [0, 0.5) to

ensure gap closure at time Tg (see Section 6.3.1). Moreover, all gaps (i.e., line features)

close together following the concept of tau-coupling [134]. Under this assumption, one
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gap is defined as the main gap (e.g., the gap with the greater initial distance), and the

rest are set as the coupled gaps. The constant κτ defines the relationship between the

closing rates of the main χ gap and the coupled gaps ϑi as τχ = κττϑi . The evolution

of the main gap is described by Eq. 3.11, while the trajectory of each coupled gap is

obtained from Eq. 6.4. Chapter 6 (see Section 6.3.1) includes further details about

the of tau-coupling strategy.

3.7 Experiments

The experimental validation is divided into three parts. First, a preliminary evaluation

of the line tracker is presented. Different validation experiments were performed to

evaluate the tracking error, robustness, and fast response of the proposed event-based

line tracker in diverse challenging conditions. Second, the time-to-contact velocity

guidance approach is validated by performing landing maneuvers with a quadrotor.

The experiments include maneuvers performed at different velocities and heights, and

changing the lighting conditions in the scene showing the advantages of using event

data instead of intensity frames. Finally, the proposed guidance approach is validated

in a large-scale ornithopter in outdoor and indoor scenarios.

The experiments were performed in the installations of the University of Seville

and the testbed of the GRVC Robotics Laboratory. The testbed is equipped with

24 OptiTrack Primex13 cameras that provided millimeter accuracy for robot pose

estimation. The motion capture system was used only to retrieve the pose ground

truth for the experimental validation. The testbed encloses an area of 15 × 21 × 8

m designed to evaluate ornithopters and other aerial robotic platforms. The outdoor

scenario corresponds to the installations of the School of Engineering of the University

of Seville.

3.7.1 Line tracking

First, the accuracy and robustness of the line tracking method were evaluated. The

evaluation also validated the execution rates of the algorithm to confirm its fast
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response for aerial robot guidance. The maximum size of Pl (i.e., NP ) was set to 6,

and nL to 50 for the validation experiments. Besides, γee and γei were set to 0.6 and

0.4 respectively such that a higher number of events are used in the event image. In

the following experiments, the event image Ie was built by accumulating 5K events

as a trade-off between robustness and computational effort.

The accuracy of the line tracking method was evaluated by measuring the error

between the tracked lines and the ground truth. Two different approaches were used

to compute the mean tracking error by considering diverse line representations; pixels

describing a line in the image plane and intersection points that define the lines

to follow. Each approach used a different sensor to retrieve the ground truth line

information; a standard camera providing grayscale frames and a motion capture

system providing 3D pose information of the lines. At each validation, the reference

lines to track were defined by a triangular pattern in the scenario. A DAVIS346

camera moved in front of the reference pattern in different directions while keeping

the reference pattern in the camera FoV. The output from DAVIS (i.e., events from

the Dynamic Vision Sensor (DVS) and frames from the Active Pixel Sensor (APS))

together with the pose estimations from the motion capture system were recorded on

the same computer to guarantee temporal consistency.

In the first approach, the ground truth was obtained from the grayscale frames

provided by the APS sensor of a DAVIS346. A Canny edge detector [135] was used to

extract lines from the intensity frames. The output images were filtered keeping only

line segments that correspond to the lines to follow. The filtered frame with the ground

truth information (i.e., pixels defining the lines) was denoted as Igt. The tracking

error was computed as the mean minimum distance between the pixels defining a

ground truth line in Igt and the prototypes Pl of the equivalent line l ∈ LT . At each

validation experiment, the tracking method was initialized with the ground truth

lines in Igt, and fed only with events during the rest of the experiment. The mean

tracking error after evaluating more than 20000 line tracks was lower than 2.23 px,

which demonstrates the remarkable capabilities of the proposed method.

In the second approach, the ground truth was obtained from a motion capture

system. A set of markers were located at the line intersections of the reference pattern
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to retrieve their 3D pose. In each experiment, the set of 3D points was projected

into the image plane to obtain the ground truth references. The tracking error was

defined by the distance between the projected reference points and their equivalent

line intersection between the elements of LT . A mean tracking error of 2.85 px was

reported after comparing more than 30000 ground truth measurements with their

equivalent tracking estimations. The results depict the remarkable capabilities of the

tracking algorithm and suggest the potential of using line intersection points as feature

references for visual servoing.

The second set of experiments focused on evaluating the robustness of the method

in highly cluttered environments. In these experiments, objects in the scene partially

occluded or overlapped the tracking pattern on the camera FoV. Three experiments

were performed where different objects intersected the reference pattern: flying objects,

office background, and the testbed safety net. For each experiment, the lifetime of

the tracking lines was measured. A lifetime with a 100 % ratio means that the line

was successfully tracked during the entire experiment. Table 3.1 shows the duration

of the experiment and the lifetime of the lines tracked. In all experiments, the

lines were robustly tracked by the proposed method. Figure 3.3 shows an example

of each experiment. The first row shows the APS frames with different objects

intersecting the reference pattern. The second row shows event images where the lines

are successfully tracked using the proposed approach. The last column represents the

most challenging experiment where the net triggered many events, which hindered the

tracking performance.

Table 3.1: Line tracking lifetime in different cluttered environments.

Duration (s) Lifetime (s) %
Flying Objects 15.5 14.82 95.6
Office background 35.06 32.02 91.3
Safety Net 18.48 14.58 78.9

Finally, the execution rates of the line tracking method were evaluated while

running on a Khadas VIM3, a lightweight micro-computer suitable for aerial robot

platforms. Three line detection and tracking approaches were evaluated in this
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Figure 3.3: Undistorted event images along with the tracked lines in situations where
different objects intersected the reference pattern. The intensity frames (without lens
undistortion) on the first row provide a clear representation of the experiment.

validation. Method 1 extracts lines from intensity frames using the classical Hough

transform implementation of OpenCV [136] together with the frame-based line tracker

of Section 3.5.2. In Method 2, lines are detected and tracked from event images using

the algorithms of Sections 3.4 and 3.5.2. Method 3 corresponds to the complete

tracking method (see Section 3.5) fed with lines detected by the line detector of

Section 3.4. The three methods were validated in the same experiment where four

lines represented the reference pattern. Table 3.2 depicts the execution rates of

the described perception methods including the computation of the time-to-contact

trajectories.

Table 3.2: Excution rates of the three evaluated methods.

Method 1 Method 2 Method 3 (Adopted method)
Line extraction 38 Hz. 68 Hz. 348 Hz.
Line extraction +
TTC guidance

37 Hz. 67 Hz. 339 Hz.
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The proposed line detection and tracking method reported an average execution

rate of 348Hz and 339Hz including the TTC module, which were significantly higher

than the rates obtained with Method 1 and Method 2. It is worth mentioning that

the proposed methods reported similar execution rates in the guidance experiments

of the following sections. Finally, an empirical evaluation of the scheme scalability

was performed concluding that the computational cost of running both methods (i.e.

line detection and tracking, and TTC trajectory computation) grows linearly with the

number of lines. Despite tracking several lines (>9) reduces the performance of the

proposed method, it is an atypical case as the reference pattern is easily defined with

4 lines.

3.7.2 Multirotor landing

The proposed time-to-contact guidance scheme was validated using a quadrotor

platform. The experiments consisted of performing different descendent maneuvers

under diverse experimental conditions; changing the duration of the maneuver and

modifying the illumination conditions of the scene. The quadrotor mounted a DJI

Flamewheel F450 frame and a PixRacer autopilot. A DAVIS346 was mounted pointing

downwards and a lightweight Khadas VIM3 board was used to execute the proposed

scheme. Besides, a range sensor pointing downwards was used to estimate the flying

altitude of the quadrotor. Figure 3.4 depicts the robot platform in one experiment.

The method was implemented in C++ and ran together with the UAL abstraction

layer [137] for the control of Unmanned Aerial Vehicles (UAVs). The guidance velocity

commands were handled by the UAL layer that communicates with PX4 velocity-based

low-level controller. The guidance experiments were performed in the GRVC testbed.

The ground truth pose of the robot was obtained from a motion capture system and

was used only for validation purposes.

A total of 180 experiments with descent maneuvers were performed. The experi-

ments included different initial and goal poses, duration Tg, and lighting conditions.

The parameter Tg was used to ensure that the vehicle velocity coped with the low-level

controller safety bounds, 2m s−1 in the selected platform. The camera retreat effect
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Figure 3.4: Aerial platform used in the TTC guidance experiments. The quadrotor is
equipped with a DAVIS346 event camera and a Khadas VIM3 for event processing.

[132] of the IBVS was avoided by limiting the rotations between the initial and goal

robot poses up to π/4. Furthermore, the methods enclosed by the guidance scheme

used the same set of parameters in all experiments. The gains of the visual servoing

controller were set to 0.2 in all the diagonal elements of Kp. Besides, κ was set to 1.0

and kt to 0.5 to ensure that all coupled gaps ϑi close at the same time that the main

gap χ with zero velocity and acceleration.

The gap evolution along a descending maneuver is shown in Figure 3.5, The robot

traveled a distance of 1.5m within a time Tg= 2 s. The maneuver required starting

and finishing with zero velocity, thus the robot reached a maximum velocity close to

the safety bounds (i.e., 2m s−1). The reference pattern included four lines, a total of

8 gaps to close. For simplicity only four gaps are shown in the Figure: a) the main

ρ gap χ(t), b) an example of the θ gap ϑ1(t), and c) and d) the ρ coupled gaps that

reported the best ϑ2(t) and the worst ϑ3(t) gap reduction at Tg. The vertical axis of

the Figures represents the gap distance assuming a unitary focal length. The predicted

gap trajectory obtained with the intrinsic-Tau guidance approach is depicted in red,

while the evolution of the gap is shown in blue. Closing θ gaps only led to rotations

in the yaw angle of the robot. These trajectories can be easily followed with low error

as it is shown in Figure 3.5b). Conversely, ρ gap closure reported lower accuracy as
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it required spatial translations in the X, Y, and Z axes. In general, the main gap

(see Figure 3.5a) was closed more accurately than the coupled gaps. Although not

all ρ gaps might be closed at time Tg, the gaps were consistently reduced within the

time constraints. The mean gap closing error in θ and ρ at Tg were 0.5° and 0.32 px

respectively. The 3D trajectory followed by the quadrotor together with the distance

between the robot and the goal position is shown in Figure 3.6a. The robot followed

a smooth trajectory during the experiment. The quadrotor pose error after Tg was

10.4 cm by analyzing the data from the motion capture system. Similar results were

obtained in all the maneuvers performed.

(a) Main gap. (b) Example θ gap.

(c) Best coupled ρ gap. (d) Worse coupled ρ gap.

Figure 3.5: Evolution of four gaps along the maneuver. (a) main ρ gap, (b) a θ gap,
(c) and (d) the best and worst ρ coupled gaps.

Additional experiments were performed by changing the duration of the maneuver

Tg in the range [2,10]s. A total of 20 maneuvers were performed for each value of

Tg. The same set of parameters was used for all maneuvers including the gains of

the matrix Kp. Figure 3.6b shows the average robot error obtained by performing
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(a) (b)

Figure 3.6: (a-left) The trajectory followed by the quadrotor during the experiment.
(a-right) The robot-goal distance along the maneuver. (b) Average robot spatial error
in reaching the goal pose within different values of Tg.

the same trajectory while varying Tg. The error decreased with large values of Tg. In

contrast, small values of Tg reported higher errors due to the higher velocity required

to exert the trajectory within Tg. The limitations in the responsiveness to the velocity

commands by the controller (PX4 in this case) were more notable with low values of

Tg. This error might be reduced by keeping running the visual servoing method after

the finishing trajectory (i.e. t > Tg) such that the error is reduced during hovering.

Finally, additional experiments were performed for a variety of lighting conditions.

The experiments aimed at validating the performance of the proposed scheme in a

wide range of illumination conditions ([30, 800] lx). The proposed method was capable

of operating under these conditions due to the high dynamic range of the DAVIS346

event camera. Figure 3.7 shows two examples of the maneuvers performed in diverse

lighting conditions. Figures 3.7c and 3.7d show the initial and goal line configurations

for the same trajectories in both lighting conditions. The RGB image on Figure 3.7b

was modified to increase the visibility of the quadrotor in the scene. The variations in

the illumination conditions did not report a considerable impact on the experimental

results, even in pitch-dark scenes where a high number of noise events were triggered

by the event camera.
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(a) Experiment with regular light. (b) Experiment with pitch dark conditions.

(c) Line features at the initial pose. (d) Lines features at the goal configuration.

Figure 3.7: (a,b) examples of the experiments performed by modifying the illumination
conditions of the scene. (c,d) tracked lines describing the reference pattern at the
start and goal configurations.

3.7.3 Ornithopter guidance

In these experiments, the proposed scheme for visual guidance was extended to run in

a flapping-wing robot. The experimental validation of Section 3.7.2 demonstrates the

remarkable capabilities of the proposed method for visual guidance. In this section,

the method is adapted to run on a large-scale ornithopter and validated in experiments

where the robot performs guidance maneuvers while performing forward flight. The
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validation was performed in the E-Flap robot [34], an ornithopter developed and

manufactured by the GRVC Robotics Laboratory. The robot has a total length of

95 cm, a maximal wing span of 1.5m, an empty weight of 510 g, and a maximum

payload of 520 g (reducing maneuverability and flight time). Differently to the E-Flap

version in [34], the robot was modified to mount a DAVIS346 event camera, and a

Khadas VIM3. The sensors and onboard computer were carefully installed to keep the

weight balance of the platform. The additional hardware represented an additional

payload of ∼180 g, which is within the limits of the maximum payload of the robot.

The limitations of the EBVS approach together with the underactuated nature

of E-Flap were considered for the validation experiments. First, the robot flight and

hardware specifications influence the duration of the guidance maneuver. E-Flap

requires a flight speed in the range [3.5, 4]m s−1 to maintain a constant altitude

[34]. Moreover, the camera resolution and its angle of view set a maximum distance

of 10m to detect and track the reference pattern. Following these considerations,

the guidance maneuvers described trajectories of ∼2 s in the performed experiments.

Second, similar to IBVS approaches, EBVS methods require the reference pattern

in the camera FoV for correct functioning, which is particularly challenging with

large-scale ornithopters due to the changes in the camera translation and orientation

produced by the flapping strokes. Considering the ornithopter kinematics, the tail

actuation over the horizontal deflection δe and lateral deflection δr were limited in the

ranges [−30, 10]° and [−20, 20]° to avoid large motions which may lead to losing the

pattern in the camera FoV.

Furthermore, the ornithopter tail deflections were controlled by the method pro-

posed in [58], which was inspired by the high gain feedback control theory [138]. The

visual servoing approach aimed at minimizing the error ν(t) from Eq. 3.6. Different

from the approach used in the multirotor’s experiments, the interaction matrix was

estimated by stacking Jacobians from point features (see Eq. 3.10). Point features

were extracted from line intersections, and their mean depth was estimated as the

distance between the camera and the plane containing all features [58]. It is worth

mentioning that in these experiments the TTC guidance module was not included for

visual guidance. Although the perception algorithm provided line references at high
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rates, the kinematic constraints of the platform and the limitations of the adopted

controller could not guarantee that the robot followed the line trajectories provided by

the TTC within Tg=2 s. Besides, the proposed TTC method assumed specific initial

conditions and robot trajectories finishing with zero velocity and acceleration at Tg,

which is particularly challenging with large-scale ornithopters. Further analysis of the

robot’s kinematics and dynamics is required to design a suitable controller to exert

the TTC trajectories, which is out of the scope of this Ph.D. Thesis.

The proposed method was validated in experiments performed in two different

scenarios: an indoor testbed and an outdoor scenario. The testbed scenario included

a motion capture system to obtain the ground truth position of the robot which was

used only to validate the experimental results. Conversely, the outdoor scene was

selected to evaluate the scheme’s robustness to the uncertainties presented in outdoor

spaces. A total of 20 flights were performed covering different gliding and flapping

maneuvers. Four types of experiments were evaluated: Gliding (indoor); Flapping

descending (indoor); Flapping straight (indoor); and Flapping outdoors. Figure 3.8

shows some visual examples of experiments Flapping descending, Flapping straight,

and Flapping outdoors.

The first part of the experiments focused on evaluating the robustness of the line

tracking method running onboard E-Flap. The module of the linear acceleration

measured by the onboard Inertial Measurement Unit (IMU) during a flight is depicted

in Figure 3.9-top-left, which provides an idea of the vibrations experienced during the

ornithopter flight. Figure 3.9top-right and bottom show the line tracking evolution

during a guidance experiment. The proposed event-based method provided smooth

line tracking despite the vibrations experienced during the flight. Additionally, the

robustness of the line tracking method in outdoor scenarios was validated. Figure 3.10

shows examples of the tracked lines in both indoor and outdoor scenarios where the

lighting conditions changed significantly. In all experiments, the proposed method

provided remarkable robustness to the variations in the illumination conditions of the

environment.

The validation results of the guidance method are summarized in Table 3.3. Two

different metrics are described in the table; the Root Mean Square Error (RMSE)
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(a) Flapping descending. (b) Flapping straight.

(c) Flapping outdoors.

Figure 3.8: Sequences of the different validation experiments performed with the
flapping-wing robot: (a) Flapping descending, (b) Flapping straight, and (c) Flapping
outdoors.

and the Normalized Root mean Square Error (NRMSE), which was normalized by

max(v)−min(v). The latter provided an estimation of the control performance by

comparing the final value of vx and vy with respect to their variation during the

experiment. The experimental results reported an RMSEy of 0.64, an RMSEx of

0.31, an average NRMSEy of 8%, and an average NRMSEx of 21% in the performed

experiments. The obtained error in each velocity component was small, however,

the variation range was larger in vy than in vx. This was due to the dynamics of

the ornithopter and the bounded tail deflections (i.e., δe and δr), which made the

lateral-directional dynamics of the robot less maneuverable than its longitudinal

dynamics. Furthermore, the flapping guidance experiments provided better results

than performing gliding guidance when executing descending maneuvers. In this

case, the robot was more responsive to controlling the altitude generating thrust by

flapping its wings. Moreover, despite the Flapping straight experiments were the most
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Figure 3.9: Top-left) the module of the linear acceleration registered by the onboard
IMU during a guidance experiment. Top-right and bottom) evolution of the line
components (θ, ρ) of three tracked lines along the experiment. The flapping-wing
robot was approximately launched at time 0.7 s.

(a) (b)

Figure 3.10: Examples of lines tracked by the proposed algorithm in different scenarios:
(a) lines tracked in an indoor experiment, and (b) lines tracked during an outdoor
validation test. The grayscale frames were used only for visualization purposes.
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challenging, the reported average goal position error was 0.40m, which is consistent

with guidance methods based on external perception systems [39].

Gliding Flapping descending Flapping straight FlappingOutdoors
Error (m) 0.465 0.221 0.409 −
NRMSEx 0.2482 0.1745 0.3810 0.0320
RMSEx 0.3356 0.4192 0.4291 0.0227
NRMSEy 0.1384 0.0300 0.1209 0.0331
RMSEy 1.1665 0.2648 0.8214 0.3225

Table 3.3: Average performance of the proposed method in the different experiments.

Finally, Figure 3.11-top depicts the camera velocity error ν(t) in the same guidance

experiment of Figure 3.9. The purple area represents the launching stage while the

yellow area corresponds to the guidance maneuver. The camera velocity errors tended

to zero evidencing that the robot approached the goal while following the line tracks.

The computation of ν(t) depends on the feature error and the estimated distance to

the pattern. Besides, Figure 3.11-top shows the smoothed input errors v. During the

initial flight stage, vy was large compared to the magnitude of vx. Hence, the initial

longitudinal deviation was larger and required a more aggressive control action to

converge. Additionally, Figure 3.11-bottom shows the position of the flapping-wing

robot obtained by the motion capture system during the same guidance experiment.

The robot position is represented with continuous lines while the goal position with

dashed lines. The robot performed a smooth maneuver, and it reached the goal

position when the longitudinal position (i.e., Y ) reached the reference. The final

position error was 0.207m.

3.8 Conclusions

This Chapter presents a guidance method for aerial robots based on event vision.

It leverages the asynchronous nature of event data by fusing event-by-event and

event-image processing. Events are used for line detection and tracking providing line

references at high rates (i.e.,>300Hz). The guidance system includes a time-to-contact

trajectory approach based on Tau theory, which allows gap closing trajectories within
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Figure 3.11: Evolution of the velocity error ν(t) (top), and ornithopter position
(bottom) during the guidance maneuver described in Figure 3.9. The purple and
yellow colors correspond to the launching and flapping stages of the experiment. The
robot pose was obtained from the motion capture system.

a specific time Tg. Besides, an EBVS controller guides the aerial robot toward its

goal configuration. The proposed approach has been validated in two different aerial

robots. Initially, the method was validated in a quadrotor and later in one of the
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flapping-wing robots of the ERC GRIFFIN Project. The experimental results show the

capabilities of the proposed scheme for the problem of visual guidance. Furthermore,

the validation results of the line tracking approach demonstrate its low tracking error

and fast response.

The proposed solution demonstrated its suitability for visual guidance on aerial

platforms. However, the current implementation uses simple low-level controllers to

guide the robot toward the goal. Future work should include better control approaches

to perform fast maneuvers with both experimental platforms. Thus, exploiting the fast

response of the event-based perception algorithms together with specialized controllers

for fast and agile maneuvering. Besides novel control approaches and models are

necessary for flapping-wing robots such as the E-Flap ornithopter. Although the

experimental results using ornithopters are promising, additional work is needed to

design and implement more suitable controllers for the problem of visual guidance

with large-scale flapping-wing robots.
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Chapter 4

Event-based Dynamic

Sense-and-Avoid for Ornithopters

4.1 Introduction

Although the interest in flapping-wing robots has led to the development of several

ornithopters [44] [34] [56], few perception systems have been developed to perform

autonomous navigation with these platforms. Obstacle avoidance is a relevant task

for robot navigation as the platforms must be able to evade static and dynamic

obstacles to avoid possible collisions. However, the development of sense-and-avoid

methods for ornithopter robots is mainly limited by their restricted payload to mount

perception sensors and processing boards to fastly detect obstacles and compute

evasive trajectories. Besides, low latency perception methods are required in large-

scale ornithopters as these platforms typically report flight speeds ≥ [3.5 - 16]m s−1

[34] [44]. Unlike traditional obstacle avoidance schemes that assume static obstacles

in the scene, this Chapter addresses the problem of avoiding unexpected dynamic

obstacles with ornithopter robots. The perception scheme is based on event cameras,

which trigger pixel information due to the brightness variations produced by the

camera motion and moving objects in the scene. This feature is particularly useful to

detect dynamic obstacles in the camera’s Field of View (FoV).

77
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This Chapter proposes a dynamic sense-and-avoid scheme for ornithopter robots

using event-based vision. It only processes perception information from an event

camera to quickly detect dynamic obstacles, and modify the trajectory of the robot

to avoid them. The scheme exploits the asynchronous nature of event cameras for

obstacle avoidance by performing event-by-event processing. Moving obstacles are

detected using spatial-temporal information from events triggered by objects that move

with a higher velocity than the camera. The moving obstacle direction in the image

plane is estimated through optical flow, and a reactive avoidance maneuver strategy

rapidly evaluates and prevents collision risk situations. The scheme is validated in

the E-Flap ornithopter [34] in indoor and outdoor experiments. To the best of our

knowledge, this is the first event-based sense-and-avoid scheme designed

and validated in an ornithopter.

This Chapter describes Contribution 2, and its experimental validation and

software implementation are part of Contribution 6 and Contribution 7 of this

Ph.D. Thesis. Besides, the research conducted in this Chapter led to publication [59].

This Chapter is organized as follows. Section 4.2 summarizes the main works

related to the topics addressed in the Chapter. A general description of the dynamic

sense-and-avoid method for flapping-wing robots is presented in Section 4.3. Section

4.4 describes the event-based dynamic object motion estimation pipeline. The proposed

reactive collision evaluation strategy is described in Section 4.5. Section 4.6 presents the

adopted tail controller used to perform evasive maneuvers. The experimental results

are presented in Section 4.7. Finally, Section 4.8 describes the chapter conclusions.

4.2 Related work

Reactive obstacle avoidance methods aim at performing evasive actions as fast as

possible without relying on a globally consistent map of the scene. These sense-and-

avoid approaches are categorized into map-based and map-less obstacle avoidance

[139]. Map-based approaches rely in local maps to compute obstacle-free trajectories

[140]. The local maps are computationally cheap to build compared to those used in

traditional methods [141]. Conversely, map-less approaches detect nearby obstacles and
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directly perform the avoidance action [142]. These methods provide faster responses

by reducing the number of perception algorithms needed for obstacle avoidance, which

make them suitable for platforms with limited processing capacity. For instance, the

work in [143] describes a low latency map-less obstacle avoidance method to avoid

flying obstacles using saliency-based reinforcement learning. Besides, authors in [85]

study the influence of the perception latency in a high-speed sense-and-avoid method

validated on a quadrotor.

During the last decades, the scientific and technological advances in ornithopter

robots have led to the development of a few systems that integrate onboard perception

sensors to provide information for navigation, landing, and perching. In general,

vision-based sensors have been preferred to extract sensing information of the scene.

The work in [144] estimates optical flow onboard a Micro Aerial Flapping-wing robot.

It subsamples the input images and uses a motion detection algorithm to compute

the optical flow. Gliding experiments show remarkable system capabilities while

flapping tests depict the method limitations in flapping conditions. Object appearance

variations and optical flow are used in [145] to perform obstacle avoidance with a

monocular camera. The obstacle detection and avoidance methods run in a base

station due to the payload limitations of the platform. The work in [41] presents a

stereo-vision obstacle avoidance strategy for small-scale ornithopters. The method

proposes the droplet strategy for obstacle avoidance, which consists of defining a

drop-shape obstacle-free area in front of the robot that guarantees a safe path to exert

the avoidance maneuver. Moreover, Contribution 5 of this Ph.D. Thesis provides

a dataset recorded onboard a bird-scale flapping-wing robot. The dataset includes

measurements from a frame-based camera, an event camera, two Inertial Measurement

Units (IMUs), and robot pose ground truth measurements from either a TotalStation

or a motion capture system. The work in [146] presents a mechanical system for image

stabilization onboard an ornithopter robot. It stabilizes the pitch and roll oscillations

during flapping using a gimbal with a payload of 100 g. Despite the system provides a

solution to deal with the mechanical vibrations arising during flight, the additional

hardware weight often limits the autonomy and maneuverability of the robot.
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The advantages of event cameras compared to frame-based sensors have increased

the research interest of the robotic community on these sensors [16]. Event cameras

are particularly useful to detect moving objects as they provide pixel information

of dynamic objects without requiring further processing. Some previous works have

presented event-based pipelines for obstacle avoidance. An initial approach is presented

in [147] to estimate the time-to-contact between the robot and static obstacles in the

scene. The method computes flow fields from events and estimates their Focus Of

Expansion (FOE). Time-to-contact is estimated using the optical flow occurring at

the FOE location. Experimental evaluation is performed onboard a ground robot

moving with a maximum velocity of 1m s−1 in a static indoor scenario. However,

this work assumes static scenes without moving obstacles where almost all triggered

events are generated by the camera motion. Conversely, the method in [142] presents

a dynamic obstacle avoidance method using stereo event cameras on a quadrotor. The

object trajectory is estimated and propagated in time to predict possible collisions.

Authors in [120] describe a dodging system for quadrotors. The proposed pipeline

consists of three Deep Learning (DL) modules for event image deblurring, odometry

estimation, and moving object segmentation. The work in [103] presents a dynamic

obstacle avoidance approach for quadrotors using a monocular and a stereo pair of

event cameras. The method performs rotational motion compensation to distinguish

events triggered by moving objects from those generated from the background. A

potential field approach computes the evasive maneuver which is exerted by the

quadrotor. The work in [104] proposes a similar approach including a depth camera

to compensate for the camera’s translational motion. Motion compensated events

are used to detect moving obstacles using iterative Gaussian fitting. A 3D trajectory

estimator keeps track of the obstacle during flight. However, the work misses an

avoidance approach to evade the detected obstacles. Finally, the authors in [148]

propose a DL framework for static and dynamic obstacle avoidance. The framework

includes a network to compute optical flow from frames and events, and a second

network that uses optical flow and depth measurements to compute time-to-impact

maps. The proposed network integrates measurements from a Laser imaging Detection

and Ranging sensor (LiDARs) to detect static obstacles and event cameras for dynamic
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obstacles. The experimental validation is performed only in a simulated scenario

with a robot agent performing avoidance maneuvers similar to [120]. The majority of

previous works propose event-based obstacle avoidance pipelines for mobile robots,

however, none of them have approached the problem of detecting and evading dynamic

obstacles on a flapping-wing robot.

Table 4.1 summarizes a brief comparison between the proposed approach and the

methods in [142, 120, 103] for dynamic obstacle avoidance with quadrotors. First,

methods [142, 120, 103] require platforms with enough payload to mount the necessary

sensors and computers to run their obstacle avoidance solutions. The methods in

[120] and [103] require a powerful embedded board, a specialized flight computer,

and an autopilot board to run their proposed solutions. Further, the three methods

integrate two event cameras which increases the onboard hardware weight, and the

computational resources to process all the event information on the onboard computer.

Despite, the work in [103] includes a monocular solution for obstacle avoidance, it

requires an additional board to run vision-based state estimation. Conversely, the

proposed scheme integrates only an event camera and runs on a lightweight board

while providing a fast perception response of 250Hz. Second, none of these methods is

designed to run on a platform moving at medium-high velocities. All previous methods

are experimentally validated in quadrotors while hovering (or moving with speeds up

to 1.5m s−1 in [103]), where the majority of events are caused by the motion of the

obstacle which simplifies its detection. Conversely, the proposed scheme is designed to

run in the E-Flap ornithopter which requires a minimum speed of 3.5m s−1 to flight

[34], and triggers additional events due to its flapping motion [42]. Finally, the works

in [120] and [103] perform event motion compensation to segment moving objects.

Both motion compensation approaches use event images obtained by accumulating the

incoming events. This creates delays between event generation and processing, even

when the event image processing times are lower than the event accumulation times

(e.g., [103]). Conversely, the proposed scheme performs event-by-event processing

to exploit the asynchronous nature of event cameras, and enable shorter obstacle

detection times which is relevant for ornithopters flying at medium-high velocities.
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Flight
speeds

Board
Weight

No. of
cameras

CPU/GPU
cores

Processing
type

Accumulation
Type

Processing
Time

[142] ∼0m s−1 ∼49 g 2 4/0 event-by-event Async –.

[120] ∼0m s−1 ∼150 g 2 6/1 event-images 30 ms 12ms/e-images

[103] [0,1.5]m s−1 ∼150 g 1-2 6/1 event-images 10ms 3.56ms/e-images

Ours [2,4]m s−1 28.5 g 1 6/0 event-by-event Async. 4ms/package

Table 4.1: Comparison of our approach with dynamic obstacle avoidance methods
using only event-based perception for quadrotors. e-images is the abbreviation of
event images.

4.3 General scheme

The strict specifications of flapping-wing robots entail several considerations for the

design and implementation of sense-and-avoid schemes for these types of platforms.

First, ornithopters report a low payload capacity which hinders the installation of

multiple sensors, powerful processing boards, and large batteries. Second, simple

perception algorithms are required to run on lightweight boards with limited computing

resources without generating significant delays to perform sense-and-avoid. Third,

flapping-wing robots describe complex dynamics and kinematics. They are non-

holonomic robots that use only a few actuators to control their 6 Degree of Freedom

(DoF) pose. For instance, ornithopters flap their wings to produce lift and thrust to

gain altitude and produce forward motion. The aforementioned considerations define

a set of requirements to design and implement fast perception methods for obstacle

detection and avoidance in ornithopter robots.

The proposed scheme integrates event cameras to detect dynamic objects along

with an obstacle risk evaluation approach to avoid them. Figure 4.1 depicts the

general diagram of the scheme. The Dynamic Obstacle Motion Estimation module

detects dynamic obstacles and estimates their direction of motion in the image plane.

It analyzes the spatial-temporal information of the event stream to filter events

triggered by the background of the scene (i.e., events produced by the camera motion).

Despite some frame-based methods for motion segmentation have been proposed in the

literature [149], event cameras provide asynchronous per pixel information which could

be directly processed to enable fast perception responses for obstacle sense-and-avoid.
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Moreover, event cameras offer high-dynamic range and robustness to motion blur,

which are particularly beneficial for the perception on board ornithopters due to the

strong vibrations and changes of illumination caused by the flapping strokes. Finally,

the low power consumption of event cameras motivates their use in power-constrained

platforms such as flapping-wing robots.

The Reactive collision evaluation strategy module determines possible collisions

with the dynamic obstacle based on the robot and the obstacle geometries. In case

of detecting a possible collision, the Tail Control module changes the flight course

by actuating on the vertical and horizontal tail deflections. This last module satisfies

both the robustness and simplicity requirements for the avoidance task.

Finally, the event processing module (i.e.,Dynamic Obstacle Motion Estimation)

uses ASAP [150] to avoid processing overflow. ASAP synchronizes event packaging

such that events are processed as soon as possible while closing the control loop at

250Hz on the onboard resource-constrained hardware.

Figure 4.1: General diagram of the sense-and-avoid scheme for ornithopter flight.
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4.4 Event-based dynamic obstacle motion estima-

tion

This module analyzes the event stream to detect dynamic objects and estimate their

direction of motion in the image plane. The proposed method performs event-by-

event processing to leverage the asynchronous property of event cameras. As it was

mentioned in previous Chapters, each event is defined by: e = (x, ts, p), where x

corresponds to the pixel coordinates (x, y), ts represents the timestamp of the event,

and the polarity p ∈ {+1,−1}. This module is divided into four submodules each

performing event-by-event processing. Figure 4.2 shows the block diagram of the

module. The event stream is processed by the Time Filter submodule that discards

events triggered by the scene background using as reference the timestamp of current

and previous events produced at the same location. The Corner Detector submodule

extracts corner features from events triggered by moving objects. The Optical Flow

submodule estimates the direction of motion of events triggered by moving objects.

The Clustering submodule clusters flow events and estimates the mean optical flow of

the object. Algorithm 4 briefly describes the main step of the proposed pipeline.

(a) (b) (c) (d)

Time Filter Optical FlowCorner Detector Clustering

Figure 4.2: General block diagram of the Dynamic Object Motion Estimation pipeline:
(a) the Time Filter filters events generated by the background of the scene; (b)
the Corner Detector extracts relevant features of the object; (c) the Optical Flow
submodule computes the direction of motion of events in the image plane; and (d)
the Clustering submodule estimates the mean flow of the dynamic object. The event
images of each submodule are examples of the results obtained by processing events
triggered within a time window of 10ms.
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Algorithm 4: Event-based moving obstacle detection

Input: ek(xk, tsk, p)
Output: (vx, vy)
if tsk − St(xk) < τt then ⊲ Time Filter evaluation

updateCurrentSlice(ek)
if isCorner(ek) then ⊲ Corner Detector

(vx, vy) ←− computeOpticalFlow()
id← updateClusters(ek, vx, vy)
(vx, vy)← getClusterFlow(id)

end

updateClusters(tsk) ⊲ Compute obstacle flow
end

S(ek) = tsk ⊲ Update time reference at xk
d, τc ← sliceRotation(xk)

The problem of distinguishing events triggered by moving objects has been previ-

ously addressed using optimization algorithms [84], motion compensation techniques

[103] [104], and Deep Learning methods [148]. However, these methods either require

powerful computers to run (e.g., including Graphics Processing Units (GPUs)) or

accumulate events to correctly detect dynamic obstacles. Conversely, the proposed

method performs event-by-event processing to provide low latency responses suitable

for the sense-and-avoid task onboard an ornithopter such as E-Flap. The Time Filter

submodule corresponds to the algorithm proposed in Section 2.3.4 of Chapter 2. These

submodule filters events triggered by the background of the scene while keeping those

generated by dynamic obstacles. The filter keeps the timestamp information of past

events in the map St ∈ R
2. At each iteration, the filter compares the timestamp

of the current event with coordinates x with the timestamp of the last event that

occurred at St(x). Afterward, if ∆ts is lower than the time threshold τt, the event is

considered as triggered by a dynamic object. The τt threshold is defined by Eq. 2.4

(see Section 2.3.4). In the current Time Filter implementation, τt is set by using the

body frame velocity, which is either obtained from the onboard inertial navigation

system VectorNav VN-200 or a motion capture system. Figure 4.3-right depicts a set

of events considered as being triggered by a moving object (i.e., pixels in magenta).
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The grayscale frame was captured by the Active Pixel Sensor (APS) sensor of the

DAVIS346 and it is only used to provide a clearer visualization.

(a) (b)

Figure 4.3: An example of the events considered as generated by a dynamic object
using the Time Filter submodule. (a) grayscale frame from the APS sensor of the
DAVIS346; (b) event image rendered by accumulating events in time windows of 10ms
(black pixels). The set of events considered to belong to the moving object is shown
in magenta.

Afterward, the Optical Flow submodule computes the direction of motion of events.

This submodule aims at estimating the relative motion between moving objects and the

camera by computing only the flow of events generated by dynamic objects in the scene.

Figure 4.2-c shows an example of the flow computed by the Optical Flow submodule.

The proposed approach adopts the event-based optical flow method ABMOF [81].

It performs block matching operations between event slices, which are 2D maps of

events accumulated within the time window d. Event slices are similar to event images

by being a 2D representation of the event stream. Unlike other approaches using

event images, ABMOF updates event slices with each incoming event and performs

optical flow estimations following an event-by-event processing approach. Besides,

the accumulation time window d varies depending on the event generation through

time. ABMOF has been adapted for the proposed pipeline to reduce computational

processing for onboard computation on E-Flap. First, the method has been migrated to

C++ and several implementation details of the original approach have been modified

to reduce computational cost. For instance, event slices are updated only with events
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triggered by dynamic objects. This modification reduces the computation load by

analyzing only <32% of the event stream in the experiments of Section 4.7. Moreover,

optical flow is computed only from event corner features. This modification reduces

the computational cost by >25 % by computing only flow from relevant features of the

moving object while providing stable optical flow estimations as described in Section

4.7. Corner features are extracted using the *eFast event Corner Detector in [74],

which reports fast responses with a low False Positive rate [71].

The Clustering method is the last submodule of the pipeline. It clusters event

flow estimations and computes an approximation of the moving object’s optical flow.

This submodule adopts the clustering algorithm presented in Section 2.3.2 of Chapter

2. However, it has been modified to cluster flow from events. It inputs the tuple

fe = (x, ts,v), where v = (vx, vy) is the flow estimation of the event triggered at

location x with timestamp ts. The clustering algorithm associates input events with

previous clusters by evaluating the proximity between the new input event to a random

event contained in each cluster. Each cluster is defined by its centroid x, its average

optical flow v = (vx, vy), and Lc the list of previous tuples fe assigned to the cluster.

After event-cluster association, each new optical flow sample updates v as follows:

v :=
̺

̺+ 1
v +

1

̺+ 1
v, (4.1)

where ̺ is the number of tuples assigned to the cluster (i.e., the cardinality of Lc).

Moreover, the cluster updates as well when the influence of old samples is removed

from v:

v :=
̺

̺− 1
v −

1

̺− 1
v†, (4.2)

where v† represents the flow samples with timestamp lower than τc. The parameter τc

defines the maximum lifetime of flow samples in each cluster. Moreover, only clusters

with event samples covering an area in the image plane greater than the threshold ηf

(5 ×5 px in the experiments of Section 4.7) are considered as dynamic objects. This

condition is necessary to avoid triggering evasive maneuvers due to noisy samples in

the scenario.
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Finally, the proposed pipeline adopts ASAP to prevent processing overflow while

preserving the responsiveness of the scheme. From a low-level software perspective,

ASAP receives the event stream and dynamically adapts the packages of events before

sending them to the dynamic object motion estimation pipeline.

4.5 Reactive collision evaluation strategy

The proposed sense-and-avoid scheme includes a reactive strategy to avoid impacts

with moving obstacles. It estimates possible collisions with detected obstacles based

on the geometry of the robot. The body of the ornithopter is approximated by a

2H × 2W volume and the obstacle is represented by a sphere of radius R′ (see Figure

4.4). R′ is an enlarged volume enclosing the volume of the obstacle and a Security

Distance bu (i.e., R′ = R + bu) that considers the sensing uncertainties. Following

the previous geometries, the minimum angles θ and ψ to evade an obstacle without

modifying the flight trajectory of the robot are given by:

ψ∗(t) = arctan
W + 2R′

Z(t)− 2R′
, (4.3)

θ∗(t) = arctan
H + 2R′

Z(t)− 2R′
, (4.4)

where Z(t) is an approximation of the obstacle depth relative to the camera. For

any set of angles (ψ, θ) such that |ψ(tc)| ≤ |ψ
∗(tc)| and |θ(tc)| ≤ |θ

∗(tc)|, a collision

between the ornithopter and the obstacle volumes occurs at t ≥ tc if the relative

velocity between them is not modified. In this case, an avoidance maneuver is activated

by guiding the flapping-wing robot in an opposite direction from the obstacle trajectory.

The reactive collision evaluation described by Eqs. 4.3 and 4.4 depends of the depth

Z(t), and the obstacle geometry R. The proposed module considers three different

approaches to retrieve the depth information:

1. Obtaining Z(t) from additional sensors such as a depth camera, a pair of stereo

cameras, a laser, or using an external motion capture system.
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Figure 4.4: The ornithopter body is approximated by a 2H × 2W volume and the
obstacle is represented by a sphere of radius R′. The collision evaluation constraints
are defined by ψ∗ and θ∗, which are used to determine possible collisions with the
ornithopter.

2. Computing Z(t) from a vision-based method [151] [53] without hindering the on

board obstacle detection computation.

3. Estimating Z(t) using the geometric information of the obstacle R by Z(t) =

λR/l(t), where λ is the camera focal length, and l(t) is the largest side of the

bounding box enclosing the clustered events. The bounding box of the cluster is

obtained from the event distribution within it.

After retrieving Z(t), the collision evaluation is directly computed from Eqs. 4.3

and 4.4. Moreover, If neither R nor Z(t) are known, the collision cannot be predicted

and any detected obstacle triggers an evasive maneuver. From the previous cases only

the third is experimentally considered in the experimental validation of Section 4.7;
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having prior information on the object geometry. The first case requires additional

perception hardware to extract the obstacle depth information which increases the

hardware weight and the onboard power consumption. Moreover, the current version

of the sense-and-avoid scheme does not include a method to perform event-based

monocular depth estimation. Most of these algorithms are computationally expensive

to run together with the perception methods of the proposed scheme. Instead, it

performs reactive avoidance maneuvers using dynamic obstacle information, which

reduces processing requirements, permitting fast execution.

4.6 Tail control

Performing reactive obstacle avoidance with large-scale ornithopters requires a fast

and robust response to exert rapid aggressive movements. Thus, the control method

must be computationally simple to perform the evasive maneuver before colliding

with the obstacle. Furthermore, the controller must be robust to reduce the possible

uncertainties that may arise from the onboard motion estimation method.

The proposed tail controller sets an evasive maneuver in an opposite direction to

the motion vector of the detected dynamic obstacle (i.e., v). The controller computes

the lateral δr and longitudinal δe tail deflections to perform the evasive maneuver

using as reference the obstacle optical flow v. The adopted controller is described as

follows:

ureact = −(κ0 + κ1‖v‖) ◦ v, (4.5)

where ureact = [δreacte , δreactr ]T describes the control action, κ0 and κ1 are the control

gains, and ◦ denotes the Hadamard product. The control gains κ0 and κ1 are

experimentally tuned to achieve fast control response when an obstacle is detected.

Hence, the proposed control approach assumes that the best avoidance maneuver

is to fly in a direction opposite to the obstacle’s motion. It describes a simple

implementation with low computational requirements which is suitable to run onboard
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ornithopters. Besides, the controller has been designed to consider the tail deflection

boundaries presented in [35] to avoid stall while performing the avoidance maneuver.

4.7 Experiments

The proposed sense-and-avoid scheme was validated using the E-Flap ornithopter.

The main technical specifications of the robot along with a description of the onboard

hardware have been presented in Section 3.7. Differently from the experiments of

Chapter 3, the event camera integrated a low-distortion lens to avoid undistorting

input events reducing the number of perception modules running on the robot. The

event-based obstacle detector method, the evasive maneuver strategy, and the flapping-

wing controller avoidance were implemented in C++ and embedded in a ROS -package.

For all experiments, ASAP was configured to deliver event packages at 250Hz to cope

with the low computational restrictions. Besides, the motion direction of the obstacle

was updated each 4ms to reduce the computational load of communicating all sensing,

perception, and control nodes running in parallel on the robot. Finally, the parameters

of the ornithopter volume were given by W=0.75m and H=0.273m.

The proposed approach was validated in both indoor and outdoor scenarios. The

indoor scenario corresponded to the GRVC Testbed equipped with a motion capture

system to estimate the ornithopter pose. A soccer field of 48 × 54 m describes the

outdoor scenario. In the presented experiments, the parameters of Eq. 2.5 were

set to ωL=1.3 rad s−1, ωH=3 rad s−1, vL=3m s−1, and vH=6 m s−1 after studying the

typical flight kinematics conditions of the ornithopter. Besides, the parameter α was

set to 0.8 as the robot mainly described a forward motion in the sense-and-avoid

experiments. Moreover, as it was mentioned in Chapter 2, the parameter τt defines the

threshold to distinguish events triggered by a dynamic object from those generated

from the background. A small value of τt leads to selective filtering while reducing the

distance at which the obstacles are detected. Conversely, a large value of τt entails

longer distance detection while allowing events triggered by static objects. The τt

selection represents a trade-off between the maximum distance to detect an obstacle,

and filtering events triggered by static objects. In the experiments described in this
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Chapter, τH=25 ms and τL=15 ms were empirically selected to provide a balance

between performing detection at distances of 6m while filtering at least 82% of events

produced by the scene background.

The validation of the proposed sense-and-avoid scheme was divided into two

parts. First, an evaluation of the dynamic obstacle detection and motion estimation

methods is presented in Section 4.7.1. Second, Section 4.7.2 describes the experimental

validation of the sense-and-avoid scheme in experiments performed in indoor and

outdoor scenarios.

4.7.1 Obstacle detection and motion estimation evaluation

This section evaluates the obstacle detection and motion estimation capabilities of the

proposed sense-and-avoid scheme. The first set of experiments focused on evaluating

the obstacle detection accuracy. The experimental setup consisted of launching

obstacles into the FoV of the event camera while the flapping-wing robot performed

forward flight. The testbed scenario was selected for the experiments as it includes a

motion capture system to retrieve the pose information of the robot and the obstacle.

Three types of objects were selected for the evaluation. Each object described a

different shape and size. Figure 4.5 shows the selected objects, a Small Box of size

220 × 200 × 150 mm, a Stuffed Toy of size 400 × 450 × 400 mm, and a Fitball with

a diameter of 750 mm. The obstacle detection was performed from distances (i.e.,

between the camera and the object) ranging from 0.5m to 6m. The minimum distance

was set to 0.5m as at closer distances the body of the obstacles filled a large zone of

the image plane which produced invalid detections. Besides, at larger distances (i.e.,

>6m) the representation of the object in the image plane was quite small to perform

a reliable detection. A total of 45 experiments with each object were performed for

this evaluation.

The detection performance evaluation consisted of comparing the obstacle detection

results with the ground truth extracted from the grayscale frames by the APS sensor

of DAVIS346 camera. A frame representation of the detected obstacle was provided by

rendering its centroid into an event image together with the events accumulated during
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Figure 4.5: Objects of different shapes and sizes selected for the sense-and-avoid
experiments: left) Small Box; center) Stuffed Toy; and right) FitBall.

the last 25ms. The event image generation was synchronized with the frames obtained

from the APS sensor such that both almost correspond to the same time window.

The centroid of the obstacle in the grayscale frames was manually annotated for all

experiments. The pixel distance between both centroids was used as an evaluation

criterion. Each comparison produced one of the following results: (i) True Positives

(TP), which occurred when the distance between both centroids was lower than 10 px,

(ii) False Negatives (FN), which arose either when the detector did not detect the

obstacle while it appeared in the grayscale frame, or when the distance between both

centroids was larger than 10 px, (iii) False Positives (FP), which occurred when the

detector reported a detection while there was no obstacle in the camera FoV, and (iv)

True negatives (TN) corresponding to the cases where there was not an obstacle in

the camera FoV and the detector did not report any detection. Figure 4.6 depicts the

histogram of the distance between the dynamic obstacle and the ground of truth in

the performed experiments. The majority of cases when the distance was greater than

15 px corresponded to False Positives. Setting the distance threshold to 10 px reported

a suitable trade-off between validating the majority of samples as True Positives while

avoiding False Positive samples.
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Figure 4.6: Distance in the image plane between the centroid of the detected obstacle
and the ground truth for all performed experiments.

The aforementioned results were analyzed to compute the Accuracy, Precision, False

Positive Rate (FPR), and True Positive Rate (TPR) metrics to evaluate the obstacle

detection performance. Table 4.2 summarizes the experimental results obtained with

each obstacle. In general, the method reported an Accuracy of 91.7 %. The results

evidenced that the distance affected the detection performance especially when small

objects were launched at distances > 4m. In these cases, the obstacle produced few

events hindering its detection as the majority of the events in St(x) did not satisfy

the τt condition. Moreover, the experiments performed at distances between 2m to

4m reported Accuracy results above 94.7 %. In this range, the size of the objects in

the image was large enough to successfully detect the obstacles. Furthermore, the

experimental results describe a low number of False Positives given the average FPR

of 4.2 %, and an average Precision of 95.1 %. Finally, the average 88.5 % TPR result

depicts that few detections were missed in the validation experiments.

Furthermore, the obstacle detection approach was evaluated in multi-obstacle

experiments where three different objects were launched toward the camera FoV. The

method performance decreased by reporting an average accuracy of 74.2%. This is

due to the increment of False Positive samples when the obstacles overlapped in the

image plane, which hampered the detection of each object. Although this experiment

reported a significant degradation in the method performance, the results are still

satisfactory due to the complexity of detecting several obstacles with a single event

camera.
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1.5− 2.0 m 2.0− 4.0 m 4.0− 6.0 m
Acc Pre TPR FPR Acc Pre TPR FPR Acc Pre TPR FPR

Small Box 0.91 0.95 0.86 0.04 0.97 0.98 0.97 0.03 0.80 0.86 0.75 0.09
Stuffed Toy 0.97 0.95 0.97 0.04 0.93 0.98 0.86 0.02 0.92 0.97 0.85 0.02

Fitball 0.91 0.98 0.82 0.01 0.94 0.94 0.93 0.05 0.92 0.94 0.91 0.08

Table 4.2: Experimental results of the obstacle detection evaluation. The Accuracy,
Precision, TPR, and FPR metrics were computed for each experiment.

Moreover, the motion estimation results were validated by comparing the ground

truth with the mean optical flow of the detected obstacle. The ground truth was

obtained by projecting the obstacle pose in the image plane and computing the

difference between previous and current projections. The ground truth pose of the

obstacles was obtained by the motion capture system providing pose measurements

at 120Hz. In these experiments, the obstacles were thrown from a distance of 8m to

obtain longer trajectories in the image plane. 30 experiments were performed varying

the direction of motion of the obstacles. The direction error corresponded to the

angle difference between the ground truth and the estimated motion direction. The

experimental results are summarized in Figure 4.7. The quartiles of the error are

shown in Figure 4.7-a, while 4.7-b depicts the mean error and standard deviation along

each experiment. Considering all experiments the absolute mean error was 6.97°, the

mean standard deviation was 3.89°, and the maximum instantaneous direction error

was 19.54°. Furthermore, the experimental results reported a Root Mean Square Error

of 11.2°, which was a reasonable error to guide the robot in a collision-free direction. It

is worth mentioning that the Security Distance bu was designed to consider this error

by increasing the obstacle geometry to enhance safety in the avoidance maneuver.

4.7.2 Sense-and-avoid evaluation

This Section describes the experimental validation of the sense-and-avoid scheme.

First, a brief study of the minimum angles to avoid a collision risk situation between

the robot and each of the three obstacles is presented. Eqs. 4.4 and 4.3 define the

relationship between the minimum angles to prevent a collision and the obstacle depth

Z(t). Figure 4.8 shows the evolution of the angles ψ∗ and θ∗ for obstacle depths ranging
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Figure 4.7: Summary of the motion estimation experiments. (a) box plot errors and
(b) mean error and standard deviation. The directional error was defined as the mean
angle difference between the estimated direction of motion and the ground truth.

between 1m and 8m. The curves were computed using the radius that enclosed each

object; Small Box R =0.15m, Stuffed Toy R =0.30m, and Fitball R =0.39m. The

Figure shows that the closer the obstacle is to the robot, the more aggressive the

evasive maneuver should be to evade the incoming obstacle.

The experimental setup consisted of launching the robot in a specific direction to

perform a forward flight while an obstacle was thrown to collide with the ornithopter.

The tests were performed in areas where the ornithopter could fly 10m following a

forward trajectory without any risk of colliding with static objects. The ornithopter

was manually launched by an operator and described forward flights using the controller

in [39]. Conversely, the obstacle was launched in different directions to intercept the

robot using a launcher platform. The motorized launcher threw lightweight obstacles

to enhance the repeatability of the experiments and set their initial velocity of the

obstacle. The launcher was programmed to launch obstacles at velocities between

5 to 8m s−1. The heavy object (i.e., Fitball) was launched by an operator with an
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Figure 4.8: Evolution of ψ∗ and θ∗ by varying the distance between the obstacle and
the robot (Z) for the three objects used in the experiments.

approximated speed of 5m s−1. At each experiment, the proposed system evaluated

possible collision risk situations and activate an evasive maneuver if necessary. Three

sense-and-avoid evaluations were performed.

The first type of experiment consisted of analyzing the system performance when

an Intersection of the Safety Volumes (ISV) occurred. An ISV arises when the

artificial volume enclosing the obstacle and the volume of the robot intersect along

the robot trajectory. To evaluate the ISVs, the robot was considered to follow a

forward trajectory starting at its initial position and reaching a maximum velocity of

3.5m s−1. The experiments were performed indoors where a motion capture system

was used to estimate the robot’s pose. Using the ornithopter and obstacle poses during

the experiments the ISVs were validated. A total of 25 experiments were performed

with each obstacle. Besides, two types of illumination conditions were considered in

these experiments; regular indoor illumination (760 lx), and pitch dark conditions

(<15 lx). The mean avoidance success rate with the three objects is shown in Table

4.3. The scheme reported an average success rate of 90.7%. The best results were
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obtained with the experiments conducted with the FitBall obstacle. Its larger size

allowed earlier obstacle detections to prevent possible collision risk situations. The

experimental results under pitch-dark conditions (dark in Table 4.3) were satisfactory.

Their performance degradation was due to the additional noisy events which hampered

obstacle detection.

Moreover, two possible situations may arise in case the obstacle detection method

fails. First, a False Negative detection neglects the evaluation of a collision risk

situation which may cause a collision between the obstacle and robot. Second, a False

Positive obstacle detection may trigger an unnecessary evasive maneuver modifying

the flight trajectory of the robot. This section analyzes the latter, by validating

the scheme performance when ISV situations did not occur. 20 experiments were

performed for this validation using only the Small Box, as it was the hardest obstacle

to detect due to its size. Besides, its artificial volume was considerably small compared

to the other obstacles reducing the chances to report an ISV. The system did not

report any detection in 85% of the experiments. Thus, only in 15% of the experiments,

the proposed scheme triggered an unnecessary evasive maneuver in flights with no ISV

situations. This result was mainly due to the conservative selection of R′ by enlarging

the obstacle size to reduce impacts on the robot body. Moreover, the False Positive

detection increased under pitch dark conditions due to the higher level of noisy events,

similar to the results obtained in the ISV experiments.

Validation Small Box Stuffed Toy FitBall
Indoors

Optitrack
92% 92% 96%

Indoors Dark 84% 88% 92%
Outdoors

Visual
92% 92% 92%

Outdoors Dark 84% 84% 88%

Table 4.3: The success rate of the proposed dynamic sense-and-avoid scheme in the
performed experiments.

Finally, the third set of experiments corresponded to the validation of the scheme in

outdoor conditions. This validation aims at evaluating the robustness of the method in

different scenarios including natural illumination conditions and scenes. The collision
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risk situations were evaluated visually in these experiments due to the lack of an

external motion capture system. Besides, the mechanical launcher was not used in

outdoor experiments due to the technical difficulties to install and calibrate it in the

external scenario. 25 experiments were performed with each obstacle under light and

dark pitch conditions. These results are reported as well in Table 4.3. The proposed

method reported a success rate of 92.0% with daylight illumination conditions while

reporting acceptable results (i.e., 85.3%) under dark lighting conditions. Figure 4.9

shows a sequence of an outdoor experiment where E-Flap evaded an obstacle under a

collision risk situation.

Figure 4.9: An example of a sense-and-avoid outdoor experiment, which corresponds
to a sequence of images that includes the robot and the obstacle position during the
experimental validation.

4.8 Conclusions

The development of sense-and-avoid schemes for large-scale flapping-wing robots

presents complex challenges for traditional perception systems. The strict payload

of ornithopters limits the installation of powerful computers, multiple sensors, and

large batteries to feed the onboard electronics. Additionally, these platforms require

perception methods capable to provide fast responses at the high velocities reached

by large-scale ornithopters.

This Chapter presents a dynamic sense-and-avoid scheme carefully designed to run

onboard a large-scale ornithopter. To the best of our knowledge, it is the first

event-based obstacle avoidance method for flapping-wing robots. It relays

on the intrinsic property of event cameras to react to the brightness variations produced
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by dynamic obstacles in the scene. The perception method performs event-by-event

processing to leverage the microsecond resolution of event cameras. It allows fast

onboard computation even in low-capacity hardware, providing high-rate estimations,

250Hz in the presented experiments. The proposed scheme has been validated in

indoor and outdoor scenarios with different illumination conditions. It reports an

average success rate of 89.7% avoiding dynamic obstacles of different sizes and shapes.

The main limitation of the proposed approach is the detection of static obstacles in

the scene. It has been designed to detect and avoid dynamic obstacles exploiting the

advantages of event cameras. Future work focuses on integrating the proposed pipeline

with a method to detect and evade static obstacles. The task may be addressed using

either event data or frames from a standard camera. Moreover, future work focuses on

exploring the use of the proposed scheme in other agile robots. The presented work

aims at paving the way toward the development of obstacle avoidance techniques for

large-scale ornithopter robots which have been barely studied in the literature.



Chapter 5

Event-based Intrusion Monitoring

for Multirotors

5.1 Introduction

Multirotors are one of the most used robotic platforms in surveillance and monitoring

applications. They offer several advantages compared to Unmanned Ground Vehicles

(UGV) and other Unmanned Aerial Systems (UAS). First, multirotors can travel

long distances and cover large areas in less time than ground robots. Second, they

integrate several rotors (i.e., more than two lift-generating actuators) which enhance

their maneuverability compared to fixed-wing robots. For instance, multirotors can

hover which is a relevant feature in surveillance applications where the vehicles have to

fly at low velocities to perform exhaustive monitoring. Third, multirotors are relatively

cheaper than other platforms due to the high commercial demand for these platforms

during the last decades. Finally, these platforms are easy to be deployed avoiding

runways to take-off and landing.

The perception information collected onboard multirotors is mainly provided by

frame-based cameras. Despite traditional frame-based cameras are the most adopted

sensors for vision-based intrusion detection and large-area surveillance using UAS,

these sensors experience significant issues in complex, and unstructured scenarios.

Motion blur in highly dynamic or poorly-illuminated scenarios is a typical problem in

101
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frame-based vision. The blur effect hampers intrusion identification and detection by

smearing the representation of intruders on the frame. This issue affects many UAS

vision systems in applications such as fast autonomous navigation [152] or flapping-

wing robot flight [42]. Furthermore, robustness to lighting conditions is a critical issue

in outdoor tasks. It is often addressed by combining images from several onboard

cameras (e.g., visual and infrared cameras), which increases the onboard weight,

power consumption, and computational processing cost while reducing the UAS flight

time. Conversely, the robustness of event cameras to the previous limitations has

motivated their use for aerial robot perception. The integration of event-based vision

on multirotor applications has been studied in different problems such as powerline

tracking [153], autonomous landing [119], and obstacle avoidance [103].

This Chapter presents an event-based intrusion monitoring system for autonomous

surveillance using multirotors. It contains two main perception modules. First, an

event-based algorithm for Intrusion Monitoring (IM ) that detects moving intruders

under different illumination conditions and scene configurations. Second, an auto-

tuning mechanism to adapt the parameters of the IM algorithm for different scene

configurations. Both modules are integrated in an autonomous surveillance architecture

to perform intrusion monitoring rounds using multirotors. The proposed system

behaves similar to a robotic security guard exploiting the advantages of event cameras

such as their high dynamic range to perform surveillance under different lighting

conditions. Moreover, the research enclosed in this chapter intends to set an initial

step toward the development of event-based algorithms for intrusion monitoring in

flapping-wing robots.

This Chapter describes Contribution 3, and its software implementations are

part of Contribution 7 of this Ph.D. Thesis. Furthermore, the research conducted

in this Chapter led to publications [60], [61], and [3].

This Chapter is organized as follows. Section 5.2 presents the main works in

the topics addressed in the Chapter. Section 5.3 describes the intrusion detection

algorithm which is the main perception method of the Chapter. Section 5.4 presents

a scheme for autonomous intrusion monitoring enclosing an auto-tuning approach

to adjust the parameters of the IM algorithm. The experimental validation of the
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IM method and the auto-tuning scheme for surveillance is described in Section 5.5.

Finally, Section 5.6 closes the Chapter with the conclusions of the presented work.

5.2 Related work

In the last decades, the use of multirotors has gained significant relevance in monitoring

and surveillance applications [154]. These platforms offer several advantages such as

long-distance coverage, simple assembly, fast deployment, and easy access to hazardous

monitoring areas. Vision sensors are typically selected for these tasks as they capture

visual information of the scene to detect anomalies in the area of interest. Several

works have been proposed for monitoring and surveillance using multirotors. The

work in [19] presents a system based on histogram equalization and RGB-Local Binary

Pattern (RGB-LBP) operator for monitoring wide areas using small-scale Unmanned

Aerial Vehicles (UAVs). The system detects changes among frames to use its output

to perform a classification of the geometrical variations in the scene. The authors in

[155] propose a multirotor-based surveillance system for parking lot monitoring and

detection. The monitoring system uses Deep Learning (DL) to determine the number

of vacant and occupied spots in a parking lot. In [156] a set of lightweight multirotors

interact with a Wireless Sensor Network to improve border surveillance. The UAVs

mount a camera to capture images and videos of the intruder in the scene to minimize

the rate of false alerts on the network. Although these works offer suitable solutions for

the monitoring task, they are prone to the typical limitations of frame-based cameras

including motion blur, fixed frame rate, and reduced dynamic range, which hinder

the capabilities of the monitoring system. Event cameras have attracted significant

research interest in the robotics and computer vision communities in the last decade

[16] providing a solution to the aforementioned limitations within a new vision-based

perception paradigm.

Several works have integrated event cameras on multirotor platforms for different

applications. The work in [157] presents a method to control the attitude of a

dual-copter platform exploiting the microsecond resolution of event cameras. The

method was extended in [158] where events are input directly to a neuromorphic
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chip and processed by a Spiking Neural Network (SNN) based controller. The work

in [84] compensates the global motion of a Micro Aerial Vehicle (MAV) using the

affine transformation model between two consecutive event images to separate events

triggered by moving objects from those triggered by the background. An event-based

method for powerline tracking running on board a multirotor is presented in [153]. It

analyzes the spatial-temporal space of events to detect planes containing the powerlines.

The method’s performance is validated onboard a quadrotor flying in a scenario with

powerline structures where the robot executes the powerline tracking task. Authors

in [159] explore the use of event cameras for planetary robotics. They propose an

event-based Visual Inertial Odometry (VIO) algorithm to cope with the low light

and high vibration conditions that may occur on the Ingenuity helicopter [160] while

exploring Mars. The method has been tested in a multirotor moving in a testbed

arena emulating a Mars scenario.

The previous works process the event stream by accumulating events to gener-

ate event images. Thus, they do not fully exploit the asynchronous nature of event

cameras. Conversely, event-by-event methods process single events leveraging the asyn-

chronous feature of these sensors and reducing latency depending on their complexity

and software implementation. Several event-by-event methods have been reported

in the literature [73] [74] [71] [77]. However, those works correspond to low-level

processing algorithms and their integration in applications for aerial robot perception

in unstructured, realistic, and complex scenarios is still an under-researched area.

Few works performing event-by-event processing onboard an aerial robot platform

have been reported in the literature. The method in [122] estimates the 6 Degree

of Freedom (DoF) pose of a quadrotor by tracking visual features from the event

stream. Features are tracked asynchronously while the robot performs different flight

maneuvers in an indoor structured scenario. Authors in [57] (see Contribution 1)

present a line tracking method to provide visual references to guide a multirotor

toward its goal configuration. Visual features are defined by lines in the scene which

are asynchronously tracked from the event information. The method has been vali-

dated on a quadrotor platform equipped with an event camera that performs different

landing trajectories. The work in [62] combines event data and frames for multirotor
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teleoperation. The operator is detected using frames with a classical state-of-the-art

people detector and its gestures are determined by processing single events lying

in a bounding box enclosing the operator’s body. The detected gestures determine

the commands to control the UAV motion in the working scenario. This Chapter

presents an auto-tuning scheme for intrusion monitoring with multirotors. It includes

an intrusion monitoring method that performs event-by-event processing to exploit

the microsecond resolution of event cameras. The IM method is carefully designed

to detect moving intruders in realistic scenarios. Besides, the scheme includes an

auto-tuning mechanism to adjust the internal parameters of the IM module to improve

its performance. Both methods are integrated into a complete surveillance system to

perform autonomous monitoring missions with multirotor platforms. Finally, although

developing an intrusion monitoring method for flapping-wing robots is out of the scope

of this Ph.D. Thesis, this Chapter describes an initial study for the future design and

implementation of an IM method for ornithopters.

5.3 Intrusion detection

This Section presents an event-based method for intrusion monitoring in complex and

unstructured scenarios for multirotors. The background of the scenarios is assumed

static, with only intruders moving in the monitoring area. That is the case in several

applications such as night surveillance in factories or perimeter monitoring. The event

camera onboard a moving multirotor triggers events from static objects and moving

intruders which can be distinguished due to their different spatial-temporal properties.

Our approach assumes that intruders originate nearby features in the event stream

(e.g., produced by limbs in human intruders). Thus, intruders trigger groups of feature

events with a globally consistent motion in the scenario.

The block diagram of the proposed method is shown in Figure 5.1. All modules

perform event-by-event processing providing fully asynchronous intrusion monitoring.

Our method adopts event-by-event processing to exploit the asynchronous nature

of event cameras differently from event image methods that accumulate events in

time windows or by collecting a fixed number of events. In the proposed approach,
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the events from a DAVIS346 camera onboard the multirotor platform are triggered

asynchronously and processed by the robot’s onboard computer. The event stream is

encoded using the Address Event Representation (AER) providing pixel information

with a resolution of 1 µs.

Figure 5.1: Block diagram of the intrusion monitoring method.

5.3.1 Intrusion monitoring algorithm

The diagram of Figure 5.1 depicts the four main modules of the Intrusion Monitoring

IM algorithm. The first inputs the event stream and performs event-based corner

detection. Among the corner detection methods available online, our method adopts

*eFast [72], a modified version of the method in [74] with a remarkable trade-off between

accuracy and computational efficiency. Next, the corners detected are separated by

polarity and tracked to remove inconsistent, and noisy features. An example of the

corner tracking output is shown in Figure 5.2-a. Although some asynchronous corner

tracker methods have been proposed [51] [161], the presented algorithm adopts the

feature tracker described in Section 2.3.1, adapted to our problem.

Moreover, the Clustering algorithm presented in Section 2.3.2 is adopted to create

clusters of tracked features and nearby events with consistent motion. It includes
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(a) (b) (c) (d)

Figure 5.2: The output of each module of the IM method rendered in an event image:
(a) corner tracking, (b) APM, (c) event clustering, and (d) intruder detection. These
results were obtained by accumulating input events and the output of each module in
a time window of 25ms.

trade-off mechanisms to enable easy adaptation to different problems providing higher

flexibility than other event-based clustering methods. Assuming a static event camera,

the event clustering module might be sufficient for detecting intruders as events would

be triggered only by the intruder’s motion and the sensor’s intrinsic noise. However,

event cameras onboard multirotors are not static (even while hovering) and trigger

many events produced by the static objects in the scenario. Our approach integrates

the APM module proposed in Section 2.3.3 to capture the regions that trigger more

events in the scene. Hence, the events triggered by moving objects are assigned with

higher attention priority, see Figure 5.2-b, than those generated by static objects in

the scenario. Besides, intruders create groups of event features with consistent motion

in the scenario. The clustering module gathers events with high priority and event

features from the Tracking module to enhance the robustness of the clustering method

by using previous event features as a reference to gather new incoming events to the

cluster. Figure 5.2-c. shows the events clustered by the Clustering module. Finally,

the proposed algorithm tracks relevant clusters (i.e., the intruders) using an adapted

version of the method of Section 2.3.1, which receives as input the centroid of the

cluster. Figure 5.2-d depicts the intruder detected by highlighting it inside a green

square. If a cluster contains less than λ samples or it is not updated in a consistent

manner, it is considered noisy and discarded. Algorithm 5 summarizes the operation

of the intrusion monitoring method. It inputs the event stream with events defined
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by the tuple e(x, ts, p), and outputs the centroid of the intruder detected (i.e., the

centroid of the clusters in CT ). The algorithm returns an empty list (CT = ∅) if no

intrusion is detected and tracked.

Algorithm 5: Asynchronous event-based intrusion monitoring.

Input: e(x, ts, p)
Output: cT
isCorner ←− CornerDetection(e)
if isCorner then

fT ←−FeatureTracking(e) ⊲ Asynchronous feature tracking.

end
if not APMFiltering(e) then

µc ←−Clustering(e,fT ) ⊲ Asynchronous clustering.
CT ←−CentroidTracking(µc) ⊲ Cluster centroid tracking.

end
return CT ⊲ Return tracked centroid.

5.3.2 Selective sampling of events

Event-by-event processing schemes exploit the asynchronous nature of event cameras.

However, in some cases, they are highly computationally demanding since they process

each event individually. This is a particular limitation in applications where additional

events are triggered due to the camera motion or the noise produced in dark scenes.

The IM module was carefully designed to enable its online and onboard execution even

on hardware with low computational capacity. It includes a mechanism to reduce the

computational load for real-time processing by selectively sampling the input events.

The mechanism selects events using the parameter γ ∈ [0, 1] as the percentage of

input events being processed by the APM, and consequently by the clustering module.

γ is set to adjust the computational cost of the method to run in real time on the

computer mounted on the multirotor. However, it is worth mentioning that using the

sampling mechanism might affect the performance of the intrusion monitoring method

by reducing the number of events processed to detect the intruder. The advantages

and disadvantages of using the selective sampling mechanism are discussed in Section

5.5.1.2.
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5.3.3 Parameter dependencies

The methods described in Sections 2.3.1-2.3.3 include parameters that could require

specific adjustments depending on the application. In the context of intrusion monitor-

ing, some of these parameters depend on the structure of the scenario and the distance

to the background, while other parameters represent a trade-off between computational

cost and enhanced accuracy. Table 5.1 summarizes the set of parameters of the Feature

tracking, Clustering, APM, and IM algorithms that directly influence the performance

of the Intrusion Monitoring method. A set of empirical insights about setting each of

the parameters is described below.

Parameter Module Description Typical range
of values

nT Feature
tracking

Size of buffer BT [50, 200]

κc Clustering Number of samples in the cluster for
event-cluster proximity evaluation

[10, 150]

r Clustering Radius in event-cluster proximity
evaluation

[1, 50]

nC Clustering Size of buffer BC [20, 200]
ω APM Sensitivity threshold to pay attention

to a moving object
[0, 1]

l APM Size of the window used in the build-
ing of Ω

[5, 40]

nA APM Size of buffer BA [50, 500]
λ IM Minimum number of events per clus-

ter to consider it an intrusion
[0, 100]

Table 5.1: Parameters of the IM method inherited from the algorithms of Section 2.

The buffer size nT from the Feature Tracking algorithm should be chosen according

to the complexity of the scenario and the camera motion. For instance, simple scenes

(e.g., including few objects) and experiments describing slow camera motions require

small buffers. Under these conditions, a large buffer increase the forgetting time

horizon τT and the lifetime of outdated tracks leading to wrong matches between

new features and old tracks. Conversely, cluttered scenes and experiments with high

camera motions require large buffer values to avoid discarding tracks with a small

forgetting horizon.
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In the Clustering algorithm, the number of samples κc to evaluate event-cluster

proximity with new events represents a trade-off between clustering accuracy and

computational cost. Using many contour samples produces many proximity evaluations

and increases the clustering accuracy. Conversely, using a small value of κc might lead

to either discarding relevant event samples or appending noisy samples to the cluster.

Thus, κc should be chosen considering the computational capabilities of the processing

platform and the minimum required fault association error. Conversely, the buffer size

nC and the radius r in the event-cluster proximity evaluation depend on the scene and

environment complexity. In dense scenes, small values of r are required to prevent

wrong associations with events that belong to near clusters. In sparse scenes, large

values of r are allowed as the majority of events are triggered by the intruder. Under

this assumption, few κc samples are required to increase the algorithm robustness

while reducing the number of proximity evaluations. Further, the size of BC (nC)

should be chosen according to the scene complexity. Simple scenes containing only a

few objects on a uniform background require small buffers as the majority of events

are triggered by the intruder. Conversely, complex scenes require large buffers to

accumulate enough events to describe the intruder. Additionally, the value of the

threshold λ depends on the complexity of the scene and the mission. λ is defined

as the minimum number of events per cluster to consider it an intrusion detection.

Scenarios with short distances between the background and the camera require large

values of λ as the shape of the intruder is described by a large number of events in the

image plane. Otherwise, λ is set to medium-small values as the intruder tends to be

represented by a lower number of events in the image plane. It is worth mentioning

that the position of the camera in the scene is set to maximize the area covered by the

camera Field of View (FoV) while avoiding collisions with the structures in the scene,

e.g., walls, and objects, among others. Thus, it varies depending on the complexity of

the scenario to analyze while performing the intrusion monitoring task.

Finally, three parameters of the APM depend on the complexity of the scene

which impacts the spatial-temporal density of triggered events. These parameters are;

(i) l which represents the size of the window to update Ω, (ii) ω, which determines

the sensitivity threshold in Ω to pay attention to moving objects, and (iii) nA, the
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size of buffer BA. In general, simple scenes can be represented with a low-size buffer

BA. Conversely, complex scenarios require larger buffers to describe the complexity

of the scene. Further, using large buffers in sparse scenarios might result in a poor

representation of the scene dynamics while setting unrealistic large areas of attention.

A similar analysis can be done for parameters ω and l.

The manual tuning of the aforementioned parameters is not straightforward. It

requires a good knowledge of the method functioning and spatial information of

the scene to select a set of parameters suitable for each scenario. However, these

parameters can be adjusted using a tuning method to reduce the time and effort

devoted to this task. Section 5.4.3 presents an automatic tuning method that improves

the intrusion monitoring accuracy while reducing the parameter tuning time.

5.4 Auto-tuning perception scheme for intrusion

monitoring

This Section presents an auto-tuning scheme for autonomous intrusion monitoring

with multirotors. It includes an auto-tuning mechanism to adjust the parameters

of the IM algorithm to enhance the intrusion detection performance. The scheme

integrates the event-based intrusion monitoring method of Section 5.3 which adjusts

its parameters using the proposed auto-tuning mechanism. The proposed scheme is

integrated into an aerial platform that performs periodic or on-demand surveillance

tours programmed by the user. The background of the surveillance scenarios may

vary from one tour to another, however, it is assumed that in the same tour the

scenario remains mostly static. The intrusion monitoring scheme is robust to lighting

conditions being operative in day and night scenes. Besides, it is robust to motion

blur effects, which can be particularly severe in dark lighting conditions.

5.4.1 General scheme

The auto-tuning intrusion monitoring scheme is composed of four main functional

modules. Figure 5.3 shows the block diagram of the proposed scheme. First, the
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Navigation module includes submodules for localization, trajectory planning, and

waypoint following. The localization is performed by fusing IMU (Inertial Measurement

Unit) and RTK-GPS (Real Time Kinematics Global Positioning System) measurements

from the sensors onboard the multirotor platform. The Lazy Theta* planner in [162]

handles the trajectory planning. The architecture of the navigation module is typically

used in different autonomous navigation works [163] [164]. Hence, it is not considered

a contribution of this Ph.D. Thesis, and its detailed description is omitted. Second,

the aerial platform mounts a DAVIS346 camera including a Dynamic Vision Sensor

(DVS), a frame-based Active Pixel Sensor (APS), and an IMU. The frames and events

provided by the DAVIS346 camera are the main perception data used for intrusion

monitoring and auto-tuning. Third, at each surveillance mission, events are processed

online and on board by the Intrusion Monitoring (IM ) module of Section 5.3.1. It

performs event-by-event processing for intrusion detection. Differently to the selective

sampling method proposed in Section 5.3.2 to provide real-time processing, the auto-

tuning scheme uses ASAP [150] package. ASAP synchronizes event packaging and

processing by adjusting the number of events sent to the IM module such that the

provided events are processed as soon as possible while avoiding processing overflow.

Finally, at the parameter tuning stage, the parameters of IM are adjusted for a given

surveillance scenario by the Auto-tuning module. This module implements a method

based on Simulated Annealing (SA) and performs the parameter tuning task offline

(i.e., on an external computer at the Ground Station.) using samples collected with

different scene configurations, and under diverse weather and illuminations. The

Auto-tuning method maximizes the similarity between the results provided by IM and

a ground truth reference obtained by a state-of-art object detector (YOLO V3 [165])

using as input the grayscale frames from the APS.

The proposed system operates similarly to a “robotic security guard”. The aerial

robot performs surveillance tours for online intrusion monitoring, reporting, and

logging. Sequences of waypoints define the robot monitoring trajectory, each waypoint

is selected based on its good visibility and accessibility in the scenario. At each

waypoint, the robot stays in hovering flight while performing intrusion monitoring

using the IM method. Even on hovering flight, events are triggered by the static
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Figure 5.3: Block diagram of the intrusion monitoring scheme. It includes several
modules (e.g., Intrusion Monitoring and Auto-tuning) and submodules such as the
Object Detector, and the Synchronizer.

background due to multirotor motions and vibrations. The IM module includes

specific mechanisms to distinguish between events produced by moving intruders

and those triggered by the static background. If no intrusion is detected at that

waypoint, the robot maintains its trajectory and moves to the next waypoint. In the

case of intrusion detection, it is reported to the Ground Station. Depending on the

surveillance policy adopted by the user, the robot can stay at the waypoint monitoring

the zone with the detected intrusion, or it can continue the surveillance tour to avoid

compromising the rest of the mission. The surveillance missions are performed by

running the perception methods on the computer mounted on the UAV. Besides, the

proposed architecture might support multi-robot coordination through the module

Communications, however, the development and integration of a robot-coordination

module is out of the scope of this Ph.D. Thesis.

Setting the IM parameters (see Section 5.3.3) depends on the object density,

type, and complexity of the scenario, which in large environments can differ from one

surveillance mission to another. To cope with this, the events and images collected

at each tour are offline processed after the tour. The images from the APS sensor

are processed by Object Detector submodule while the events from the DVS sensor
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are processed by IM module. The cases where Object Detector and IM disagree are

submitted to an operator for additional validation. This procedure computes the

performance of the IM module with the current set of parameters. In case of a low

accuracy result by the IM, a new Auto-tuning process is activated updating the tuning

data with the data obtained in the last tour. The parameter tuning stage is performed

offline, on the Ground Station, and autonomously except for the cases in which the

image-based Object Detector and event-based IM disagree.

5.4.2 Intrusion monitoring auto-tuning

A proper parameter adjustment of computer vision and Machine Learning (ML)

algorithms is relevant to improve the methods’ performance. A manual parameter

selection leads to a large and inefficient iterative process. Besides, the complexity of

the tuning process increases with the number of parameters for tuning. This Section

presents a method to adjust the parameters of the IM. It only adjusts parameters that

depend on the surveillance scenario such as the illumination conditions, and scene

structure (i,e., the distribution of objects in the scene). The group of parameters

unrelated to the scenario (e.g., κc, ν, AT , and αc) was set to fixed values in all the

conducted experiments. This reduced the search space of the set of tuning parameters

and the computational costs for parameter tuning. The set of parameters for automatic

tuning is v = [nT , ω, l, nA, r, nC , λ]. The dependency of v to the scene conditions was

previously analyzed in Section 5.3.3. Besides, the search space for each parameter is

shown in Table 5.1 in column typical range of values.

5.4.3 Simulated annealing

The proposed method adopts the metaheuristic Simulated Annealing (SA) algorithm

[166] for parameter auto-tuning. SA was selected as it satisfies the requirements of the

proposed IM problem [167]. First, SA focuses on approximating the global optimum

solution in large search spaces. The search space of the IM problem is considered

as a large search space by including seven parameters varying in different ranges of

values. Second, unlike optimization methods based on gradient descent, SA provides
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robustness to local minima and does not require a known model of the parameters for

being iteratively evaluated (e.g., [168]). This is particularly relevant for tuning the

parameters of the IM module, as the problem does include a model relating the set

of parameters with the IM performance. Furthermore, SA is suitable for problems

that prioritize finding a global optimum approximation in a limited time instead of

finding an accurate optimum in large time periods. This feature becomes relevant

when the system requires re-training of the IM parameters between two consecutive

surveillance tours. Finally, it is worth mentioning that the auto-tuning parameter

scheme is adaptable to other black-box optimization methods, however, the evaluation

of different optimization methods for parameter auto-tuning is out of the scope of this

Ph.D. Thesis.

The SA algorithm uses the current solution v̂ to explore other solutions in the

search space. Initial iterations consist of exploring distant solutions in the search

space with high probability, this may not improve the current solution but allows a

wide exploration of the search space. Conversely, at the last iterations, the algorithm

searches at shorter distances admitting only solutions that improve the current solution.

Besides, a perturbation ∆v is added to the current solution v̂ at each iteration i to

enhance the randomness of the search. Then, the cost function J(·) is evaluated using

v̂ +∆v. The perturbation is sampled using a Gaussian distribution N(0, σΥi), Υi is

the temperature parameter controlling the annealing process, and σ is the perturbation

standard deviation. The SA algorithm admits only solutions improving the validation

of the cost function and prevents local minima by including a probabilistic mechanism

to accept candidate solutions that do not improve the solution. A candidate solution v

is accepted based on the Boltzman distribution as p = e
−∆J

Υi , where ∆J = J(v̂)− J(v)

is the cost difference between the candidate solution v and the current solution v̂.

Large values of Υi lead to p close to 1. Conversely, small values of Υi lead to p close

to 0. In this case, the search space is refined locally by accepting only the candidate

solutions that improve J(v̂). Moreover, the adopted annealing controller is defined by

the geometric model Υi = Υ0η
i, where η ∈ [0.7, 0.96] defines the annealing relation.

This model is preferred over other annealing control schemes due to its remarkable

performance in all experiments performed.
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5.4.4 Parameter auto-tuning

The adopted optimization method aims at maximizing the similarity between the

results of the IM and a ground truth reference. The ground truth is obtained from

an automatic person detector which receives as input grayscale images from the APS

of the DAVIS. The YOLO V3 [165] classifier was used for the person detection task.

YOLO V3 is a fast-response object detector that processes the whole frame instead of

using sliding windows or regions. The scheme of the auto-tuning method is shown

in Figure 5.3. The Object Detector module inputs grayscale frames and outputs

bounding boxes with the detected person. Conversely, the IM inputs the event stream

and returns the centroid of the detected intrusions. The Synchronizer matches both

outputs and compares them to evaluate the performance of IM. This comparison leads

to four possible outcomes: (i) a True Positive (TP), when the object detector and IM

report an intrusion and the distance between their centroids is lower than a threshold

ds; (ii) a False Positive (FP), when IM detects an intrusion which is not reported by

the object detector; (iii) True Negative (TN), when the object detector and the IM

report no intrusion; and (iv) False Negative (FN) which occurs in two cases, when IM

does not report an intrusion while the object detector reports it, or when the distance

between the centroids of both detected intrusions is greater than ds.

Each auto-tuning process is described by a set of episodes, sequences of frames,

and events recorded during multirotor flights in the intrusion monitoring scenario.

The training approach uses episodes instead of single frames and batches of events

as they capture the scene dynamics, and its complexity. The training set contains

enough episodes to cover the range of conditions where IM should operate including

object density and size, lighting conditions, and intruders in the scene, among others.

At each SA iteration, the Synchronizer module estimates the IM performance using

the current parameter configuration v. The accuracy metric is used to compute the

performance of the IM by:

A(v) =
TP (v) + TN(v)

TP (v) + FP (v) + TN(v) + FN(v)
, (5.1)
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where TP (v), TN(v), FN(v), and FP (v) correspond to the number of True Positives,

True Negatives, False Negatives, and False Positives obtained by IM configured with

parameter set v.

Moreover, the Parameter Tuning of Figure 5.3 corresponds to the SA algorithm.

It evaluates the parameter set v using the cost function J(v) = 1− A(v). At each

iteration i, the Object Detector and IM process the tuning data. The Synchronizer

computes the accuracy A(v), which is subsequently used by the Parameter Tuning

module to estimate and update the new parameter set v̂.

5.5 Experiments

This Section describes the experimental validation of the two main components of

the event-based auto-tuning system for intrusion monitoring with multirotors. The

validation experiments were performed in complex and unstructured scenarios with

different illumination conditions, and with one or several intruders. Two multirotor

platforms were used for the validation experiments. The first corresponds to a DJI

Flamewheel F550, see Figure 5.4-a. It was equipped with a DAVIS346 pointing at a

pitch angle of −45° and an INTEL® NUC6i7KYK2 for logging and online computation.

This first platform was used for validating the Intrusion Monitoring method in different

scenarios with challenging illumination conditions and multiple intruders. A second

platform was used to integrate and validate the autonomous system for surveillance

and intrusion monitoring, which integrates the IM and auto-tuning modules. A

large platform was used as the proposed solution requires additional sensors and

extended flight time to perform the monitoring rounds. The second platform, see

Figure 5.4-b, uses a custom-made frame endowed with a PixHawk 1 autopilot running

a PX4 position-based low-level controller, a U-Blox Global Positioning System (GPS)

receiver, and a DAVIS346 event camera mounted at −45° pitch rotation. The platform

integrates the INTEL® NUC6i7KYK2 embedded computer for onboard computation,

and two LiPo batteries of 16 000mA to enlarge the flight time of the aerial platform.

The navigation system was implemented on top of the UAL abstraction layer [137]

developed at the GRVC Robotics Laboratory.
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(a) (b)

Figure 5.4: Multirotor platforms used for the validation experiments. (a) DJI Flame-
wheel F550, and (b) a custom-made Hexarotor equipped with a PixHawk autopilot.
Both platforms equip a DAVIS346 event camera mounted at −45° pitch rotation.

5.5.1 Intrusion monitoring evaluation

These experiments describe the evaluation of the intrusion monitoring method proposed

in Section 5.3.1. The experiments were performed at the laboratories of the School

of Engineering of the University of Seville in two scenes with different background

configurations and challenging illumination conditions. The platform used for the

experiments was the customized DJI Flamewheel F550 which carried the onboard

computer and the event camera. In these experiments, an expert user manually tuned

the parameters described in Section 5.3.3 of the IM algorithm. The same set of

tuned parameters was used for both scenarios in all daylight experiments. However,

parameters nC , nA, and ω required additional tuning to adapt to the experiments

with challenging illumination conditions.

A total of 36 outdoor experiments were performed. In each experiment, a human

intruder moved into the monitoring area and tried to escape from the camera field

of view simulating intrusion situations. First, the performance of the IM module on

daylight conditions was analyzed. Figure 5.5-top-left depicts some monitoring results

in day experiments. The DVS and APS outputs are overlaid for better visualization,

and the intruder tracked is enclosed within a green window. It is worth mentioning

that the IM algorithm processed only the events from DVS sensor in all experiments.

The images from APS sensor were used only as ground truth for the method validation.
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(a) (b)

(c) (d)

Figure 5.5: Results of the intruder monitoring evaluation in four experiments: (a)
daylight, (b) night, (c) multi-object, and (d) illumination changes. The white and
orange points represent the set of clustered events and events corresponding to
feature tracks. These images were obtained by rendering the events, and IM results
accumulated during the last 25ms over the grayscale frames from the APS sensor.

The experimental evaluation was performed by comparing the output of the IM

module with its respective ground truth (i.e., grayscale frame). The output of the

IM algorithm and the ground truth images were temporally synchronized using their

timestamps. Each comparison led to a possible result: False Positive (FP), False

Negative (FN), True Positive (TP), and True Negative (TN). Counting the previous

metrics the Accuracy, Precision, and Recall (also known as True Positive Rate (TPR))

metrics [169] were computed to evaluate the detection success rate and noise rejection

capabilities of the method. These metrics are defined as follows:
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Accuracy =
TP + TN

P +N
, (5.2)

Precision =
TP

TP + FP
, (5.3)

Recall =
TP

TP + FN
(5.4)

The average results of the daylight experiments are summarized in the second

row of Table 5.2. The method reported an Accuracy=0.98, a Precision=0.99, and

a Recall=0.97. The previous results validate the outstanding performance of the

proposed method.

Table 5.2: Intrusion monitoring performance under different experimental conditions.

Experiment Precision Recall Accuracy

Daylight 0.99 0.97 0.98
Night 0.97 0.96 0.97

Multi-track 0.96 0.96 0.95
Dynamic lighting 0.97 0.88 0.91

5.5.1.1 Robustness validation

The robustness of the method was validated in different conditions that typically

occur in surveillance tasks. Three types of conditions were evaluated: i) experiments

performed at night, ii) multi-track-night experiments emulating two intruders in the

scene, and iii) dynamic lighting experiments with strong changes of illumination in

the scenario produced by either moving or flashing lights in the scene.

A summary of the results obtained with each condition is depicted in Figure

5.5. Additionally, Table 5.2 summarizes the average Accuracy, Precision, and Recall

obtained for each condition. As was expected, the night experiments reported a lower

signal-to-noise ratio (i.e., 1-2%) with respect to the daylight results.

Moreover, the multiple intruder tracking results reported some issues when one

intruder moves significantly faster than the other. In this case, the APM assigned high

priority to the intruder that moved considerably faster. This occurred very few times
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as both intruders moved at a similar speed during the majority of the experiments.

Besides, the slight differences in Accuracy and Precision with respect to previous

results were caused by the False Positives produced by noise. Further, the dynamic

lighting experiments represented the most challenging conditions. These experiments

were performed at night to increase the effect of the illumination changes on the scene.

Two spotlight lamps were used to modify the light conditions. They either moved by

mimicking a lighthouse or flashed irregularly. The lighting changes produced noisy

events in the DVS sensor leading to False Positive and False Negatives. The latter

were mainly due to the noise events that occurred around the intruder which affect

the intruder detection. Although these effects reduced the method performance, the

results still reported remarkable robustness given the challenges caused by the strong

changes of illumination in the scene.

5.5.1.2 Real-time processing

The results of Table 5.2 were obtained by setting the selective sampling parameter

γ = 1.0. Thus, all triggered events were processed by the intrusion monitoring method.

This Section evaluates the use of parameter γ to adapt the method for real-time

processing while keeping a good intruder accuracy detection. Figure 5.6 shows the

Accuracy, Precision, and Recall obtained by using different values of γ for each type

of experiment in Table 5.2. Each experiment was repeated 10 times and their results

were averaged to cancel the randomness of the γ sampling. The Figure depicts that

the metrics tend to degrade as the value of γ tends to zero. However, this performance

decay is smooth and small for γ ≥ 0.2. The results validate the use of the selective

sampling approach to reduce the computational cost without significant degradation in

performance. It is worth mentioning that at γ = 0, the clustering module receives only

tracked corners from both moving and static objects which reduces the performance

by increasing the number of False Positives.

In the aforementioned experiments, each event was processed in ∼ 5.72 µs in

the onboard hardware. The camera triggered an average 115 k events per second,

in the daylight, night, and multi-track experiments. Hence, events triggered in one

second were processed in 0.66 s which allowed real-time processing in each experiment.
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(a) (b)

(c)

Figure 5.6: Performance results for all experiments. (a) Accuracy, (b) Precision, and
(c) Recall as a function of γ.

Moreover, the method was capable of keeping remarkable results by processing only

20% of events with the clustering module without reporting significant performance

degradation. A similar result was obtained in the dynamic changes experiments except

when the spotlight lamp pointed toward the event camera. In this situation, the

camera triggered >> 175 k events per second which caused some processing overloads.

However, the γ sampling was effective by discarding events without significant overall

performance degradation.

5.5.2 Auto-tuning surveillance scheme validation

The proposed auto-tuning scheme for intrusion monitoring is evaluated in this Section.

The evaluation was divided into three parts. First, an initial evaluation of the method

under daylight conditions is described in Section 5.5.2.1. Second, the performance of

the method using two different auto-tuning approaches is evaluated in Section 5.5.2.2.
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Third, the adaptability of the scheme to dark scenarios and its robustness to different

illumination conditions is summarized in Section 5.5.2.3.

Unlike the previous experiments, the aerial platform used for this evaluation

consisted of a bigger platform with a higher payload to mount additional sensors and

batteries. The latter are necessary to extend the flight time of the UAV to complete

the surveillance mission. Figure 5.4 shows the platform with its onboard hardware.

The proposed scheme was implemented in C++ using Kinetic version of the Robot

Operating System (ROS). The IM parameter auto-tuning was performed offline in a

ground station computer with an NVIDIA GeForce GTX 1070 Ti Graphics Processing

Unit (GPU) and an AMD Ryzen 5 2600 processor.

The experimental evaluation was conducted in the laboratories of the School

of Engineering of the University of Seville. The surveillance missions consisted of

flight trajectories defined by a set of control points (6 DoF waypoints) where the

multirotor performs the intrusion monitoring task. Each control point corresponds

to a surveillance zone. Each zone was determined by the mission requirements, the

UAV location in the scene was chosen to maximize the monitoring area covered by the

camera FoV while avoiding possible collisions with the structures in the scenario. A

surveillance mission plan is shown in Figure 5.7 where the multirotor travels ∼ 420m

(round trip). The mission includes 15 surveillance zones (control points) with high

variation in object distribution, size, and intrinsic motion. In particular, this mission

includes a high diversity of objects including industrial objects such as containers,

and vegetation such as trees and bushes. The path followed by the robot during the

mission is shown in red, and the camera FoV at each control point is in blue.

Before evaluating the accuracy of the system, prior flights were performed to

collect the necessary data for parameter auto-tuning. The conditions of the scenarios

varied between flights. The datasets included recording with variations in the light

(morning, midday, and night) and weather conditions. At each flight, the robot took

off and started the trajectory. At each control point, the robot hovered while collecting

sequences of 10 s of the DAVIS camera. 50% of the datasets were recorded with people

emulating intrusion situations, while the other 50% without intruders to prevent biases

in the parameter tuning process.
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Figure 5.7: An example of a surveillance mission including scenarios with industrial
objects and nature. The frames describe the 6 DoF control points of the robot in the
monitoring mission. The blue semicircular areas describe the camera field of view at
each control point.

After tuning the parameters, the scheme was evaluated in intrusion monitoring

missions. At each waypoint, the robot performed online and onboard intrusion

monitoring using the tuned set of parameters. The performance of the scheme was

assessed using the metrics of Eqs. 5.2, 5.4, and the False Positive Rate (FPR) defined

as follows:

FPR =
FP

FP + TN
(5.5)
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The submodules of the IM were carefully improved to reduce the computational

cost and enhance fast processing. Moreover, the IM module includes several filtering

steps. In the reported experiments the APM discarded 59% of the events which were

considered as triggered by the background. These events were not analyzed by the

Clustering module that represents ∼70% of the processing time of IM. Additionally,

differently from Section 5.5.1 where a selective sampling method was proposed for

real-time processing, the proposed scheme adopts ASAP, which dynamically adjusts

the number of events processed by IM to avoid computational overflow. ASAP was

configured to adjust the number of events minimum to 20% as it is the limit for the

IM to provide good performance as reported in Section 5.5.1.2. The average event

rate was ∼ 625 k events per second in the performed experiments. The combined

filtering effect of the modules of the IM along with the ASAP integration allowed the

processing hardware to execute the proposed scheme online and onboard.

5.5.2.1 Performance evaluation

This Section describes the performance evaluation of the auto-tuning method by

adjusting the IM parameters for each zone of the surveillance area. The evaluation

was performed in different zones with samples recorded under daylight conditions.

Figure 5.8 shows some snapshots of each zone depicting the type of scenario and the

distribution of objects in the scene. This approach aims at capturing the particularities

of each zone by tuning IM parameters with samples collected at each zone. Thus, the

approach implements a zone-dependent auto-tuned parameter tuning where the robot

changes the IM parameter set from one zone to another.

The SA optimization algorithm was configured with parameters Υ0 = 1.0, η = 0.955,

and σ = 0.35 for all experiments. These parameters were chosen such that Υi tends

to zero in a fixed number of epochs. The number of epochs is crucial in applications

requiring fast deployment such as intrusion monitoring with UAS. Performing many

epochs may require an unreasonable amount of time, whereas performing a few

iterations might cause inaccurate parameter tuning. Using 150 epochs was found as a

suitable trade-off between tuning time and accuracy for all the experiments. For all

experiments, an epoch consisted of processing a 10 s sequence of events and frames.
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Figure 5.8: Snapshots of the 15 surveillance zones (ordered from left to right, and
from top to bottom) of the surveillance mission shown in Figure 5.7.

Each auto-tuning process began with an initial set of parameters, which were

randomly selected within their parameter bounds (see Table 5.1). At each new epoch,

the cost function J(·) was evaluated for the current candidate set of parameters v and

used to compute ∆J . Afterward, a new set of parameters v was selected to perform

further exploration aiming at retrieving configurations that reduce the error of the

cost function. Figure 5.9 depicts the evolution of the values of J(v̂) and J(v) during

the parameter tuning process for zone 7. J(v) represents the cost obtained for each

candidate configuration v along the tuning process. Conversely, J(v̂) describes the

cost obtained using v̂ as prior to estimate the next set of candidates v at each epoch.

The Figure depicts that J(v̂) only decreases when a new set of candidate parameters

report a cost lower than the cost obtained with v̂. Figure 5.10 depicts the evolution

of J(v̂) during the auto-tuning process for each zone of the surveillance area. The

initial cost among the different zones differs due to random parameter initialization.

As it was mentioned in Section 5.4.3, J(v̂) may increase during the first epochs (i.e.,

when Υi is close to 1) to enhance the exploration of the search space and prevent local

minima. Figure 5.10 shows the fast convergence of the tuning method. After running

20 epochs, the cost function went below 0.2 for all zones. Besides, after the tuning
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process was completed (i.e.,150 epochs), the cost function reached a value 0.1 in all

experiments.
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Figure 5.9: Evolution of the cost functions J(v̂) and J(v) for the parameter tuning
process of zone 7. J(v) represents the performance of the solutions analyzed along
the exploration of the search space.
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Figure 5.10: The evolution of J(v̂) for each zone during the tuning process.

After tuning a set of parameters for each zone, more than 30 evaluation missions

were performed under different illumination and weather conditions. Table 5.3 sum-

marizes the average performance obtained at each zone. The tuned scheme reported

an accuracy of 96%. Besides, the FPR and Accuracy results indicate a low number of

false alarms evidencing the high False Positive rejection of the scheme. Further, the

TPR outcomes suggest reasonable missing detection capabilities.
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Zone Accuracy
(%)

Precision
(%)

TPR
(%)

FPR
(%)

1 95 97 87 1
2 98 97 96 1
3 96 90 90 5
4 92 94 85 3
5 96 96 91 2
6 91 92 83 4
7 98 98 97 1
8 98 98 98 1
9 95 92 94 3
10 97 94 97 3
11 95 96 92 2
12 95 96 90 1
13 99 98 98 1
14 98 98 95 1
15 97 98 95 1

Table 5.3: Performance of the method in each zone using the zone-dependent auto-
tuned parameters.

5.5.2.2 Analysis of zone sensitivity

This Section describes the validation of the proposed scheme using two different

tuning approaches. The first uses the same set of parameters v′ for all zones in the

surveillance area. Unlike the approach in Section 5.5.2.1, this approach uses a single

zone-independent parameter set. It uses a single dataset including sequences from all

zones in the mission for tuning v′. Thus, at each epoch, several random sequences

recorded in different zones of the surveillance area are used for parameter tuning.

Second, a parameter averaging approach is validated. Similarly to the zone-independent

approach, it uses a single parameter set for all zones. However, this single parameter

set is computed by averaging the parameters previously tuned for every single zone of

the surveillance area (i.e., the parameters adjusted following the approach in Section

5.5.2.1). The experiments performed with both approaches used the SA parameter

configuration Υ0 = 1.0, η = 0.955, and σ = 0.35.
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Zone-independent Parameter averaging

Scene Accuracy
(%)

Precision
(%)

TPR
(%)

FPR
(%)

Accuracy
(%)

Precision
(%)

TPR
(%)

FPR
(%)

1 91 99 72 1 91 97 74 1
2 95 96 84 1 92 76 95 9
3 80 84 60 7 67 54 62 30
4 86 96 66 2 73 60 83 32
5 88 98 74 1 86 89 73 6
6 87 96 68 2 81 71 81 19
7 96 96 94 2 90 79 98 14
8 97 99 93 1 95 90 97 7
9 93 92 88 4 94 88 97 7
10 92 96 84 3 86 80 89 15
11 88 96 75 2 86 88 74 6
12 93 98 85 1 82 97 60 1
13 99 98 98 1 98 97 97 1
14 93 98 81 1 89 98 70 1
15 92 96 85 1 91 96 81 1

Table 5.4: Evaluation of the IM performance by tuning the set of parameters following
the zone-independent (left), and the parameter set averaging (right) approaches.

The results obtained with both approaches are summarized in Table 5.4. The

second column corresponds to the zone-independent approach, while the third column

describes the results obtained with the parameter averaging approach. The results

obtained with the zone-independent approach reported 5% greater accuracy than

the results obtained with the parameter averaging approach. In general parameter

averaging reported satisfactory results in some zones while poor performance in zones

with higher complexity such as zones 3 and 4. Conversely, the zone-independent

approach reported an average accuracy of 91%, and single-zone accuracy higher than

80% for all zones. Moreover, despite the zone-independent approach reported a

performance lower than the zone-dependent approach, it provided satisfactory results

while involving a simpler tuning process, enhancing scalability to large surveillance

areas. Thus, the zone-independent approach proposes a trade-off solution for large

scenarios when all the zones of a surveillance mission are relatively homogeneous,

whereas the zone-dependent approach provides a suitable parameter solution otherwise.
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5.5.2.3 Performance under low illumination conditions

Previous experimental validation shows the outstanding capabilities of the auto-

tuning scheme in experiments performed under daylight conditions. Conversely, this

Section focuses on analyzing the robustness of the scheme in experiments performed

in pitch-dark conditions typically occurring at night.

Initially, the scheme was validated with the set of zone-independent parameters

tuned with daylight sequences. The performance of the method was validated in

sequences recorded at the same zone under pitch-dark conditions. The experimental

results are summarized in Table 5.5-top. The accuracy values obtained in the different

zones varied in the range from 73% to 84%. These results reported a significantly lower

performance than the performance obtained in daylight experiments. Furthermore,

the TPR reported worse results due to the high number of False Negatives produced

by the increment of noise in the event stream. Additionally, the Precision and FPR

statistics depict good results as these metrics are independent of the number of False

Negatives. Despite this initial approach did not provide satisfactory results, it serves

as a first step towards exploring other solutions for adapting the parameters obtained

with daylight data to the data collected under pitch-dark conditions.

Parameter set Accuracy (%) Precision (%) TPR (%) FPR (%)

Parameters trained with daylight data 82 98 62 2
Parameters trained with dark lighting data 94 94 92 5
Parameters trained with daylight data adapted
to night conditions

92 93 89 5

Table 5.5: Performance of the proposed scheme in pitch dark conditions using parame-
ters tuned with: top) daylight data, center) pitch dark samples, and bottom) daylight
data adapted to dark conditions.

Unlike the previous approach, an intuitive solution is to focus on tuning the

parameters using the data collected on missions performed in pitch-dark conditions.

However, this approach misses the point of the proposed scheme by requiring a manual

annotation of the ground truth as YOLO poorly performs with grayscale images

collected under pitch-dark conditions. Besides, manually annotating the collected
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data requires expertise with event-based data as the collected frames are almost

useless under these conditions. This may imply additional training for the operator

in charge of setting the mission parameters and delays for the monitoring mission.

Conversely, this subsection focuses on adapting the parameters tuned for daylight

conditions to the pitch-dark situation. To understand the problem, the data collected

in both illumination conditions were extensively analyzed. First, in the experiments

performed in all zones, the number of events triggered under dark lighting conditions

was at least twice greater than those generated under daylight conditions. More

than 60% of these events were triggered around the edges of the objects in the scene

while the rest corresponded to noise distributed around the image plane. This noise

phenomenon was previously reported in [84]. Second, an additional analysis between

the parameters tuned in daylight conditions and those tuned with data collected in

pitch-dark conditions was performed. For this analysis, manual ground truth was

extracted directly from event data for the sequences recorded in each zone. The

performance results using manually annotated ground truth with dark illuminated

conditions samples are summarized in the third row of Table 5.5. The main differences

between the tuned parameters occurred in ω, nC , and nA. For instance, the value of

nA (i.e., the size of the APM buffer) was four times greater in dark light conditions

than in the daylight experiments. Moreover, ω (the APM threshold) increased ∼30%

in dark lighting experiments with respect to the values reported in daylight conditions.

This was mainly due to the higher noise level, the APM increased its filtering effect

to enhance the restrictions in order to consider an event as originated by an intruder.

Conversely, nA and nC (i.e., the cluster buffer) reported smaller values in dark lighting

conditions, 50% smaller than in daylight experiments. The higher noise level in dark

lighting experiments caused large clusters including noise. Low values of nC partially

discarded the noise by limiting the size of these clusters.

The bottom part of Table 5.5 depicts the performance obtained by using adapted

parameters to dark lighting conditions. Despite the performance being slightly worse

than the performance obtained with manually annotated ground truth, the parameter

adaptation offers a trade-off solution between keeping high performance in both
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illumination conditions without requiring additional tuning and annotated data for

pitch-dark conditions.

5.6 Conclusions

Event cameras provide several advantages for intrusion monitoring applications with

aerial robots. First, they directly provide pixel information of moving objects. Second,

their high dynamic range allows day and night monitoring operations without requiring

additional hardware or sensor modification. Finally, these sensors are robust to motion

blur, which may arise during aerial robot flight.

This Chapter proposes an event-based auto-tuning scheme for intrusion monitoring

and surveillance with multirotors. The proposed scheme includes two main modules.

First, an event-based method to detect intrusions using only event data. It performs

event-by-event processing to exploit the asynchronous nature of event cameras. The

IM module integrates different event-based algorithms for corner detection, tracking,

and clustering. The second module is an offline semi-supervised mechanism to adjust

the parameters of IM to a particular scenario and problem. It maximizes the similarity

between the output of the IM algorithm and the ground truth given by a state-of-

the-art object detector. Both perception modules were implemented in ROS and

integrated into a fully autonomous architecture for intrusion monitoring. The proposed

architecture was validated in challenging scenarios with a wide variety of illumination

conditions, including day and night experiments.

A limitation of the proposed scheme is that it does not identify the type of intruder

(e.g., a person, a car, and a bike, among others). Intruder identification using event-

based Deep Learning techniques is the object of future research. Indeed, the presented

work served as an inspiration to the development of DL methods for person detection

using event data [170]. Furthermore, a scaling parameter approach is proposed to

deal with the additional challenges arising by performing IM in dark illumination

conditions. Future work focuses on studying event data generation under different

lighting conditions. This study aims at finding a set of general considerations for

adapting the parameters of event-based algorithms (e.g., the proposed IM ) to the



5.6 Conclusions 133

challenges presented in pitch-dark scenarios. Finally, future work aims at providing an

intrusion monitoring solution for flapping-wing robots. The current IM approach may

serve as an inspiration for this work, however, the new method may require specialized

algorithms to distinguish events triggered by moving intruders, particularly when the

robot moves faster than the intruder. Additionally, the method has to deal with the

high vibrations caused by the flapping strokes during flight.
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Chapter 6

Datasets and Simulation

6.1 Introduction

The potential advantages of flapping-wing robots over rotary-wing and fixed-wing

platforms such as low energy consumption and safety in populated environments have

motivated significant Research and Development (R&D) efforts. These technological

advances have resulted in the development of small-scale [56], mid-scale [44], and

large-scale [34] ornithopters. Nonetheless, very few of the reported flapping-wing

platforms include onboard sensing and processing hardware for robot perception due

to their payload and size restrictions. Thus, there is an ample gap in the development

and integration of autonomous perception systems for ornithopter robots.

The development of perception systems for flapping-wing robots requires the study

and analysis of the sensing information produced during the flight of these platforms.

Ornithopters report relevant challenges for robotic perception mainly due to high flight

velocities, and the mechanical vibrations caused by downward and upward flapping

strokes. Besides, ornithopters report a reduced payload which hinders the installation

of perception sensors and mechanical stabilizers to collect perception information on

board these platforms. Despite there are several datasets for aerial robot perception,

none of them included sensing information recorded onboard flapping-wing robots

until the development of this Ph.D. Thesis. Moreover, the aerodynamic complexity

of ornithopters limits the accurate simulation of the platform dynamics and their

135
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effect on the measurements gathered by onboard sensors. Hence, additional efforts

are required to provide real or simulated perception data to pave the way toward the

development of perception systems for ornithopters.

This Chapter aims at reducing the gap between robotic perception and flapping-

wing flight by presenting two tools for ornithopter robot perception, a simulation tool,

and a perception-oriented dataset. The first is a multi-sensor simulator developed to

emulate the sensing information captured during the execution of bioinspired landing

maneuvers. It includes a bioinspired trajectory generator that relies on tau-theory to

compute landing trajectories while the simulator scheme provides measurements from

different perception sensors. The second tool is a perception dataset recorded onboard

a large-scale flapping-wing robot. The dataset includes measurements from an event

camera, a conventional camera, and two Inertial Measurement Units (IMUs), along

with ground truth pose information from a laser tracker or a motion capture system.

This Chapter describesContribution 4 andContribution 5 of this Ph.D. Thesis.

Besides, the experimental validation on the ornithopter and the software tools are

part of Contribution 6 and Contribution 7. Moreover, the work presented in this

Chapter corresponds to publications [64], [63], and [43].

This Chapter is organized as follows. Section 6.2 summarizes the main works

related to the topics addressed in this Chapter. Section 6.3 presents the proposed

sensing simulation scheme for bioinspired landing. It describes the main modules

of the simulator together with a synthetic dataset recorded in different scenarios.

Section 6.4 presents the GRIFFIN perception dataset. The dataset has been recorded

onboard a real ornithopter and it includes sensing measurements relevant sensors for

flapping-wing perception. Finally, Section 6.5 presents the conclusions related to the

work presented in the Chapter.

6.2 Related work

Robotic simulators are suitable tools to test and validate robot dynamics, control

policies, perception algorithms, multi-robot strategies, among others, before performing

experiments on real platforms. Simulators enhance safety, reduce costs, and decrease
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evaluation time by emulating the behavior of robots without endangering the robotic

platform. V-REP [171] and Gazebo [172] are some of the most popular robotic

simulators. The first is a simulation tool for validating and designing robots and

simple sensors. The second includes several robot models and sensors, and it is

integrated with the Robot Operating System (ROS) framework simplifying the use

of additional libraries and packages for robotics. Game engines have also been used

for robotic simulation purposes. Engines are preferred in computer vision, Machine

Learning (ML), and augmented reality applications due to their photorealistic rendering

capabilities. Airsim [173] and CARLA [174] are some of the robotics simulators based

on game engines.

Few event camera simulators have been reported in the literature. The work in

[175], computes the difference between consecutive images to generate edges that

resemble the events produced by the edges of moving objects. The simulator in [93]

uses a 3D computer graphic software to sample images at high rates to emulate a

continuous time frame generation. Events are generated by analyzing the intensity

difference between consecutive frames similar to [175]. The work in [176] introduces

ESIM. The simulator relies on high sensing rates of a game engine to simulate the

asynchronous behavior of the event cameras and trigger events based on the prediction

of the camera motion. ESIM can be integrated into both Airsim and CARLA.

Current research in flapping-wing robot simulators mainly focuses on the study

of flight control and robot dynamics. In [177], the controllability and stability of the

robot are analyzed to control the non-linear flight of an ornithopter. The multi-body

dynamics of a flapping-wing robot are simulated in [178] including fluid-structure

interaction and flight dynamic behavior to design a robotic model capable of flying

in trim. The dynamic simulator of the Flappy hummingbird [179] is an open-source

tool to facilitate the design and validation of flight control architectures for small-

scale ornithopter robots. Despite these tools simulate flapping-wing robot dynamics,

kinematics, and aerodynamic effects, none of them provides perception information

collected during the robot flight.

Moreover, several UAV datasets have been introduced for robotic perception tasks.

The AU-AIR dataset [180] provides annotated data of traffic surveillance onboard
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an Unmanned Aerial Vehicle (UAV) together with data from a frame-based camera,

a Global Positioning System (GPS), and an IMU. The work in [181] presents a

dataset including real and photo-realistic synthetic data to evaluate place recognition

methods with respect to viewpoint tolerance. The Mid-Air dataset [182] presents a

large collection of synthetic perception data recorded onboard quadcopters flying in

unstructured scenarios. The datasets were recorded by simulating different weather

and illumination conditions using the Airsim simulator. A summary of the main

reported datasets for aerial robot perception is shown in Table 6.1. The majority of

these were collected on Micro Aerial Vehicles (MAVs) and multirotors. The MAV

dataset in [183] includes onboard sensor information collected in flights within urban

streets. The EuRoC dataset [184] provides data on MAV flights in two different indoor

scenarios: an industrial scenario for evaluating visual-inertial localization, and a room

equipped with a motion capture system for evaluating 3D reconstruction techniques.

The Blackbird UAV dataset [185] approaches the problem of agile and autonomous

operation of aerial vehicles in outdoor environments with special emphasis on visual

inertial navigation, 3D reconstruction, and depth estimation. The data from real

flights has been extended by generating additional synthetic data through simulation.

A dataset of fast flights using a quadrotor in an outdoor scenario is presented in

[186]. Four different flights were performed in an airport runway repeating the same

trajectory at four different speeds in the range [5,17.5] m s−1. All the above datasets

include high-resolution images, GPS, and IMU data. Some of them also provide

additional measurements, such as stereo vision data (the EuRoC dataset) or rotor

tachometer information, and depth images (the Blackbird UAV dataset). However,

none of these datasets provide sensor measurements collected on a flapping-wing

robot. Thus, they do not provide the type of sensing measurements that arise during

flapping-wing flight.

Few datasets have been reported in the literature including any sensor information

collected during the flight of ornithopter robots. The work in [39] presents a dataset

useful for flapping-wing robot control. It includes experimental control data of an

ornithopter performing landing maneuvers in a scenario equipped with a motion capture

system, however, it lacks onboard sensing data for robot perception. The authors
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in [187] provide inertial information from several ornithopter gliding flights under

low-wind conditions. Besides, the work includes frames recorded from three different

views to triangulate the robot’s position. However, the dataset does not include any

data from perception sensors mounted on board the flapping-wing robot. To the

best of the author’s knowledge, no dataset with experimental onboard measurements

suitable for flapping-wing perception has been reported in the literature before this

Ph.D. Thesis.

The strict weight distribution and payload capacity restrictions of ornithopters

entail a careful selection of the sensors to mount onboard these platforms. The work in

[42] analyzes the suitability of Laser imaging Detection and Ranging sensors (LIDARs)

along with standard and event cameras for ornithopters, concluding that event-based

vision provides a promising solution to the majority of these perception challenges.

The use of event-based vision for UAVs perception has increased in problems such as

motion segmentation [189], surveillance [60], visual servoing [57], robot localization

[105], rotor failure-recovery [121], and onboard computational load management [150],

among others.

Several event camera datasets have been presented to explore the advantages of

these sensors onboard multirotors. The dataset presented in [188], includes mea-

surements from several IMUs, cameras (e.g., traditional and event), and a LiDAR.

Dataset Platform
Event
camera Data type Scenario

AU-AIR [180] Multirotor No Real Outdoors
V4RL Place Recognition [181] Multirotor No Synt. & Real Outdoors

Mid Air [182] Multirotor No Synthetic Outdoors
Zurich Urban[183] MAV No Real Outdoors

EuRoC [184] MAV No Real Indoors
Blackbird [185] MAV No Synt. & Real Indoors

UPenn Fast Flight [186] Multirotor No Real Outdoors
Maldonado et al.[39] Ornithopter No Real Indoors
Lopez et al.[187] Ornithopter No Real Outdoors

Multivehicle Stereo Event [188] Multirotor Yes Real Ind. & outdoors
Mitrokhin et al.[84] Multirotor Yes Real Indoors
Rodriguez et al.[60] Multirotor Yes Real Outdoors

UZH-FPV Drone Racing [152] Multirotor Yes Real Ind. & outdoors

ROSS-LAN Bio-inspired trajectory Yes Synthetic Indoors

GRIFFIN Perception
Ornithopter gliding

and flapping
Yes Real

Indoors &
Outdoors

Table 6.1: Summary of main reported datasets for aerial robot perception.
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It includes recordings onboard different vehicles such as a multirotor, a car, and a

motorcycle. The works in [84] and [60] provide sequences recorded onboard quadrotors

used to evaluate event-based methods for moving object detection and tracking. The

dataset for autonomous drone racing in [152] includes measurements from conventional

stereo cameras, event cameras, IMU, and the ground truth pose. However, none

of the aforementioned works have explored the use of event-based vision onboard

flapping-wing robots.

6.3 ROSS-LAN: RObotic Sensing Simulation

scheme for bioinspired robotic bird LANding

This Section proposes a software tool to simulate bioinspired trajectories for landing

and perching while emulating the measurements from different perception sensors. To

the best of our knowledge, it is the first simulation tool developed to reduce the

gap between bioinspired aerial platforms and robot perception. Besides, a

dataset with synthetic sensor information collected in different landing trajectories has

been publicly released 1 to pave the way toward the development of novel perception

sensors for aerial robots.

The RObotic Sensing Simulation scheme for bioinspired robotic bird LANding,

better known as ROSS-LAN includes two main simulation modules. First, a bioinspired

trajectory generator to resemble the movements performed by birds during landing

and perching. The simulation tool adopts tau-theory for trajectory generation, which

describes the principle used by animals and humans to guide their intended motion to

make contact with an object or surface. The theory has been used in aerial robotics

to guide and control multirotor platforms for docking and landing [133] [190]. The

second module of ROSS-LAN emulates sensors widely used for robotic perception.

The sensor selection considers the information necessary for object identification,

guidance, localization, and obstacle avoidance. Thus, sensors are selected from a

robotic perception perspective and the simulator includes sensors typically used in

1https://grvc.us.es/bioinspired-landing-trajectory-sensor-dataset/

https://grvc.us.es/bioinspired-landing-trajectory-sensor-dataset/
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aerial robotics such as LiDARs, IMUs, altimeters, and frame-based cameras. The

simulation tool also includes event cameras to deal with the fast-motion, motion blur

effect, and strong illumination changes arising during the flight of ornithopters. Fusing

event information together with classical perception data (e.g., frames, point clouds,

and IMU measurements) have increased the robustness of perception algorithms for

feature tracking [90], Simultaneous Localization And Mapping (SLAM) [105], and

obstacle avoidance [148]. The most relevant aspects of the tau-trajectory and the

architecture of the simulation tool are detailed below.

6.3.1 Tau-theory planning

ROSS-LAN relies on tau-theory [134] to approximate bio-inspired landing and perching

maneuvers. This theory proposes that humans and animals use simple strategies

together with the time variable τ to guide the majority of their intended move-

ments. Assuming constant speed, Tau (τ ) regards the time an observer would take to

make contact with an object or surface. The value of τ corresponds to a first-order

approximation of the Time-To-Contact (TTC) for a given gap χ:

τ(t) =
χ(t)

χ̇(t)
, (6.1)

where χ(t) is the gap, and χ̇(t) represents its closure rate at time-step t. By convention,

χ is defined negative and its initial closure rate χ̇(0), positive.

In [134], the author states that birds tend to maintain the rate of the gap closure

constant to control their flight deceleration. This behavior defines the constant tau-dot

strategy. Additionally, the research showed that zero velocity at contact is achieved

by keeping τ̇ constant and within the range [0, 0.5). The work in [133] proposes a

variation of the tau-dot strategy to guide a breaking maneuver using τ̂ (t) = kτ t+ τ (0).

The approach proposes a practical approximation to tau-dot avoiding the estimation of

τ̇ . It should be noted that tau-theory postulates that animals do not require cognitive

processing for TTC as it is available at the neural circuit level [134]. Hence, χ(t) and

χ̇(t) can be computed as follows:
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χ(t) = χ(0)
(

1 + kτ t
χ̇(0)

χ(0)

)
1
kτ
, (6.2)

χ̇(t) = χ(0)
(

1 + kτ t
χ̇(0)

χ(0)

)( 1−kτ
kτ

)

,

χ̈(t) =
χ̇(0)2

χ(0)
(1− kτ )

(

1 + kτ t
χ̇(0)

χ(0)

)( 1−2k
kτ

)

,

(6.3)

where χ(0) is the initial value of the gap, and defining 0 < kτ ≤ 0.5 guarantees χ

and χ̇ reaching zero at the same finite time T = −τ(0)
kτ

. An additional analysis depicts

that defining kτ within the range (0.5, 1) leads to a collision as the gap closes with

χ̇(0) 6= 0. Figure 6.1 shows some examples of the gap closure by varying kτ between

0.2 and 1.0. In the Figure, the main gap (e.g., the altitude of the robot) is positive,

different from the original convention being consistent with a landing trajectory.

Figure 6.1: Different trajectories χ for 0 < kτ ≤ 1 closing the gap at t = 0. For kτ = 1
(light blue curve) the gap closes with χ̇ constant leading to a collision.
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Furthermore, the tau-coupling strategy allows the closing of multiple gaps. This

is particularly useful for closing the position and orientation gaps of the robot. Tau-

coupling consists of coupling additional gaps ϑ to the main gap χ. It is computed as

τχ = κττ
ϑ, where κτ is defined as the closure constant ratio between both gaps. The

coupled gap ϑ, its closure rate ϑ̇, and acceleration ϑ̈ at time t are obtained by:

ϑ(t) = cχ(t)
1
κτ

−1,

ϑ̇(t) = c
1

κτ
χ̇(t)χ(t)

1
κτ

−1,

ϑ̈(t) = c
1

κτ

(

(1

k
− 1

)

χ̇(t)2 + χ(t) + χ̈(t)

)

χ(t)
1
κτ

−2,

(6.4)

where c = ϑ(0)

χ(0)(1/κτ ) .

To compute the time trajectories of the robot, the proposed simulator integrates

tau-constant and tau-coupling strategies. The tau-trajectory generation is performed

by computing the trajectory that closes the main gap, and the set of coupled gaps

for the robot position and orientation. The main gap is the z-axis (i.e., the robot’s

altitude), and the coupled gaps correspond to the coordinates in x and y, and the

roll θ, pitch φ, and yaw ψ angles. The notation uses a superscript for the gap, and a

subscript for the time. For instance, the main gap (z-axis) and a couple gap on the

yaw ψ angle at time t are denoted by χzt and ϑ
ψ
t respectively. The trajectory St at

time t includes the gap values, closure velocities, and accelerations with respect to a

reference frame F aligned with the goal pose. The pose transformation from F to any

other reference frame W can be directly defined in a straightforward manner on the

simulator.

6.3.2 Architecture of the simulator

The proposed multi-sensor perception simulator describes an architecture based on the

Robot Operating System (ROS). It integrates the well-known Gazebo simulator and

the Unreal Engine 4 (UE4) graphic engine. Gazebo simulates traditional perception
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sensors for robotics such as altimeters, proximity sensors, LiDARs, and frame-based

cameras. Conversely, UE4 simulates a photo-realistic version of the scenario to capture

images of the scene at a very high frame rate. The photo-realistic images are used

to produce simulated event data using ESIM [176]. Besides, the simulator includes

the bioinspired trajectory generator based on tau-theory, which has been coded in

C++ and integrated as a ROS package. The sensor measurements, the robot pose,

and trajectory estimations are published in ROS topics.

The block diagram of ROSS-LAN is shown in Figure 6.2. The simulator requires a

set of parameters for the simulation. First, the parameters to define the trajectory St

(see Eqs. 6.2, 6.3, and 6.4). Second, the configuration file for the scene, which defines

the poses of all objects in the scene including the initial pose of the robot. Third,

the sensor configuration files that define the extrinsic calibration of the sensors with

respect to the robot, and the intrinsic calibration data such as the camera matrix for

the frame-based and event cameras. The latter are provided in yaml format. The

current version of the simulator includes six types of perception sensors: (i) event

cameras, (ii) LiDARS (Velodyne HDL-32), (iii) frame-based cameras, (iv) lasers, (v)

altimeters, and (vi) IMUs. However, the modularity of the simulator allows easy

integration of additional sensors such as stereo cameras and depth sensors. At each

experiment, the output of the sensing data and robot pose are saved in a rosbag file.

The proposed simulation tool is divided into two main modules: the Tau Tra-

jectory Generator, and the Perception Sensor Simulator. The first computes tra-

jectory St following the approach described in Section 6.3.1. The module provides

the pose (ϑxt , ϑ
y
t , χ

z
t , ϑ

θ
t , ϑ

φ
t , ϑ

ψ
t ), velocities (ϑ̇xt , ϑ̇

y
t , χ̇

z
t , ϑ̇

θ
t , ϑ̇

φ
t , ϑ̇

ψ
t ), and accelerations

(ϑ̈xt , ϑ̈
y
t , χ̈

z
t , ϑ̈

θ
t , ϑ̈

φ
t , ϑ̈

ψ
t ) for each time t. This module receives as input the initial pose

of the robot in the target reference frame F along with the parameters kz,κx, κy, κθ,

κφ, and κψ for each gap.

Moreover, the Perception Sensors Simulator module includes the simulation model

of each of the aforementioned perception sensors. The simulator uses the trajectory

St to modify the reference frame of each sensor for the entire landing trajectory. This

module inputs the extrinsic and intrinsic calibration files of the different sensors.
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Figure 6.2: Block diagram of ROSS-LAN.

Besides, it integrates the ESIM event camera simulator. ROSS-LAN uses a modified

version of ESIM that inputs St from the Tau Trajectory Generator to set the event

camera pose during the simulation.

6.3.3 Datasets

A set of simulation datasets have been released for further research in bioinspired flight

perception. The datasets simulate the sensor measurements obtained by performing

bioinspired landing trajectories. Each dataset corresponds to a different simulation

where the set of sensors move given the trajectory computed by the Tau Trajectory

Generator. The simulated trajectories were computed with a final approach angle of

π/6. The trajectories were sampled in time-steps of ∆t = 0.1 s to t = T . The value

of T is computed as described in Section 6.3.1. Figure 6.3 depicts some trajectories

obtained from the Tau Trajectory Generator for different simulated landing maneuvers.

The robot poses are shown as vectors where the tail represents the robot position

(i.e., x, y, z), while its magnitude and direction correspond to the velocity components.

The trajectories are normalized referring them to the same scale. Further, the values
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of κx and κy varied as depicted in the Figure, and kz was set to 0.5 to provide smooth

descending without colliding with the ground.

Figure 6.3: A set of normalized trajectories describing bioinspired simulated trajecto-
ries. The magnitude and direction of the vectors describe the robot’s velocity, while
the tail of each vector corresponds to the robot’s position.

Figure 6.4 shows the two simulation scenarios used to collect the samples of the

dataset. The scenes are inspired by industrial environments such as warehouses and

factories where aerial robots perform tasks such as payload delivery, surveillance,

intrusion monitoring, and remote sensing. Each object in the scenario was designed

in 3D computer graphics software and imported into the scene. The simulation

environments and their objects were designed following the approach in [63]. The

distribution of the objects in the scenario is defined by a configuration file which is used

by Gazebo and UE4 to keep the same scene configuration (i.e., position, orientation,

and scale) for both simulators.

The proposed simulation tool has been designed to emulate all sensor measurements

produced during the entire landing trajectory. However, generating all synthetic
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(a) (b)

Figure 6.4: Perspective views of the simulation scenarios used to record the dataset.
(a) A warehouse and (b) an oil refinery .

measurements in real time is computationally demanding. This is a common issue in

the majority of the robotic simulation tools with complex sensors and robot platforms

[174] [173] [171]. For instance, simulating event data requires rendering several frames

per second and predicting their optical flow to obtain asynchronous simulated events

[176]. To deal with this limitation, the datasets were recorded at a low rate to estimate

all sensing measurements simultaneously. Thus, the simulation duration Ds of each

dataset is longer than the trajectory duration Dt. The dataset rate can be adjusted

by setting the factor r while running the bagfile to Ds/Dt.

The bioinspired landing trajectory dataset contains six simulations with different

landing trajectories. Each dataset includes the measurements of a monocular frame-

based camera, an event camera, a sonar, an IMU, and a LiDAR. The pose ground

truth of robot and sensor poses were recorded as well for each dataset, see Figure 6.5.

The modular architecture of the simulation tool allows easy integration of additional

sensors such as the sensors included in gazebo ros package (e.g., kinect, lasers, and

depth cameras). Each of the datasets includes the following files:

• The full dataset in a rosbag file.

• A README file with the instructions to execute the bag.

• The bioinspired trajectory computed with tau-theory.
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(a) (b)

(c) (d)

Figure 6.5: A visual representation of some of the sensing measurements collected in
the datasets. (a,c) Grayscale frames along with the simulated events accumulated in
time windows of 10 ms. (b,d) The point clouds from the LiDAR .

• A text file with the simulated events following the format (timestamp, x, y, polarity).

• The sensor models including the extrinsic and intrinsic calibration.

6.4 The GRIFFIN perception dataset

This Section describes the development and structure of the The GRIFFIN Perception

Dataset. The dataset aims at paving the way toward the development of perception

algorithms for flapping-wing robots. To the best of our knowledge, it is the first
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perception dataset recorded onboard an ornithopter robot. The dataset

includes sensing measurements from a frame-based camera, an event camera, and

two IMUS. Besides, it includes the pose ground truth of the robot obtained from a

Total Station and a motion capture system. The perception sensors were carefully

mounted onboard the Eye-Bird robot, an ornithopter designed at the GRVC Robotics

Laboratory. The dataset was collected in different scenarios including indoor and

outdoor environments and it has been publicly released 2.

6.4.1 The Eye-Bird ornithopter

The ornithopter used for the dataset collection is the Eye-Bird, a modified version

of E-Flap which has been customized to carry sensors and electronics for perception

research. Ornithopters report a limited payload and weight distribution. Increasing

the payload of an ornithopter requires additional lift and thrust which can be obtained

by increasing the flapping frequency. This induces higher stresses over the structural

and mechanical parts. The empty weight of 450 g and 1.5m wingspan of the robot

is optimized for maximum payload capacity with several attachment locations using

nuts, bolts, or cable ties over the robot body. The additional electronics, sensors,

and batteries represent a payload of 250 g for the data collection flights. The sensor

location along the robot body strongly affects the Center of Gravity (CoG) and inertia,

and therefore the stability and maneuverability of the platform. The 39 cm length of

the tail brings the neutral point of the platform back to 25 cm from the head. This

defines the limit at which the CoG can be moved back to maintain the flapping-wing

robot stable.

The ornithopter design and hardware allocation is shown in Figure 6.6. Allocating

the camera and batteries at the front of the platform moves forward the CoG for

better stability. The onboard computer is placed at the safest point, below the wings,

and at the center of the body tube. The robot design does not include a body fuselage

to cover the electronics to simplify hardware maintenance and add versatility.

2http:\grvc.us.es/eye-bird-dataset

http:\grvc.us.es/eye-bird-dataset
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Figure 6.6: Distribution of the perception hardware on the GRIFFIN Eye-Bird in
an experimental scenario: (A) Leica GRZ101 MiniPrism, (B) DAVIS346 camera, (C)
battery, (D) the flapping mechanism, (E) VectorNav VN-200 IMU, (F) Khadas VIM3
board, and (G) tail servos.

The wings and tail are built with a nylon fabric attached to a lightweight carbon

fiber structure composed of rods and tubes. The shape of the wing offers low-speed

flapping flight aerodynamics, and low descent gliding capabilities making the robot

suitable for safe landing even in emergency cases, different from multirotors. The wing

weights 82 g with a total aerodynamic surface of 0.44m2.

The tail consists of a triangular horizontal stabilizer of 0.1m2 and a triangular

ruder of half of the tail size. This configuration provides longitudinal and directional

stability and attitude control. The tail is actuated by two concatenated servo motors.

The first acts over the tail, and the second, over the rudder direction. The forward

speed influences the tail pitch as it controls the aircraft’s nose pitch. The roll stability
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of the dihedral wing and the directional stability provided by the rudder mitigate the

lack of roll actuation. The tail is trimmed based on the weight distribution using the

maximum glide ratio criteria. It is worth mentioning that the design and construction

of the Eye-Bird robot is not part of the contributions of this Ph.D. Thesis. This

section only aims to describe the most relevant technical aspects of the platform.

6.4.2 Sensors

The perception sensors are selected considering their relevance for flapping-wing

perception and the Eye-Bird weight and size restrictions. The sensing measurements

are acquired and recorded using the low-weight Khadas VIM3 board. It has a 6-core

ARM Central Processing Unit (CPU), a 16GB eMMC storage unit, and three USB-

3.0 interfaces. The Khadas uses Ubuntu 18.04 with ROS Melodic, and records the

collected measurements in rosbag files.

Reducing the weight of the hardware components plays a key role in the dataset

collection. Table 6.2 shows the main specifications of the components on board the

ornithopter. Some sensors have been modified for their integration into the flapping-

wing platform. The final weight after adding the sensors, electronics, batteries, and

wires is lower than 250 g, which is close to the maximum payload of the platform with

the desired maneuverability.

The main sensors mounted on the ornithopter are the VectorNav VN-200 and

the iniVation DAVIS346. The first is a navigation device including several sensors

such as a high-end IMU, a barometer, a magnetometer, and an external GPS. It

includes an Extended Kalman Filter delivering coupled position, velocity, and attitude.

The VectorNav is installed as close as possible to the center of gravity of the robot.

The measurements from the sensor are available through the Universal Asynchronous

Receiver-Transmitter (UART) protocol and published using a ROS custom package3

specially designed for the sensor. The DAVIS346 includes three different sensors:

(i) a 346x260 Active Pixel Sensor (APS) providing grayscale frames at 40Hz, (ii) a

3https://github.com/grvcPerception/vn_ros_integration

https://github.com/grvcPerception/vn_ros_integration
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Sensor Characteristics Weight

DAVIS346

DVS: 346x260 up to 12MHz
APS: 346x260@40 Hz With custom
FoV: 68 vert., 83 horiz. case & lens: 57 g
IMU: MPU 9250@1 kHz

VN-200

IMU readings @80Hz
Gyroscope, accelerometer, With adaptation
and magnetometer available board: 21 g
GPS and barometer disabled

Leica MS50
TotalStation

Cent.-level tracking@10Hz
Prism: 30 g

GRZ101 prism on the bird

OptiTrack
Cent.-level tracking@100Hz LEDs and
5x850 nm LEDs on the bird cables: 5 g

Table 6.2: Specifications of the onboard sensors and ground truth instruments.

Dynamic Vision Sensor (DVS) providing events with a temporal resolution of 1 µs

with a maximum throughput of 12MHz, and (iii) an IMU running at 1 kHz.

The original lens of the DAVIS346 weighs ∼ 100 g, which is heavy for the limited

payload of the robot. The lens is changed by two different lightweight lenses, one

for outdoors and one for indoor experiments. The indoor lens includes an IR cut-off

filter to cope with the motion capture system IR emitters. Each lens weights 5 g,

with a focal distance of 3.6mm, a horizontal Field of View (FoV) of 83°, and vertical

68°. Additionally, the case of the camera is replaced with a PLA (Polylactic Acid)

3D-printed version. The weight of the modified event camera is 52 g, less than a third

of its original weight (i.e., ∼ 170 g). Additionally, the DAVIS346 is mounted at the

front of the ornithopter with an angle of pitch of 30° using a lightweight protective case.

The case is 3D printed with flexible Thermoplastic PolyUrethane (TPU) filament, that

acts as an impact absorber in case of a frontal collision. The DAVIS346 is mounted

upside down (see Figure 6.7) to facilitate its installation on the ornithopter.

The ground truth position of the robot is recorded using an MS50 TotalStation

(in outdoor experiments) and an OptiTrack (in indoors). The TotalStation accurately

provides range and bearing measurements of a prism reflecting the target attached to

the robot. The GRZ101 360° MiniPrism is installed at the front of the ornithopter
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Figure 6.7: The GRIFFIN Eye-Bird ornithopter with the reference frames of each
sensor: (V) VectorNav, (C) DAVIS346 APS and DVS, (I) DAVIS346 IMU, and (W)
world reference frame either from the TotalStation or the OptiTrack. The DAVIS346
was mounted upside down, affecting frames (C) and (I). The TotalStation prism is
located at coordinate (0, 37.2, 0) mm at frame (I).

above the DAVIS346. This location is preferred to avoid possible target occlusions

due to the flapping motion of the wings. Besides, the Total station is located as

far as possible from the flight zone to increase the Field of View of the laser. The

experiments conducted with the Totalstation describe outdoor flights where the robot

faces the TotalStation to minimize possible occlusions of the prism during the trajectory.

Conversely, the Motion capture system is used for indoor flights. An OptiTrack system

with 28 cameras is used in indoor experiments providing millimeter accuracy ground

truth position and orientation at 100Hz. To track the ornithopter with the motion

capture system five infrared (850 nm) Light Emitting Diodes (LEDs) are installed at

the main frame of the robot. The reference frame of the rigid body representing the

robot is located at the same position and orientation as the TotalStation prism.

The sensor measurements are recorded in rosbag files. The format of the sensing

measurements is given by the timestamped standard ROS message libraries. The events

from the DAVIS346 DVS follow the format in [93]. The frames of the APS include

the pixel raw data, image resolution, and encoding. Both DAVIS346 and VectorNav

use the IMU message of ROS. The ground truth poses from both TotalStation and
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Optitrack use the timestamped poses format of ROS. Each sensing measurement is

referenced to its sensor frame. The frames of each sensor are shown in Figure 6.7.

Finally, a calibration file with the intrinsic and extrinsic camera calibrations is

provided in yaml format. Additional datasets are provided for camera calibration,

in these sequences the camera moves in different directions in front of an AprilTag

[191] board. The calibration data were obtained using the Kalibr toolbox [192].

The calibration samples are provided along with the perception dataset in case the

user prefers to estimate the camera calibration with a different tool. The intrinsic

calibration of the camera was recomputed for each scenario to prevent possible biases

due to changes in the camera lens configuration. However, the extrinsic calibration

was computed only once as the sensor configuration along the robot body was the

same for all experiments. Besides, an additional dataset with IMU measurements

to extract the internal bias of the sensors is provided. Finally, both intrinsic and

extrinsic calibration files are validated using a state-of-art Visual Inertial Odometry

(VIO) method in Section 6.4.5.

6.4.3 Ornithopter v.s. quadrotor flight

An initial analysis of the flapping effect on the onboard perception was performed by

comparing the data collected on Eye-Bird and on a quadrotor. Several flights were

performed to obtain similar flight trajectories between both platforms. The quadrotor

is a customized platform with a DJI FlameWheel F450 frame, and a PixRacer autopilot

(see Section 3.7.2 for further details). The DAVIS346 and the Khadas VIM3 board

were mounted in a similar configuration to the ornithopter. Figure 6.8 shows both

platforms flying together in an experiment.

The experimental results depict that the flapping-wing robot suffers from high

stronger vibrations compared to the quadrotor. In general, the DAVIS346 IMU

reported 3 times greater accelerations in the ornithopter. These vibrations increased

the number of triggered events. On average Eye-Bird reported 6 times more events

than the quadrotor. Figure 6.9-a,b shows the events triggered by each platform, this

frame representation was obtained by accumulating events in time windows of 25ms
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Figure 6.8: The quadrotor platform and the Eye-Bird flying together in an experiment.

and warping them in the image. Figure 6.9-b depicts that the ornithopter triggers

considerably more events than the multirotor. Moreover, Figure 6.9-c depicts the

number of events accumulated every millisecond while both platforms described a

similar trajectory. The results confirm the intuition that the flapping-wing robot

generated more events during flight. Additionally, the sequences recorded with the

ornithopter reported underexposed and overexposed grayscale frames due to the strong

variation in the robot pitch angle produced by flapping strokes. Thus, adding lighting

robustness requirements to vision-based algorithms for flapping-wing robots.

6.4.4 The GRIFFIN perception datasets

The dataset recording consisted of acquiring and saving the sensing measurements of

different flights. The samples from the onboard sensors were recorded in the onboard

computer (i.e., the Khadas VIM3), while the ground truth poses were recorded on an

external computer. To guarantee time consistency between the data collected, the

clock of the onboard computer and the external processing board were synchronized

following the Network Time Protocol (NTP) [193].
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(a) (b)

(c)

Figure 6.9: The number of events per millisecond generated in Eye-Bird and the
quadrotor while describing a similar trajectory: (a-b) Frames of accumulated events at
40Hz on the quadrotor (a) and on the ornithopter (b); and (c) the number of events
accumulated every millisecond in both platforms.

In each data collection experiment, the recording of the sensing data of the onboard

and external sensors was initialized before taking off. The ornithopter was initially

oriented toward a calibration pattern to add visual features at initialization. Afterward,

the ornithopter was launched by the pilot towards the flight arena. The pilot controlled

the ornithopter to perform different trajectories. The event data generation describes

the flight stages as it is shown in Figure 6.10-top (i.e., Hills Base 3 flight). The green
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Figure 6.10: Event generation describing the flight stages of the ornithopter – launching,
flapping, and landing. Top) the events triggered per millisecond, down) and ‖~r‖, the
norm of the position vector in dataset Hills Base 3.

area corresponds to the launching stage where the ornithopter was almost static in

the pilot’s hands. The red zone describes the flapping stage where events were mainly

triggered by the motion of the robot and the flapping strokes. The blue area represents

the landing stage that reports a peak of events triggered due to the impact on the

ground at landing. Additionally, Figure 6.10-bottom depicts ‖~r‖, the norm of the

position vector in world coordinates tracked by the TotalStation in this experiment.

The rest of the dataset sequences have different durations depending on the flight

trajectory performed by the ornithopter in each experiment. The GRIFFIN perception

dataset includes three types of sequences:

• Base: A set of datasets where the ornithopter performed agile trajectories. The

scenario did not include artificial markers.

• ArUco: In these datasets the ornithopter performed smooth trajectories by

flying over ArUco markers located on the ground of the scene.

• People: A set of datasets that include visual information of people and objects

in the scene. This dataset may be useful for training and testing object detection
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algorithms. In these datasets the ornithopter performed longer trajectories

without having any altitude limitation. The ground truth pose information was

not recorded due to the complexity of tracking the robot with the TotalStation

under these conditions.

The datasets were recorded in three different scenarios. The Soccer scenario

describes an outdoor area with a soccer field surrounded by objects of different sizes

(e.g., threes, benches, and fences). The area of the scenario is 48 × 54 m. In this

scenario, the ornithopter was launched from an elevated platform located at ∼ 74m

from the TotalStation. The Hills scene corresponds to an open space with irregular

ground surfaces. It has a total area of 170 × 100 m enabling large flight without

collision with obstacles. The distance between the launching spot and the TotalStation

was ∼ 135m during the dataset collection. The Testbed scenario is 15× 21× 8 m close

space specially designed for testing ornithopters. It is equipped with an Optitrack

motion capture system to record the pose of the robot. Figure 6.11 shows a picture

a) b) c) d)

Figure 6.11: Some of the perception data collected in the dataset along with a picture
of each scenario: (a) Soccer, (b) Hills, (c) People flight in the Soccer scenario, (d)
Testbed.
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of each scenario along with some of the visual data collected on them. The second

row corresponds to grayscale frames from the APS, while the third column shows

frame representations of the collected event data. A simplified version of the method

inspired in [39] was used in this scenario to perform landing trajectories with the

ornithopter. Additional aggressive maneuvers were performed by the pilot in this

scenario to provide richer trajectories that exploit the ornithopter maneuverability.

Table 6.3 shows the list of the 21 recorded datasets; 9 of them were recorded in

the Testbed, 7 were conducted in the Soccer area, and 5 datasets were collected in

the Hills scenario. A total of 9 Base and 10 ArUco datasets were provided as they

are particularly useful for developing vision algorithms for flapping-wing robots in

structured (ArUco) and fully unstructured (Base) environments. In the People dataset

manual annotations of people were provided to facilitate training people detection

algorithms. Table 6.3 includes the main specifications of each dataset.

6.4.5 Validation

The dataset validation was performed by comparing the recorded ground truth with

the output of a VIO algorithm in all collected sequences. This validation confirms the

validity and usability of the dataset by assessing the provided extrinsic and intrinsic

calibrations together with the ground truth samples. Further, the validation provides a

baseline result for future comparison with other VIO algorithms. The method selected

for validation was the well-known ROVIO [194], a robust method that estimates the

robot trajectory without requiring exhaustive parameter tuning. The robot trajectory

estimated with ROVIO against the ground truth in one of the datasets is shown

in Figure 6.12. Besides, the absolute translation Root Mean Square Error (RMSE)

between the estimated trajectory and the ground truth is provided in Table 6.3. For

fairness, the execution of the VIO method was finalized before landing to avoid errors

due to the lack of visual features in the camera Field of View. Moreover, the error

provided by ROVIO in the Hills ArUco2 dataset was mainly due to drift confirming

the limitations of the exiting VIO methods for ornithopter robot flight.
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Scenario Dataset t
s

d
m

‖v̄‖

ms−1

‖w̄‖

rad s−1
Max EPms
event/ms

tRMSE
m

Ground
Truth

Annotation

Testbed

Base1 27.99 96.12 3.16 0.29 3575 0.68 OptiTrack No
Base2 18.99 76.26 3.91 0.28 8171 0.59 OptiTrack No
Base3 16.99 57.61 3.14 0.25 4094 1.03 OptiTrack No
ArUco1 20.98 61.37 2.81 0.21 4295 0.41 OptiTrack No
ArUco2 24.99 94.10 3.42 0.27 5073 0.55 OptiTrack No
ArUco3 26.98 108.38 3.86 0.29 8726 0.46 OptiTrack No
ArUco4 4.80 12.17 2.57 0.14 8631 0.06 OptiTrack No
ArUco5 3.97 11.08 2.83 0.13 8616 0.13 OptiTrack No
ArUco6 3.98 11.98 2.99 0.12 8667 0.21 OptiTrack No

Hills

Base1 39.21 107.76 2.77 – 8704 1.20 TotalStation No
Base2 39.90 110.21 2.80 – 8784 2.48 TotalStation No
Base3 42.91 98.75 2.52 – 8772 2.46 TotalStation No
ArUco1 31.80 97.95 2.97 – 8840 2.14 TotalStation No
ArUco2 27.21 114.93 4.31 – 6615 6.46 TotalStation No

Soccer

Base1 24.89 54.65 2.22 – 8610 0.83 TotalStation No
Base2 20.01 43.41 2.16 – 8549 1.63 TotalStation No
Base3 27.90 54.42 1.92 – 7166 1.91 TotalStation No
ArUco1 15.31 51.49 3.47 – 7534 1.01 TotalStation No
ArUco2 53.02 19.50 2.79 – 8757 1.12 TotalStation No
People1 79.98 – – – 8737 – None Yes
People2 88.04 – – – 8729 – None Yes

Table 6.3: Specifications of each dataset: t, flight time duration; d, total traversed
distance; ‖v̄‖ and ‖w̄‖, mean inertial linear and angular velocities; the maximum
number of events per millisecond (EPms) along each flight: tRMSE, absolute translation
root mean square error of the robot position estimated using ROVIO; and availability
of annotated data. It is worth mentioning that ‖w̄‖ is not provided in Hills and Soccer
scenarios as the TotalStation provided only position data.

6.5 Conclusions

The development of perception techniques for ornithopter robots faces several chal-

lenges. First, the lack of flapping-wing platforms with enough payload to carry several

perception sensors together with the strict weight distribution of these platforms set a

serious entry barrier for the development of perception algorithms for these robots.

Additionally, the ornithopters’ principle of operation poses additional implementation

challenges hindering the experimentation and validation of perception systems for

these platforms. Furthermore, the sudden motion and high vibrations of flapping-wing
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Figure 6.12: Robot trajectories estimated using ROVIO (in blue) against the ground
truth (in magenta) in the flights Testbed ArUco1 (Left), Hills ArUco1 (Right-up),
and Soccer ArUco1 (Right-down).

robots produce motion blur and changes in lighting conditions which affect traditional

vision-based perception algorithms.

In this Chapter, two different tools are introduced to provide valid solutions for

some of the aforementioned issues. First, a simulation architecture to retrieve the

sensing measurements generated during the execution of bioinspired landing and

perching maneuvers. A dataset with sensor measurements collected by following

different bioinspired trajectories is publicly available online. Each dataset provides

the bioinspired trajectory followed during the simulation along with the sensing

information from several perception sensors. Second, a perception dataset for large-

scale flapping-wing robots was recorded onboard the Eye-Bird GRIFFIN ornithopter.

It includes measurements from a frame-based camera, an event camera, and two IMUs

together with ground truth data from a laser tracker (in outdoor scenarios) and a

motion capture system (in indoor scenarios).

The work described in this Chapter intends to set the baseline to boost the

development of flapping-wing perception algorithms. The simulation tool aims at

providing a software solution to retrieve synthetic perception data for bioinspired

perching and landing. Conversely, the dataset paves the way for the development of

perception algorithms that consider the perception challenges that arise in the flight of

large-scale ornithopters. Although the presented work sets an initial step toward the
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study of sensing data for flapping-wing robot perception, further efforts are needed to

study the suitability of other sensors that may be particularly useful for ornithopter

perception (e.g., depth cameras and pixel processing arrays, among others). Besides,

the development of 3D dynamic models for ornithopters would enlarge the capabilities

of current simulation tools such as the one proposed in this Chapter.



Chapter 7

Conclusions and Future Work

This Chapter is divided into two Sections. The first Section presents the conclusions

regarding the research enclosed within this Ph.D. Thesis. The second Section proposes

future work to extend some of the proposed approaches and design new event-based

perception methods for aerial robotics.

7.1 Conclusions

This thesis confirms the use of event cameras as valid perception sensors for multirotors

and ornithopters. In particular, this Ph.D. shows the advantages of using event-

based vision for flapping-robot perception within the context of the ERC GRIFFIN

project. The asynchronous nature of the event generation along with their microsecond

resolution allowed the development of fast response perception algorithms (see Chapters

2, 3, 4, and 5). Several of these algorithms (e.g., see Sections 2.3.1, 2.3.2, 3.5, 4.7.1, and

5.3) were validated on aerial platforms performing agile and fast maneuvers for robot

visual guidance and obstacle avoidance. Besides, the high dynamic range of event

cameras permitted extending the capabilities of the pipelines proposed in Chapters 3,

4, and 5 to successfully perform in pitch-dark illumination conditions. Moreover, the

event cameras’ robustness to motion blur was studied in a preliminary study to this

Ph.D. Thesis [42], that evidenced an important advantage of using event-based vision

for flapping-wing robot perception compared to standard cameras.

163
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The research enclosed within the development of this Ph.D. Thesis also describes

some of the challenges of using event cameras for robot perception. First, the single-

pixel event representation cannot be directly applied to many traditional perception

methods relying on frames, which is a general challenge for event-based robot perception

and computer vision. In this Ph.D. Thesis several algorithms for low-level perception

(e.g., corner detection and tracking, clustering, optical flow estimation, and pixel

undistortion, among others) were designed or adapted [74] [81]. Several of these

methods are integrated as modules for the high-level event-based perception pipelines

of Chapters 3, 4, and 5. Second, the fast response capabilities of the proposed

algorithms required careful technical implementation to reduce as much as possible

their processing rates. Third, further tools were proposed (see Section 5.3.2) and

adopted [100] to reduce the computation load of processing additional events caused by

the fast motion of the robots, the vibrations produced by external perturbations (e.g.,

flapping strokes), and the noisy events triggered under low-illumination conditions.

Moreover, the experimental results of this Ph.D. Thesis evidence the benefits of

tuning the internal parameters of the methods proposed in Chapters 2, 4, and 5. These

parameters were carefully adjusted to improve the methods’ performance. However,

the tuning process may require time and effort as adjusting the parameters of several

algorithms becomes complex by increasing the number of variables to tune. This

task also requires a base knowledge of the algorithm functioning to understand the

relevance of each parameter on the method performance. The results in Chapter 5

show that using an automatic tuning tool for this task improves the performance of

the proposed method. The results in Chapter 5 show that this task can be addressed

by an automatic tuning tool that improves the performance of the proposed method

while avoiding exhaustive manual adjustments.

The experimental validation obtained in this Ph.D. Thesis positively depicts the

applicability of event-based vision to the visual servoing problem. Although, Event-

Based Visual Servoing (EBVS) encloses similar challenges to Image-Based Visual

Servoing (e.g., recovering after losing visual features in the camera Field of View),

the remarkable features of event cameras may be used to improve the visual servoing

performance. The works in [57], [115], and [58] report some EBVS schemes for robotics.
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In general, all methods provide two additional advantages compared to traditional

IBVS: (i) a faster computation of the visual features, and (ii) the adaptability of the

proposed methods to perform under dark illumination conditions. The Contribution

1 of this Ph.D. reports a method that provides high perception rates (i.e., ∼ 350Hz)

by accurately tracking line references for visual servoing. This allows fast perception

responses which are particularly useful in applications where aerial robots move at

fast velocities. Moreover, the aforementioned works include experimental validation

in scenarios with low illumination conditions depicting the EBVS capabilities in

dark-pitch situations.

Additionally, we would like to provide some relevant considerations to perform

experimental validations with large-scale flapping-wing robots. They are the result of

several hours of experimentally validating some of the proposed perception algorithms

on the Eye-Bird and the E-Flap robots, which were designed and developed at the

GRVC Robot Laboratory within the context of the ERC GRIFFIN grant. First,

integrating additional hardware onboard ornithopters is a critical task as each device

adds weight and modifies the robot’s Center of Gravity (CoG). This task requires

particular attention as installing the hardware attachments and structures should

affect as minimally as possible the flying capabilities of the robot. Second, running

experiments with ornithopters requires additional safety protocols to avoid damaging

the robot while landing. In the majority of the presented experiments, a set of mats

and nets were deployed around the landing areas to prevent damage to the robot body.

Installing these safety mechanisms is a time-demanding task especially by performing

experiments in different scenarios (indoor and outdoor). Third, a successful validation

requires teamwork and planning. Ornithopters are quite novel platforms compared

to multirotors and fix-wing vehicles. The development of ornithopter platforms with

fully autonomous capabilities is a topic of current research [41] [58] [59] [30]. However,

several of the current platforms still require take-off and landing mechanisms, increasing

the difficulty to perform experimental validations. For instance, sometimes an operator

is needed to launch and recover the ornithopter, increasing the number of people

involved in each experiment. Moreover, finding the right scenario is crucial. Flying

almost any type of aerial platform requires a minimum set of conditions to perform
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a good flight. It is important to check and monitor the weather (e.g., humidity and

wind velocity) and evaluate any potential risk for the people around the scenario

and participating in the experimental validation. The previous considerations aim at

technically contributing to the flapping-wing robot community by sharing some of our

experience working with ornithopter robots.

7.2 Future work

The research entailed in this Ph.D. Thesis opens a wide field of further research.

Next, the topics for future research most directly related to the presented work are

summarized:

• Evading dynamic and static obstacles with large-scale ornithopters.

Chapter 4 proposes a dynamic sense-and-avoid method for large-scale flapping-

wing robots. It analyzes the spatial-temporal information of events to detect

moving obstacles and estimate their direction of motion. However, the current

method lacks a strategy to detect and evade static obstacles in the scene. Future

work aims at implementing a vision-based algorithm to detect near-static objects

and combining it with the proposed dynamic sense-and-avoid pipeline. The

final goal is to provide an avoidance system to evade both types of obstacles

with large-scale flapping-wing robots. The work in [41] proposes a stereo vision

method to evade static obstacles with a small flapping-wing robot. It integrates

a lightweight custom-made vision system to extract grayscale stereo-images

and compute disparity maps with the static obstacles. A similar approach

may be followed to detect near-static obstacles using either event-based or

traditional computer vision. Using stereo cameras benefits dynamic and static

obstacle detection as the objects’ depth can be estimated without requiring

prior information from their shape [103]. Another approach may focus on fusing

measurements from a depth camera and an event vision sensor [104]. In this case,

depth information is directly obtained without increasing the computational

cost of estimating it. However, these approaches require additional hardware
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to mount on ornithopter robots, which typically report very limited payload

capabilities.

• A general intrusion monitoring approach. Chapter 5 presents an event-

based method to detect moving intruders on multirotors. The approach aims at

performing Intrusion Monitoring (IM ) while the platform hovers and maintains

the desired pose. Under these conditions, events are mainly triggered by the

intruder’s movement and the motion of the platform. The latter is principally

due to the rotor vibrations and the motions performed by the platform to keep

its desired pose. The current method does not include a module to detect

moving intruders while the robot performs medium and fast flight. This entails

further challenges as the robot and the intruder may move at similar velocities.

The method proposed in Section 5.3 assumes that intrudes move at a higher

speed than the robot. Future work aims at extending the capabilities of the

proposed algorithm to perform intrusion detection while the camera describes

medium and fast motions. Some works have proposed solutions for this particular

problem [84] [101] [189]. However, they include either optimization steps [84]

[101] that hinder real-time detection, or Deep Learning (DL) solutions [189]

that require specific hardware. The future IM approach focuses on detecting

obstacles in real-time, as it is one of the main requirements for IM, while running

in lightweight processors suitable for aerial platforms.

• A wider perception dataset for ornithopter perception. Section 6.4

of this Ph.D. Thesis presents a perception dataset collected on a large-scale

ornithopter. The dataset provides useful information for event-based and frame-

based monocular perception. However, it misses relevant sensing information for

robot perception such as depth data, stereo images, and high-resolution RGB

(Red, Green, Blue) frames. These data are particularly useful for implementing

and validating perception algorithms for 3D reconstruction, mapping, Visual

Odometry (VO), and object detection. For instance, ground truth depth in-

formation is required for evaluating the quality of 3D reconstruction methods.

Besides, depth measurements and robot poses can be fused to compute ground
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truth optical flow [195]. Moreover, stereo-visual information is used in several

works [196] [53] [197] to simplify and improve the performance of VO and 3D

reconstruction methods. Additionally, RGB frames are preferred to extract

additional information of the scene. For instance, some perception approaches

use color information to simplify the detection of specific objects in the scene

[198]. This future work aims at providing a wider dataset for robot perception

on ornithopters that serves as a general benchmark for validating frame-based

and event-based perception algorithms. The development of the dataset requires

flapping-wing platforms with a higher payload to mount the missing sensors

(e.g., depth and stereo cameras) while maintaining its maneuverability. Further,

it may require large capacity boards to simultaneously collect the information

from all sensors. This dataset may be collected using the next generation of

the GRIFFIN ornithopters, which aim at providing flapping-wing robots with

higher payload and maneuverability for aerial robot applications.

• Stabilizing event data for flapping-wing robot perception. The flapping

strokes produced by ornithopters represent an additional challenge for aerial

robot perception. They generate perturbations in the camera frame causing

motion blur in standard frames and triggering additional events [42]. The

event-by-event methods of Chapters 3 and 4 integrate ASAP [100] to control

event packaging, and analyze current and previous event information to provide

more stable perception estimations. However, these algorithms require a careful

tuning process to enhance their performance based on the robot specifications

and the scene configuration. Flapping stroke perturbations may be reduced

by stabilizing the camera motion. For instance, the work in [146] proposes a

mechanical stabilizing system for a large-scale flapping-wing robot. It uses two

actuators to stabilize the pitch and roll variations on the camera orientation.

However, the installation of a mechanical stabilizer on a flapping-wing robot is

constrained by the payload of the platform and its power capacity. Future work

focuses on implementing an event stabilization algorithm that behaves similarly

to an electronic stabilizer [199], and studying its advantages for aerial robot
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perception. The algorithm aims at reducing the additional events displacement

caused by external disturbances such as flapping strokes. It would be particularly

useful for methods relying on event images by providing sharper edges compared

to frames obtained with non-stabilized events. Preliminary results of this research

have been presented in [65], where the stabilization algorithm prevents large

event displacements on samples of the dataset described in Section 6.4 (i.e., The

GRIFFIN perception dataset [43]). Current work focuses on proposing a general

framework for event stabilization and exploring its additional advantages for

ornithopter perception.

• Visual odometry for flapping-wing robots. This Ph.D. Thesis proposes

low-level and high-level perception approaches validated on multirotors and

ornithopters. However, there are still many perception topics to be addressed by

event-based perception for aerial robots. For instance, the current literature lacks

approaches that focus on the problem of estimating the motion of ornithopters

during flight using either standard or/and event cameras. The validation of

the dataset in Section 6.4 depicts an initial result of performing Visual Inertial

Odometry (VIO) using grayscale frames collected on a flapping-wing robot.

This problem entails several challenges including the restricted payload of the

platform to mount powerful processors and the vibrations produced by the

flapping strokes. Future work aims at studying the Visual Odometry (VO)

problem in flapping-wing robots using event-based vision. The solution could

fuse information from standard and event cameras as in [90] together with

inertial measurements for Visual Intertial Odometry [200]. Recently, some works

have addressed the problem of estimating the camera position using event-based

monocular [201] and stereo VO [202] [197]. These works could serve as an

inspiration for the development of an event-based VO solution for ornithopters.
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[63] J. P. Rodŕıguez-Gómez, M. Di Cicco, S. Nardi, and D. Nardi. Mapping infected

crops through uav inspection: The sunflower downy mildew parasite case. In

Advances and Trends in Artificial Intelligence. From Theory to Practice, pages

495–503. Springer International Publishing, 2019.
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