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Resumen

Esta tesis se ha elaborado durante el desarrollo de proyectos de investigación
competitivos que tienen en común la promoción del uso de modelos matemáticos
de optimización para la toma de decisiones en ámbitos de gran complejidad
por la concurrencia de intereses diversos y, a menudo, contrapuestos (como los
de los usuarios, las empresas de transporte y la administración), la existen-
cia de múltiples condicionantes (debidos a una capacidad limitada, la obligada
disponibilidad de ventanas temporales para poder realizar el servicio ofertado
o la limitaciones de distancia para garantizar la cobertura del servicio) y, por
último, la consideración de variables exógenas (como el comportamiento no de-
terminista del usuario en su toma de decisión, la ocurrencia de episodios de
congestión del tráfico en horas punta, la posibilidad de utilizar intermodalidad
en los desplazamientos). Los problemas en la planificación del transporte den-
tro de estos ámbitos de gran complejidad requieren de formulaciones novedosas,
si bien pueden estar basadas inicialmente (o al menos, inspiradas) en aquellas
que en contextos similares han demostrado eficacia y eficiencia, tanto desde la
perspectiva del uso de modelos exactos como la proporcionada por medio de los
heuŕısticos (incluyendo metaheuŕısticas y matheuŕısticas).
Los problemas de localización y los de transporte comparten en sus formula-
ciones un origen común procedente del ámbito de la optimización matemática,
caracterizado por el uso de variables de naturaleza diversa (continua, entera
o binaria) para construir funciones objetivo compatibles, preferentemente, con
un comportamiento lineal. La versatilidad que proporcionan las variables de
decisión introducidas permiten representar mediante manipulación algebraica
las restricciones caracteŕısticas que están presentes en tales modelos de opti-
mización. Además de las restricciones, es posible describir, también mediante
adecuadas expresiones algebraicas de dichas variables, las posibles estrategias
a seguir por parte de los agentes intervinientes (usuarios individuales, adminis-
tración o empresas).
Un modelo de optimización paradigmático por su versatilidad en poderse adap-
tar a un gran número de contextos reales y por sus posibilidades de extensión
(añadiendo nuevas ĺıneas de restricción para la búsqueda de soluciones, incor-
porando niveles complementarios de optimalidad y/o modificando la linealidad
de las expresiones algebraicas) es el denominado problema mochila (KP). En la
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mayoŕıa de las soluciones propuestas a los problemas analizados en esta tesis, los
problemas mochila han constituido una herramienta útil para su formulación.
Esta es la razón por la que en la memoria de tesis se hace referencia a dicho
problema de optimización combinatoria.
En cuanto a los contextos reales analizados desde la perspectiva de la opti-
mización matemática, hemos de admitir que el centro docente donde el doc-
torando se ha formado (Departamento de Matemática Aplicada de la Escuela
Técnica Superior de Arquitectura de la Universidad de Sevilla) ha tenido una
innegable influencia:

- El diseño de ĺıneas de tránsito rápido se ha planteado desde una novedosa
perspectiva consistente en adquirir un mayor nivel de cohesión territo-
rial, minimizando la necesidad de la movilidad debida a desplazamientos
obligados por la existencia de desequilibrios territoriales.

- La búsqueda de soluciones para la localización efectiva de contenedores de
residuos y el despliegue eficiente de rutas de recogida de carácter selectivo
se ha complementado con la consideración adicional de un comportamiento
solidario por parte del usuario que, convenientemente motivado, podŕıa
estar dispuesto a depositar su demanda de recogida de residuos en un
punto diferente al más cercano.

- La planificación de servicios de recogida de residuos no habituales me-
diante contenedores itinerantes de múltiples compartimentos (ecopuntos)
se ha analizado en un caṕıtulo separado, donde se han formulado mode-
los de optimización para diferentes estrategias de resolución que han sido
comparadas en términos de eficiencia.

- El despliegue de electrolineras basado en la previa existencia de una red de
gasolineras convencionales es otro de los problemas abordados en esta tesis
y en el que se ha aportado como novedad la concurrencia de la perspectiva
de la administración gubernamental, que exige que el número de puntos de
recarga eléctrica proporcione una cobertura reforzada a los usuarios que
emprendan un viaje a lo largo del territorio, y los intereses empresariales,
seleccionando las localizaciones más prometedoras debido al flujo de viajes
que pasa por ellas.

- Las restricciones de accesibilidad a los actuales centros urbanos en veh́ıculos
motorizados de uso privado han sido tratadas en otro de los caṕıtulos de
la tesis, aportándose un modelo de decisión para la elección óptima de
una instalación park-and-ride que combina criterios de distancia a des-
tino, tiempos de viaje sometidos a la fluidez del tráfico, posibilidad de uso
de intermodalidad y disponibilidad de plazas libres de aparcamiento.

- Finalmente, la gestión del tiempo de espera de los usuarios en los nodos
de la red de transporte puede generar interesantes estrategias para la op-
timización de tiempos de viaje, tanto en términos globales (reduciendo el
número de paradas intermedias para favorecer el tiempo de recorrido de
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la mayoŕıa de los pasajeros), como individuales (aguardando en un nodo
que el arco que proporcione la salida del nodo pueda ser transitable en un
tiempo sensiblemente menor).

Esta tesis doctoral comienza con un caṕıtulo inicial donde se introducen con-
ceptos claves para entender la temática que se expone. Dicho caṕıtulo 0 incluye
una breve descripción de los contenidos de los tres caṕıtulos que la componen,
y concluye enumerando las principales publicaciones derivadas de tales con-
tenidos. Las personas que, junto con el doctorando y el director de la tesis, han
contribuido a la difusión de los resultados de esta investigación son las siguientes:

• Soly Ventura Pérez (Universidad de Sevilla, España).

• Juan Antonio Mesa López-Colmenar (Universidad de Sevilla, España).

• Miguel Ángel Pozo Montaño (Universidad de Sevilla, España).

• Giuseppe Bruno (University of Naples Federico II, Italia).

• J. David Canca Ortiz (Universidad de Sevilla, España).

• Eva Barrena Algara (Universidad Pablo de Olavide, España).

• Guido Marseglia (University of Salento, Italia).
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Abstract

This thesis has been developed during the competitive research projects aimed
at promoting the use of mathematical optimization models for decision-making
in complex contexts where there are often conflicting interests (such as those of
users, transportation companies, and administration), multiple constraints (due
to limited capacity, required availability of time windows to perform the offered
service, or distance limitations to ensure service coverage), and exogenous vari-
ables (such as the user’s non-deterministic behavior in decision-making, traffic
congestion episodes during peak hours, and the possibility of using intermodal-
ity in travels). Planning transportation within such complex contexts requires
innovative formulations, which may be initially based on those that have proven
effective and efficient in similar contexts, using both exact and heuristic models
(including metaheuristics and matheuristics).
Location and transportation problems share a common origin in mathematical
optimization, characterized by the use of variables of different nature (continu-
ous, integer, or binary) to construct compatible objective functions, preferably
with linear behavior. The versatility provided by the introduced decision vari-
ables allows representing the characteristic constraints present in such optimiza-
tion models through algebraic manipulation. In addition to constraints, possible
strategies to be followed by the involved agents (individual users, administra-
tion, or companies) can also be described through suitable algebraic expressions
of those variables.
A paradigmatic optimization model due to its versatility to adapt to a large
number of real contexts and its possibilities of extension (by adding new lines
of constraint for solution searching, incorporating complementary levels of op-
timality and/or modifying the linearity of algebraic expressions) is the so-called
knapsack problem (KP). In most of the proposed solutions to the analyzed
problems in this thesis, the knapsack problems have been a useful tool for their
formulation. This is why the thesis references this combinatorial optimization
problem.
Regarding the real contexts analyzed from the perspective of mathematical op-
timization, we must admit that the academic center where the Ph.D. student
has been trained (Department of Applied Mathematics of the Technical School
of Architecture at the University of Seville) has had an undeniable influence:
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- The design of fast transit lines has been approached from a novel perspec-
tive of acquiring a higher level of territorial cohesion, minimizing the need
for mobility due to forced displacements caused by territorial imbalances.

- The search for solutions for the effective location of waste containers and
the efficient deployment of selective collection routes has been comple-
mented by the additional consideration of solidarity behavior by the user
who, suitably motivated, could be willing to deposit their waste collection
demand at a point different from the nearest one.

- The planning of non-habitual waste collection services through itinerant
containers with multiple compartments (ecopoints) has been analyzed in
a separate chapter, where optimization models have been formulated for
different resolution strategies that have been compared in terms of effi-
ciency.

- The deployment of electric charging stations based on the prior existence
of a network of conventional gas stations is another problem addressed in
this thesis, in which the perspective of the government administration has
been contributed as a novelty, which requires that the number of charg-
ing points provide reinforced coverage to users who undertake a journey
throughout the territory, and the business interests, selecting the most
promising locations due to the flow of travel that passes through them.

- The restrictions on accessibility to current urban centers in private motor
vehicles have been dealt with in another chapter of the thesis, providing
a decision model for the optimal choice of a park-and-ride facility that
combines criteria of distance to destination, travel times subject to traffic
flow, possibility of using intermodality, and availability of free parking
spaces.

- Finally, the management of waiting time for users at transport network
nodes can generate interesting strategies for optimizing travel times, both
in global terms (reducing the number of intermediate stops to favor the
travel time of most passengers), and individual terms (waiting at a node for
the arc that provides the exit from the node to be passable in a significantly
shorter time).

This doctoral thesis begins with an initial chapter where key concepts are intro-
duced to understand the topic that is presented. This chapter 0 includes a brief
description of the contents of the three chapters that compose it, and concludes
by listing the main publications derived from such contents. The people who,
together with the doctoral student and the thesis director, have contributed to
the dissemination of the results of this research are the following:

• Soly Ventura Pérez (Universidad de Sevilla, España).

• Juan Antonio Mesa López-Colmenar (Universidad de Sevilla, España).
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• Miguel Ángel Pozo Montaño (Universidad de Sevilla, España).

• Giuseppe Bruno (University of Naples Federico II, Italia).

• J. David Canca Ortiz (Universidad de Sevilla, España).

• Eva Barrena Algara (Universidad Pablo de Olavide, España).

• Guido Marseglia (University of Salento, Italia).
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Chapter 0

Introduction

0.1 Knapsack Problem

Introducing the Knapsack Problem

The Knapsack Problem (KP) is inspired by the preparation of the necessary
luggage that a mountaineer deposits in his knapsack to go on a trip. To prepare
the knapsack, the hiker will have a multitude of objects that will have more or
less utility throughout the trip but the storage capacity of the knapsack cannot
be exceed. Hence, the problem will consist of maximizing the benefit/utility
of the objects that the hiker carries in the knapsack without the weight of the
objects exceeding the maximum weight that the knapsack supports.
Formally it would be defined like this: We have an instance of the knapsack
problem for a set of objects with n items identify by j, each one of them with
a benefit pj and a weight wj , being the capacity value of the knapsack is
limited by c. The goal is to select a subset of this objects such that the total
benefit of the selected objects is maximized and the total weight does not exceed
c. Alternatively, KP can be formulated as a solution of the following Integer
Linear Programming (ILP) model:

(KP) max

n∑
j=1

pjxj (0.1)

subject to

n∑
j=1

wjxj ≤ c, (0.2)

xj ∈ {0, 1}, j = 1, . . . , n. (0.3)

Where xj ∈ {0, 1} are n binary variables that correspond to the selection in the
j-th binary decision to select (xj = 1) the object j to put it in the knapsack or
leave it outside (xj = 0).
Also, without loss of generality, let us assume that wj < c for any j = 1, . . . , n,
so that it can be ensured that each item under consideration is possible to fit
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into the knapsack and that it is checked that

n∑
j=1

wj > c, in order to avoid triv-

ial solutions. We will denote as x∗ = {x∗
1, . . . , x

∗
n} the optimal solution vector

and z∗ as the optimal value for the objective function. The set X∗ denotes
the optimal solution set, i.e. the set of elements corresponding to the optimal
solution vector.
The knapsack problem is one of the simplest optimization problems to under-
stand and to model, however, it is highly complex to solve. In fact, it is part of
Richard Karp’s list of 21 NP-complete problems. Note that Karp (1972) moti-
vated the study of NP-completeness and the inquiry into the famous question,
whether P = NP.
The Knapsack Problem has been widely studied since Mathews (1896) showed
that some constraints could be grouped into a single knapsack constraint. The
fact that the problem has been so well studied is that many industrial prob-
lems can be formulated as knapsack problems: loading packages for shipment
on vehicles, parallel computing of processors, stock-cutting, project selection
with budget control, menu optimization from a nutritional perspective, etc. to
mention a few examples. Furthermore, many combinatorial problems can be re-
duced to a KP model, and also the KP scheme frequently arises as a sub-problem
in integer linear programming algorithms. However, as it is frequently the case
with industrial applications, in practice several additional constraints, such as
urgency and priority of requests, time windows for every request, packages with
low weight but high volume, etc., have to be fulfilled. This leads to various
extensions and variations of the basic model. Because this need of extending
the basic knapsack model arose in many practical optimization problems, some
of the more general variants of the KP have become standard problems of their
own. Also, it should be noted that many more complex problem solving methods
employ the knapsack problem (sometimes iteratively) as a subproblem. There-
fore, a thorough study of the knapsack problem carries many advantages for a
wide range of mathematical models (Kellerer et al., 2004).
This has meant that different solution techniques have been addressed during
the last decades. Dantzig (1957) presented an efficient method to determine
the solution for the continuous version of KP (CKP), and therefore, provide
an upper bound for the discrete problem. Kolesar (1967) proposed the first
branch-and-bound (B&B) algorithm for KP. During the 70’s, the (B&B) meth-
ods continued being developed, thanks to which it was possible to solve problems
with a large number of variables. The best known algorithm from this period
is due to Horowitz (1978). Martello and Toth (1977) proposed the first up-
per bound that improved the value of continuous relaxation obtained for the
CKP. In the 80’s, research was oriented towards the search of solutions for large
problems. Balas and Zemel (1980) presented a new approach to solve the KP
considering, in many cases, only a small subset of the variables. From then
on, variants of the problem began to be studied, such as its bounded and non-
bounded versions, as well as the multiple-choice knapsack problem. Martello
and Toth (1990) published an exhaustive review of the different theoretical re-
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sults and solution methods existing up to that time.
New branching strategies for (B&B) approaches were developed by Morales and
Mart́ınez (2020); Yang et al. (2021). The sensitivity analysis to perturbations of
item profits or weight was studied by Hifi et al. (2005, 2008); Belgacem and Hifi
(2008); Pisinger and Saidi (2017). Improvements over existing Fully Polynomial
Time Appoximation Schemes (FPTAS) were developed by Chan (2018) and Jin
(2019).

Variants and Extensions of the Knapsack Problem

As we have commented in the previous section, KP is one of the most active
research areas of combinatorial optimization. In the year 2022, doing a Google
Scholar search for knapsack problem, there were more than 6000 publications,
Knapsack Problem - Google Académico (n.d.). Due to the simplicity of the
problem it has been modified and extended in many different ways. In this
section we will explain the most basic ones. Kellerer et al. (2004) has published
a book specifically dedicated to this area with many more variants of the KP.
For further and recent variants of the Knapsack Problem, the reader may refer
to the recent surveys Cacchiani et al. (2022a,b).
The first of the classic variants of the KP problem is the Subset Sum Problem
(SSP) which consists of finding a subset of the values wj whose sum is as close
as possible without exceeding a given target value c.

(SSP) max

n∑
j=1

wjxj (0.4)

subject to

n∑
j=1

wjxj ≤ c, (0.5)

xj ∈ {0, 1}, j = 1, . . . , n. (0.6)

SSP can be considered as a special case of the knapsack problem arising when the
profit and the weight associated with each item are identical. It has a multitude
of practical uses: designing better lower bounds for scheduling problems (see
Guéret and Prins, 1999; Hoogeveen et al., 1994), solving combinatorial problems
(see Pisinger, 1999), formulated as a decision problem has a particular interest
in cryptography (see Kate and Goldberg, 2011).
Another consideration of the original problem arises if we do not consider all the
different objects but instead have bj copies of the same item and it is possible
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to select only a subset of them. Formally,

(BKP) max

n∑
j=1

wjxj (0.7)

subject to

n∑
j=1

wjxj ≤ c, (0.8)

0 ≤ xj ≤ bj , xj integer, j = 1, . . . , n. (0.9)

The resulting problem is called the Bounded Knapsack Problem (BKP). Classical
applications are given in the computation of the most profitable loading of a
ship or the space shuttle (see Gilmore and Gomory, 1966; Barry et al., 2003) and
for cutting problems (Gilmore and Gomory, 1965; Dyckhoff, 1990). A special
variant of KP is the Unbounded Knapsack Problem (UKP), it is also known as
integer knapsack problem where instead of a fixed number bj a very large or an
infinite amount of identical copies of each item is given. In this case, constraint
0.9 in BKP is replaced by

xj ≥ 0, xj integer, j = 1, . . . , n. (0.10)

Hu et al. (2009) reviewed exact and approximation approaches to the UKP
and Becker and Buriol (2019) reported the results of extensive computational
experiments on several exact algorithms from the literature for this problem.
The Multidimensional Knapsack Problem (MdKP) has d different capacities ci
and weight wij for the i-th capacity. Formally,

(MdKP) max

n∑
j=1

pjxj (0.11)

subject to

n∑
j=1

wijxj ≤ ci, i = 1, . . . , d, (0.12)

xj ∈ {0, 1}, j = 1, . . . , n. (0.13)

Surveys devoted to the MdKP have been published by Fréville (2004); Fréville
and Hanafi (2005); Laabadi et al. (2018).
The Multiple Knapsack Problem (MKP) is the natural generalization of the KP.
The goal of the MKP is to select m disjoint subsets of items so that the total
profit of the selected items is a maximum, and each subset is assigned to a
knapsack whose capacity is no less than the total weight of the items in the
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subset. MKP can be formulated as follows:

(MKP) max

m∑
i=1

n∑
j=1

pjxij (0.14)

subject to

n∑
j=1

wjxij ≤ ci, i = 1, . . . ,m, (0.15)

m∑
i=1

xij ≤ 1, j = 1, . . . , n, (0.16)

xij ∈ {0, 1}, i = 1, . . . ,m; j = 1, . . . , n.

MKP has also many variants and applications, one of the most interesting for its
use in real applications is the Multiple Knapsack Assignment Problem (MKAP)
formulated by Kataoka and Yamada (2014) as an extension of the MKP in which
the item are partitioned into disjoint sets and each knapsack may only have as-
signed items from one of the sets in the partition. Dimitrov et al. (2017) studied
the variants that arise in emergency reallocation and Homsi et al. (2021); Simon
et al. (2017) tackled a variant arisen in military and humanitarian situations
which involves loading constraints.
Another variant appears if an item j has a corresponding profit pjj and an ad-
ditional profit pij which is redeemed only if item j is transported together with
another item i that may reflect how well the given items fit together. This prob-
lem is expressed as the Quadratic Knapsack Problem (QKP) which is formally
defined as follows:

(QKP) max

n∑
i=1

n∑
j=1

pijxixj (0.17)

subject to

n∑
j=1

wjxj ≤ c, (0.18)

xj ∈ {0, 1}, j = 1, . . . , n.

A thorough review of the QKP was provided by Pisinger (2007). Kellerer and
Strusevich (2010) presented a FPTAS for a variant of the QKP, the Symmetric
Quadratic Knapsack Problem (SQKP), which has several applications in ma-
chine scheduling. Schulze et al. (2020) introduced the Rectangular Knapsack
Problem (RKP) as a special case of the QKP in which items have profit pj = 0,
weight wj = 1, and the extra profit has the form pij = aibj with (a1, . . . , an)
and (b1, . . . , bn) positive integer vectors.
The Bin Packing Problem (BPP) can be considered as a variation of the KP if
all the profits are 1, we will try to maximize the number of items which would
not exceed the knapsack capacity, and if we have a number of containers (of the
same size), and we wish to pack all n items in as few containers as possible, we
get the bin packing problem, which is modelled by having indicator variables
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yi = 1 if container i is being used. This problem can be modelled as follows:

(BPP) min

n∑
i=1

yi (0.19)

subject to

n∑
j=1

wjxij ≤ cyi, i = 1, . . . , n, (0.20)

m∑
i=1

xij = 1, j = 1, . . . , n, (0.21)

xij ∈ {0, 1}, i = 1, . . . , n; j = 1, . . . , n.

yi ∈ {0, 1}, i = 1, . . . , n.

A review of exact approaches for this problem has been presented by Delorme
et al. (2016), while an exhaustive treatment of approximation algorithms ca be
found in Coffman et al. (2013).

0.2 Measuring the urban sprawl

The analogy between city and information theory was developed in the 1960’s,
providing through the concept of urban entropy various formal approaches to
generate simulation models that explain the interaction between the origins and
destinations within the city, caused by the functional heterogeneity of the dis-
tricts.
Shannon’s entropy formula measures the diversity of information in a message
(Shannon, 1948). Logically, the greater the diversity of data provided in a
message, the greater the difficulty in predicting the exact meaning of the trans-
mission. Margalef (1991) used a mathematical expression of the entropy to
calculate the diversity of species in an ecosystem. He assimilated the different
species to symbols of a message, so that the quantity of information of that
message is equal to the diversity of species. Note that, if we assume that the
different existing species are adapted to the environment, the measure of the
diversity gives us also an idea of the degree of the organization of the ecosystem.
Later, this methodology has been used by other authors to assess the organiza-
tion degree or complexity of the urban context. Instead of species, the symbols
are activities (trades, facilities, offices, services, etc.) and Shannon’s entropy is
conveniently used as an effective technique for monitoring and measuring the
urban sprawl (Yeh and Li, 2001).
For this purpose, Shannon’s formula measures the diversity of activities existing
in the i-th zone and also the global entropy of the city for a given splitting into
urban districts. Formally,

Hi = −
m∑

k=1

pik · log2(pik); H =

n∑
i=1

Hi (0.22)

where
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• Hi is the entropy of the i-th zone (or urban district).

• pik is the probability or proportion of the k-th variable (activity) in the
i-th district.

• m is the total number of zone variables that have been analyzed.

• H is the whole entropy of the city.

• n is the total number of districts considered.

As is emphasized in Coward and Salingaros (2016), the city can be understood
as a complex system where there is a continuous exchange of information in the
form of flows of people, goods, situations, data, etc. (i.e. species, characteristic
variables). Note that the organization of such a system is all the more complex
the greater the number of species, and, therefore, diversity can be understood
as an organization measure. In that sense, the greater the value of the entropy,
the greater the degree of the system organization. In addition, discontinuities in
the urban context of the territory represent obstacles to the flow of information.
As a result of the increase of accessibility, the interconnection between two
zones through a rapid transit system will lead to, in the medium and long
terms, the territorial cohesion between both and the effective compensation of
its characteristic variables.
As a real application of his thesis, Sierra (2009) elaborates a zonal division
of the city of Glasgow based on a collection of data concerning to the uses
of the buildings, number of floors and diversity of commercial establishments.
Moreover, Sierra (2009) emphasizes the influence that some zones, provided with
high levels of urban entropy, can induce over their adjacent ones. For instance,
a district of high complexity transfers such characteristic to the adjacent cells,
through connecting streets as influence corridors. The lowest the travel time
between adjacent cells, the highest the degree of complexity is transferred.
Walker et al. (2011) analyzed the urban areas of La Serena-Coquimbo (Chile)
according to the number of services covered at walking distances less than 10
minutes. Empirically, they show in that paper that the higher the entropy level
of the zone, the lower the energy consumption and, from an urban perspective,
propose the formation of small poly-centers of multi-services (more than three
different services) that cover, with the help of a rapid transit system, an area of
urban population of approximately 78 ha.

0.3 Shortest path problems

The shortest path problem is a classic problem in computer science and op-
erations research that involves finding a path with the minimum distance or
cost between two vertices in a graph. Vertices can represent physical locations,
cities, network nodes, or any other abstract adimensional objects, while edges
can represent its connections between these vertices weighted by means of dis-
tances or costs.
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The shortest path problem is widely used in various real-world applications, in-
cluding transportation, logistics, network design, and telecommunications. For
instance, when planning a route in a road network, vehicle navigation systems
usually provide the option of choosing among several different optimization cri-
teria, or cost functions, such as a shortest route which can exhibit preference
to highways or avoiding toll highways. In real-life scenarios, the quality of a
planned route is influenced by the presence of traffic jams along the suggested
itinerary. Information on traffic jams, road works, and incidences which can
affect the road conditions can be received via smart-phone applications, so that
the database, which describes the cost of crossing every arc in the road network,
remains continuously updated in the GPS navigation system.

There are several algorithms for solving the shortest path problem, including
Dijkstra’s algorithm, Bellman-Ford algorithm, A* algorithm, and others. Dijk-
stra’s algorithm, described by Dijkstra (1959), is a popular method for finding
the shortest path in a graph with non-negative edge weights. The Bellman-Ford
algorithm, first presented by Bellman (1958), is useful for finding the shortest
path when some of the edge weights are negative. The A* algorithm, first pro-
posed by Hart et al. (1968), is a combination of Dijkstra’s algorithm and a
heuristic function, that function takes a node as input and returns a value that
corresponds to the cost to reach the target node from that node. In each itera-
tion, the graph traversal is continued from the node with the lowest combined
cost.
In addition to these algorithms, there are also several variations of the shortest
path problem, for instance over a large dynamic network in real-time where the
cost of an arc is the travel time of it, and their objective is to find paths having a
minimum length with respect to time-dependent travel costs. Cooke and Halsey
(1966) proposed a shortest path problem in networks where costs for traversing
nodes were included. Dreyfus (1969) proposed a modification of the Dijkstra’s
static shortest path algorithm to calculate shortest paths between two nodes
for a given departure time, by assuming that the travel times on the arcs are
positive integers for every time period.
From a multiobjective perspective, Martins (1984) developed a multiple label-
ing version of Dijkstra’s label setting algorithm to generate all Pareto shortest
paths from the source node to every other node in the network. In Hamacher
et al. (2006) the classical shortest path problem by considering two objective
functions in a setting of time-dependent data has been generalized. In that pa-
per, a complete survey of the relevant literature is provided and an algorithm
for the time-dependent bicriteria shortest path problem with non-negative data
is developed.
The multimodal shortest path problem consists of finding a path from an origin
to a destination while the total associated cost is minimized by means of the use
of several transportation modes, such as a personal car, taxi, subway, tram, bus,
and walking. Modesti and Sciomachen (1998) introduced an approach based on
the classical shortest path problem for finding multi-objective shortest paths
in urban multimodal transportation networks, taking the overall time-cost and
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the users’ inconveniences into consideration. In a multimodal network, a node
represents a place where one has to select between continuing with the current
mode or changing it. A change of mode or modal transfer is represented by an
arc called transfer arc. An arc connecting two nodes by only one travel mode
is called travel arc. In Lozano and Storchi (2001) label correcting techniques
in an ad hoc multimodal shortest path algorithm to find the shortest viable
path have been introduced. Those paths with illogical sequences in the use of
transportation modes are eliminated in order to reduce the complexity of the
connection graph. The same authors have extended their algorithm to calculate
the viable hyperpath (Lozano and Storchi, 2002). Finally, the problem of find-
ing the non-dominated viable shortest paths, considering the minimization of
both the travel time and the number of modal transfers is addressed in Artigues
et al. (2013).

0.4 Park-and-ride

Park and ride is a transportation management strategy that encourages drivers
to park their cars in designated areas outside of a congested urban center and
continue their journey using public transportation, such as buses, trains, or light
rail. The idea behind park and ride is to reduce traffic congestion, improve air
quality, and make public transportation more accessible and convenient for peo-
ple who live in suburban or rural areas.
Park and ride facilities typically include ample parking spaces, sidewalks, bike
racks, and other amenities to make it easy and safe for drivers to leave their cars
and transfer to public transportation. These facilities can be located at transit
hubs, shopping centers, or other convenient locations and are often strategically
placed near major highways or transportation corridors to minimize travel time
and increase the likelihood of attracting users.
Park and ride has been widely implemented in many cities around the world
and has been shown to be an effective way of reducing the number of cars on the
road and increasing the use of public transportation, see for instance Parkhurst
and Richardson (2002); Zijlstra et al. (2015). It can also help to address the
first-mile/last-mile problem in public transportation, which refers to the chal-
lenge of getting people from their homes to a transit stop and from a transit
stop to their final destination.
From the attractiveness of a park facility perspective, there are several vari-
ables related to the setting of park-and-ride facilities, namely location, size, and
price. In order to fix these variables the behavior decision of potential users has
been extensively studied. In fact, several studies discuss the users’ preferences
complexity for choosing park-and-ride (see, e.g., Bonsall and Palmer, 2004).
Most parking choice models have applied logit models with data from stated
choice surveys, conducted on resident and non-resident drivers. For example,
in Hess and Polak (2004) parking choice based on a stated preference data set
in the center of several cities of the United Kingdom using mixed logit models
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have been investigated. In Habib et al. (2012) the relationship between parking
choice and an activity scheduling process based on data coming from a survey
conducted in Montreal have been explored. Based on Decision Field Theory,
in Qin et al. (2013), with the objective of assisting policymakers for planning
park-and-ride facilities, decision behavior have been analyzed. In Ibeas et al.
(2014) a mixed logit, that includes three parking scenarios and three variables:
parking access time, parking fee and final time to destination, has been used
to study drivers’ behavior. On the other hand, factors affecting mode change
behavior of commuters were explored by using a multinomial logit in Islam et al.
(2015).
The evidence has shown that the attractiveness of a parking facility is related to
different cost attributes that can be combined with relative importance weights
to build an overall measure of disutility. In Thompson and Richardson (1998)
three types of costs were distinguished: (1) access cost including in-vehicle travel
time from the vehicle’s current location to the car park as well as the time spent
searching for an empty parking space, (2) waiting time cost that occurs when
drivers have to queue at a car park before being able to enter, (3) usage cost
associated with a car park. When assessing these costs, travel time cost on
foot or public transit to the destination would also have to be included. More-
over, the attractiveness of a parking lot depends on its condition, such as the
capacity and the chance of finding a vacant parking space (Hensher and King,
2001). Chen et al. (2014) propose a recommendation model to choose the best
station for park-and-ride users. Availability of parking space, target time to
the train stations, frequency of trains at stations, and service quality of stations
were the criteria chosen to estimate a departure station of a commuter line for
park-and-ride users. Besides, a fuzzy logic method is applied to estimate park-
ing availability. The paper by Du and Wang (2014) considers three modes of
transportation: only railway, only auto, and combined auto-railway with park-
ing. The applied criteria are times for each mode, operating cost for only auto
mode, crowding cost for the railway, parking fee, and railway fare. The study
aims at determining the share of each mode by a continuous equilibrium model
for the case of a continuum park-and-ride services along the corridor. The re-
lationship between prices and capacity of the parking lot has been studied in
Garćıa and Maŕın (2002), in which a bilevel programming model with the de-
cisions on size and fees at the upper level and the reaction of the users at the
lower level has been proposed. The problem is solved by simulated annealing.
Wang et al. (2020) minimize the system travel cost by controlling the supply
of parking-and-ride spots and parking permit numbers. The variables included
in the generalized costs are travel times, the number of commuters in each of
the three modes, parking fees and parking subsidies. Values of capacities, early
and late arrival times, both for auto and transit modes, are taken into account
in the coefficients. Specifically, the number of available places at each parking
facility for a given time could be estimated from the current occupancy, take
into consideration the observed evolution of this parameter in similar settings
of the reference day, and the proximity to peak hours of traffic (Hössinger et al.,
2014). In addition to these above mentioned research streams, several authors
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(see, for instance, Flinsenberg, 2004) have suggested improving the smart-phone
applications for navigating in the city to the optimal park-and-ride facility by
means of the incorporation of different aspects that have influence in the pref-
erences of the drivers, such as parking costs, occupancy rates, walking time, the
possibility of shuttle buses, etc.

0.5 Electric vehicle

Research on Electric Vehicle (EV) and its related infrastructure has gained mo-
mentum in the last decade. Ghosh (2022) classifies this researching activity in
five main areas, a) Needs assessment and gaps, b) Energy & Finance, c) Site
design standards, d) User experience and e) Locational models. Pagany et al.
(2019) presents an extensive overview as well as an in-depth review of the liter-
ature dealing with the location of Charging Stations (CS) for EV.
Types of economic approaches used to locate charging stations can be classi-
fied in theoretical models and empirical applications. Theoretical works have
concentrated on deriving mathematical models to assess locations for EV in-
frastructure with simulated data whereas empirical models focus on real spaces
with spatial characters often with georeferenced data and provide the results
obtained from different mathematical locational models. EV charging infras-
tructure site selection is a multiple criteria decision making problem as it is
determined by several factors often contradictory. One part of existing litera-
ture presents strategies for locating charging stations; in particular, which type
of CS and where should be placed those installations within a selected area or
along a road network are investigated. While some proposals attempt to iden-
tify those locations by calculating the spatial distribution of charging demand,
other studies aim to find the best CS location with an optimization approach
using traffic demand along road networks Ghosh (2022).
The location of electric charging stations is a much-discussed topic in the liter-
ature. Lee (2022) the location models that have been employed in charging fa-
cilities for EVs and alternative energy-powered vehicles are reviewed: p-median
problem, set covering problem, fixed charge location problem, and those based
on demand of Origin-Destination trips. Moreover, contributions regarding the
sizing problem of EV charging stations with different objective functions are
also examined.
Kuby and Lim (2005) introduced the Flow Refueling-Location Model (FRLM)
to maximize the impact of a given investment in refueling infrastructure for alt-
fuel vehicles. Such model optimizes the location of a given number of refueling
facilities within a network with the goal of enabling the maximum number of
trips by vehicles with a limited range. The most basic input to the FRLM is
a set of origin–destination (O–D) pairs and the flow volumes between them.
For each O–D pair, one must calculate the shortest path between origin and
destination and then determine all the combinations of facilities that can refuel
a round trip along that path. These combinations of refueling stations, and the
flow volume associated with each configuration, are evaluated by the FRLM’s
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mixed integer programming (MIP) formulation to determine optimal facility lo-
cations.
The FRLM is an un-capacitated model; it implicitly assumes that a single facil-
ity can refuel an infinite amount of flow. This may not be a realistic assumption.
To address this concern, Kuby and Lim (2007) introduces the capacitated flow
refueling location model (CFRLM) that limits the amount of flow that any fa-
cility can refuel. The objective consists of locating p stations on a network
to maximize the refueling of origin–destination flows. Due to the limited driv-
ing range of vehicles, network vertices do not constitute a finite dominating
set. Such authors propose to add candidate sites along arcs using minimax
and maximin methods. The maximin criterion is motivated by the idea of not
wasting candidate sites by putting any too close together, while the minimax
objective aims to avoid long arcs with no candidate sites. Nevertheless, none of
the methods reaches to generate a finite dominating set.
Upchurch et al. (2009) extended the FRLM by considering that only limited
number of vehicles can be refueled by a station. To formulate this constraint,
a variable was introduced to indicate the proportion of the traffic flow on each
path being refueled by each station combination.
Kim and Kuby (2012) study simple-path deviations (excluding cycles) from the
shortest paths. The deviations are calculated by a k-shortest path algorithm
before the model is solved until a predefined user tolerance deviation is reached.
Due to the preprocessing time in this deviation flow refueling location model is
excessive when deviations are considered in extensive networks, Kim and Kuby
(2013) propose a heuristic to solve realistic-sized problems.
Another formulation of the FRLM was proposed by Capar and Kuby (2012),
which does not require the pre-generation of all feasible station combinations.
For this purpose, authors introduced two binary variables on each node along
every path indicating whether a station exists at that node and whether a driver
at that node can reach another station further down the path without running
out of fuel.
A generalized maximum covering model is proposed by Wen et al. (2014b) for
the Flow Refueling-Location Problem (FRLP) without using extra variables as
in Capar and Kuby (2012) and without pre-generating facility combinations as
in the other maximum covering models. A set of sub-paths is defined for each
path, in such a way that if each of these sub-paths contains a replenishment
station, the entire path flow is captured.
Minimizing infrastructure cost has been dealt on Li and Huang (2014). Huang
et al. (2015) extend the set cover model by allowing shortest path deviations,
where the deviation paths are exogenously determined, and fuel level is still
tracked on every node.
Literature contains another type of contributions for the FRLP which is based
on the set covering problem. Wang and Lin (2009) presented a model to capture
all the traffic flow with least station location cost. In their model, a variable
is defined at each node on each path indicating the remaining amount of fuel
when vehicles reach that node, such that a trip can be refueled if the remaining
amount of fuel at each node along the path is non-negative.
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Wang and Wang (2010) consider that each node is associated with a population
and if a station is located in the node, the corresponding population is said to
be covered. For this context, the authors extended the FRLP model to multiple
objectives: to minimize the cost of locating the stations and also to maximize
the coverage of the population.
MirHassani and Ebrazi (2013) proposed a new formulation whose objective func-
tion changed to a maximum-covering in terms of a maximum-covering and more
constraints were added to the optimization model.
Special work has been done from the point of view of the company, maximizing
the flow captured or minimizing the cost of the infrastructures. Optimization
procedures employ both exact methods Asamer et al. (2016); Li et al. (2016);
Wang et al. (2016) as well as heuristic techniques Chen et al. (2015a); Hidalgo
et al. (2016); Salmon (2016); Sebastiani et al. (2016). They aim to find the op-
timal location for CS by minimizing total cost, reducing trip length, or waiting
time.
Furthermore, some studies deal with the interactions between electricity and
transport networks. In Riemann et al. (2015) an optimal location problem of
wireless charging facilities with a given number of wireless charging facilities
has been deployed combining the flow capturing location and the stochastic
user equilibrium model.
Zhang et al. (2016) study optimal planning of EV fast-charging stations con-
sidering the interactions between the transportation and electrical networks.
Authors propose the capacitated flow refueling location model (CFRLM) to
explicitly capture EV charging demands on the transportation network under
driving range constraints. Then, a mixed-integer linear programming model was
formulated for plug-in electric vehicle fast-charging station planning considering
both transportation and electrical constraints based on CFRLM.
The locations and sizes of fast-charging stations in a transportation network
should satisfy EV driving demands, while simultaneously ensuring the security
operation constraints of power systems, e.g., distribution line current limits and
nodal voltage limits. In addition, authors in this field consider that an appro-
priate fast-charging station planning method should minimize the investment
costs of both charging stations and corresponding power grid upgrades.
In Li et al. (2016) a multi-period multipath refueling location model has been
developed to expand EV charging network to dynamically satisfy OD trips and
determined the cost-effective station rollout scheme on both spatial and tempo-
ral dimensions.
In Xiang et al. (2016) a solution has been proposed to integrate EV and op-
timally determine the siting and sizing of charging stations (CSs), considering
the interactions between power and transportation industries.
In Motoaki (2019) only a location problem with the objective of providing a
geographical coverage of the demand is considered. In this case, the objective
is to have a maximum number of EVs with access to a potentially available sta-
tion, and the charging station locations are uncorrelated to the charging station
sizes.
Sun et al. (2020) used a mixed-method approach, with location of fast charging
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stations for vehicle interception and a node-based approach to place slow charg-
ing stations in places where a long charging time is acceptable.
Bilevel modeling has also been used in the literature to study different objec-
tives in the location of charging stations. Jing et al. (2017) developed a bi-level
model to maximize coverage of EV flows by deploying a given number of charg-
ing stations on a network with mixed conventional vehicles and EVs.
Zheng et al. (2017) used the bi-level structure to optimally locate charging sta-
tions to minimize travel time and energy consumption while considering traffic
equilibrium. Guo et al. (2018) developed a bi-level integer programming model
to locate charging stations in the manner of minimizing the construction cost
and deviation cost while maximizing the number of served EV by the charging
service.
He et al. (2018) proposed a bi-level programming model with the consideration
of EV’s driving range, for finding the optimal locations of charging stations: the
upper level is to optimize the position of charging stations to maximize the path
flows that use the charging stations, while the user equilibrium of route choice
with the EV’s driving range constraint is formulated in the lower level.
Makhlouf et al. (2019) developed a bilevel problem where the upper-level prob-
lem is a max-cover type station location and sizing problem, and the lower-level
problem represents the preference of EV user behavior in terms of making the
minimum number of stops to reach their destination.
Huang and Kockelman (2020) considered congested travel flows and congested
stations under elastic demand to maximize profits of electric vehicle charging
station owner by means of a genetic algorithm.
Tran et al. (2021) developed a bi-level program to determine the optimal location
of public fast-charging stations while simultaneously considering heterogeneous
vehicle classes, the installation cost of charging stations, link congestion and
route choice behaviors of travelers with multiple recharging locations.

0.6 Vehicle Route and Bin Packing Problems in
waste collection management

Waste collection and transportation problems are one of the most difficult op-
erational issues in the development of an integrated waste management system
(Nuortio et al., 2006; Franca et al., 2019). Eiselt and Marianov (2015) provide
a survey of 64 studies on the landfill siting problem that include applications
across the world, for which the main aspects of interest of the contributions are
summarised in a complete table (see Ref. Eiselt and Marianov, 2015), by select-
ing country, technique, criteria, objectives, and type of facility to be located.
Furthermore, the intrinsic nature of Municipal Solid Waste (MSW) collection
relates to the development of effective vehicle route models that optimise the
total travelling distance of vehicles, environmental emissions, and investment
costs (Apaydin and Gonullu, 2011). Vehicle Routing (VR) is a scheduled pro-
cess that enables vehicles to load waste at collection sites and to dump it at a
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landfill with the result being oriented by a single objective or multiple objectives
(Tung and Pinnoi, 2000).
In real-life scenarios, the waste collection system is distributed across a set of
zones. Each zone has an associated starting and ending node. These nodes are
used for vehicle routes and landfill points where the rubbish collected in the
visited containers can be delivered. A planning horizon must also be considered
in order to schedule a sequence of services within its bounds. A succession of
routes (one per day, belonging to the same or to different distribution zones and
performed by the same vehicle along the planning horizon) is called a circula-
tion.
Yeomans (2007) underlined the importance of using a mathematical approach
in the sustainable waste collection and transportation in urban areas. Mohs-
enizadeh et al. (2020) developed a mathematical model in order to reduce pol-
lutant emissions from vehicles during the collection of waste, while considering
the Ankara case.
Teixeira et al. (2004) analysed the Vehicle Routing Problem (VRP) while sep-
arating the collection of paper, glass, plastic, and metal waste materials. Their
model is based on three stages: the definition of a zone for every truck; the
identification of the type of waste to be collected every day; and the choice of
the points to visit and of the sequence order.
Bing et al. (2014) investigated the plastic waste collection problem based on
eco-efficiency terms of the proper balance between environmental impacts, so-
cial issues, and costs. They modelled the urban plastic waste collection based
on a VRP. Different cases were considered by analysing key factors, such as
the type of truck, collection frequency, and collection method. These authors
solved the VRP by means of a tabu search algorithm capable of solving real
cases. Their results showed that, based on the proposed algorithm, the eco-
efficiency performance of the current collection paths could be improved by 7%.
Beliën et al. (2014) presented a review of solid waste management problems
where VRPs are classified into several categories. Han and Ponce Cueto (2015)
provided a detailed analysis of the VRP for waste collection.
The most efficient methods of VR and Bin Packing (BP) problems are based
on heuristic and metaheuristic solution models, Willemse and Joubert (2016);
Corberán and Prins (2010); Paquay et al. (2018). Buhrkal et al. (2012) applied
an Adaptive Large Neighbourhood Search (ALNS) metaheuristic to solve the
waste collection with time windows for various real cases. Their objective aims
to minimise the distance driven which was also linked to a reduction in fuel con-
sumption and pollutant emissions. Akhtar et al. (2017) developed a modified
Backtracking Search Algorithm (BSA) in Capacitated Vehicle Routing Problem
(CVRP) models based on the “intelligent bin” idea to optimise path design in
the waste management system. Their results for four days presented a 36.80%
reduction in distance for 91.40% of the total waste collection, with an increase
of the mean waste collection efficiency of 36.78% and a reduction in fuel con-
sumption of 50%, in fuel cost of 47.77%, and in CO2 production of 44.68%,
respectively.
Kim et al. (2006) considered multiple disposal paths and drivers’ lunch breaks
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using an extension of Solomon (1987). Angelelli and Speranza (2002) presented
a tabu search algorithm to optimise the operating costs of various waste collec-
tion processes for two case studies.
Das and Bhattacharyya (2015) minimised the length of every waste collection
and transportation route. They proposed a heuristic methodology based on the
Travelling Salesman Problem (TSP) and obtained a reduction of approximately
30% of the total length of the waste collection route. Laporte et al. (2010) val-
idated a heuristic algorithm for a Capacitated Arc Routing Problem (CARP)
based on stochastic demand. In Perea et al. (2016) a Mixed Integer Linear
Programming (MILP) is developed so that decision about which collection sites
should be collected on each service day can be done by guaranteeing that no
container overflows, the amount of waste collected per service day is within a
given maximum deviation, and the collection sites visited on each service day are
close to each other, over a weekly planning horizon. The MILP proposed cannot
solve instances of realistic sizes and a clustering method, based on heuristics for
the TSP is proposed for this purpose.
More recently, Tirkolaee et al. (2018) investigated the periodic CARP by con-
sidering the work of the drivers and their crews in order to analyse the demand
change. Their model is based on an objective function for the minimisation
of the total transport route and total costs in terms of the number of needed
vehicles. A simulated annealing algorithm is employed to improve the solution
data.
By considering capacity, time, and distance restrictions, Willemse and Jou-
bert (2016) extended the VRP to deal with the problem of Waste Management
(WM). They proposed four heuristic models to compute feasible solutions for
the two issues of WM and VRP to minimise the total cost and/or the fleet
dimension. They analysed CARP under time restrictions with intermediate fa-
cilities, and carefully modelled the collection of waste, based on the development
of a constructive heuristic model.
A numerical approach based on MILP is proposed in Chu et al. (2005) and
considers the VRP for every period to reduce the number of trucks, and in turn
the total costs during a defined period. Mes et al. (2014) presented a heuris-
tic methodology based on the optimisation of various tunable parameters for
every day of the week. Thanks to their model, they obtained a cost reduction
of approximately 40% for a specific case study in the Netherlands. Son and
Louati (2016) developed a mathematical model that considered multiple trans-
fer stations for urban solid waste management. They validated their model by
applying it to a case study and obtained a reduction of path length and work-
ing hours of the trucks. Ghiani et al. (2012) investigated the issue of locating
waste collection points in urban areas. They developed a model to identify: the
optimal sites for the location of the waste collection bins; the required number
of bins; and the features of the bins sited at the various collection stations.
The results obtained from their numerical model based on heuristic procedures
demonstrated a reduction of approximately 62% for the waste collection points
and a decrease of approximately 73% of the number of bins allocated.
Recently, various researchers have underlined the importance of optimising not
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only the logistic aspects of VRP, but also the bin packing methodologies to
improve the performance of waste collection, Jank et al. (2015). Rodrigues
et al. (2016) based the kerbside collection of WM on the classification of the
bin components, truck components, and collection methods. They analysed the
collection frequency by considering one bin for the single packaging waste flow
(yellow colour for lightweight packaging; green for glass; blue for paper and
cardboard). Martinho et al. (2017) studied the importance of identifying the
proper recycling methods and analysed two different waste collection methods
for the recycling in 3 districts of Portugal. In their research, they highlighted
the importance of carrying out an itemised characterisation of the end waste
to identify the overall quantity of waste packaging material that can be re-
cycled. They defined certain key “performance recycling indicators”, such as
waste characterisation, recycling rate, and separate waste collection rate, and
also “logistic performance indicators”, such as the distance travelled by car to
collect waste, the number of workers involved in the collection, and the effective
collection time.
An eco-point container is actually a multi-compartment (block) vehicle. The
multi-product vehicle routing problem has been extensively researched in recent
years. A very important special case is the multi- compartment vehicle routing
problem (MCVRP) in which each compartment can only load a single type of
product. Applications of the MCVRP include the collection of hazardous ma-
terials (Paredes-Belmar et al., 2017a), inventories-routing (Coelho and Laporte,
2013), maritime logistics (Bertazzi et al., 1997), groceries distribution (Martins
et al., 2019), and milk collection (Paredes-Belmar et al., 2016, 2017b), among
others. A very recent review (Ostermeier et al., 2021) classifies the MCVRP ac-
cording to the kind of application, and regarding waste collection states: “across
all publications, single waste types are always collected completely by one ve-
hicle if a customer is visited, and therefore customer demands are not split”, in
section 2.4 this reflextion is assumed and a mathematical model is developed by
considering the posibility of several vehicles can visite a same customer while
selectively collecting waste.

0.7 Contributions

This PhD dissertation is divided into three main chapters. Chapter 0 offers a
basic background for the contents that are presented in the remaining chapters.
The main contributions of this PhD dissertation are the following:

Chapter 1. In this chapter, we have addressed three different problems related to
the issue of urban expansion and increasing traffic congestion. The first
problem involved locating a rapid transit line using new criteria that max-
imizes the global entropy of the metropolitan system, assuming that the
interconnection of two zones produces homogeneity of their urban charac-
teristics in the medium and long term. This reduces territorial disparities
that occur in sprawled cities. Additionally, we solved the problem for a
real case in the city of Seville with 47 zones using a greedy algorithm.
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In the next point, we modeled the problem of route design for a user whose
destination is in a zone with private traffic restrictions, such that there
are parking zones around that zone with connections to various modes of
public transportation or walking. We modeled this problem as an integer
programming problem that minimizes the total travel time, parking cost,
and the possibility of not finding a parking space (depending on occu-
pancy). In addition to considering all these attributes, our contribution
also consisted of considering different user profiles depending on the avail-
able information on the parking zones. We also solved the problem for the
city of Seville to empirically see the sensitivity of the model.

In the last point of this first chapter, we addressed the problem of trans-
forming conventional gas stations into electric charging stations. We ap-
proached the problem with a dual public-private perspective so that we
maximize the benefit with a maximum budget and ensure that all nodes
have an electric charging station nearby. In the case that a station is not
functional or cannot be considered for any reason, there is another station
nearby as an alternative. To solve this dual vision, we modeled the prob-
lem as a bilevel problem, reformulated it as a single-level problem, and
performed a computational experiment.

Chapter 2. In this chapter, we have addressed three different problems related to
urban waste collection. The Multiple Knapsack Model provides an appro-
priate theoretical framework for analyzing the territorial deployment of
fixed containers for selective collection of urban solid waste, as well as for
planning routes and stops for the so-called eco-points, i.e., waste contain-
ers with less frequent generation by society in the urban area and with
potential to be pollutants to the environment.

In the first and second points, we tackled the same problem of deploying
containers for selective urban waste collection. In the first point, we solved
the model, due to its complexity, with a greedy algorithm and carried out a
computational experiment in a real area with random data. In the second
point, we now consider that the user may have a cooperative behavior and
may go to throw the trash in a container that may not necessarily be the
closest. We modified the greedy algorithm to take this new version into
account and also carried out a computational experiment like the previous
one.

In the last point of this second chapter, we dealt with the problem of
eco-points, specifically, the problem of considering some mobile eco-points
and some waste-generating points, and determining the optimal route that
minimizes costs. Due to the complexity of the model, we proposed a
heuristic and carried out a computational experiment with the Sioux Falls
network.

Chapter 3. In this chapter, we have addressed two theoretical problems related to
efficient strategies aimed at minimizing wait times for users/operators in
transportation networks.
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In the first point, we developed a methodology for implementing a service
redistribution along a railway transit line, which must be carried out by
the operator by choosing new train schedules within a series of feasible
space-time windows previously established by the railway infrastructure
manager. The objective is to minimize the loss of users (minimizing wait
time), who may perceive a deterioration in the quality of service they have
been receiving until now.

In the second point, we have proposed a new algorithm to solve the short-
est path problem in a network but considering time-dependent arcs. We
have proposed to modify the original graph by exploiting those nodes that
belong to the time-dependent arcs, and with this new graph, we perform
the Dijkstra algorithm.
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Chapter 1

Providing cohesion to the
territory through the
location of collective
services

1.1 Introduction

In general, urban sprawl refers to certain forms of city spatial expansion toward
suburbs and peripheral areas with, low density, single-use, extensive road and
highway networks, car dependent, open up vast space of territory, scattered and
ribbon development in an mono-centric urban structure (Zhang, 2001), see for
example Figure 1.1.
From a socio-economic perspective, urban sprawl leads to excessive infras-

Figure 1.1: Example of a sprawled city. Suburbs of Scottsdale (Arizona).

tructure and public service costs, the decline of public space, reducing social
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cohesion, loss of a sense of community, loss of cultural values, increase of the
income inequality and polarization, traffic congestion, longer travel distances
and limited access, especially for non-driver people (Mosammam et al., 2017).
The increase in transport demand caused by the urban model of sprawled city
generates a massive use of the means of locomotion that saturate the roads des-
tined to mobility and produce periodic episodes of pollution (Bhatta, 2010).
To cope with urban sprawl, road traffic pollution and growing traffic conges-
tion, several cities throughout the world have turned to metro, rapid rail transit
(RRT) and light rail transit (LRT) systems with connections, on many occa-
sions with large parking areas located on the outskirts (park-and-ride) and the
promotion of the use of electric vehicles.
Building rapid transit systems requires long term commitments and sizeable
capital investments. What constitutes a good infrastructure configuration is
by no means obvious, due to planners, engineers, users, environmentalists, and
other interest groups do not, as a general rule, agree on a common set of ob-
jectives and constraints (Gendreau et al., 1995). The core problem consists of
designing a transit network capable of transporting a large number of people
efficiently and effectively. This problem is highly complex. Standard network
design techniques cannot easily be applied to such contexts because the problem
is typically of very large scale and involves non-linearities, as well as a multi-
plicity of criteria. It is more common for planners to generate a set of basic
scenarios that are later analyzed, modified and refined. Some authors have pro-
posed various indices to assess the topological configurations of rapid transit
systems (see, e.g. Refs. Musso and Vuchic, 1988; Laporte et al., 1994, 1997) but
such indices are more easily used as a way of measuring the quality of proposed
or existing networks than as a means of generating good solutions.
Maximizing the covered population by means the optimal location of stations
is a common objective (Dufourd et al., 1996) or combining that objective with
data on origin-destination demand (as proposed in Bruno et al., 2002). For a
survey on rapid transit network design, see Laporte et al. (2011).
In the sprawl city model, districts only serve for a residential function and they
are almost empty of other contents. The complexity of the urban setting is
based on the diversity of functions that are inside located (residence, education,
health, commerce, industry, etc.). Numerous researchers ensure that the short-
age of urban complexity, that the districts of a city exhibit, causes an increase in
traffic density (Salat and Bourdic, 2012). Assuming this hypothesis, promoting
the functional diversity of the districts should consistently imply a reduction in
the forced mobility of their inhabitants, while promoting territorial cohesion.
As can be seen, the design of rapid transit lines in urban contexts (metro, tram,
BRT), by using as main objective the maximization of the functional diversity
of the districts that are crossed by the infrastructure, is a problem that has not
been enough treated in the literature from a purely scientific perspective.
In section 1.2, maximizing the global entropy of the district system is proposed
as a design criterion for rapid transit lines.
Another key transport issues facing many countries in the world is the increase
in congestion in urban areas and their accesses, due to the heavy dependence
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on the use of private cars. Since park-and-ride facilities allow citizens to use
their cars for a part of the trip, while completing the rest by means of pub-
lic transportation, such facilities have been identified as a tool that can help
to reduce traffic congestion (Mesa and Ortega, 2001). During recent decades
increased attention has been paid to park-and-ride facilities. Reports com-
missioned by urban or transportation agencies of cities, metropolitan areas or
governments, and papers published in specialized journals have informed about
inquires and research related to several aspects of park-and-ride facilities. In
the report Gleave (2017) typical objectives of park-and-ride facilities are listed.
Searching-for-parking traffic comprises a significant amount of the total traffic
volume, with average values reported equivalent to 30–50% of the total traffic
volume at certain hours and districts (Arnott and Williams, 2017; Shoup, 2006;
Chaniotakis and Pel, 2015).
Holgúın-Veras et al. (2012) compare the generalized cost of the only drive trip
with that of using park-and-ride. The generalized cost for the only drive mode
is a combination of the in-vehicle cost, the value of time, and out-of-pocket
expenses, whereas that of the combined mode consists of in-vehicle and tran-
sit costs, the values of time, and out-of-pocket expenses both for the auto and
transit branches.
Hence, reducing the parking-search time could lead to significant improvements
in terms of travel time, production, traffic flows, fuel consumption, pollution,
and noise emission. This is one of the reasons why searching for parking process
has been investigated in recent years (see, e.g., Benenson et al., 2008; Kaplan
and Bekhor, 2011).The study of drivers’ behavior regarding uncertainties about
search times for finding vacant spot has been carried out in Chaniotakis and
Pel (2015),where stated preference experiments are applied to several discrete
choice models. One of the findings of this research is that most of the drivers
searching for a parking lot who make a trip for shopping purposes start the
searching process when they approach or reach their destinations. This fact
supports the need for reducing the cruising traffic by introducing reservation
systems and guiding tools (see, e.g., Arnott and Williams, 2017; Karaliopoulos
et al., 2017).
During the past two decades, traffic authorities of some cities and several com-
panies have implemented devices to inform and guide drivers towards parking
facilities with variables message signals in real-time. These signalling systems
show if park facilities are available and/or the number of parking places available
(see Figure 1.2).
Intelligent transport systems (ITS) includes parking applications that inform,
guide and reserve available parking facilities(Thompson and Bonsall, 1997). For
example, Thompson and Richardson (1998) introduced a simulation parking
search model that accepts or rejects the vacant parking places based on a disu-
tility function. Current commercial navigation systems manage those data in
order to plan routes between start and destination nodes reasonably fast, but
they are notable to optimally deal with complex scenarios, such as when the
route must necessarily be multimodal.
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Figure 1.2: Signaling system of park facilities in the city of Seville.

For instance, if traffic restrictions in the neighbourhood of the destination point
prevent access by private vehicle, it is essential in the configuration of optimal
routes to consider a nearby car park to temporarily leave the car and walk (park
and walk) or change to another authorized means of transportation (park and
ride). The incorporation of daily occupancy patterns of each of the candidate
carparks, as well as their main characteristics (rates, number of available free
spaces, the possibility of commuting to another means of transportation inside
the parking facility), can favour the determination of the best real routes for
this type of problem. However, in current navigation systems, this possibility
of improvement in the optimal determination of complex routes such as those
described above has not yet been incorporated. Smart Parking PCT Cartuja
is a comprehensive decision-making support system developed by the company
Telefónica in the context of an agreement with the City Council of Seville.
Its purpose is to provide users of the PCT Cartuja with information about the
degree of occupancy of each of the parking blocks, and to advise them, using Big
Data techniques, on the best option for their specific mobility needs (Proyecto de
aparcamiento inteligente en el Parque Cient́ıfico y Tecnológico Cartuja, 2019).
Finally, another key transport issues facing many countries in the world is the
emission of greenhouse gases causing the climate change. According to the Cli-
mate Plan decided at the 26th session of the Conference of the Parties (COP26)
to the United Nations Framework Convention on Climate Change (UNFCCC),
many governments have taken multiple strategic policy initiatives in the energy
and transport sector to steer their respective nations to the path of reducing
total projected carbon emissions by one billion tons from now to 2030. The
European Union (EU) is the world’s third-largest emitter of greenhouse gases
behind China and the USA, followed by India and Russia. The European Com-
mission has set out the objective of leading the world in the transition to a
carbon neutral economy and established a goal of net-zero economy-wide emis-
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sions by 2050.
Transport was responsible for close to a quarter of CO2 emissions in the EU
in 2019, of which 71.7% came from road transport, according to the annual
European Environment Agency report. To reduce CO2 emissions and achieve
the climate neutrality of the European Green Deal, greenhouse gas emissions
from transport would have to be reduced by 90% by 2050, compared to 1990
levels. However, current projections put the decline in transport emissions by
2050 at just 22%, well below current targets. There are two ways to reduce CO2
emissions from cars: make vehicles more efficient or change the fuel used. In
2019, most of the road transport in Europe used diesel (66.70%), followed by
gasoline (24.55%).
Electric cars (EC) have a series of very important advantages over conventional
internal combustion engine models linked to fuel savings, tax exemption in some
countries, subsidies, maintenance costs, and zero emission of polluting gases to
the atmosphere. For these reasons, electric cars are gaining ground and have
accounted for 11% of all new passenger vehicles registered in 2020. Sales of
electric vehicles (battery electric vehicles and plug-in hybrid electric vehicles)
have soared since 2017 and have tripled in 2020, when the current CO2 targets
began to apply. Electric vans represent 2.3% of the market share of new vans
registered in 2020 (The future of the eu automotive sector — think tank —
european parliament. (n.d.)).
The recent market shift towards electric vehicles (EVs) in Europe has been im-
pressive. In 2020, despite the contraction of overall car sales in Europe, EV
registrations more than doubled to 1.4 million and reached 10% of the market,
while this number stood at 6% in China and 2% in the US (Executive summary
– Global EV Outlook 2022 – Analysis - IEA).
The availability of infrastructure to serve the electric car market varies consid-
erably between EU Member States. For example, in the Netherlands there are
more than 32,000 charging points and there are more than 119,000 registered
electric vehicles; while in Greece, only 40 charging points are available for just
over 300 EVs Niestadt and Bjørn̊avold. In addition, consumers’ perception of
electric vehicles is that they cannot cover the desired intercity distance with-
out recharging Berkeley et al. (2017). Norway has one of the largest EV fleets
in the world. Studies from the Norwegian EV market show the growing EV
penetration requires large scale public charging infrastructure in addition to
home based charging system. A well spread public charging network has also
shown increased propensity to encourage complete shift to EV in the household
Lorentzen et al. (2017).
In the context of Spain’s Recovery, Transformation and Resilience Plan, a goal
has been set for 2023 of at least 100,000 charging points and 250,000 electric
vehicles, as well as the development of the value chain, new business models
and new dynamics that favor the progressive electrification of mobility, the re-
duction of emissions and the fulfillment of energy and climate objectives. The
financing planned in Spain for this purpose will reach 140,000 million euros in
transfers and credits over the next six years.
In the case of electric mobility, it is planned to deploy fast or ultra-fast recharg-
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ing infrastructure along corridors that make it possible to structure the entire
territory, both on interurban roads of special national and regional relevance,
as well as on those corridors connected with neighboring countries.
The industrial companies that manage gas stations are currently in a general
process of adaptation with the aim of installing charging points for electric cars
in their service stations. These energy companies develop strategic plans to
adapt their infrastructures with the aim that electric vehicle drivers can have re-
fueling points distributed throughout the territory for recharging energy, where
these ones being not too far from each other to make it possible to circulate
with supply guarantees throughout any corridor contained in the territory. Fig-
ure 1.3 shows an informative sign indicating the proximity of an EV refueling
station along a road in the Algarve (Portugal).

Figure 1.3: Example adapted gas station

Once the specific contexts in which these complex problems arise whose solu-
tions significantly determine territorial cohesion have been introduced, we de-
scribe the methodologies used to address them.
Section 1.2 addresses the problem of locating a rapid transit line with the ob-
jective of maximize the functional diversity of the districts traversed by the
alignment. Section 1.3 develops an Intelligent Transport Systems to reduce
the searching-for-parking traffic and time while taking into account drivers’ be-
haviour, provide a methodology to evaluate the effectiveness of routes between
two points of a smart city, starting them with a private vehicle but necessarily
ending them with another means of transportation with the compulsory use of
a park-and-ride facility. Users differ from each other, firstly according to those
who will reserve a spot in advance and those who will look for a spot when get-
ting there. Secondly, the information that users could have about the parking
occupancy may differ. In this sense, users may be able to estimate the number
of vacant places that parking facility will offer at a future time or they may also
check from a device the free places at a parking facility at a present time. Ac-
cording to the type of user (and their available information), three criteria will
have an influence on the decision towards choosing a park-and-ride facility: (1)
the total travel time from origin to destination, (2) the parking fee and public
transportation fare in case of using after parking and, (3) the attractiveness of
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the parking facility as a factor that will depend on the risk of not having an
available spot at the parking facility at the arrival time. Section 1.4 develops,
from a double public-private vision, a procedure to optimally select, among a
group of candidate sites where gas stations are already located, enough charg-
ing points in such a way as to guarantee that any electric vehicle can make its
journey without a problem of energy autonomy and that each selected charging
station has another at least that serves as coverage in case of failure (reinforced
service). For this purpose, we propose a bilevel model that minimizes the num-
ber of refueling points necessary to guarantee a reinforced service coverage for
all users who transit from their origin to destination inside a territorial zone
and, as a second level, maximize the volume of served demand subject to bud-
getary restrictions. With the first of these objectives, we are meeting the usual
requirement of the administration, which consists of guaranteeing the viability
of the solutions, and the second of the objectives is a criterion typically used by
the private sector initiative of profit maximization.
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1.2 Applying an entropic analysis to locate rapid
transit lines in sprawled cities

1.2.1 Assessing the location of a transit line

To cope with urban sprawl and increasing traffic congestion, many cities around
the world have turned to metro, Rapid Rail Transit (RRT) and Light Rail Tran-
sit (LRT) systems with connections, often to large areas. parking located out-
side (park-and-ride). Building rapid transit systems requires long-term commit-
ments and considerable capital investment. Maximizing the coverage of travel
demand is a common objective when transit lines are located in the territory
because it is possible, through said infrastructures, to improve the mobility of
the population. However, some authors argue that certain investments can lead
to increase rather than reduce regional disparities.
In the early stages of the development of a network, the transport policy is
usually geared towards efficiency, but as the offer of infrastructures increases,
the optimal strategy for the implementation of transport infrastructures must
address the acquisition of a balance between criteria of efficiency, cohesion and
environment.
Since rapid transit systems are planned in the long term, other complementary
criteria could be applied to determine the layout of public transport infrastruc-
tures. Among them, maximizing the global entropy of the metropolitan system,
assuming that the interconnection of two zones produces homogeneity of its ur-
ban characteristics in the medium and long term.
The most widely-used decision criteria in transportation network design are re-
lated to the maximisation of the population covered by the lines Mesa and Or-
tega (2001). For instance, the methodology applied to determine the most effec-
tive metro lines in terms of trip coverage in the metropolitan area of Seville, illus-
trated in Figure 1.4, was based on maximizing the capture of origin-destination
traffic.

Figure 1.4: Generated and attracted trips to/from zones in the metropolitan
area of Seville.
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Once the metropolitan area had been divided into macro zones, the generat-
ed/attracted trips from/to each zone to/from its adjacent ones were counted.
The width of each arrow in Figure 1.4 is proportional to the number of trips.
Line 1 of the Seville Metro, the only one currently just built, was the most effi-
cient for the criterion of covering travel demand and was consequently designed
to connect zones A. Aljarafe Sur with A.M. Sur.
Since rapid transit systems are designed for the long term, other criteria can be
applied to determine alignments which serve as the basis for the construction
of public transit infrastructures. Among them, to maximize the global entropy
of the metropolitan system, assuming, as was previously pointed out, that the
inter-connection of two zones produces homogeneity of their urban characteris-
tics in the medium and long term.
The following properties are necessary to support the performance of the de-
sign algorithm proposed to construct a rapid transit line whose objective is the
maximization of the global entropy of the urban districts system.
Property 1.
Let be the function

h(x) = −xlog2(x), x ∈ (0, 1].

For any pair of values p, q ∈ (0, 1], the following inequality holds:

h(p) + h(q) ≤ 2h

(
p+ q

2

)
.

Property 2.
Let be the entropic function

H(x⃗) = −xklog2(xk),

for any vector x⃗ = (x1, . . . , xk),xk ∈ (0, 1],∀k = 1, . . . ,m. For any pair of
vectors p⃗ = (p1, . . . , pm), q⃗ = (q1, . . . , qm);pk, qk ∈ (0, 1] algebraic expression

2H

(
p⃗+ q⃗

2

)
−H(p⃗)−H(q⃗)

reaches its minimum value when both vectors p⃗, q⃗, coincide; i.e. for pk = qk,∀k =
1, . . . ,m.

The problem of determining an alignment so that global entropy is maximised
can be formulated as follows: Given an urban system composed of n districts,
where a set of centroids (candidate stations) S = {s1, . . . , sj , . . . sn}, |S| = n,
represent the different urban areas with their specific characteristics (an unique
centroid per zone) collected in the matrix P = pjk, j = 1, . . . , n; k = 1, . . . ,m
determine a subset L of S and an alignment Align(L) on points of L such that
global entropy is maximized without exceeding a constraint of maximum length
(LMAX) for Align(L). Formally,
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MAXL⊂SH(L;S) = |L|
m∑

k=1

rklog2(rk)−
∑

j∈S\L

m∑
k=1

pjklog2(pjk) (1.1)

s.t.

rk =
1

|L|
∑
j∈J

pjk; k = 1, . . . ,m, (1.2)

Length[Align(L)] ≤ LMAX. (1.3)

Hence, our measure of effectiveness, derived from having selected a set of nodes
to build line L, is obtained by additively cumulating the partial entropies of each
zone, taking into account that the characteristics of all the zones selected to form
the alignment have been recalculated in order to force a common coincidence
with their mean values. The objective function to be maximized, formulated
by means of expression (1.1), describes the overall entropy of the urban district
system, once a subset of them has been selected for the construction of the
transit alignment. The constraint set (1.2) states that the characteristics of the
selected districts must match their mean values. Constraint (1.3) ensures that
the alignment length does not exceed the budget.
On the other hand, the common constraint (see, e.g., Bruno et al., 2002) consist-
ing of imposing that distance between two consecutive stations must lie within
an interval [Lmin, Lmax], typically [0.5 km, 2 km], can be easily included in our
model, by considering that each district has only one associated centroid and
the district size is enough large so that distance between neighbouring centroids
lies within the typical variation range.
This problem of combinatorial nature can be assumed as a variant of the Mul-
tiple Knapsack Problem (MKP) (Pisinger and Toth, 1998). The 0–1 Knapsack
Problem is the problem of choosing a subset of items such that the corresponding
profit sum is maximized, without the weight sum to exceed a prefixed capac-
ity. The Multiple Knapsack Problem is a generalisation of the standard 0–1
Knapsack Problem, where instead of considering only one knapsack, one tries
to fill several knapsacks of different capacities. The MKP problem is strongly
NP-complete and the need for algorithms that give a good heuristic solution
is justified by the computational complexity of this problem. A model similar
to the one previously proposed has been investigated in Laporte et al. (2002),
whereby heuristics were designed in a computationally feasible way and con-
sistent with the approach. Tests carried out on randomly generated data have
shown that a simple greedy extension heuristic yields the best results if the inter-
station spacing is sufficiently large. Otherwise, an insertion heuristic followed
by a post-optimization phase is the tool required to obtain the most efficient
design.
Taking these precedents into account, we propose heuristic GINA (Greedy In-
sertion of Nodes along an Alignment) for solving our optimization model for
determining the most effective metro line in terms of urban entropy.
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Heuristic GINA

1. Read locations of centroids S = {s1, . . . , sj , . . . sn} and their characteris-
tics {pj1, . . . pjm},∀j = 1, . . . , n .

2. Find the pair of centroids (u, v) which generates the most effective link.
(In the case of a tie, consider the shortest edge).

3. Let Align(L) = {u, v}.

4. While length of alignment Align(L) is less than boundary LMAX do:

4.1 Find the node w∗, not yet included in Align(L), where the highest
effectiveness is reached. (In the case of a tie, consider the option
which generates a minor increase in length).

4.2 Determine the position pos(w∗) where node w∗ should be inserted
along the node sequence Align(L) to produce the smallest increase
in its length.

4.3 Insert node w∗ at position pos(w∗) along the sequence Align(L).
Rename the new resulting alignment, once added node w∗, asAlign(L).

1.2.2 Computational experience

A computational experience has been carried out on a district system (com-
posed of 47 zones associated to the metropolitan area of Seville) in order to
test the performance of heuristic GINA. The experiment consists of designing
a rapid transit line connecting nine city zones by means an alignment passing
through them, using two different criteria: maximizing the population covered
(assuming that the inhabitants are covered by the transport service if they live
in an area whose centroid is included in the transit corridor) and maximize ur-
ban entropy (the areas connected through the corridor share the same level for
the attributes considered in the analysis of urban diversity). First objective was
already applied in Bruno et al. (2002) to locate one alignment on data from
the city of Milan. Second objective, unpublished at this time, is focused on
increasing the diversity of the interconnected districts.
Based on data corresponding to the Statistical Yearbook 2015 of Seville (avail-
able at http://www.sevilla.org/ayuntamiento/competencias-areas/a

rea-de-h/anuario_2015), values of seven characteristics (population, medi-
cal services, job positions, intermodality, study centres, commercial centres and
tourist attractions) have been estimated and normalized for the 47 zones under
consideration. Such attributes were already identified in Gendreau et al. (1995)
as the main mobility generators. Hence, seven different intensity maps can be
obtained when each attribute is separately considered. Between them, as in-
stances, in Figure 1.5 normalized population densities are shown on the district
map; on the other hand, Figure 1.6 shows the distribution of densities of tourist
attractions.

33

http://www.sevilla.org/ayuntamiento/competencias-areas/area-de-h/anuario_2015)
http://www.sevilla.org/ayuntamiento/competencias-areas/area-de-h/anuario_2015)


Figure 1.5: District system (47 zones) associated to Seville. Map of normalized
densities of population (Source: Laporte et al., 2002)

Figure 1.6: District system (47 zones) associated to Seville. Map of normalized
densities of tourist attractions.

Applying the GINA algorithm on this Seville map, the alignment is generated
in an iterative way. In the first step, the zone with the highest entropy level
(La Calzada, the 24th zone) is connected to the area with the lowest level (Isla
Mágica, the 41th zone). Next, different nodes are incorporated in sequence to
finally generate the alignment of 9 nodes that produces a greater entropy level
for the global system: 46, 18, 24, 30, 29, 41, 40, 34, 35 (the length of that
line, shown in Figure 1.7, is 13889 meters). Initially, the entropy had the value
35.8011; at the end of the process, the value of the entropy amounts to 36.8560
(2.94% higher).
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Figure 1.7: 9-station line obtained for the criterion of maximizing the global
urban entropy.

On the other hand, by using the maximization of the covered population, as a
criterion of node incorporation in the alignment, we obtain an optimal corridor
composed of nodes 38, 39, 31, 32, 33, 34, 35, 37, 36 (the line length shown in
Figure 1.8 is 8960 meters). This alignment has an entropy value of 36.0856,
2.13% lower than previously achieved.

Figure 1.8: 9-station line obtained for the criterion of maximizing the population
covered

First alignment, obtained by applying a criterion of maximizing the global urban
entropy, presents two desired advantages: from an urban planning perspective,
the improvement of the territorial cohesion within the district system of the
city, and, from the point of view of sustainability, the reduction of the forced
mobility of the inhabitants caused by the lack of opportunities of the districts
where they live.
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1.2.3 Conclusions

A methodology for the design of a rapid transit alignment, that increases the
urban entropy of a district system, has been proposed in this article. A greedy al-
gorithm has been formulated to solve the proposed mathematical programming
model, identified as a version of the well-known problem of Multiple Knapsack
Problem. To evaluate the performance of the proposed methodology, a compu-
tational experience has been carried out on an urban system composed of 47
districts with data from the metropolitan area of Seville (Spain). The evaluation
of the generated transit line shows that the methodology meets the objective of
efficiently designing an alignment that improves the functional diversity of the
areas where it crosses.
A possible continuation of this research would be the determination with en-
tropy maximization criteria of a new rapid transit line, conditioning its design
to the previous existence of another line.
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1.3 Assessing the effectiveness of park-and-ride
facilities on multimodal networks in smart
cities

1.3.1 Problem description and formulation

In this section, we provide first a detailed description of the problem by in-
troducing the notation for all the elements involved. Second, we develop a
mathematical programming model that integrates the different aspects that are
considered in the decision of the user.

Problem description

We consider a user that aims to travel from an origin to a destination splitting
his trip into two parts. The first part will be carried out by private vehicle mode
(car or motorcycle) ending in a park-and-ride facility to be determined. The
second part of the trip, up to the destination, will be carried out by means of
public mode (including bus, tram, train, or subway) and/or walking mode. Once
the park-and-ride facility has been chosen, the shortest time paths from origin
to park-and-ride and from park-and-ride to the destination, can be optimally
determined.

As previously mentioned, users differ from each other, firstly according to the
fact of looking for (or not) a reservation at a parking facility. Secondly, the
information that users could have may differ. In this sense, users may be able
to estimate the number of free places that parking facilities will offer at a future
time according to the knowledge/experience that the user may have parking in
a given area. Users may also check from a device the free places at a parking
facility at a present time, which could be useful for estimating the availability
of parking spaces at the arrival time at the parking facility. If such information
could not be provided by the device, maybe it could show if the parking facility
is full or not at a present moment. In any case, we assume that users always
know the size of each parking facility.

According to the type of user (and their available information), three criteria
will have influence on the decision towards choosing a park-and-ride facility: (1)
the total travel time from origin to destination, (2) the parking fee and public
transit fare, and (3) the “attractiveness” of the parking facility. We understand
attractiveness as a factor (for users without a reservation in a parking facility)
that will depend on the risk of not having an available spot at the parking
facility at the arrival time. Other characteristics of the parking facility such as
safety, parking space cleanliness, etc., could be taken into account. However,
in order to keep the model as simple as possible, we have not included these
features.

Let us consider an initial directed graph G = (N,A), where N is the node set
and A is the arc set. We decompose N = {o} ∪ V ∪ P ∪ {d}, where:

37



• o: node associated with the origin of the path, that is, the geographical
position of the private vehicle mode (car or motorcycle) in the city.

• d: node associated with the destination site in the city center, whose access
is forbidden to cars.

• P = P+ ∪P− where P+ and P− are respectively the entry nodes and the
exit nodes of the car parks.

• V is the set of intermediate nodes where the different transportation modes
operate.

In order to construct the arc set A we take into account the following issues:

1. There are no arcs entering at node o and all arcs leaving this node corre-
spond to the private vehicle mode.

2. There are no arcs leaving node d and all arcs entering in this node corre-
spond to walking mode, individual mode (electric scooters, bicycle, etc.),
or other public mode.

3. All arcs entering at a parking site k ∈ P+ correspond to the private vehicle
mode. From each node k ∈ P+ only a single arc connects with the exit
node k′ ∈ P− of the parking site. Therefore, note that if k ∈ P+ and
k′ ∈ P− are connected by an arc (k, k′) then both k and k′ belong to the
same park site. Additionally, all arcs leaving node k′ ∈ P− correspond to
the walking mode or other public mode.

4. All arcs entering and departing from a node i ∈ V correspond to the
same transportation mode. If there were a geographical node in which
different transportation modes could be feasible for arriving at/departing
from that node, it would be virtually replicated, once for each feasible
transport mode.

Note that according to the graph construction, each feasible path connecting o
and d must traverse a parking facility where the private vehicle mode changes
to the walking mode or other public mode. Additionally, several transportation
modes could be included after leaving the parking facility just by means of
including the corresponding transfer nodes and arcs between the different modes.
In this section, we assume an operational time horizon that is conveniently
discretized in a set of time slots T . Let lij ∈ R+ be the length associated with
arc (i, j) ∈ A and vtij the average transit speed along the arc (i, j) entering

at node i at time t ∈ T . For the case of (k, k′) ∈ A : k ∈ P
+

, k′ ∈ P
−
, lkk′

represents the transit time within parking facility k.
We define next some parameters related to parking facilities. Let f t

k be the fee
at parking facility k at time t and wt

kj be the waiting time at parking facility exit

node k ∈ P− during the transfer to node j at time t. In case of requiring a later
means of transportation, we assume a fare gj has to be paid by the user. As
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previously mentioned, users differ from each other according to the information
they have available (or not available). In this sense, let q1,tk be the estimation
of free places that parking facility k will offer at a future time t, this parameter
is related to the knowledge/experience the user may have parking at k. The
user may also check a device that could provide the free places q2k at parking
facility k at a present time that could be useful for estimating the availability
of parking spots at the arrival time at the parking facility. If this information
was not provided by the device, maybe it could be shown if the parking facility
is full or not. In this sense, let q3k be the size of parking facility k if the device
indicates free spots at present; 0 otherwise. In any case, we assume that users
always know the size of each parking facility k ∈ P+, namely q4k as well as the
size Q of the biggest parking facility. Given γ0, γ1, γ2, γ3, γ4 ∈ [0, 1] weighting

parameters holding
∑4

i=1 γi = 1, we can define the attractiveness of a parking
facility at time k as:

γ0
γ1q

1,t
k + γ2q

2
k + γ3q

3
k + γ4q

4
k

Q

which its value is within [0, 1]. Note that there are some relations among pa-
rameters γi, i ∈ {0, 1, 2, 3, 4} according to the user profile. First, users who look
for a reservation (weighted as γ0 = 0) are not affected by information of parking
availabilities (γ1 = γ2 = γ3 = 0). Second, available information of free places
at parking facility k at a present time (weighted with a γ2 ̸= 0) includes the
information of availability of the parking at a present time (that is, γ2 ̸= 0
implies γ3 = 0 and conversely, γ3 ̸= 0, implies γ2 = 0).

In addition, each user might impose a minimum level of attractiveness Λ ∈
[0, 1] accepted for the chosen parking. The reader may observe that parameters
γ0, γ1, γ2, γ3, γ4 and Λ require to be properly weighted/calibrated according to
the particular user’s features and preferences. This might require an empiric
procedure that is out of the scope of this research.

Mathematical programming model

For each t ∈ T and each arc (i, j) let xt
ij ∈ {0, 1} be the binary variable that

takes value 1, if the arc (i, j) is traversed at time t, and 0 otherwise. We present
next an integer programming formulation to determine a “minimum generalized
cost” path from node o to node d in our setting. We understand that the path
cost is determined by the minimization of three weighted criteria; namely, (1)
the travel time, (2) the parking fee, and (3) the non-attractiveness of the parking
facility. For this aim, let α, β, γ0 be the weighting parameters for each of these
criteria respectively.
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min α
∑
t∈T

 ∑
(i,j)∈A

⌈
lij
vtij

⌉
xt
ij +

∑
(k,j)∈A:k∈P−

wt
kjx

t
kj

+

+β
∑
t∈T

 ∑
(k,k′)∈A:k∈P+ ,k′∈P−

f t
kx

t
kk′ +

∑
(k′,j)∈A:k′∈P−

gjx
t
k′j

+

+γ0

∑
t∈T

∑
(i,k)∈A:k∈P+

xt
ik

(
1−

γ1q
1,t
k + γ2q

2
k + γ3q

3
k + γ4q

4
k

Q

)(1.4)
s.t.

∑
t∈T

∑
(o,j)∈A

xt
oj = 1, (1.5)

∑
t∈T

∑
(i,d)∈A

xt
id = 1, (1.6)

xt
ij ≤

∑
(j,j′)∈A

x
t+

⌈
lij

vt
ij

⌉
jj′ , (i, j) ∈ A : j ∈ V ∪ P, t ∈ T, (1.7)

xt
ij ∈ {0, 1}, (i, j) ∈ A, t ∈ T. (1.8)

The objective function (1.4) minimizes a weighted sum of three criteria/compo-
nents, namely travel time, parking cost, and parking non-attractiveness. Con-
straint (1.5) guarantees that the path will begin at the origin (by using the car as
a means of transportation). Constraint (1.6) guarantees that the path will end
at the destination (by using a means of alternative transportation to the car).
Constraints (1.7) ensure flow conservation for node subsets V and P . When arc
(i, j) is traversed at time t, another arc departing from j needs to be traversed

at time t +
⌈

lij
vt
ij

⌉
. Note that, since time is discretized, we need to round up

the time required to traverse edge (i, j) ∈ A. In addition, the generalized cost
minimization ensures that no more than one arc departs from a node.

We recall that according to the graph construction there is no need to impose
on the model that no arcs enter in node o, no arcs leave from node d and one
parking facility has to be visited.

Next, we propose two additional constraints to bound the travel time and the
parking facility attractiveness:

∑
t∈T

∑
(i,d)∈A

(t+

⌈
lij
vtij

⌉
)xt

id ≤ max{t ∈ T}, (1.9)

∑
t∈T

∑
(i,k)∈A:k∈P+

xt
ik

γ1q
1,t
k + γ2q

2
k + γ3q

3
k + γ4q

4
k

Q
≥ Λ. (1.10)
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Constraint (1.9) implies the arrival time to destination is upper bounded whereas
constraint (1.10) ensures a minimal attractiveness for the chosen parking facility.

Problem (1.4)-(1.10) can be efficiently solved by using a modified Dijkstra’s
algorithm. More precisely, note that problem (1.4)-(1.10) is composed of a
shortest path problem, namely (1.4)-(1.8), plus two additional constraints (1.9)-
(1.10). Therefore, the guidelines of a modified Dijkstra’s algorithm for solving
(1.4)-(1.10) consists first in start solving (1.4)-(1.8) with a standard Dijkstra’s
shortest-path algorithm. We recall that on each iteration, a new edge has to
be added to the last node of the shortest (costless) path constructed so far.
Therefore, such shortest path cost until the node is known. Additionally we
could also keep track of the time and attractiveness associated to such path, that
can be discarded if its travel time is above max{t ∈ T} of if its a attractiveness
is below Λ. In this way, if the arc costs induce no negative cycles on G (as it is
assumed in the problem description), the problem (1.4)-(1.10) can be efficiently
solved in polynomial time.

1.3.2 Computational experiment

Next, we report on the results of a computational experiment that we have
carried out in order to empirically show the model sensitivity by means of a
parametric analysis of solutions. That is, we show different solution values
of the problem (1)-(7) for an instance assuming different choices of the parking
selected, two types of users (two different sets of α, β, γi, i ∈ {0, 1, 2, 3, 4} values)
and other parameters fixed according to an urban setting of Seville (Spain).

Seville is the capital of the Andalusia region (Spain), provided with a large
and well-preserved historical center which is approximately 2,200 years old. In
fact, the Historic Center of Seville is one of the largest in Europe, along with
those of Venice and Genoa. It has an approximately circular configuration, with
an area of 3.94 km2. During 2019, the city of Seville received the visit of 3.12
million tourists attracted by an old town that contains three world heritage sites
and also many convents, churches, palaces, museums, and gardens. Motorized
traffic in this sector of Seville is limited and/or forbidden in many streets that
are predominantly narrow and one-way.

For this reason, there is a network of parking lots around the city center that
provides, via signaling panels, information to the drivers about their current
occupancy levels. We assume that this basic information to the users is com-
plemented by the input data described along Subsection 1.3.1.
In Figure 1.9 we have supposed a driver with a starting point (labeled with
O), and a destination (labeled with DES) located at the city center that is not
accessible by private car. Six existing car parks have been selected around the
city center with entrances labeled by p+k and exits p−k for k ∈ {1, ..., 6}. Note
that for the sake of visibility, exit parking nodes have been slightly separated
from their real locations.
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Figure 1.9: Graph associated to the selection of best strategy

We deploy three different arc types according to the transportation mode in
use: car (continuous red), walking (dotted green) and walking or bus (both in
dashed orange).

Park (k) Time to Park Time in Park Waiting time (wt
kj) Time to DES Total time

1 8 2 0 12 22
2 7 1.5 0 13 21.5
3 11 1 2 6 20
4 14 2 5 13 34
5 15 1 2 9 27
6 10 1 3.5 15 29.5

Table 1.1: Travel times (min) involved in the shortest path from origin to des-
tination.

Table 1.1 shows traveling times in minutes from the origin point (La Pañoleta,
41910-Seville, Spain) to the destination point (Plaza del Salvador, 41004-Seville,
Spain) passing through each one of the 6 available parking lots. Column “Time
to Park” shows the driving time from the origin to each parking entrance through
a time-dependent shortest-path. Column “Time in Park” shows the time spent
at the parking facility. Column “Waiting Time” shows the waiting time at the
exit of the parking facility in case a bus transfer is required. Finally, column
“Time to DES” shows the total travel time from the exit parking node to DES
through a time-dependent shortest-path that might include bus and/or walking
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mode. Note that the best parking facility (marked in bold) in terms of the total
time is parking lot 3.

Park (k) Parking fee (f t
k) Fare rate (gj) Total price

1 1.17 0 1.17
2 1.01 0 1.01
3 0.3 0.74 1.04
4 0.5 0.69 1.19
5 0.35 0.74 1.09
6 0.16 0.69 0.85

Table 1.2: Park fees and fare rates involved in the trip.

Table 1.2 includes parking fees and fare rates if a later means of transportation
is required. Note that the best option (cheapest) in this case (parking 6) changes
with respect to the best option (parking lot 3) in the previous case (shortest).

Park (k) Estimation of free places (q1,tk ) Free places (q2k) Full or not (q3k) Parking size (q4k) Q
1 15 0 0 25 100
2 0 8 30 30 100
3 20 1 50 50 100
4 6 5 25 25 100
5 20 50 70 70 100
6 66 35 100 100 100

Table 1.3: Parking parameters involved in the non-attractiveness criterion.

Table 1.3 shows the different parking parameters involved in the non-attractiveness
criterion of the objective function. In order to obtain a non-attractiveness value,
these parameters require to be combined with weights γi, i ∈ {0, 1, 2, 3, 4} ac-
cording to the individual specific preferences and characteristics of the user into
consideration.

Park (k) α Total time β Total price γ0 γ1 γ2 γ3 γ4 Non-attractiveness Total cost
1 0.2 4.4 0.8 0.93 0 0 0 0 1 0 5.33
2 0.2 4.1 0.8 0.81 0 0 0 0 1 0 4.91
3 0.2 4 0.8 0.83 0 0 0 0 1 0 4.83
4 0.2 6.8 0.8 0.95 0 0 0 0 1 0 7.75
5 0.2 5.4 0.8 0.87 0 0 0 0 1 0 6.27
6 0.2 5.9 0.8 0.68 0 0 0 0 1 0 6.58

Table 1.4: Weighting parameters and generalized cost for a user looking for a
reservation.

Tables 1.4 and 1.5 provide the objective function values (generalized total cost)
when the three criteria are combined according to the objective function (1.4).
In both cases weighting values α, β, γi, i ∈ {0, 1, 2, 3, 4} have been chosen for
modeling to different user’s profiles. In particular, Table 1.4 shows the weights
of a user that chose a parking lot with a reservation procedure. For that reason,
the objective value is not affected by the information of parking capacities.
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Park (k) α Total time β Total price γ0 γ1 γ2 γ3 γ4 Non-attractiveness Total cost %
1 0.04 0.88 0.17 0.2 0.79 0 0.67 0 0.33 0.72 1.80 17.3
2 0.04 0.82 0.17 0.17 0.79 0 0.67 0 0.33 0.67 1.66 25.6
3 0.04 0.8 0.17 0.18 0.79 0 0.67 0 0.33 0.65 1.63 32.2
4 0.04 1.36 0.17 0.2 0.79 0 0.67 0 0.33 0.7 2.26 3.8
5 0.04 1.08 0.17 0.19 0.79 0 0.67 0 0.33 0.34 1.61 8.6
6 0.04 1.18 0.17 0.14 0.79 0 0.67 0 0.33 0.34 1.67 12.5

Table 1.5: Weighting parameters and generalized cost for a user with informa-
tion about free parking lots.

Table 1.5 shows the weights of a user with knowledge of the number of free
spots at the initial time as well as the size of the parking. Besides, this example
assumes that this user is not able to estimate the number of free spots at his/her
arrival time at the parking.
The last column of Table 1.5 shows the % in which each of the car parks turned
out to be optimal, for an experiment of 1000 tests in which the vector of non-
attractiveness parameters was random and uniformly distributed with values
between 0.1 and 0.9 (the remainder parameters in Table 1.5 were kept constant).
The results of this experiment show that optimality is achievable in any car park
offered, although there preferably is a greater probability that the optimum will
be reached in options 3, 2 or 1, which are geographically better aligned with
the objective. The farthest car parks 6, 5 and 4 must compensate for their
unfavorable locations with low values of non-attractiveness to be able to achieve
an optimum generalized total cost.
If we take into account traffic congestion effects in the Seville metropolitan area
at rush hour (see Figure 1.10) and its impact on the access time to parking lots
1 to 6, the arc cost must be recalculated in a part of the graph, following the
approach of Pallottino and Scutella (2003).
In the example being analyzed, the access times would increase by 3 minutes to
reach the car parks 1 and 2, as well as 1 minute to access the car parks 5 and
6. These specific modifications in the travel times of certain arcs do not change
the final decisions in the scenarios analyzed, although they could do so if the
levels of congestion were more pronounced.
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Figure 1.10: Map of traffic intensities in the city of Seville taken from Google
Maps 04/27/2018 at 10 am

From this experiment, we conclude summarizing the following remarks. Firstly,
the application to Seville shows an example of how the proposed methodology
can be applied to a real context. Secondly, as previously mentioned, the model
can be solved by using a modified Dijkstra shortest-path algorithm so the com-
putational effort for solving this type of problem is not a big issue. For this
reason, we have focused our experiment in showing the model sensitivity to the
input parameters. For example, we show that two different user’s profiles give
rise to different shortest paths and generalized cost values. This demonstrates
the relevance of the model that suits the diversity of several user profiles, as
well as the information available for the different scenarios.

1.3.3 Conclusions

Intelligent car parking information systems are nowadays evolving to provide,
through smart-phone applications, the best choice of park facility for a given
destination, taking distances to candidate destinations and their occupancy lev-
els into consideration.

This research has been aimed at improving the information that these types of
applications could provide for those users who necessarily need to use a park and
ride facility before reaching their destination located in a restricted traffic zone
in the city. For that purpose, different aspects that have influence in the drivers’
preferences (such as rates, walking time to destination, the estimated number
of vacant places, the possibility of transferring to other means of transport,
etc.) have been integrated into an optimization model. The proposed approach
has consisted of an integer programming model where the generalized cost to
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be minimized combines three criteria (total travel time, parking fee, and non-
attractiveness for the parking facility under consideration), while a constraint
set guarantees the feasibility of solutions into the ad hoc build graph. The
optimization model can be solved by using an adapted shortest path algorithm.
Therefore, the computation time required to obtain a solution is reasonably low.
The main contribution of the chapter is twofold. First, the objective in the
model integrates several cost attributes: determining shortest routes through
a multimodal network with time-dependent transit times, minimizing parking
costs and an attractiveness criterion related to the risk of not having an available
space at the chosen parking facility. Second, the coefficient values allow us to
collect, in the same optimization model, the diversity of several user profiles, as
well as the information available for the different scenarios.
Results of a computational experiment located in the urban setting of Seville
(Spain) have been reported in order to empirically show the model sensitivity
to the input parameters.
Future research can expand the model to new scenarios where the three variables
of the model can interact between them. For example, parking fees may vary
based on the current level of parking occupancy, or alternatively, a discount
on the price of the ticket for the subsequent bus trip (or at the rate of the
shared bicycle rented at the station) could be offered to all users who had
previously chosen to park their vehicle in that facility. Other new scenarios
for future research could be motivated by the creation of low emission zones
that represent areas prohibited for the circulation of certain types of vehicles
declared polluting.
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1.4 Bilevel optimization for the deployment of
refueling stations for electric vehicles on road
networks

1.4.1 Model development

Input data

In order to determine optimal location of charging stations in corridors a con-
nected graph G = (V,A) is assumed composed of a node set V representing gas
stations or cities and an arc set A representing road sections between points,
such that the existence of a shortest path in terms of distance (or travel time)
between each pair of points of V is always guaranteed inside G.
The following notation is used in our formulation:
Origin-destination demand matrix (dij), i, j ∈ V .
(Γij): shortest path matrix between pair of nodes i, j ∈ V , where
Γij = {i, v1, v2, . . . , vk, j} with v1, v2, . . . , vk intermediate nodes.
T = (tij): distance matrix between pair of nodes through the shortest path.
Term qk denotes the capacity of each node k ∈ V to install charging stations,
and pk the unit price depending on site k.
Moreover, the following variables are required in the model:
xk: Integer variable that indicates the number of charging facilities installed at
point k ∈ V.
yl: Binary variable that takes value 1 if we select point l ∈ V to open at least
one charging facility.
Note that the total installation cost at point k ∈ V depends on the number of
facilities xk (0 ≤ xk ≤ qk) that we open. It will be xk · pk. Thus, the total cost
in the whole network will be ∑

k∈V

xk · pk

Preprocess

For each point k, the shortest paths containing point k as an intermediate node
are identified. This collection is labeled as γk.

γk = {Γij ; i, j ∈ V |k ∈ Γij}

Once set γ ≡ (γk) is determined, the following weights are obtained

ωk =
∑

Γij∈γk

dij

that will serve to quantify the attractiveness of locating a service at point k.
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Conditional Covering and Knapsack Models

Suppose we want each favorable facility decision (xk ≥ 1) to be complemented
with the installation of another facility at a location l ∈ V such that the travel
time between points k and l (i.e., tkl) does not exceed a quantity R which has
previously been set by the experts.

Definition 1 Let G = (V,A) be a graph. It is called R-dense if ∀p ∈ V,∃q ∈
V (q ̸= p) such that distG(p, g) ≤ R.

The Conditional Covering Problem (CCP) consists of minimizing the total num-
ber of facilities that must be established in order to cover all nodes and no fa-
cility can cover the site on which it is located, and must therefore be covered
by another established facility. A site is said to be covered if its distance to the
nearest facility is less than or equal to the covering radius R.

We can observe that if G is R-dense it guarantees us the possible existence of
paths with conditional covering.
The CCP was first introduced Moon and Chaudhry (1984), where an integer
programming model for this problem was proposed and linear programming
relaxation methods were applied to them. In Chaudhry et al. (1987), the authors
consider several greedy heuristics for solving CCP and provide computational
results for the same. In Moon and Papayanopoulos (1995), authors discuss a
slight variation of CCP on tree graphs. In this problem, each demand point
has a specific radius such that a facility has to be located within that radii. In
Lunday et al. (2005) an O(n2) algorithm for the CCP on paths with a covering
radius is uniform for all the vertices and arbitrary positive costs are assigned
to vertices has been presented. They also improve the result with an O(n)
time algorithm, when the covering radius is uniform and cost is unity for all
vertices of the path. In Horne and Cole (2005), the O(n2) algorithm, obtained
in Lunday et al. (2005), is extended to the case when vertices are assigned to
an arbitrary covering radius. In Benkoczi et al. (2012), new upper bounds have
been proposed for the conditional covering problem on paths, cycles, extended
stars, and trees.
To incorporate the concept of conditional coverage to our model, we can define
a parameter matrix B = (bkl); bkl ∈ {0, 1}, such that

bkl =

{
1 if tkl ≤ R and k ̸= l
0 if tkl > R or k = l

From this matrix B we can extract the vector Bk = {l ∈ V (l ̸= k)|bkl = 1} for
the conditional covering between pair of selected nodes.
To ensure a reinforced coverage of services, the following conditional covering
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model is proposed

min
∑
l∈V

yl (1.11)

s.t.
∑

l∈V,l ̸=k

bklyl ≥ 1 ∀k ∈ V, (1.12)

yO = 1, (1.13)

yD = 1, (1.14)

yl ∈ {0, 1} ∀l ∈ V. (1.15)

The inclusion of restrictions guarantees the coverage of services at the points of
origin (O) and destination (D) and along any itinerary established inside the
graph G.
Thus, the CCP can solve the problem of locating power stations from the ad-
ministration point of view, since it results in a network in which all nodes are
covered. They are also covered in a reinforced way to avoid cases of collapse
of certain points that have high demand or cases of breakdowns or technical
problems.
To solve the problem from the point of view of the energy companies, the clas-
sic knapsack problem is used, which maximizes profit taking into account a
maximum budget P .

max
∑
k∈V

ωk · xk (1.16)

s.t.
∑
k∈V

xkpk ≤ P, (1.17)

xk ∈ N , 0 ≤ xk ≤ qk. ∀k ∈ V (1.18)

The optimization model formulated corresponds to a bounded knapsack problem
(see, Kellerer et al., 2004).

Bilevel optimization model and solution algorithm

According to Piedra-de-la Cuadra et al. (2022), the global problem can be mod-
eled as a network optimal decision problem involving two nested objectives.
In the objective function of the leading problem, the aim is to minimize the
number of refueling points necessary to guarantee a reinforced service coverage
for all users. This objective is linked to the political decision maker interested
in the viability of solutions.
The objective function of the follower problem is to maximize the volume of
demand subject to budget constraints; a criterion typically used by the private
sector initiative.
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The full formulation is as follows:

min
∑
l∈V

yl (1.19)

s.t.
∑

l∈V,l ̸=k

bklyl ≥ 1, ∀k ∈ V (1.20)

max
∑
k∈V

ωk · xk (1.21)

s.t.
∑
k∈V

xkpk ≤ P, (1.22)

yk ≤ xk, ∀k ∈ V (1.23)
xk

qk
≤ yk;

xk

qk
≤
∑
l∈Bk

yl, ∀k ∈ V (1.24)

xk ∈ N , 0 ≤ xk ≤ qk, ∀k ∈ V (1.25)

yl ∈ {0, 1} ∀l ∈ V (1.26)

Where (1.19) is the leading objective of the bilevel model. Constraints (1.20)
guarantee the reinforced coverage of all refueling points. (1.21) is the follower
objective of the bilevel model, adapting the number of charging points to po-
tential demand. Constraints (1.22) are budget constraints. Constraints (1.23)
establish that the places selected by the leader objective have recharge points.
Constraints (1.24) ensure that all places where a recharging point is planned
to be installed (0 < xk

qk
≤ 1) must be covered in a reinforced way by another

different place. Constraints (1.25)-(1.26) indicate the nature of the variables
used in the model.
The Knapsack Problem is of combinatorial nature and, in computational com-
plexity theory, is classified as NP-hard problem (Garey, 1979). Bilevel optimiza-
tion problems are known to be intrinsically hard to solve. Even the models with
both linear leader and follower’s problems, which are generally the simplest to
solve, are shown to be strongly NP-hard (Labbé and Marcotte, 2021). Typically,
solution methods used for these studies are metaheuristics, such as a genetic al-
gorithm or large-scale neighbourhood search, or a single-level reformulation of
the bilevel problems is proposed to be able to solve the models using commercial
solvers.
Taking these precedents into account, we propose this heuristic for solving the
optimization problem in order to determine the locations and the number of
charging points inside the network.
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Heuristic

1. Let S1 be the solution of the Conditional Covering Problem in V (model
1.11, 1.12,1.15).

2. Let S2 be the solution of the Bounded Knapsack Problem in V forcing
that the locations that are solutions of S1 are also solutions in S2 (S1 is
a subset of S2, obviously).

3. Let G = {}

4. While K = S2 \ S1 not empty do:

4.1 Let k1 = argmax{wi/pi|i ∈ K}.
4.2 Let S1 the the solution of the Conditional Covering Problem in V ,

forcing that k1 is part of the solution (yk1 = 1).

4.3 Let S2 the solution of the Bounded Knapsack Problem in V forcing
that the locations that are solutions of S1 are also solutions in S2.

5. End

1.4.2 Our case study

In order to illustrate the developed methodology, we are inspired by a real
case with existing gas stations in the southern region of Spain (Buscador de
Estaciones de servicio Repsol (n.d.)), let suppose an area with 27 traditional
gas stations and the distances between connections are equal to 1 shown in
Figure 1.11. Let suppose that the cost of each charging point are equal to 1
(pk = 1), the total budget is equal to 20 (P = 20), the capacity of each node is
equal to 5 (qk = 5), the attractiveness of each node is equal to the number in
red, the solution graph has to be 1-dense (R = 1) and one charging station is
covered by another if they have a distance of 1.

Figure 1.11: Example of a corridor with 27 traditional gas stations

Step 1. Solve the CCP with V = {1, 2, . . . , 27}. The solution is

S1 = {2, 3, 7, 9, 14, 17, 22, 23}
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Step 2. Solve the KP forcing that S1 are also solutions. The solution is

S2 = {2, 3, 6, 7, 9, 12, 14, 17, 22, 23}

with

x2 = x7 = x9 = x14 = x17 = x22 = x23 = 1, x3 = 3, x6 = x12 = 5

Figure 1.12: Step 1 and Step 2.

Step 3. K = {6, 12} is not empty, k1 is 12. Solve the CCP including k1 as
solution.

S1 = {5, 6, 12, 13, 14, 15, 20, 22, 23}
Step 4. Solve the KP forcing that S1 are also solutions.

S2 = {3, 5, 6, 12, 13, 14, 15, 20, 22, 23}

Step 5. K = {3} is not empty. k1 = k1 ∪ {3}. Solve the CCP including k1 as
solution.

S1 = {2, 3, 7, 9, 12, 14, 20, 22, 23}
Step 6. S2 = {2, 3, 6, 7, 9, 12, 14, 20, 22, 23}
Step 7. K = {6} is not empty. k1 = k1 ∪ {6}. Solve the CCP including k1 as
solution.

S1 = {3, 5, 6, 12, 14, 15, 18, 23, 25, 26}
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Step 8. S2 = {3, 5, 6, 12, 14, 15, 18, 23, 25, 26}, with

x5 = x14 = x15 = x18 = x23 = x25 = x26 = 1, x3 = 3, x6 = x12 = 5

Step 9. K is empty. Stop. The Solution is S2.

Figure 1.13: Step 9

The solution obtained through the algorithm is to open 10 electric gas stations
that give us an attractiveness of 882. On the other hand, if we solve this
same example with the exact model, the solution obtained is S = {2, 3, 7, 9, 14,
17, 22, 23} with x7 = x9 = x17 = x22 = x23 = 1, x2 = x3 = x14 = 5.
In other words, the solution is to open 8 electric gas stations that give us an
attractiveness of 573. The bilevel problem has been separated into two classic
linear problems but both are still NP-hard. Consequently, we will use different
heuristics from the literature to solve them (see, Lotfi and Moon, 1997; Deineko
and Woeginger, 2011; Pisinger, 2000).

1.4.3 Others perspectives

Single level reformulation with primal-dual problems

In order to solve problem (1.19)-(1.26), we reformulate it as a single-level opti-
mization problem by exploiting the primal-dual optimality conditions of linear
programming. First we define the dual problem of the follower problem know-
ing that the upper level binary variable yk is an input parameter whose value
is fixed.
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min P · λ+
∑
k∈V

qkβk +
∑
k∈V

(∑
l∈Bk

yl

)
· αk +

∑
k∈V

yk · δk +
∑
k∈V

yk · γk

(1.27)

s.t. pkλ+ βk +
αk

qk
+ γk +

δk
qk

≥ ωk, ∀k ∈ V (1.28)

λ, βk, αk, δk ≥ 0, ∀k ∈ V (1.29)

γk ≤ 0. ∀k ∈ V (1.30)

According to the weak and strong duality theorems, if xk is a feasible solution
of primal problem, λ, βk, αk, δk, γk is a feasible solution of dual problem and
the optimal values of the primal and dual problem coincide, then xk (resp.
λ, βk, αk, δk, γk) is an optimal solution of primal (resp. dual). Problem (1.19)-
(1.26) can be reformulated as the following single level problem.

min
∑
l∈V

yl (1.31)

s.t.
∑

l∈V,l ̸=k

bklyl ≥ 1, ∀k ∈ V (1.32)

∑
k∈V

xkpk ≤ P, (1.33)

yk ≤ xk, ∀k ∈ V (1.34)
xk

qk
≤ yk;

xk

qk
≤
∑
l∈Bk

yl, ∀k ∈ V (1.35)

pkλ+ βk +
αk

qk
+ γk +

δk
qk

≥ ωk, ∀k ∈ V (1.36)

Pλ+
∑
k∈V

qkβk +
∑
k∈V

(∑
l∈Bk

yl

)
αk +

∑
k∈V

ykδk+ (1.37)

+
∑
k∈V

ykγk =
∑
k∈V

ωkxk,

xk ∈ N , 0 ≤ xk ≤ qk, ∀k ∈ V (1.38)

yl ∈ {0, 1}, ∀l ∈ V (1.39)

λ, βk, αk ≥ 0, ∀k ∈ V (1.40)

γk ≤ 0. ∀k ∈ V (1.41)

Constraint (1.37) is the strong duality condition stating that the primal and dual
objectives of the lower level problem must be equal, the blocks of constraints
(1.31)-(1.32) represent the upper level problem constraints, (1.33)-(1.35) is the
lower level primal problem constraints and (1.36) represent the lower level dual
problem constraints.
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Single level reformulation with exchange in the hierarchy
criteria

In view of the results of our case study in the exact model, although the solution
minimizes the number of electric stations that we open, it does not give good
attractiveness results. Therefore, we carry out an exchange at the hierarchy
levels:

max
∑
k∈V

ωk · xk (1.42)

s.t.
∑
k∈V

xkpk ≤ P, (1.43)

xk

qk
≤ yk;

xk

qk
≤
∑
l∈Bk

yl, ∀k ∈ V (1.44)

min
∑
l∈V

yl (1.45)

s.t.
∑

l∈V,l ̸=k

bklyl ≥ 1, ∀k ∈ V (1.46)

yk ≤ xk, ∀k ∈ V (1.47)

xk ∈ N , 0 ≤ xk ≤ qk, ∀k ∈ V (1.48)

yl ∈ {0, 1} ∀l ∈ V (1.49)

Using the same argument and results used in 1.4.3, we reformulate our problem,
obtaining the following single-level model:

max
∑
k∈V

ωk · xk (1.50)

s.t.
∑
k∈V

xkpk ≤ P, (1.51)

xk

qk
≤ yk;

xk

qk
≤
∑
l∈Bk

yl, ∀k ∈ V (1.52)

∑
l∈V,l ̸=k

bklyl ≥ 1, ∀k ∈ V (1.53)

yk ≤ xk, ∀k ∈ V (1.54)∑
l∈Bk

αk + βk ≤ 1, ∀k ∈ V (1.55)

∑
k∈V

αk +
∑
k∈V

βkxk =
∑
k∈V

yk, (1.56)

xk ∈ N , 0 ≤ xk ≤ qk, ∀k ∈ V (1.57)

yl ∈ {0, 1}, ∀l ∈ V (1.58)

αk, βk ∈ {0, 1}, ∀k ∈ V (1.59)
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Computational results

A computational experience, consisting of performing 25 experiments on the
network in Figure 1.11 has been carried out in order to compare the solutions
provided in both reformulations and the heuristics solutions. Computational
experience was solved by means of the GuRoBi 9.1.2 in Python solver on a laptop
with 16 GB of RAM and an Intel processor i7-1165G7 (with a 64-bit Windows 10
professional operating system and limiting the execution time to 2 h). Instance
#1 is our case study. Instances between #2 and #8 have a single parameter
randomly changed from the original example. Instances between #9 and #18
all the parameters have been taken randomly with values of attractiveness and
budget less than 100, capacity less than 10, unit price less than 1/4 of the
budget and coverage radii less than 3. Instances between #19 and #25 all
the parameters have been taken randomly with values of attractiveness and
budget less than 1000 and greater than 100, capacity less than 20 and all other
parameters taken randomly in the same way.

Table 1.6 shows the obtained results. The columns of NH, AH show the number
of nodes and the attractivity obtained with the heuristic solution respectively.
The columns of NE1, AE1 and NE2, AE2 show the number of nodes and
attractivity obtained with the exact method explained in section 1.4.3 and 1.4.3
respectively. The computation times (in seconds) of the heuristic, model 1 and
model 2 are included in the columns CPU H, CPU E1, CPU E2 respectively.
In all the experiments carried out, the minimum number of nodes is given by
the first exact model and the maximum attractivity is given by the second exact
model.
The heuristic gives us a good solution between both methodologies, in all the
experiments, the difference of nodes with the minimum numbers is less or equal
than 4 and with the maximum attractivity has 8.49% of relative error. The
heuristic gives solutions that are closer to the optimal value of the second model
because once a solution with few nodes covering the network is achieved, the
heuristic increases the number of nodes to increase attractiveness. On instance
#12, #14, #19 and #23 the heuristic does not give us a solution of the problem
because the initial CCP solution exceeds the budget.

1.4.4 Conclusions

In this section, a methodology has been developed to optimally select, among
a group of candidate sites already equipped with refueling facilities, a series of
recharging points in order to guarantee that an electric vehicle can autonomously
transit within a territory and, in the event of a breakdown in the selected ser-
vice station, be able to count on an alternative charging station that is within
a reasonable distance radius. This concept of reinforced coverage has been for-
mulated following the conditional covering model, which minimizes the number
of installations required (Criterion 1). Complementarily, the maximization of
the demand that could be satisfied subject to budgetary restrictions has been
a second objective, which has been formulated as an instance of the knapsack
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# NH AH CPU H NE1 AE1 CPU E1 NE2 AE2 CPU E2
1 10 862 0.00 8 573 0.19 10 945 0.03
2 9 1481 0.00 8 1457 0.13 10 1627 0.03
3 11 1600 0.00 8 747 0.19 11 1605 0.03
4 9 507 0.00 8 391 0.09 9 542 0.03
5 10 849 0.00 8 573 0.25 10 871 0.02
6 9 507 0.00 8 345 0.07 10 648 0.03
7 6 1052 0.00 4 635 0.48 6 1060 0.09
8 5 1095 0.00 4 495 0.14 5 1095 0.03
9 13 2405 0.01 10 1446 8.2 13 2460 0.08
10 4 558 0.02 4 412 0.78 5 673 0.05
11 8 1692 0.01 4 746 0.58 8 1692 0.05
12 - - - 9 297 0.07 9 297 0.04
13 8 1509 0.01 5 180 2.99 8 1734 0.06
14 - - - 10 434 0.09 11 446 0.04
15 5 1248 0.01 4 821 1,01 6 1580 0.03
16 6 1224 0.00 4 454 0.35 8 1287 0.01
17 5 911 0.00 4 344 0.07 6 1033 0.0
18 7 1223 0.00 5 293 0.62 7 1223 0.01
19 - - - 9 7074 0.38 9 10338 0.01
20 6 48977 0.00 4 38743 1.01 6 53362 0.02
21 6 15561 0.00 5 9479 1.64 6 15561 0.02
22 6 33497 0.00 4 15471 1.31 6 40682 0.02
23 - - - 9 7062 0.41 10 14441 0.02
24 7 38071 0.00 4 28073 0,37 7 39529 0.02
25 12 21797 0.00 10 7798 0,05 12 23710 0.01

Table 1.6: Results obtained from the computational experience.
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problem (Criterion 2). This second criterion has been hierarchically combined
with the previous one, giving rise to a bilevel model.

Since the computational complexities of both proposed models are NP-difficult,
a heuristic has been designed to solve the two phases of the bilevel model sepa-
rately, following an iterative scheme (Methodology 1). This first solution proce-
dure has been compared with two other methodologies based on programming a
single optimization level, by integrating the primal and dual versions of the in-
volved constraints. The first of those methodologies has been directly obtained
without modifying the hierarchy of the criteria initially considered (ie, minimiz-
ing the number of installations required as the main objective - Methodology 2),
while the second methodology pursues the maximization of the user population
covered as main objective (Methodology 3).
As future research, a possible continuation would be to take into account that
due to the proximity between some gas stations they cannot be selected at the
same time due to the electrical voltage or to carry out a study with different
companies that have different locations and new restrictions.

1.5 Chapter conclusions

In this chapter we have presented three different key transport issues facing
many countries in the world. Urban sprawl is a phenomenon that leads to an
extensive use of motorized transport modes with negative environmental im-
pacts such as congestion, time wasted in traffic jams, air and noise pollution
and additional costs incurred by using non-renewable energy. Increasing the ex-
isting infrastructures is a decision, which often generates the installation of new
urban settlements, whose degree of isolation is mitigated with a new increase
in the demand for transport. This vicious circle can be broken by reducing
the need of transport imposed by the urban model, which is only possible by
bringing citizens closer to those services they demand. In the model of sprawled
city, housing predominates as land use in the residential areas, where other
complementary uses (such as commercial, cultural, institutional and industrial
ones) are excluded in the urban development. When the urban districts do not
present enough complexity, an increase in traffic density between different zones
into the city arises. Such forced mobility could be reduced if the functional
diversity of the districts were greater, or if there was an urban rapid transit
system connecting the areas that generate the greatest imbalances. To measure
the complexity of the urban districts system, the Information Theory developed
in the 1960s proposes the use of urban entropy. Section 1.2 addresses the prob-
lem of locating a rapid transit line (metro, tram, BRT) with the objective of
maximize the functional diversity of the districts traversed by the alignment.
In order to illustrate the proposed model a computational experience is carried
out by using data from the metropolitan area of Seville (Spain).
In section 1.3 we have presented an optimization procedure to choose a park-
ing facility according to different criteria: total travel time including transfers,
parking fee and a factor depending on the risk of not having an available spot in
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the parking facility at the arrival time. An integer programming formulation has
been proposed to determine an optimal strategy of minimum cost considering
the available information, different scenarios, and each user profile. To evaluate
the performance, a computational experience has been carried out on Seville
(Spain), where a historical city center restricts the traffic of private vehicles and
encourages the use of parking facilities. we have worked on the park-and-ride
problem. We have designed an ITS to reduce the parking search time taking
into account the behavior of the drivers, it has been taken into account: the
price of the trip, the time of the trip, the number of free spaces in the selected
car park. We have provided a methodology to evaluate the efficiency of routes
between two points starting with a private vehicle but necessarily ending with
another means of transport with the mandatory use of a park-and-ride facility.
In section 1.4 we have developed a procedure to optimally select, among a group
of candidate sites where gas stations were already located, a sufficient number
of charging points in order to guarantee that an electric vehicle can make its
journey without a problem of energy autonomy and that each selected charging
station has another one that serves as an alternative support in case of failure
(reinforced coverage service). For this purpose, we have proposed a bilevel model
that, in a former level, minimizes the number of refueling points necessary to
guarantee a reinforced service coverage for all users who transit from their origin
to destination and, in a second level, maximizes the volume of demand that can
be satisfied subject to budgetary restrictions. With the first of the objectives
we are addressing the typical demand of the administration, which consists of
guaranteeing the viability of the solutions, and the second of the objectives is
a criterion typically used by the private sector initiative, compatible with the
profit maximization.
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Chapter 2

Location and routing of
containers (fixed and
mobile) for the selective
collection of urban solid
waste

2.1 Introduction

The Multiple Knapsack Model can establish an adequate theoretical framework
to analyze the territorial deployment of fixed containers for the selective collec-
tion of urban solid waste and also, for the planning of routes and stops of the
so-called eco-points, that is, waste containers with less frequency of generation
by society in urban areas and that have the potential to pollute the environ-
ment.
Nowadays, due to greater attention to the quality of life and the interest in
sustainable energy resource utilisation, the majority of institutions are moving
towards efficient solutions to combat the urban waste collection issue. The Sus-
tainable Development Goals defined by the United Nations in the 2030 Agenda
have brought the imperative to make cities more sustainable to the fore of devel-
opment discussions, thereby improving the quality of life for citizens (Nations,
2015). European Nations have recently defined several policies in favour of the
circular economy (da Silva, 2018; van Ewijk and Stegemann, 2020). Therefore,
due to the inherent social implications, the optimisation of urban waste col-
lection assumes a fundamental role in each city today (Alçada-Almeida et al.,
2009).
Municipal Solid Waste (MSW) includes used paper, discarded cans and bottles,
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food scraps, yard trimmings, and other items. Proportionally, household waste
accounts for usually up to 75 per cent of all the municipal solid wastes. MSW
management includes several functional phases such as waste generation, stor-
age, collection, transportation, processing, recycling and disposal in a suitable
landfill (Khan and Samadder, 2014). Collecting solid waste involves storage at
the generation and pick-up points, pick up by the crew, trucks driving around
the neighbourhood, and truck transport to a transfer station or disposal point.
These tasks are difficult, complex and costly. Therefore, the objective of an effi-
cient service should be the minimization of solid waste collection costs, together
with the provision of an adequate and regular service to all of the target area
of Technology Assessment (1989). Providing an efficient collection service to a
city often requires a combination of techniques and equipment, to accommodate
the different challenges of the various neighbourhoods within the city (Coffey
and Coad, 2010).
Waste collection and transportation phases are closely related, since the deploy-
ment of containers along the city determines both the vehicle fleet size required
for picking up the collected waste into the containers and the design of efficient
routes needed for that purpose. Typically, collection costs represent 80–90%
and 50–80% of municipal solid waste management budget in low income and
middle income countries, respectively (Aremu, 2013). Therefore, waste collec-
tion and transportation problems are considered as one of the most difficult
operational problems when developing an integrated waste management system
(Nuortio et al., 2006). Eiselt and Marianov (2015) provide a compilation of 64
papers that include applications throughout the world, where the main aspects
of interest of the contributions have been summarized in a Table, and classified
according to country, technique, criteria, objectives and type or facility to be
located.
Management of solid-waste collection services is intrinsically linked to the de-
velopment of effective vehicle routing (VR) models that optimize the total trav-
eling distance of vehicles, the environmental emission and the investment costs
(Apaydin and Gonullu, 2011). An optimal VR is a scheduled process that al-
lows vehicles to load waste at gather sites and dump it at a landfill by satisfying
multiple objectives (Tung and Pinnoi, 2000). Through a Route optimization
for Waste management (WM), both the residential routing problem and the
commercial routing problem settings can be solved. Beliën et al. (2014) present
a review of the available literature on solid waste management problems, with
a particular focus on vehicle routing problems that are classified into different
categories.
In real scenarios, the waste collection system is distributed in a set of zones. The
purpose of the zoning phase is to determine collection districts. The districts
must be defined such that the total solid waste loads within each one does not
exceed the capacity of the vehicles used to perform the waste collection. The
problem of districting is not widely addressed in the literature, or in many cases
it is assumed to be solved a priori, neglecting the influence it could have on
the subsequent routing phase. Male and Liebman (1978) proposed a district-
ing heuristic based on the construction of an auxiliary graph, in which nodes
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represent trips and edges represent feasible trips aggregations. Eisenstein and
Iyer (1997) devised flexible schedules for garbage trucks in the city of Chicago.
Hanafi et al. (1999) studied a weekly zoning schedule problem with the aim of
determining a fixed number of sectors which must be balanced with respect to
the daily total waste collection time. They proposed an optimization model
which can be applied to small-size instances. For large-size scenarios these au-
thors develop a local search heuristic that is based on the definition of a zoning
matrix. The proposed methods are tested on three real-world instances and 28
randomly generated instances. Labelle et al. (2002) presented several models
and heuristics for partitioning a city into sectors, with respect to snow disposal
operations, and for assigning the sectors to disposal sites. The problem results
quite similar to the problem encountered in garbage collection operations. Sa-
hoo et al. (2005) present a discussion on how to divide the area from which
waste is collected into districts, with the aim of subdividing the problem, mak-
ing it more manageable. Authors proposed both, a mathematical model and a
two phase insertion algorithm, in which a feasible solution is first generated and
later, improved; see also the works of Kim et al. (2004); Solomon (1987); Taillard
et al. (1997), which are used to address the two phase method. Each zone has a
set of starting and ending nodes associated in order to determine the tours for
vehicles responsible for carrying the garbage collected in the visited containers.
A planning horizon must also be considered in order to schedule a sequence of
services within the useful life of each vehicle. A succession of routes (one per
day, belonging to the same or to different distribution zones and performed by
the same vehicle along the planning horizon) is called a circulation. Plans for
determining the vehicle circulation in transportation networks are described by,
for instance, Barrena et al. (2016); Canca and Barrena (2018).
Community containers are the locations in the street where the waste can be
transferred to the collection agency at a short distance from the dwellings where
garbage is generated. Sites, where community storage facilities should be lo-
cated, must depend on the customer behaviour. If a community is willing to
co-operate in their proper use by carrying their waste to the containers, rather
than dropping it in the street or on open plots nearer to their homes or busi-
nesses. In these cases, the task of collection will be transferred to the street
sweeping service which is more expensive than collecting from containers.
Collection vehicles visit community containers at frequent intervals, usually once
daily or every second day, to remove accumulated waste. A planning horizon
must also be considered in order to schedule a sequence of services within the
useful life of each vehicle. The set of collecting routes, belonging to the same
or to different distribution zones in the city and performed by the same vehicle
along the planning horizon, is called a vehicle circulation. Plans for efficiently
determining vehicle circulations in transportation networks are described by
Barrena et al. (2016).
Summarizing, the problem of managing selective collection of waste containers
can be performed in three sequential phases devoted to: first, the location of
containers along the streets; then, the determination of the minimum fleet size
required to perform all collecting services; and finally, the design of optimal
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routes, in terms of total and balanced number of kilometres travelled by the
trucks. The decisions to be taken in these three phases can be advised through
the use of optimization models. Obviously, the result of the first phase (location
of the containers) highly influences the procedure since this will determine the
decisions to be taken for the subsequent phases (route of collection vehicles and
service programming).
The choice of permanent or temporary collection points in the various areas of
each city is of extreme importance. Indeed, every waste container presents a
specific capacity, cost, and environmental impact. In this respect, the actual
challenge for most of the administrations involves the suitable definition of key
parameters, such as the type, the number, and the position of the containers
for every area in order to dispose of all types of waste produced in a defined
period. A further important aspect for consideration in the analysis of this issue
is that of the size of the city examined. In fact, in highly populated cities, waste
collection is managed by different municipalities or organisations responsible
for specific established zones. Typically, the containers should be distributed
so that the distance between any two containers is not excessive. In the cities
which have historic core areas it may not be possible to locate containers at the
most convenient distances, because community containers can only be located
along the main streets and in places where there is enough space for the con-
tainer itself and for operating the collection vehicle.
In the scenario regarding municipalities, it will also be problematical to pre-
dict future modifications in waste collection and recycling. The composition
of municipal solid urban waste is influenced by the standard of living of the
population, the economic activity of their inhabitants, and the climate of the
region (Bandara et al., 2007). Certain products will eventually become more
commonly used in relation to these factors and, subsequently, various waste
modalities will be generated in varying proportions.
According to the report entitled Statistics on Waste Collection and Treatment
for the Year 2018 of the National Institute of Statistics (INE) in Spain, the main
materials produced in Spain are paper and cardboard (24.1%), organic matter
(22.9%), glass (18.9%), plastic and mixed packaging (16.8%), and others (repre-
senting 17.3%). This latter group requires special attention, since certain items
can be considered as hazardous waste. Waste can be characterised as hazardous
if it possesses any one of the following four features: ignitability, corrosiveness,
reactivity, and toxicity. Hazardous waste, which is usually the waste by-product
of our industrial processes, presents immediate or long-term risks to humans,
animals, plants, or the environment.
In Spain, many municipalities have combined the need to collect this type of
potentially hazardous waste with the promotion of environmental policies and
use containers with an aesthetically attractive design, which help spread the
commitment to the selective collection of urban solid waste.
The so-called eco-points are large waste containers with separate non-homogeneous
sections for the collection of various kinds of items, including mobiles, batteries,
chargers, syringes and needles, used low-energy lamps, radiographs and photo-
graphic material, books for the exchange between citizens, toner and cartridges
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of ink, aluminium and plastic coffee capsules, and CDs and DVDs A real exam-
ple of an eco-point located in the city of Seville (Spain) is shown in Figure 2.1.
The decision regarding the best configuration for an eco-point container in-

Figure 2.1: An eco-point situated in city of Seville.

cludes the design of the distribution of volume of their sections. The eco-point
lay-out is linked to the Bin Packing (BP) problem. In agreement with Garey
(1979), the BP issue is a combinatorial problem that belongs to the class of
NP-hard problems. Various real applications of this kind of issue are presented
in Garey and Johnson (1981); Falkenauer (1996). In addition to this connec-
tion with the BP problem, MSW collection is intrinsically connected to the VR
model (Carrese et al., 2019; Marseglia et al., 2019) in terms of optimising dif-
ferent criteria, such as the total distance travelled by vehicles, the emission of
environmental pollutants, and the investment costs (Tung and Pinnoi, 2000).

Our interest in this issue is focused on a type of mobile container for the col-
lection of solid waste, composed of several sections for the separate storage of
different items, which can either all be of the same size or can have heterogeneous
volumes, depending on the demand of the place where they are temporarily lo-
cated. Eco-points deployed in the region of Cantabria (Spain), such as that
shown in Figure 2.2, represent real instances of the type of containers of inter-
est. The identification of the allocation of the multi-block container is one of the
two decisions to be adopted. It should be borne in mind that mobile eco-points

Figure 2.2: An example of an eco-point deployed in Cantabria.
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follow an established route and visit all the neighbourhoods of the city in an
itinerant way. The container is placed at identified stops on public roads for
a temporary period (for example, on a Monday, whereby it is moved to a new
point in the city on the following Monday). The calendar is previously made
known to all residents in the neighbourhood.
Section 2.2 focus on the first phase of the problem of managing selective collec-
tion of waste containers: the location of collecting facilities (waste containers),
where facility-customer distances must be considered in the collecting design
system, as well as other considerations such as the size of container groups,
their capacities in accordance with the closest population and the installation
cost of those containers in specific sites along the streets. Section 2.3 also de-
velops the location of collecting facilities but taking into account the influence
of customer solidarity behaviour on this location. For this purpose, we consider
parameters such as container customer distances, the size of container groups,
their capacities in accordance with the closest population, and the installation
cost of those containers in specific sites along the streets. Section 2.4 addresses
the double determination of BP configurations and of container routes. One of
the ultimate aims involves the cost minimisation of the resources employed. In
order to solve the problem of waste collection and vehicle routes in an optimal
way, an adaptive algorithm of overflow deviated to the immediate neighbour-
hood is developed. This algorithm strives to solve the proposed mathematical
programming model, whose computational complexity justifies the use of heuris-
tics to address large real-life scenarios. The evaluation of the performance of
the developed methodology has been carried out through a computational expe-
rience in a toy network using two strategies to design the layouts of the mobile
multi-block containers that visit the demand nodes.
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2.2 Optimizing container location for selective
collection of urban solid waste

2.2.1 Model formulation

We assume the following mathematical context, associated to the characteristics
of the problem, that consists of a connected graph G = (V,A), composed of
a node set V (portals) and an arc set A (directed edges representing street
sections). The arcs of set A connect the nodes belonging to set V , so that the
existence of a shortest path in terms of distance or travel time between each
pair of points of V is guaranteed. Let us suppose that set V is composed of
nodes where urban waste is generated (set I) and by points where it is possible to
locate the containers to deposit them (set J). We also assume that the inclusion
sequence J ⊂ I ⊂ V is maintained. Note that any node i of V located at the
entrance gate of a building could be identified as a generating point of waste;
in that case, node i would belong to set I. Alternatively, node i could simply
be a feasible site along the street, where the waste container could temporarily
be located (in that case, node ri would also belong to set J). The following
notation is used in our waste containers formulation:

• I: set of demand nodes (i ∈ I ). There is a population pi associated to
each demand point i ∈ I.

• J : set of possible location nodes to locate waste containers (j ∈ J ). There
is an upper bound ( capj ,j ∈ J ) in terms of capacity associated to each
candidate point j ∈ J .

• K: set of main types of solid waste generated in the urban area (for
instance, cardboard, plastic, organic waste, scrap metal, etc.) ( k ∈ K).

Additionally, we assume a compensation cost βk
j > 0 associated with the eco-

nomic value that the municipal cleaning company would be willing to pay to
maintain a container of modality k in node j during the planning horizon. This
means that the cleaning company should have previously negotiated a payment
reduction with the inhabitants nearby node j, due to the inconveniences gener-
ated by permanently establishing the container of type k close to their dwellings.
So, if node j is located in the public domain far from any building, the com-
pensation cost could be considered 0; on the other hand, if the location of the
container in the proximity of a house is technically unfeasible, this cost could
be associated to an infinite value.
The parameters involved in our optimization model are the following:

- Each node i has a known weight wk
i (which can be identified with the

amount of waste in kg or dm3 generated in node i of modality k, i.e.,
organic material, glass, packaging or paper units) associated.

- The shortest distances between nodes of set V , along network G, have
previously been determined and recorded in the matrix D = (dij), dij ≥ 0.

67



Inhabitants associated to node i would experience a displacement cost
(discomfort) Ck

ij when having to take their type k waste to the container
located at point j. This discomfort implicitly requires a restriction on
travel distances. In practice, this restriction is modelled by the assignation
of a feasible coverage radius from point i. A point i can be considered
covered by another point j if the distance between them does not exceed
a radius of displacement Rk.

Let us assume that each customer is willing to use any container, as long as a
maximum walking distance from their residence to the assigned container is not
exceeded. That container might not be the closest, but this must lie within a
predefined radius. In our model, a portion of inhabitants associated with node i
could take their garbage to the container j and another portion of the population
of the same node would be willing to take out their garbage to another unfilled
container j that is not excessively distant. This solidary behavior of the clients
would allow an efficient deployment of the containers in the area under analysis,
reducing their total number and grouping them in the points of lowest cost.
Let qkij ∈ 0, 1 be a binary expression that takes value 1 if the demand point i can

be covered by site j by means of a container of modality k (note that qkij = 1

implies that dij ≤ Rk , and value 0, otherwise). Additionally, let Nj > 0 be an
integer parameter that indicates the maximum number of containers that could
be installed at location j. We assume that all containers are provided with the
same capacity Q.
Moreover, the following variables are required in the model.

Variables

ykj Binary variable that takes value 1, if container location j is activated to
collect type k garbage, and value 0, otherwise.

xk
ij Number of type k containers to be installed at location j.

nk
j Percentage of type k garbage that the client corresponding to node i will
deliver at location j.

The nature of the variables used in the model yields varied formulations to face
different objectives. In our case, the following integer programming formulation
determines the minimum number of container groups to be installed in the area
under consideration. Note that the lower the number of garbage deposit points,
the more efficient the collection procedure will be.
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Objective and constraints

z1 ≡ min
∑
j∈J

∑
k∈K

βk
j n

k
j (2.1)

s.t.
∑
j∈J

qkijy
k
j ≥ 1, ∀i ∈ I, k ∈ K, (2.2)

∑
j∈J

qkijx
k
ij = 1, ∀i ∈ I, k ∈ K, (2.3)

xk
ij ≤ ykj , ∀i ∈ I, j ∈ J, k ∈ K, (2.4)

ykj ≤ nk
j ∀j ∈ J, k ∈ K, (2.5)∑

i∈I

wk
i x

k
ij ≤ Q · nk

j ∀j ∈ J, k ∈ K, (2.6)∑
k∈K

nk
j ≤ Nj ∀j ∈ J, (2.7)

xk
ij ≥ 0, ykj ∈ {0, 1}, nk

j ∈ N+ ∀i ∈ I, j ∈ J, k ∈ K. (2.8)

The objective function 2.1 minimizes the cost of containers that should be in-
stalled. Note that when radii Rk decrease, the number of containers that can
be grouped in the same location will then increase. Constraints 2.2 ensure that
all demand is covered by the set of locations to be determined. Constraints
2.3 establish that the sum of coverage percentages for every demand point from
the container must be equal to 1. Constraints 2.4 imply that if a location is
activated, then at least one container must be installed at it. Constraints 2.5
guarantee that if a location is not activated, then no demand point can be cov-
ered by it. Constraints 2.6 imply that demand points that may be served from
location j cannot exceed its capacity. Constraints 2.7 establish an upper bound
on the number of containers that can be located at each site. Constraints 2.8
indicate the nature of the variables used in the model.
Maintaining the above described constraints, an additional criterion, consisting
of minimizing user travel costs, can be incorporated into the objective by com-
bining it with the previously considered minimization of costs in the deployment
of the containers. The expression that follows formulates this purpose:

z2 ≡ min
∑
i∈I

∑
j∈J

∑
k∈K

Ck
ijy

k
j +

∑
j∈J

∑
k∈K

βk
j n

k
j (2.9)

Both models 2.1–2.8 and 2.9-2.8 are of combinatorial nature and can be consid-
ered as instances of a Partial Set Covering problem (Daskin and Owen, 1999).
The partial set covering model is NP-hard since it is a generalization of the
traditional location set covering problem, which is NP-hard.
In Cormen et al. (2022), the problem is discussed in detail and its complexity
is proved. This fact justifies the use of algorithms that provide a good heuristic
solution.
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A model similar to the one previously proposed has been investigated in Bar-
rena et al. (2017), in which heuristics were designed in a computationally feasible
way and consistent with the approach. Tests carried out on randomly generated
data have shown that a simple heuristic of Overflowing Deviated to Immediate
Neighbourhood (ODIN) yields the best results if the inter-location spacing be-
tween adjacent containers is not excessively large. Taking these precedents into
account, we propose the heuristic ODIN for solving our optimization model in
order to determine the most effective deployment of waste containers along the
street network.

Heuristic ODIN

1. Sort the points that generate urban waste according to their production,
from highest to lowest levels and re-label them.

2. While there exists a generator point i whose collection requirement exceed
the established upper limit Ni ; i.e.

∑
k∈K nk

j ≥ Ni do

2.1 Identify the set of nodes Prox(i; k) whose distances to node i are
less than Rk (excluding node i) .

2.2 Sort the nodes j ∈ Prox(i; k) from the lowest to the highest levels
according to ascending values of βk

j .

2.3 For each j ∈ Prox(i; k) do

2.3.1 While
∑

k∈K nk
i −Ni > 0 and Ni −

∑
k∈K nk

j > 0 do

Decrease units from nk
i and Increase them in nk

j .

3. If all the generating points satisfy condition
∑

k∈K nk
i ≤ Ni then a so-

lution to the problem has been obtained. Otherwise, a modification of
parameters Rk or Ni is required.

4. End.

2.2.2 Computational Experience

Our model has been tested on a laboratory example, described by a graph rep-
resenting a part of the street system in the city of Seville. The historic centre of
Seville is one of the largest in Europe, along with those of Venice and Genova.
It has an approximately circular configuration and an area of 3.94km2. The
streets of this sector of Seville are predominantly narrow and one-way. The
most common type of dwellings is the single-family house or the multi-family
building with a shared courtyard. In both housing models, there is hardly any
space available for the establishment of selective garbage containers in the inte-
rior. Conversely, citizens have traditionally orientated the common areas, both
in the insides and doorways, towards decorations in tile and other traditional
elements (gardening pots, etc.) that enhance the beauty of the place.
This unavailability of physical space for locating fixed containers forces to a
widespread use of a small container (with a maximum capacity for 4 bags of
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garbage), mobile (provided with rear wheels and a handle to be dragged by
the user), and polyvalent (without the possibility of classifying organic waste,
glass, cardboard/plastic containers or paper), which serves the community of
neighbours throughout each day.
The daily collection of waste from these multi-purpose containers is currently
established by pre-designed truck routes, whose passing times are constrained
to temporary windows that are known by the building neighbours. This col-
lecting service is currently non-selective due to the above mentioned difficulties:
widespread narrowness of streets to permanently locate containers in surface,
aesthetic/tradition constraints, space limitations within dwellings that discour-
age the multiplicity of collecting instruments.
A computational experience has been carried out on a laboratory scenario com-
posed of 39 dwellings (sites identified as elements of node set I). Location of
nodes along the street network and the values of internode distances are illus-
trated in Fig. 2.3

Figure 2.3: A network of thirty nine nodes.

The amount of daily produced waste is randomised within the interval [400
kg, 16000 kg]. By considering homogeneous containers of capacity 500kg, it
is possible to initially assign to each residential place a container cluster (lo-
cated at this same site) whose amount varies between 1 and 32. In order to
provide the experiment a connection with a real context, a limitation on the
number of containers that share the same geographical location has been set to
10. Additionally, a unit cost per locating a container at each site j must be
considered. In the experiment, it has been considered as randomised within the
interval [0, 10], by representing the monthly cost in euros incurred on locating
the container at this specific site.
In a first scenario, different types of garbage have not been distinguished. In
Fig. 2.4, the container clusters, which are needed to guarantee the collection
of all urban waste by means of user displacements to the deposit point nearer
than R = 100m, are represented by circles of variable radius between 1 and 10.

If no optimization procedure was applied, the 238 containers needed to collect
all the global garbage produced (see locations in Fig. 2.4), would involve a cost
of 1091 euros per month.
On the other hand, if we assume a solidary behaviour of the clients when taking
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Figure 2.4: A garbage collection system with 39 nodes and a cost of 1091 euros
per month.

their garbage to the container assigned to them within a pre-established prox-
imity radius (not necessarily to the closest container to their place of residence),
then a more efficient distribution of the containers can be obtained by means
of the optimization model previously proposed. This optimized distribution is
characterized by:

• A smaller number of clusters: the number of initial groups (39) has been
reduced to 29.

• The compensation cost of the maintenance of the 238 containers on the
street, is reduced by 14.48%. The monthly cost associated to the solution
shown in Fig. 2.5 is now 933 euros.

Figure 2.5: A garbage collection system with 29 nodes and a cost of 933 euros
per month.

In a second scenario, we consider a selective collection of solid waste consisting
of three different types (a situation like the one shown in Fig. 2.6).
The total amount of waste generated at each node coincides with that of the
first scenario, but its distribution in each of the three types of waste considered
is random. The requirement to separately store the waste yields an increment
in the number of containers needed to carry out the collection of waste. This
increment with respect to the first scenario, which in the experiment is equal to
17.65% (280 containers now, versus 238 in scenario 1), leads to a redistribution
of the containers. A new application of the ODIN heuristic, maintaining the
values established for the parameters Rk and Nj , provides the distribution of
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Figure 2.6: An example of three different types of solid waste collection.

containers illustrated in Fig. 2.7. In this case, a more efficient distribution of
the containers is also achieved after applying the algorithm, since those can be
grouped in 33 places, instead of the initial 39 nodes.

Figure 2.7: An example of three different types of solid waste collection.

If we compare the solution obtained in scenario 2 with the proposal for scenario
1, we can observe that 17 nodes (marked with the magenta colour) have had
to change their allocation of containers due to the increment caused by the
selective collection of solid waste.

2.2.3 Conclusions

A methodology for the deployment of containers for selective collection of ur-
ban solid waste has been proposed in this work. The mathematical optimization
model formulated for this purpose has been identified as a version of the Partial
Set Covering problem, whose computational complexity motivates the use of
heuristics to face large real-life scenarios. Following that recommendation, a
greedy algorithm of overflowing deviated to the immediate neighbourhood has
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been developed to solve the proposed mathematical programming model.
To illustrate the performance of the developed methodology, a computational
experience has been carried out on an urban system composed of 39 nodes with
randomised data inspired in a zone belonging to the area of Seville (Spain).
Two different scenarios are considered. The first scenario maintains the current
non-selective collection of urban solid waste and, after the optimization proce-
dure, the compensation cost is reduced by 14.48% and the number of clusters
is reduced from 39 to 29 (25.65% decrease), thus facilitating the subsequent
phases of service programming and collection route design. The second sce-
nario incorporates the selective collection, thus yielding an increment on the
number of containers but, even though, the number of nodes is reduced to 33
(15.38% decrease). The evaluation of two generated scenarios illustrates then
that the methodology meets the objective of efficiently designing a deployment
of containers for selective collection of urban solid waste.
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2.3 Solidarity Behaviour for Optimizing theWaste
Selective Collection

2.3.1 Model Formulation

We assume the previous mathematical description, associated to the character-
istics of the problem, that consists of a connected graph G = (V,A), composed
of a node set V (portals) and an arcs set A (directed links, i.e. arcs, representing
street sections). The arcs of set A connect the nodes belonging to set V , so that
the existence of a shortest path in terms of distance or travel time between each
pair of points of V is guaranteed. Let us suppose that set V contains nodes
where urban waste is generated (set I) as well as points where it is possible to
locate the containers to deposit them (set J). We will additionally assume that
the following inclusion sequence is maintained: J ⊂ I ⊂ V . Note that any node
i of V located at the entrance gate of a building could be identified as a gener-
ating point of waste; in that case, node i would belong to set I. Alternatively,
node i could simply be a feasible site along the street, where the waste container
could temporarily be located (in that case, node i would also belong to set J).
The following notation is used in order to formulate our location model for the
waste containers:

• I: set of demand nodes (i ∈ I). There is a population pi associated to
each demand point i ∈ I.

• J : set of possible location nodes to locate waste containers (j ∈ J). There
is an upper bound (capj , j ∈ J) in terms of capacity associated to each
candidate point j ∈ J .

• K: set of main types of solid waste generated in the urban area (for
instance, cardboard, plastic, organic waste, scrap metal, etc.) (k ∈ K).

Additionally, we assume a compensation cost βk
j associated with the economic

value that the municipal cleaning company would be willing to pay to maintain a
container of modality k in node j during the planning horizon. This means that
the cleaning company should have previously negotiated a payment reduction
with the inhabitants nearby node j, due to the inconveniences generated by
permanently establishing the container of type k close to their dwellings. In
this way, if node j is located in the public domain far from any building, the
compensation cost could be considered to be 0; and, on the other hand, if the
location of the container is technically unfeasible due to the proximity of a place
of residence, this cost could be associated to an infinite value.
The parameters involved in our optimization model are the following:

- Each node i has a known weight wk
i (which can be identified with the

amount of waste in kg or dm3 generated in node i of waste modality k,
i.e., organic material, glass, packaging or paper units) associated.

- The shortest distances between nodes of set V , along network G, have
previously been determined and recorded in the matrix D = (dij), dij ≥ 0.
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Residents associated to node i would experience a displacement cost (discom-
fort) Ck

ij when having to take their type k waste to the container located at
point j. This discomfort should be limited by means of including a restriction
on the maximum allowed walking distance for the users. In practice, this re-
striction can be modelled by the assignation of a feasible coverage radius from
point i. A point i can be considered covered by another point j if the distance
between them does not exceed a radius of displacement Rk.
Observe that this radius is type-dependent since some types of waste may have
less collecting points if its use is not as extended as others. Customers may be
willing to walk longer or shorter to deposit the waste depending on its type.
Let us assume users have solidarity behavior, that is, that each customer is
willing to use any container, as long as a maximum walking distance from their
residence to the assigned container is not exceeded. That container might not
be the closest, but this must lie within a predefined radius. In our model, a
portion of inhabitants associated with node i could take their garbage to the
container j and another portion of the population of the same node would be
willing to take out their garbage to another unfilled container j that is not ex-
cessively distant. This solidary behaviour of the clients would allow an efficient
deployment of the containers in the area under analysis, reducing their total
number and grouping them in the points of lowest cost.

2.3.2 Modifications of Solving Algorithm

A model similar to the one previously proposed in Section 2.2.1 has been in-
vestigated by Barrena et al. (2017), in whose work heuristics were designed in
a computationally feasible way and consistent with the approach. Tests carried
out on randomly generated data have shown that a simple heuristic of Overflow-
ing Deviated to Immediate Neighbourhood (ODIN) yields the best results if the
inter-location spacing between adjacent containers is not excessively large. Tak-
ing these precedents into account, we propose the three-phases heuristic ODIN
for solving our optimization model in order to determine the most effective de-
ployment of waste containers along the street network.
We propose a solving algorithm which is divided into three parts. The first
phase, ODIN1, is a slightly modified version of the algorithm ODIN presented
by Barrena et al. (2019). ODIN1 does not requires an initial solution and this
yields a feasible solution which tends to minimize the objective function. This is
done by reallocating containers that cannot be installed at their demand points
to the cheapest (in terms of compensation cost) available location within radius
Rk. Having into account the customer solidarity behaviour, we also propose
an extension (ODIN2 and ODIN3) of this algorithm in order to minimize the
number of containers at each node and to allocate them, respectively, when this
change helps reducing the objective function. Allocation is then done in order
to minimize the cost as well as to reduce the number of stops in subsequent
phases of waste collection
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Heuristic ODIN1

1. Sort the points i ∈ I that generate urban waste according to their pro-
duction, from highest to lowest levels and re-label them.

2. Assign the required number of containers of type k to each node i ∈ I,

that is, nk
i =

⌈
wk

i

Q

⌉
.

3. While there exists a generator point i whose collection requirement exceed
the established upper limit Ni (i.e.

∑
k∈K nk

j ≥ Ni) or which does not
belong to the set of possible location nodes (that is, i ∈ I \ J) do

3.1 Identify the set of nodes Prox(i; k) whose distances to node i are
less than Rk (excluding node i) .

3.2 Sort the nodes j ∈ Prox(i; k) from the lowest to the highest levels
according to ascending values of βk

j .

3.3 For each j ∈ Prox(i; k) do

3.3.1 While
∑

k∈K nk
i −Ni > 0 and Ni −

∑
k∈K nk

j > 0 do

Decrease units from nk
i and Increase them in nk

j .

4. If all the generating points satisfy condition
∑

k∈K nk
i ≤ Ni then a so-

lution to the problem has been obtained. Otherwise, a modification of
parameters Rk or Ni is required.

5. End.

This ODIN1 algorithm reallocates containers when demand cannot be attended
at a certain node and add a container for this unattended demand at another
location. However, in some occasions, there may be non-used capacity of the
existing containers, and there is therefore no need to add a new one to attend
demand. This give raise to propose a second part for this algorithm, aiming at
a more efficient use of containers. This minimizes, not only compensation cost
due to locations, but also the number of containers.

Heuristic ODIN2

In this second phase of the solution algorithm, a more efficient use of the con-
tainers is recommended. If there is enough non-used space at containers of type
k at location j, then the waste of type k is reassigned to them in order to save
number of containers.

77



1. For each location j ∈ J we first calculate the number rkj of containers
of type k required to attend the demand from node j and from all others
nodes whose demand is partially assigned to j (that is, for all i such that
xk
ij ̸= 0).

rkj =

⌈∑
i∈I w

k
i x

k
ij

Q

⌉

2. If the number of containers needed is less than the number of containers
obtained from ODIN1 (that is, if rkj < nk

j ), then diminish nk
j and update

its value to rkj .

Heuristic ODIN3

Once all the demand is attended with the minimum number of containers (so-
lution obtained from ODIN1 and ODIN2), we propose to redistribute them in
this third phase of the algorithm. Redistributing containers to cheaper locations
may help to reduce the cost, and also to reduce the number of locations with
containers. Reducing the number of locations with containers will facilitate the
subsequent phases of waste collection and transportation since the number of
stops is reduced. This phase makes more sense in scenarios in which there is
a big proportion of generating nodes which are also possible container location
nodes (that is, if set J is large). In these cases, it may happen that an ex-
cessive number of locations is activated and it is important to reduce them for
operational tasks.

1. Sort j ∈ J such that nk
j ̸= 0 from the highest to the lowest value of

compensation the cost βk
j and re-label them.

2. Consider the location nodes j ∈ J that only attend demand from its own
node (that is,

∑
i ̸=j x

k
ij = 0).

3. If there exists a location node j∗ ∈ Prox(j, k) ∩ J such that its com-
pensation cost is lower than the one in (βk

j∗ < βk
j ) and that can allo-

cate more containers (that is, if
∑

k n
k
j∗ < Nj∗) then increase nk

j∗ to

max{
∑

k n
k
j∗ + nk

j , Nj∗} and decrease nk
j accordingly.

4. Go to ODIN2 and Iterate until the stopping criterion is reached (when
the improvement in the objective function is less or equal than a small
value β).
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2.3.3 Computational Experience

Our model has been tested on a graph representing a part of the street system in
the city of Seville. In particular, the computational experience has been carried
out on an urban area which contains a street network with 46 dwelling points
(sites identified as elements of node set I). Location of nodes along the street
network and internode distances are illustrated in Figure 2.8.

Figure 2.8: A network of 46 nodes depicting an area of Seville.

The amount of daily produced waste has been randomised within the interval
[400kg, 5000kg]. By considering homogeneous containers of capacity 500kg, it is
possible to initially assign to each residential place a container cluster (located
at this same site) whose amount varies between 1 and 10. In order to adapt
to a real context, a limitation on the number of containers that share the same
geographical location has been set to 10. Additionally, a monthly unit cost for
locating a container at each site j must be considered. In the experiment, this
cost has been considered as random within the interval [0, 10] measured in euros.
In the baseline scenario where no optimization procedure was applied, the 236
containers needed to collect all the produced garbage would involve a cost of
1149 euros per month.
In Figure 2.9, the container clusters, which are needed to guarantee the col-
lection of all urban waste by means of user displacements to the deposit point
nearer than R = 100m, are represented by circles of variable radius between 1
and 10. The radius of each circle is proportional to the size of the corresponding
container group.

On the other hand, we also consider a first scenario assuming customer solidarity
behaviour, that is, that customers are willing to carry their garbage to their
specifically assigned containers (not necessarily to the closest container to their
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Figure 2.9: Container distribution with 46 nodes.

place of residence), within a pre-established proximity radius of R = 100m. In
this scenario, a more efficient distribution of the containers can be obtained by
means of the optimization model previously proposed (ODIN 1-3). Two sub-
scenarios have been analysed according to size (N) of the container group at the
same point. For N = 6, the proposed methodology yields the following results:

- The number of initial container groups (46) can be reduced to 43.

- The compensation cost of the maintenance of the 236 containers on the
street, is reduced by 10.01 percent. The monthly cost associated to the
solution shown in Figure 2.10 is now 1034 euros.

Figure 2.10: Container distribution with 43 nodes.

For N = 8, the proposed methodology yields the following results:

- The number of initial container groups (46) can be reduced to 33.

- The compensation cost of the maintenance of the 236 containers on the
street, is reduced by 29.42 percent. The monthly cost associated to the
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solution shown in Figure 2.11 is now 811 euros.

Figure 2.11: Container distribution with 33 nodes.

In a second scenario, we consider a selective collection of solid waste by using
three different types of containers (a situation like the one shown in the Figure
2.12).
For this case, the total amount of waste generated at each node coincides with

Figure 2.12: An example of three different types of solid waste collection.

that of the first scenario, but its distribution in each of the three types of waste
considered has been randomly generated. The requirement to separately store
the waste yields an increment in the number of containers needed to carry out
the collection of waste. This increment with respect to the first scenario, which
in the experiment is equal to 22.03% (288 containers now, versus 236 in scenario
1), leads to a redistribution of the containers. A new application of the ODIN
heuristics, maintaining the values established for the parameters Rk and Nj ,

81



provides a more efficient distribution of the containers, since those ones can be
grouped in 41 places, instead of the initial 46 nodes.

2.3.4 Conclusions

A methodology for the deployment of containers for selective collection of ur-
ban solid waste has been proposed in this work. The mathematical optimization
model formulated for this purpose has been identified as a version of the Partial
Set Covering problem, whose computational complexity motivates the use of
heuristics to face large real-life scenarios. Following that recommendation, a
three-phase greedy algorithm of overflowing deviated to the immediate neigh-
bourhood has been developed to solve the proposed mathematical programming
model. This algorithm takes into account the characteristics of the problem and
it specially considers the customer solidarity behaviour.
In order to illustrate the performance of the developed methodology, a compu-
tational experience has been carried out on an urban system composed of 46
nodes with randomised data based on a zone belonging to the area of Seville
(Spain). Apart from the baseline scenario, two different scenarios are consid-
ered by assuming that customers have solidarity behaviour, as they commit to
deposit their waste in containers that are not necessarily the closest to their
homes.
The first scenario maintains the current non-selective collection of urban solid
waste and considers different options by varying the size of the container group
at the same point. After the optimization procedure for the biggest size consid-
ered, the compensation cost is reduced by 14.48% and the number of clusters
is reduced from 46 to 33 (decrease of 29.42%), thus facilitating the subsequent
phases of service programming and collection route design. The second scenario
incorporates the selective collection, thus yielding an increment on the number
of containers but, even though, the number of nodes is reduced to 41 (decrease
of 10.86%). The evaluation of two generated scenarios illustrates then that the
methodology meets the objective of efficiently designing a deployment of con-
tainers for selective collection of urban solid waste.
We must conclude that the optimization of sites, where community storage facil-
ities should be located highly, depends on the customer behaviour. The number
of containers and therefore the cost associated with their location and trans-
portation can be significantly reduced if a community is willing to co-operate
by carrying their waste to the appropriate containers within a predefined radius,
even if eventually these are not the nearest to their residence. A solidarity co-
operation of the costumers is assumed in this section with the goal of reducing
the number of collection points.
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2.4 A heuristic for the deployment of collect-
ing routes for urban recycle stations (eco-
points)

2.4.1 Model development

In order to determine optimal routes for mobile multi-block containers, a strongly
connected graph G = (V,A) is assumed, composed of a node set V and an arc
set A (directed edges representing street sections), such that the existence of a
shortest path in terms of distance (or travel time) between each pair of points
of V is guaranteed inside G. Let us suppose that set V contains the set J of
nodes where waste is placed by the users in order to be collected in mobile
multi-block containers. Each container is divided into sections (bins or blocks)
and is associated to one route, to be determined by the optimisation model,
that starts and ends at the same depot point (O) whose location is assumed to
be fixed. Hence, the same index can be employed to simultaneously represent
each container and its corresponding route.
The following notation is used in our formulation:
I: Set of routes for containers (i ∈ I). We assume that all vehicles are identical
and have the same transport capacity, which corresponds to one container. All
containers are homogeneous and contain |L| blocks of capacity c. Let C be the
total capacity of each container (C = c · |L|).
J : Set of locations to be visited within the city (j, j′ ∈ J ⊆ V ). Depot point O
is assumed to belong to this set J . Distances across network G between nodes
j and j′are known and recorded in the D = (djj′) matrix. Term djj′ indicates
the minimum cost of travelling from point j to point j′. Once all the shortest
paths between pairs of nodes of the set J have been established, a graph can be
used as a new solution space whose set of vertices is J and where each arc (j, j′)
is weighted by djj′ . Let A(J) be the set of these direct arcs between pairs of
points in J . Analogously, we will denote A(S) as the set of arcs that connect
pairs of points belonging to subset S ⊆ V .
K: Set of waste modalities (k ∈ K).
Quantity of waste modality k produced at point j is represented by means of
the parameter wk

j ≥ 0.
Therefore:∑
k∈K

wk
j : Indicates the total waste generated at point j ∈ J.

∑
j∈J

wk
j : Indicates the total waste of modality k ∈ K produced within the city.

∑
k∈K

∑
j∈J

wk
j : Evaluates the total amount of waste produced within the

city for all waste modalities.
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Moreover, the following variables are required in the model:
yki : Binary variable that takes value 1 if route i ∈ I is employed for collecting
waste of modality k ∈ K, and is equal to 0 otherwise.
xk
ij : Binary variable that takes value 1 if location j ∈ J is visited by route i ∈ I

and waste of modality k ∈ K is collected, and is set to 0 otherwise.
zijj′ : Binary variable that takes value 1 if the connection (j, j′) is used for con-
tainer i ∈ I along its route, and takes value 0 otherwise.
nk
i : Integer variable that indicates the number of k-blocks (k ∈ K) packed in

container i ∈ I.
Note that, with these variables, the waste volume of those shipments that visit
location j with the purpose of collecting waste from modality k can be expressed
by means of.

∑
i∈I c · nk

i · xk
ij

The objective function can be treated in three different ways depending on the
problem.

1. When solving the classic BP, the objective is to minimise the number of
containers used.

minZ1 :=
∑
i∈I

∑
k∈K

yki

2. When solving the classic VRP, the objective is to minimise the total dis-
tance travelled.

minZ2 :=
∑
i∈I

∑
(j,j′)∈A(J)

djj′ · zijj′

3. We propose applying a convex combination of both objectives with a para-
metric coefficient λ ∈ (0, 1) to be calibrated by municipal waste collection
services.

minZ3 := (1− λ) ·
∑
i∈I

∑
k∈K

yki + λ ·
∑
i∈I

∑
(j,j′)∈A(J)

djj′ · zijj′

The nature of the variables used in the model allows us to build suitable pro-
grams to tackle different objectives. In our case, the following integer program-
ming model inspired by the BP and VR schemes determines the deployment of
routes for mobile eco-points for the selective collection of urban solid waste.
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min z3 ≡(1− λ) ·
∑
i∈I

∑
k∈K

yki + λ ·
∑
i∈I

∑
(j,j′)∈A(J)

djj′ · zijj′

s.t.
∑
k∈K

yki ≥ 1, ∀i ∈ I,

(2.10)∑
i∈I

∑
k∈K

xk
ij ≥ 1, ∀j ∈ J,

(2.11)

yki ≤ nk
i ≤ |L| · yki , ∀i ∈ I, k ∈ K,

(2.12)∑
k∈K

nk
i ≤ |L|, ∀i ∈ I,

(2.13)∑
j∈J

wk
j x

k
ij ≤ c · nk

i , ∀i ∈ I, k ∈ K, (2.14)

∑
i∈i

c · nk
i · xk

ij ≥ wk
j , ∀j ∈ J(j ̸= O), k ∈ K,

(2.15)∑
j′∈J|j′≠O

ziOj′ = 1 ∀i ∈ I, (2.16)

∑
j∈J|j′≠O

zijO = 1 ∀i ∈ I,

(2.17)∑
j′∈J|(j,j′)∈A(J)

zijj′ −
∑

j′∈J|(j′,j)∈A(J)

zij′j = 0, ∀j ∈ J(j ̸= O), i ∈ I,

(2.18)

yki ≥ xk
ij ;

∑
j′∈J|(j′,j)∈A(J)

zij′j ≥ xk
ij , ∀j ∈ J(j ̸= O), i ∈ I, k ∈ K,

(2.19)∑
j′∈J|(j,j′)∈A(J)

zijj′ ≤ |S| − 1, ∀i ∈ I, {S : S ⊆ J,O ̸∈ S, |S| ≥ 2},

(2.20)

xk
ij , y

k
j , z

i
jj′ ∈ {0, 1}, nk

j ∈ {1, 2, . . . , |L|}, ∀i ∈ I, j ∈ J, k ∈ K.

(2.21)

Constraints (2.10) ensure that every route must collect at least one kind of
waste. Constraints (2.11) establish that each location must be visited at least
once. Constraints (2.12)–(2.13) guarantee consistency and an upper limit of the
number of waste blocks of modality k within each container. Constraints (2.14)
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ensure that the capacity of collecting type-k waste in shipment i is sufficient
to satisfy the demand generated at nodes j that are visited. Constraints (2.15)
establish that the collection capacity of the total shipments that pass through
point j is sufficient to collect waste of each modality generated at that location.
Constraints (2.16)–(2.18) guarantee the flow conservation at nodes, this is the
classic constraint of the VRP. Constraints (2.19) connect the decision variables
used in the BP and VR blocks of the model. Constraints (2.20) are subtour
elimination constraints. Constraints (2.21) indicate the nature of the variables
used in the model.

2.4.2 Algorithm for solving the model

In the BP problem, items of different volumes must be packed into a finite num-
ber of bins (or containers), each of a fixed given volume, in order to minimise
the number of bins used. The VRP addresses the determination of the optimal
set of routes for a fleet of vehicles, in order to serve a given set of customers.
Both models are of combinatorial nature and, in computational complexity the-
ory, are classified as NP-hard problems. This fact justifies the use of algorithms
that provide a good heuristic solution for the combined model. Furthermore,
our proposed optimisation model is non-linear, as can be seen in Constraints
(2.15). Therefore, in order to solve this complex problem, we propose an algo-
rithm that simultaneously configures the containers and designs the routes that
provide a good solution to our original problem. When analysing the set of re-
strictions in the model, the existence of quasi-separability between them can be
appreciated, both in relation to the variables involved and the purpose pursued.
Blocks (2.10)–(2.15) are aimed to establish the configuration of the multiple bin
container, while blocks (2.16)–(2.18) determine the most appropriate route to
be established taking into account the existing demand for waste to be collected
according to their types. As was previously pointed out, Constraints (2.19)
connect the decision variables used in the BP and VR blocks of the model.
If Constraints (2.15) can be algebraically manipulated, they can be expressed
as follows: ∑

k∈K

(∑
i∈i

nk
i · xk

ij

)
≥
∑
k∈K

wk
j

c

Note that the following quotient determines the number of bin blocks required
to collect the generation of k-waste at location j:

qkj =

⌈
wk

j

c

⌉

A matrix of |J |·|K| elements, whose individual components are the coefficients
qkj , can be calculated according to the input data set. Note that:

- If qkj > 0, then node j must be visited at least once for collecting the k-
waste generated at location j. More specifically,

86



- If 0 < qkj ≤ |L|, then node j does not need to be visited more than once
in order to collect all the k-waste generated at location j. The number of
bins needed to collect all the waste of modality k located at point j could
be concentrated in a single shipment i∗, thus adapting the configuration
of the container to the characteristics of the point to be visited (Adapted
configuration strategy, Option 2), or alternatively, it could be divided into
several shipments that would repeatedly decrease the amount of waste
to be collected. Among the multiple possible options for configuring the
containers that would carry out these shipments is the one in which each
type of waste is represented with a single bin in the container configuration
(Fixed configuration strategy, Option 1).

- If qkj > |L| then node j must necessarily be visited more than once in order

to collect all the k-waste generated at location j. In fact, quotient

⌈
qkj
|L|

⌉
indicates the minimum number of required visits to carry out at location j.
Since the total waste generated at location j must be collected, according
to Constraints (2.15), we must assume that if the demand of collecting
the k-waste generated at location j is not satisfied by the visit of a first
container, then a sequence of iterative visits must be implemented.

In the first phase of our algorithm, all the nodes j that have the entire universe of
specific residues will be covered. Hence, a container with a completely diversified
configuration (that is, each block collects a different modality of residues from
the rest of the blocks that configure the container) will travel from the depot
node to node j and will return following the shortest path.
In the second phase of our algorithm, there are only nodes where certain types
of waste are missing. The choice is now between two strategies when configuring
a multi-block container: either to use identical containers, in which there are
no repeated blocks in their configuration; or to use heterogeneous containers,
where certain block modalities have a greater presence, at the expense of others,
when the configuration of the container is decided. Therefore, the efficiency of
the algorithm that solves the problem depends on the correct choice in the order
of action of two simple strategies:
Option 1 (see Fig. 2.13): To remove the plurality of blocks by using a single
configuration for all collecting containers and extend their routes by visiting
other nodes, until the bin blocks are filled with the corresponding specific ma-
terials.
Option 2 (see Fig. 2.14): To adapt the waste bin configuration of the visiting
container to the characteristics of the node, since there is no total variety of
waste modalities at that point. In the following heuristic, both strategies are

present.

• If solely the main program is used, by ignoring the call to the subroutine
in step 4.1, then Option 1 would actually be applied, in which the con-
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Figure 2.13: Route for visiting nodes following Option 1 as the configuration
strategy.

Figure 2.14: Two routes for visiting nodes with different container configurations
adapted to the existing demand (Option 2).

tainer configuration is homogeneous for all vehicles. This situation would
be applicable when the decision maker has only partial information on
the demand at each point, that is, he/she knows that there is waste to
be collected, but is unaware of its distribution in modalities, and hence
optimising the bin packaging is not a prerequisite.

• If, alternatively, the use of the subroutine in step 4.1 is forced, then a con-
figuration would be obtained of the multi-block container adapted to the
existing demand in the nodes to be visited. By applying this second strat-
egy (Option 2), the search for shorter vehicle routes would be combined
with the design of the most suitable packing of blocks for the container.
If the decision maker were in possession of all the information on the de-
mand at each point (that is, the distribution of the types of waste to be
collected), he/she could optimise the container packaging before starting
the route of the collecting containers.

88



HEURISTIC 1 (main program)

1. Sort node set J according to the shortest distance from depot O.

2. While, at each node j, there exists all the universe of specific waste:

2.1 Generate a route for a new visiting multi-block container i that
follows a shortest path from depot O to node j along the street
network.

2.2 Decrease units from the unsatisfied demand at the visited node j.

3. Identify those nodes where some specific type of waste remains pending
of collecting, but not for all types. Let T be this node set.

4. While there exist nodes j in T do

4.1 Select the most appropriate configuration for a new multi-block bin
i (by using subroutine HEURISTIC 2).

4.2 Generate a route following a shortest path from depot O to node j
along the street network.

4.3 Decrease units of unsatisfied demand at each node j, according to
the characteristics of the visiting multi-block bin.

4.4 If the global demand of collecting specific waste has been satisfied,
Remove node j from set T .

5. End.

HEURISTIC 2 (subroutine to decide configuration of container i )
For k = 1 to |K| do

1. If qkj ≥ |L| then node j must be visited by means of a container i such

that nk
i = |L|, ∀k ∈ K. Return.

2. If
∑

k∈K qkj ≥ |L| then node j must be visited by means of a container i

such that
∑

k∈K nk
i = |L|. Return.

3. If
∑

k∈K qkj < |L| then node j must be visited by means of a container i

such that nk
i = qkj ∀k ∈ K. Return.

In step 4.2, when determining the route employed to visit a group of nodes
in the same shipment, the order of visits that produces the shortest distance
travelled has been selected.
The tests carried out in the following section with randomly generated data
have shown that Option 2 involves the generation of shorter collecting routes,
while maintaining the number of routes required to guarantee the collection of
all waste. Therefore, the use of Option 2 is preferable, whenever possible.
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2.4.3 Results and discussion

In order to validate the proposed optimisation model, the Sioux Falls graph
has been considered for different instances, and the number of nodes and the
quantity of waste produced at each node are varied. In Fig. 2.15, the Sioux
Falls network with 24 nodes and 38 edges (76 directed arcs) is shown, where
one depot is located at node 1 and the waste generating points are the points
labelled 2–18. Table 2.1 shows the results obtained when the problem of op-

Figure 2.15: The Sioux Falls network with 24 nodes and 38 edges (76 directed
arcs).

timally deploying waste collection routes is implemented for several instances.
The objective function considered is the global distance travelled along the total
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Number Objective function CPU (seconds) Heuristic 1 % Heuristic 2 %

10 7.020 ∗ 106 3.45 9.740 ∗ 106 38,75 7.180 ∗ 106 2,28
11 1.076 ∗ 107 4.82 1.282 ∗ 107 30,02 1.016 ∗ 107 3,04
12 9.260 ∗ 106 4.73 1.514 ∗ 107 63,5 9.680 ∗ 106 4,54
13 1.080 ∗ 107 5.90 1.552 ∗ 107 43,7 1.114 ∗ 107 3,15
14 1.240 ∗ 107 19.77 1.924 ∗ 107 55,16 1.290 ∗ 107 4,03
15 1.338 ∗ 107 76.79 1.974 ∗ 107 48,42 1.352 ∗ 107 1,05
16 - 7200 (3.08% Gap) 1.986 ∗ 107 - 1.692 ∗ 107 -
18 - Out of memory 2.294 ∗ 107 - 1.907 ∗ 107 -
24 - Out of memory 4.124 ∗ 107 - 3.301 ∗ 107 -

Table 2.1: Results obtained from the computational experience.

of routes required to collect the totality of randomly generated waste.
It can be observed that, for small size problems, the solver achieves the op-

timal solution, improving the solutions obtained through Heuristic Option 1
(fixed configuration for all containers) and 2 (container configuration adapted
to demand). However, when the network size increases, the problem cannot be
solved because of a problem of memory. As the experiments carried out have
shown, when the exact model fails, both heuristic strategies succeed in finding
solutions to the problem in a very short time. In particular, Strategy 2, which
combines the BP and VR optimisation models, proves to be more efficient, as
can be observed in Table 2.1. Computational experience was solved by means
of the GuRoBi 9.1.2 in Python solver on a laptop with 16 GB of RAM and
an Intel processor i7-1165G7 (with a 64-bit Windows 10 professional operating
system and limiting the execution time to 2 h).
As is shown in Table 2.1, the difference in quality between the solutions pro-
vided by each of the two strategies is significant. The solutions generated after
the application of Strategy 1 (which does not adapt the configuration of its
compartments to the demand of the points to be visited) are poor, since they
exceed the values obtained when the exact model is applied by more than 30%.
In contrast, the solutions produced by Strategy 2 for the generation of collection
routes with vehicle configurations adapted to demand are very close to those
provided by the exact model: less than 5% in all instances of the experiment.
Additionally, in order to exhaustively compare the efficiency of the two heuris-
tic strategies developed, a computational experience has been carried out in a
laboratory scenario composed of 39 nodes (sites identified as elements of node
set J). The locations of nodes along the street network are illustrated in Fig.
2.16

From among the 39 nodes, 7 points have been selected (nodes labelled 1, 11,
19, 22, 29, 33, and 39) where the demand for a selective collection of waste is
located. The node labelled with number 17 represents the depot from where
the routes of the mobile eco-points start. Urban waste to be collected is sorted
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Figure 2.16: Network with 39 nodes and 7 waste collecting points.

into 4 categories and the quantity generated at each demand node is, for each
category, a random integer number in the interval [1 kg, 9 kg]. The vehicle’s
collection capacity is limited to 4 kg in total and its configuration may follow a
homogeneous type (that is, 4 different blocks, each with the capacity to collect
1 kg), or an adapted type (where blocks can be grouped in order to adapt it to
the characteristics of the demand).
The first option is to use vehicles with the homogeneous configuration [1,1,1,1] in
order to visit nodes where the demand has one representation of each modality.
If at one node there are no units of a certain type, then the vehicle should prolong
its route to visit other nodes and, hence, complete its collection capacity before
returning to the depot. The results in this case are illustrated in Fig. 2.17.
Node 1 has the demand [0,1,1,2]; after this node is visited by the vehicle of
homogeneous configuration, the vehicle would store the distribution [0,1,1,1]
and the subsequent demand that would remain at the node would be [0,0,0,1].
Therefore, this vehicle could continue its route in order to complete its loading
capacity before returning to the depot; for example, visiting node 22 whose
demand distribution is [0,2,1,1]. After visiting node 22, the vehicle would store
[1,1,1,1] and then could return to the depot, whereas the demand of node 22
would now be [0,1,1,1].
A new vehicle of homogeneous configuration [1,1,1,1] could then sequentially
revisit nodes 1 and 22, culminating the satisfaction of total demand with a
second route. Applying this strategy, the cost of waste collection would be
proportional to the total distance travelled by the vehicles on both routes.
Alternatively, another strategy could be applied, where the distribution of the
4 blocks that the vehicle can transport is configured prior to starting the route
from the depot. The chosen configuration would be determined by the existing
demand at the nodes that are to be visited. In the previously described case,
where node 1 has the demand [0,1,1,2], it would be possible to dispatch a vehicle
with the same configuration, since the sum of blocks (2 + 0+1 + 1) is exactly 4.
In this way, the vehicle could travel directly from the depot to node 1 on both
the outward and return journey, without deviating from the shortest route.

In Fig. 2.18, it can be observed that, subsequent to the vehicle visit, the demand
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Figure 2.17: Routes for the homogeneous configuration [1,1,1,1].

located at node 1 is cancelled ([0,0,0,0]). Analogously this would occur with node
22 whose initial demand was [0,2,1,1]. Therefore, the application of this second
strategy apparently enables the shortest routes to be taken more frequently by
the mobile eco-points between the depot node and the demand points.

Figure 2.18: Routes for adapted configurations of containers.
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A computational experience, consisting of performing 30 experiments on the
network in Fig. 2.16 has been carried out in the aforementioned terms in order
to be able to compare the effectiveness of the two strategies, which are named
fixed (Option 1) and adapted (Option 2), respectively. Table 2.2 shows the re-
sults obtained.
The columns of Fixed configuration strategy show the numbers of routes and
total kilometres that a vehicle must travel to cover all the demand with this
strategy (Option 1). The columns of Adapted configuration strategy show the
same data with the adapted strategy (Option 2). Finally, the columns of Abso-
lute improvement and Relative improvement show the difference of the adapted
strategy against the fixed strategy in terms of absolute cost and relative cost.
In all the experiments carried out, the adapted configuration strategy has im-
proved the total cost invested in the determination of routes with respect to
the results obtained under the fixed configuration strategy. The improvement
is above 19% on average. In the number of vehicle routes dispatched from the
depot, the improvement remains inconclusive. As can be observed in Table 2.2,
the number of routes is similar, regardless of the strategy used.

2.4.4 Conclusions

Amethodology for the deployment of mobile multi-block containers for the selec-
tive collection of urban solid waste is proposed in this section. The mathematical
optimisation model formulated for this purpose is identified as a combined ver-
sion of the BP problem and the VR problem, whose computational complexity
justifies the use of heuristics to face real-life scenarios on a large scale. Follow-
ing that recommendation, a greedy algorithm has been developed to solve the
proposed mathematical programming model. Two strategies are identified for
the design of the configurations of the mobile multi-block containers that visit
the demand nodes. The Sioux Falls network has been applied to show how the
state-of-the-art solvers are incapable of solving medium-size instances, although
both heuristic strategies provide solutions for large size instances. In particular,
the strategy consisting of the generation of collection routes with vehicle config-
urations that are adapted to demand provides solutions of a very high standard.
In order to ascertain the most efficient strategy for the implementation of a solv-
ing algorithm, a computational experience has been carried out on a laboratory
instance. Results show that priority must be granted to the ability to adapt the
configuration of the mobile multiblock container to the characteristics of the
node to be visited.
This work provides useful information to environmental engineers and operators
in the field of waste management, in the form of recommendations for possible
performance enhancement modifications in the management of the logistics of
urban waste collection.
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Fixed configuration Adapted configuration Absolute Relative
strategy strategy improvements improvements

n # Routes # Km # Routes # Km # Routes # Km # Routes # Km

1 37 22587 37 19910 0 2677 0.00% 11.85%
2 32 24989 32 17505 0 7484 0.00% 29.95%
3 26 17959 27 15408 -1 2551 -3.85% 14.20%
4 29 18282 29 16743 0 1539 0.00% 8.42%
5 31 23388 31 18272 0 5116 0.00% 21.87%
6 34 25189 34 19476 0 5713 0.00% 22.68%
7 31 22758 30 17646 1 5112 3.23% 22.46%
8 37 24855 36 19972 1 4883 2.70% 19.65%
9 39 23740 39 21250 0 2490 0.00% 10.49%
10 29 20620 30 17749 -1 2871 -3.45% 13.92%
11 35 22384 35 19251 0 3133 0.00% 14.00%
12 35 23778 34 18737 1 5041 2.86% 21.20%
13 33 23559 33 16722 0 6837 0.00% 29.02%
14 38 26480 38 22413 0 4067 0.00% 15.36%
15 27 16832 27 15083 0 1749 0.00% 10.39%
16 36 27400 36 19980 0 7420 0.00% 27.08%
17 33 24442 33 19117 0 5325 0.00% 21.79%
18 35 21937 34 17108 1 4829 2.86% 22.01%
19 28 19032 28 15556 0 3476 0.00% 18.26%
20 32 23994 31 18744 1 5250 3.13% 21.88%
21 29 21940 29 17738 0 4202 0.00% 19.15%
22 25 17548 25 14478 0 3070 0.00% 17.49%
23 31 21119 31 18045 0 3074 0.00% 14.56%
24 33 22022 32 16820 1 5202 3.03% 23.62%
25 29 23679 28 15818 1 7861 3.45% 33.20%
26 35 22148 34 18306 1 3842 2.86% 17.35%
27 36 23894 36 19265 0 4629 0.00% 19.37%
28 24 17574 24 11680 0 5894 0.00% 33.54%
29 25 16908 25 13564 0 3344 0.00% 19.78%
30 35 22835 36 20814 -1 2021 -2.86% 8.85%

Table 2.2: Results obtained from the computational experience.
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2.5 Chapter conclusions

In this chapter we have presented three different problems on the location and
routing of containers (fixed and mobile) for the selective collection of urban
solid waste. In section 2.2, we have modeled the determination of routes for
the selective collection of urban solid waste within the historic centers where
the distances between the installation and the client must be considered in the
collection design system, as well as other considerations such as the size of the
groups of containers, their capacities according to the nearest population and
the installation cost of those containers in specific sites along the streets . In
section 2.3, we have developed the work presented in the previous section as-
suming that customers are willing to have a solidarity behaviour, which consists
of using a container assigned to them within a pre-stablished proximity radius,
although the assigned container may not be necessarily the closest to their res-
idence. For this scenario, a more efficient deployment of containers for selective
collection of urban solid waste can be obtained. To illustrate the performance
of the developed methodology, a computational experience has been carried out
on a network with randomized data based on a zone belonging to city of Seville
(Spain). In section 2.4, we have worked on the location and number of eco-
point containers, the determination of the fleet size for picking up the collected
waste, and the design of itineraries are all intertwined, but present computa-
tionally difficult problems, and therefore must be solved in a sequential way.
The mathematical optimization model formulated for this purpose has been
identified as a combined version of BP problem and the VR problem, whose
computational complexity motivates the use of heuristics to face large real-life
scenarios. Following that recommendation, a greedy algorithm has been devel-
oped to solve the proposed mathematical programming model. Two strategies
have been identified for designing the configurations of the mobile multi-block
containers that will visit the demand nodes. The results obtained from the nu-
merical simulations show the validation of the proposed methodology carried
out for the Sioux Falls network benchmark and the specific real case study.
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Chapter 3

Efficient strategies based on
waiting time for
operators/users in
transport networks

3.1 Introduction

One of the most common objectives in the optimization problems in the trans-
port of people is to minimize the total travel time of the users. In this chapter,
we present two transport optimization problems whose objective is to minimize
the travel time of users for trains, in the first problem, and for private vehicles,
in the second problem.
In the first of the problems we have worked on the strategy called the Skip-Stop
(or limited-stop) which is a mechanism that some transport companies follow to
reduce travel times without the need to increase the fleet of vehicles. It consists
of privileging a majority of passengers by offering shorter travel times, after
having previously selected a group of low activity stations, where the trains will
not stop to leave / pick up passengers.
Distinguishing between express and local stations, it appears first in the North-
western Elevated of Chicago by July 1900. The skip-stop service was also first
developed for the Chicago Metro system in 1947, and later implemented in
Philadelphia and New York (see, Chicago-L.org. North Side Express Opera-
tions (n.d.)).
In 1947, system of express and local schedules provided by the Chicago Transit
Authority (CTA) had become a nuisance for users, because the really available
services for riders were hard to comprehend. In order to stop the fall in demand
that was being happening, the CTA planned a clever way of running express
service on its two-track lines. This proposal was known as the A/B skip-stop
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plan (see, Chicago-L.org. A/B Skip-Stop Express Service (n.d.)). As illustrative
examples, the skip-stop operation mode has been used (and/or is being used)
in practice in Santiago de Chile since 2001 (Freyss et al., 2013), in Bogota’s
Transmilenio system (Leiva et al., 2010), in Los Angeles’s Metro Rapid system
(Zhang et al., 2017), in Singapur’s Transit Link (Chen et al., 2015b), and in
the bus line that connects the East zone of Seville area with its historic center
(Transportes Urbanos de Sevilla S. A. M. (TUSSAM) (n.d.)). Figure 3.1 shows
4 train services that run along a railway corridor with 7 stations. The services
appear classified in types A and B and the stations, in types A,B and A/B.
The horizontal sections in the polygonal lines represent the stopping time of the
trains at the stations.

Figure 3.1: An A/B skip–stop plan for a set of four trains and seven stations.

The travel time between stations along a railway line consists of five components,
usually identified as phases of acceleration, constant speed, inertia, braking and
downtime. Several studies have shown that skip–stop operations can:

• Improve passenger waiting and in-vehicle times.

• Save operating costs (note that skipping stops allows vehicles to return to
their depots in a shorter period of time; as a result, vehicles can be reused
sooner).

• Reduce fuel (or power), as a result of not accelerating or decelerating at
skipped stations.

Nevertheless, the prevalent purpose of introducing stop–skip patterns is not ac-
tually to save time, as discussed in Lee et al. (2014); Feng et al. (2013). The main
aim is to better distribute passenger loads during peak periods, when trains are
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at their highest capacity level. The skip–stop services are especially suitable for
those transit routes with unbalanced demand, so the stops with higher demand
would be served by more vehicles, in order to improve the overall serviceability
of the route.
The idea consists of trains stopping at stations so that there’s more of an oppor-
tunity for folks to get on the trains at those stops. In order to avoid confusions
and misunderstandings to passengers when skip–stop services are implemented,
different means are usually used, like providing information boards and verbal
indications at the stations.
As the Directive (EU) 2016/797 of the European Parliament and of the Council
of 11 May 2016 on the interoperability of the rail system within the European
Union (Official journal of the european union 26.5.2016. (n.d.)) points out, pas-
sengers must be provided with easily understandable travel information about
rules applicable to them both in railway stations and in trains. For example,
the two types of buses that operate in the east of Seville and share the same
route (express line and normal line) are differentiated by signals on the front
panel display of the vehicle. In the same way, the trains of their two respective
lines that operate with skip–stop patterns in Santiago de Chile are also visually
identified with green and red signals; hence, passengers know in advance what
colour they should choose. Additionally, this information is also provided on
screens at the station platforms, as well as through the public address system
when trains are going to arrive at the stations.
Regarding the stop–skipping patterns for a one-way single track, the funda-
mental approaches are divided into deterministic (see, for instance, Mesa et al.,
2009; Freyss et al., 2013) and stochastic approaches (Sun and Hickman, 2005).
The deterministic form is derived from the description and analysis given by
Vuchic (1973) in which stations along a line are classified into three groups, A,
B and AB. The consideration of only two types of stations simplifies the degree
of diversity, and travellers can more easily memorize the options to be able to
configure their own routes between nodes of the transit network.
The trains in line A stop at the A and AB stations, while the trains belonging
to line B stop at the B and AB stations. When they intend to alight at a B
station, passengers boarding at an A station will need to transfer at an AB
station onto line B. Thus, this disadvantage might affect the attractiveness of
stop–skipping schedules.
The skip–stop operation scheme has been widely applied in bus transit services.
Eberlein et al. (1998) proposed a real-time deadheading strategy to determine
the dispatching time, deadhead vehicles and skip stations to minimize the total
passenger cost. A heuristic algorithm was used to solve the model for operat-
ing the MBTA Green line. Sun and Hickman (2005) focused on the real-time
stop–skipping control problem and presented an enumeration method with fast
solving speed. Yu et al. (2012) studied the service reliability of a route in the
city of Dalian and an optimized deadheading strategy for a part of the route
by means of a heuristic algorithm. The advantages and disadvantages of four
kinds of operating strategies were analysed in Fu and Liu (2003), and a nonlin-
ear integer programming model was developed to solve the real-time dynamic
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transit operation problem, in a setting where the benefits of the operators and
passengers were balanced. The skip–stop operation mode on rail transit lines
has been described in the literature; for instance, see Vuchic (1976); Vuchic
(2005).
Different mathematical tools have been used to solve the skip–stop service prob-
lems:

• Dynamic programming was adapted for this purpose in Ghoneim and
Wirasinghe (1986); Nemhauser (1969).

• Greedy algorithms have been investigated for solving multiple train prob-
lems in Assad (1982).

• Fuzzy mathematical programming was the method used in Chang et al.
(2000) for the Taiwan’s highspeed rail.

• Formulations in terms of nonlinear integer programming were proposed
in Fu et al. (2003); Larrain et al. (2010); Leiva et al. (2010); Wang et al.
(2018) for solving dynamic versions of the skip–stop service problem.

• Metaheuristic genetic algorithms (GAs) have extensively been used for
solving skip–stop scheduling problems. See, for instance, Sun et al. (2008);
Niu (2012); Liu et al. (2013); Lin and Ku (2014); Chen et al. (2015b).

• Other metaheuristics such as Tabu search method (Cao et al., 2014) or
bee colony algorithm (Chen et al., 2015b) have also been used for this
context.

Matheuristics are heuristic algorithms made by the interoperation of metaheuris-
tics and mathematical programming (MP) techniques (Boschetti et al., 2009).
Matheuristics are optimization algorithms inspired in (or derived from) a math-
ematical model. An essential feature of the matheuristics is the implementation
in some part of the solution procedure of characteristics or properties derived
from a mathematical model. Metaheuristics topic has attracted the interest of
researchers, as shown in the publication of monographs in journal special issues
(Maniezzo et al., 2009, 2010).
We propose, in this chapter, to determine a skip–stop scheme through a three-
phase methodology. In the first, we find the optimal strategy of skipping stops
for a given train fleet and, in the second phase, we determine, by means of a
matheuristic procedure, the optimal allocation for train itineraries. For this
last purpose, we will develop the concept of proximity between configurations
of train itineraries and, in accordance with Hall’s method (Hall, 1970), design a
matheuristic that optimizes the skip–stop strategy. In Section 3.2.1, a method-
ology of three phases for determining an optimal skip–stop scheme for train
schedules is introduced. The first phase consists of formulating a nonlinear
integer programming inspired in the multiple knapsack problem (MKP). The
second phase is a matheuristic procedure adapted from the Hall’s method. The
third phase is a greedy algorithm of comparing and replacing. A computational
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experience, which illustrates the proposed procedure, is carried out in Section
3.2.2. Finally, conclusions are summarized in Section 3.2.3.
Routing in road networks on geographic maps is a problem of great practical
interest (Preuss and Syrbe, 1997). Internet applications such as Google Maps,
HERE WeGo, Baidu or Yandex are daily being used by a lot of users. The
problem solved by those applications is the computation of the fastest route
between a source point and a target point, both belonging to a connected net-
work. In the underlying abstract model streets are assumed to be arcs which
are adequately weighted in accordance to the corresponding travel times. In
this way, determining the fastest route can be formalized as the classic point-
to-point shortest path problem.
From a theoretical point of view, the problem of finding a shortest path from
one node to another in a graph with fixed lengths (or fixed travel times) on its
arcs is satisfactorily solved. In route planning problems for a single objective,
Dijkstra’s algorithm (Dijkstra, 1959) is preferably used to obtain the solution to
the problem of determining the shortest path between two nodes of a connected
graph. Its algorithmic complexity is O (m+n log n), where n is the number of
nodes and m the number of arcs of the underlying graph (Leiserson et al., 1994).
Unfortunately, this idealized view does not fit the real model because of transit
times can widely vary during peak hours due to the existing traffic intensity.
This time-dependence along the arcs can occur both in the determination of op-
timal public transport routes (bus, metro or dense networks of commuter train)
and in private transport routes (own motorized vehicle, bicycle or similar). Ac-
cording to the report by Cookson and Pishue (2017), congestion in city centres
causes massive losses (400 billion dollars per year in the USA). Consequently,
literature on vehicle routing problems considering time-dependent travel times
(TDVRP) has been increasing last years (see Gendreau et al., 2015; Cattaruzza
et al., 2017; Vidal et al., 2021; Strasser et al., 2021).
In general, routing is the process of selecting the “best” paths in a graph
G = (V,A), where V is a set of nodes and A is a set of directed arcs. Most
studies on routing problems have been carried out under the assumption that
all the information needed to formulate such routing problems is time invari-
ant (Toth and Vigo, 2014). In many practical applications, this assumption
is generally not satisfied since travel times can vary exogenously due to traffic
congestion, weather conditions, etc., or endogenously, depending on the deci-
sions freely adopted by the driver, like modifying the speed of the vehicle at its
discretion (for example, to adjust fuel consumption) or altering the travel time
by including rest periods in driving. A classification of time-dependent routing
problems with respect to various criteria can be seen in Pillac et al. (2013).
Ichoua et al. (2003) propose that time-dependent driving speeds along network
arcs can be modelled by piecewise constant vehicle speed functions. Under such
an assumption, it is possible to ensure that there is a single fastest route be-
tween any pair of locations. Ghiani and Guerriero (2014) advise that the fastest
route between two points in a network, where the travel times along their arcs
change with time, must preserve the validity of the FIFO property, in the sense
that leaving earlier a node cannot generate a later arrival. Rincon-Garcia et al.
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(2018) highlighted that, in practice, time-dependent speed profiles are specific
to each street or region and that the biggest difficulty in implementing vehi-
cle routing software is to properly manage time-dependent trips according to
the reality perceived by the user. Recently, Zeitz (2023) studies the complex-
ity of fastest route problem on time-dependent networks with non-FIFO travel
time functions, where travel time functions are piecewise linear on a sequence
of breakpoints with integer coordinates. Author shows that the formulation of
this problem is strongly NP-hard.
Computing shortest paths on real-time state in a transit network is carried out
by pulling real-time data from an Application Programming Interface (API).
Transit agencies have been developing online APIs to estimate real-time posi-
tions and arrival for their covered vehicles. Over a web-based or smartphone
interface, a user enters a geo-coded origin and destination (O-D), and the algo-
rithm must respond by returning shortest path based on the real-time state of
the transit network. Recently, the industry is evolving towards an open model
where the public agencies are making real-time bus data available on the web, al-
lowing third party developers to use this data to provide transit information via
web-based services (Jariyasunant et al., 2011). As illustration, Figure 3.2 shows
the evolution of the percentage levels of hourly congestion in the city of Seville
(Spain) throughout a day of the month of January in the years 2019 (sky blue
colour), 2020 (blue) and 2021 (pink) day (source: www.tomtom.com/traffic-
index/seville-traffic/, updated: 27/12/2022, 11:45 am).

Figure 3.2: Evolution of the average intensity in the city of Seville throughout
a day of the month of January in the years 2019-2021.

This figure empirically demonstrates the existence of a pattern in the daily evo-
lution of traffic difficulty, which justifies the use of constant speed profiles for
sections of a deterministic nature (piecewise constant functions).
Routing calculation offered by Google Maps, for instance, allows users to know
an estimated time of arrival at the selected destination along the itinerary. Nev-
ertheless, the procedure followed to obtain this prediction offered by commercial
web applications is subject to business confidentiality.
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In order to determine a fastest route in a network whose arcs are time-dependent,
the logical approach might be to model the transit network as a graph, although
time expanded (Schulz et al., 2000) or time dependent (Nachtigall, 1995) and run
one of the widely used shortest path algorithms on it (Dijkstra, 1959). There has
been research on speed up techniques to Dijkstra’s Algorithm (Delling et al.,
2009) as well as heuristic algorithms developed (Desaulniers and Villeneuve,
2000). There is also literature on routing in transit networks formulated as
shortest path problems in stochastic and dynamic networks (Hall, 1986; Karaçan
et al., 2003). Feder et al. (2007) addresses the routing problem when edge costs
are approximately known but can be made more precise at run-time at a cost, a
parallel to the problem of determining the wait and travel times at bus stops by
accessing a real-time API. Likewise, Pallottino and Scutella (2003) developed
an algorithm for transit graphs where the edge costs are known, but subject to
small changes (i.e., updates in real-time information). Bast et al. (2007) devel-
oped an algorithm for routing in road networks. Their algorithm, called Transit
Node routing is currently the fastest static routing technique available.
Determining a shortest itinerary in a network whose arcs are time-dependent
can result in a diversity of optimal routes for a same origin-destination pair
based on different departure times. Assuming the availability of the estimated
data of the time required to travel along each section of the street network, once
the departure time has been previously set, we propose in this work an efficient
algorithm for obtaining faster routes on time-dependent arcs, in such a way
that the sum of driving times is minimized, which in parallel allows improving
fuel consumption and reducing associated polluting emissions. The possibility
of introducing waiting periods in the nodes to optimize the total time spent
on the trip has also been considered in the design of the proposed procedure.
An experimental evaluation is carried out to show the effectiveness of the pro-
vided algorithm. Section 2 analyses Dijkstra’s Algorithm designed to solve the
problem of obtaining optimal paths in networks with not time-dependent arcs.
Section 3 adapts the algorithm of Dijkstra to solve this problem with arc lengths
that depend on time when the trip through the arc starts. Finally, conclusions
are addressed in Section 4.

3.2 A matheuristic for optimizing skip-stop op-
eration strategies in rail transit lines

3.2.1 Methodology

Let I be the set of stations of a railway corridor and let S be a train service set.
We define the binary variable ysi ; i ∈ I, s ∈ S. If ysi = 1, then station i ∈ I is
visited by transit service s ∈ S . This variable ysi will allow us to construct the
solution vector: Y = (0/1, 0/1, . . . , 0/1). In order to deal with the demand the
binary variables xs

ij (i, j ∈ I, s ∈ S), which take value 1 when the train s stops
at both stations i and j, are defined.
Assume that travel demand from station i to station j depends on the time
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window considered and, subsequently, on the train s that transits during the
time period considered. Hence, we can assume a preliminary study in which
the potential demand from station i to j when train s passes through i has
been estimated. This demand will be an initial data that we will denote by psij ;
i, j ∈ I, s ∈ S. This value will be associated to the population available to board
train s at station i with destination j if the number of intermediate stops was
0. Define a new variable ns

ij ; i, j ∈ I, s ∈ S, that will be the number of effective
intermediate stops between stations i and j for train service s. If stations i
and j were consecutive stops along the railway corridor, then ns

ij = 0,∀s ∈ S.
Otherwise, ns

ij will be an integer value, superiorly bounded by the real number
of intermediate stations between i and j. Now we can estimate the real number
of travellers that will depend on the potential demand psij ; i, j ∈ I, s ∈ S, and
the number of intermediate stops ns

ij ; i, j ∈ I, s ∈ S. The greater number of
intermediate stops introduced, the fewer number of travellers will be interested
in the train service. We propose to use the following mathematical expression:

ws
ij =

psij
λ · ns

ij + 1
∀i, j ∈ I, j > i [where parameter λ > 0 must be calibrated]

Therefore, if ns
ij = 0 then the real demand (ws

ij) coincides with the initial value
psij . Any other positive value of ns

ij will suppose a decrease in the effective
number of travellers with respect to the initial value.
By means of the following linear integer programming model, we formulate the
problem of maximizing the number of passengers for a transit line in which an
indeterminate number of intermediate stops along the line can be omitted.
Objective and constraints: Maximize the number of passengers boarding
trains at stations.

max
∑
s∈S

∑
i,j∈I
j>i

ws
ij · xs

ij (3.1)

s.t. ws
ij =

psij
λ · ns

ij + 1
,∀i, j ∈ I, j > i (3.2)∑

j∈I
j>i

ws
ij −

∑
k∈I
i>k

ws
ki

 · ysi ≤ cs,∀i ∈ I, ∀s ∈ S (3.3)

xs
ij ≤ ysi ;x

s
ij ≤ ysj ,∀i, j ∈ I, j > i,∀s ∈ S (3.4)

xs
ij , y

s
i ∈ {0, 1};ns

ij ∈ Z+ ∪ {0},∀i, j ∈ I, ∀s ∈ S. (3.5)

The objective function 3.1 maximizes the number of passengers for a transit
line using a generalized multiple knapsack model; note that each train can be
assumed like a backpack that may or may not pick up the demand for OD pair
trips in their corresponding temporary windows. Constraints 3.2 identify the
actual demand according to the number of intermediate stations. Constraints
3.3 prevent the capacity cs of train s from being exceeded when it stops at each
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station i ∈ I . Constraints 3.4 imply that if it is decided to pick up travellers
from an origin–destination pair, the respective service s will have to stop at both
stations. Constraints 3.5 indicate the nature of the variables used in the model.
The KP is a classic problem of combinatorial optimization that has been widely
studied for more than a century (see, for example, Martello and Toth, 1980).
It consists in selecting objects with the objective of filling a knapsack so that
they provide the greatest profit without exceeding the storage capacity of the
own knapsack. The MKP is a generalization of the standard KP where, instead
of considering only a knapsack, it is about filling several knapsacks of different
capacities.
The problem of MKP is strongly NP-complete and, due to its computational
complexity, the need for using heuristic algorithms for generating good solutions
is justified (see, for instance, Kellerer et al., 2004). Previous model can be con-
sidered a variant of the MKP model, where each service may be assimilated with
a different knapsack that stores passengers boarding the train from stations, as
long as the capacity of the vehicle allows it.

FIRST PHASE: Taking these precedents into account, we propose the heuris-
tic shown in Table 3.1 for solving the optimization problem in order to determine
the most effective deployment of skip–stop services along the rail corridor.
Once the model is solved, we will obtain a set of optimal solutions (train ser-
vices) that will indicate the stops that each train must make in its corresponding
service, in order to globally maximize the number of passengers in the transit
system. The solutions obtained can be very different from each other. But
remember that we do not want each service to be different from one another
in general but to divide the services into type A and type B; so in most cases,
the optimal solutions obtained from the previous optimization model would not
be the final solution to our problem, because our skip–stop scheme must only
contain two different types of services. That is why we must develop a second
phase. For that purpose, we propose a heuristic which transforms the opti-
mal solutions of the KP into the best possible configuration for our skip–stop
problem.
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Table 3.1: Heuristic 1.

1. For each s ∈ S do

a. Set Y s = (1, 1, . . . , 1) = (ysi ).

b. Read matrix (psij).

c. Compute matrix (ws
ij)

d. Set Q(s) =
∑
i∈I

∑
j∈I
j>i

ws
ij · xs

ij

e. For each l ∈ I do

i. While
∑
s∈S

ysl ≥ 1[*] and
∑
i∈I

ysi ≥ 2 [**]

1. Set ysl = 0 [parameters ns
ij will change]

2. Re-compute matrix (ws
ij)

3. Set R(s) =
∑
i∈I

∑
j∈I
j>i

ws
ij · xs

ij

4. If R(s) > Q(s) then Q(s) = R(s) else ysl = 1

- Prerequisite [*] means that there must be at least one train that stops
at station l.

- Condition [**] means that there must be at least two stations where
each service s is. forced to stop.
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SECOND PHASE: The solutions obtained in the first phase are binary se-
quences where 1 in the ith position means train stops at stop i and 0, oth-
erwise. From Hamming/rectangular/Euclidean metrics, we can calculate the
matrix W of inter-distances between pair of binary sequences. In this way, we
can classify the sequences according to a concept of proximity. This proxim-
ity is one-dimensional in nature. Therefore, we can construct a W matrix of
inter-distances (from any metric, like Hamming or rectangular or euclidean) be-
tween pairs of service sequences and, based on the method published by Hall
(1970) (where a spatial interpretation of maximum eigenvectors of the matrix
B = D–W is made) , we will obtain the relative position on the OX axis of the
representative points. This relative position will allow us to establish a classi-
fication of trains and stations in types A and B. Matheuristic shown in Table
3.2 is inspired in the above-mentioned work.

Table 3.2: Heuristic 2.

STEP 1: Set W = (w : ij) with wij = yji .

STEP 2: Compute D = dij as a diagonal matrix such that:

dij = 0, if i ̸= j

dij =

n∑
k=1

wki, if i = j

STEP 3: Compute B = D −W .

STEP 4: Compute the set of eigenvalues of B and Take only the
maximum αmax.

STEP 5: Compute vmax eigenvector associated to αmax.

THIRD PHASE: Note that coordinates of eigenvector vmax are values in-
cluded in interval [–1, 1]. The ith point corresponding to ith coordinate of vmax

indicates the relative position of the ith train service within interval [–1, 1]. The
observed proximity between points will allow us to classify both trains and sta-
tions in types A and B. For this third phase, we propose the application of the
greedy algorithm of comparing and replacing shown in Table 3.3
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Table 3.3: Heuristic 3.

STEP 1: Denote by i and j the trains corresponding to the two points
farthest from each other in the previous distribution. Let train i be
included in type A and train j in type B.

STEP 2: For For each station k do

- If train i (type A) stops (i.e. is equal to 1 in kth coordinate) and
train j doesn’t stop (=0 in k) then INCLUDE station k in type A
set.

- If train i = 0 and train j = 1 in kth coordinate then INCLUDE
station k in type B set.

- If train i = 1 and train j = 1 in kth coordinate then INCLUDE
station k in type AB set.

STEP 3: For each intermediate train m do

- Compute the number of coincident coordinates with respect to
trains i and j.

- Choose, between i and j, the train where a higher number of
coincidences was reached with m (assume, for example, i).

- Force coincidences in the binary sequences (changing values 0 to
values 1) until trains i and m belong to the same type.

3.2.2 Computational experience

In order to illustrate the developed methodology, let us suppose a railway cor-
ridor with five stations where four trains circulate.
PHASE I. Assume that, as a result of the optimization procedure, the optimal
sequence of skip–stop operations for the four trains is represented by means the
sequences:

s = 1 : (1, 1, 0, 0, 1)

s = 2 : (0, 1, 0, 1, 0)

s = 3 : (0, 1, 1, 1, 0)

s = 4 : (0, 0, 1, 1, 1)

From these data, the distance matrix W between each pair of sequences can be
built. For Hamming’s distance, the rows of matrix W are the following:

PHASE II. According to the above-mentioned methodology, let us build from
W , matrices D and B.
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(1,1,0,0,1)
(0,1,0,1,0)
(0,1,1,1,0)
(0,0,1,1,1)

⇒ W =


0 3 4 4
3 0 1 3
4 1 0 2
4 3 2 0



11 0 0 0
0 7 0 0
0 0 7 0
0 0 0 9

 ; B = D −W =


11 −3 −3 −4
−3 7 −1 −3
−3 −1 7 −2
−4 −3 −2 9


The eigenvalues of matrixB, ordered from highest to lowest, are 14.8482, 11.3273,
7.82446 and 0. Note that the eigenvalue 0 is always sold by the construction
of the matrix B. The meaning of each eigenvalue is the value of the objective
function, as is referred in Hall (1970). Since our interest is the maximization of
inter-distances, for better appreciating the existing differences between binary
sequences, we select the maximum eigenvalue (14.8482) and calculate its asso-
ciated eigenvector. The coordinates of this eigenvector provide us the position
on the OX axis of the four points representative of the binary sequences. The
eigenvector corresponding to the highest eigenvalue 14.8482 is:

(–0.848468, 0.128783, 0.312184, 0.407501)

which indicates the relative positions of train sequences 1, 2, 3 and 4 on the
OX axis. In Figure 3.3, these four points are graphically represented in interval
[–1, 1].

Figure 3.3: Relative positions in segment [–1, 1] of four binary sequences asso-
ciated to trains.

PHASE III. Note that the transit services, corresponding to the two points
farthest from each other in Figure 3.3, are sequences 1 and 4. Let train 1 be
included in type A and train 4 in type B.
According to this initial assignment of trains type A and type B, the stations
are classified as follows:

109



Train 1= (1,1,0,0,1)
Train 2=(0,1,0,1,0)
Train 3=(0,1,1,1,0)
Train 4=(0,0,1,1,1)

≡

Type A
Type ?
Type ?
Type B

⇒

Station 1: Type A
Station 2: Type A
Station 3: Type B
Station 4: Type B
Station 5: Type A/B

When the intermediate trains are compared with their prototypes, some mod-
ifications are required. Since the point corresponding to service 2 is closer to
the point corresponding to service 4 than the point corresponding to service 1
(see Figure 3.3), we must assign type B to service 2. To achieve a total match
between services 2 and 4, it is necessary to modify both the configurations of
the sequences of 2 and 4.

Train 1= (1,1,0,0,1)
Train 2=(0,1,1,1,1)
Train 3=(0,1,1,1,0)
Train 4=(0,1,1,1,1)

≡

Type A
Type B
Type ?
Type B

⇒

Station 1: Type A
Station 2: Type A/B
Station 3: Type B
Station 4: Type B
Station 5: Type A/B

Similar reasoning can be applied to the point corresponding to service 3. There
are initially four coordinates that coincide when we compare the binary se-
quences associated with services 3 and 4. To achieve total match, we modify
one more coordinate of service 3

Train 1= (1,1,0,0,1)
Train 2=(0,1,1,1,1)
Train 3=(0,1,1,1,1)
Train 4=(0,1,1,1,1)

≡

Type A
Type B
Type B
Type B

⇒

Station 1: Type A
Station 2: Type A/B
Station 3: Type B
Station 4: Type B
Station 5: Type A/B

Finally, it is possible to determine an optimal classification of trains and stations
for the implementation of a skip–stop strategy.

3.2.3 Conclusions

The skip–stop operation represents a low-cost approach to improve the opera-
tion speed into transit networks without additional investments in infrastructure
are required. A three-phase methodology for determining an optimal skip–stop
scheme for train schedules has been introduced. Matheuristic procedure includes
the formulation of a nonlinear integer programming inspired in the MKP, the
application of an algorithm adapted from Hall’s method and, finally, the imple-
mentation of a greedy algorithm of comparing and replacing. To illustrate the
performance of the proposed procedure, the methodology has been applied to a
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laboratory case.
As a future research, we propose to generalize the mathematical model by con-
sidering the possibility of trains not stopping at stations and, additionally, by
taking transshipment into account, as feature which affects the passenger’s be-
haviour.
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3.3 An algorithm for finding optimal routes in
transit networks with time-dependent arcs
and waiting times at nodes

3.3.1 Modelling the problem

Following the notation previously used in the work of Dreyfus (1969), let G =
(V,A) a graph where V is a finite set of n nodes or vertices, and A is a finite
set of m arcs that connect the nodes. Each arc can be denoted as the ordered
pair (i, j) when it corresponds to the pair of vertices i and j. Let O (origin or
initial node) and D (destination or terminal vertex) be two given nodes of G.
A path p from O to D in G is defined as the alternating sequence of vertices
and arcs: p = {O = v0, a1, v1, a2, v2, . . . , ak, vk = D}, such that:

• ai ∈ A,∀i = 1, . . . , k; vi ∈ V,∀i = 1, . . . , k − 1.

• ai = (vi−1, vi) ∈ A,∀i = 1, . . . , k.

• O,D ∈ V {v1, v2, . . . , vk−1}.

The cost associated with arc (i, j) is defined as a positive real number cij . The
cost of the path p will result the accumulated sum of the costs of the arcs that
compose it:

c(p) =
∑

(i,j)∈p

cij

In order to find the fastest path between points O and D, where the travel time
through each arc (i, j) depends on the start time of point i, can be formulated as
follows: Let us denote by fi(t) the minimum invested travel time until reaching
destination D starting from point i at time t. Moreover, let dij(t) be a positive
value that represents the travel time invested when travelling arc (i, j) starting
from point i at time t.
The recurring scheme:{

fi(t) = minj ̸=i[dij(t) + fj(t+ dij(t))]
fD(t) = 0

allows us to design an iterative algorithm that, based on the procedure devised
by Dijkstra (1959), provides the fastest route, in this context of travel times in
time-dependent arcs, to obtain fO(t).
Originally, Dijkstra’s Algorithm is designed to solve the problem of obtaining
optimal paths in networks with not time-dependent arcs. An encoding of this
algorithm has presented in Ortega et al. (2022) as below.
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Dijkstra’s Algorithm (not time-dependent arcs)

1. Read graph G = (V,A), adjacency matrix Ady and matrix D of dis-
placement costs between pairs of adjacent points.

2. Build vector f that will store the minimum displacement costs to the
origin from each node of G (initially, only the nodes adjacent to the origin
will not have infinite value).

3. Build vector p that stores the successor nodes to each node of G in the
optimal path (initially, only nodes adjacent to the origin can be deter-
mined).

4. Initialize set S of nodes explored by including only the origin point.
Initialize set LIST = G \ S.

5. While LIST is not empty:

5.1 Identify index j∗, j∗ := Arg[min{f(j) : j ∈ LIST}].
5.2 Remove index j∗ from LIST.

5.3 For each successor k of j∗ included in LIST :
If f(k) > f(j∗) + dj∗k(0) then

a. Update f(k) := f(j∗) + dj∗k(0).

b. Update p(k) := j∗.

6. End.

The following two figures graphically reproduce the same example used in Wen
et al. (2014a) to illustrate the operative limitations of Dijkstra’s algorithm when
the network is time dependent. In Figure 3.4 a static situation is considered,
where the weights of the arcs do not vary with time.

Figure 3.4: Fastest path between nodes 1 and 5 using Dijkstra’s algorithm.
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As illustrated Figure 3.4, the solution to the problem is the path 1−2−3−4−5,
and the time spent is 7.4(2.5 + 1.2 + 2.5 + 1.2) minutes, as can be verified by
applying the step-by-step algorithm. Let now assume that arc (3, 5) is time
dependent as is shown in Figure 3.5.

1. When arc (3, 5) is travelled, starting at node 3 in a time t included in the
interval [0, 4], the total time needed to complete arc (3, 5) is 4.5minutes,
as in the previous static case.

2. However, when the trip through the arc (3, 5) starts after time 4, then
the travel time needed to traverse arc (3, 5) decreases to the value of 1.3
minutes. In that case, as shown in Figure 3.5, the fastest path between
nodes 1 and 5 would be the sequence 1− 3− 5, with a total invested time
corresponding to 5.8(4.5 + 1.3) minutes.

Figure 3.5: Fastest path between nodes 1 and 5 with time-dependent arcs and
no waiting at nodes.

As was stated in Wen et al. (2014a), Dijkstra’s algorithm cannot identify the
shortest paths for this context of networks with arcs whose lengths may depend
on time. Dijkstra’s algorithm, as coded above, is also impractical for managing
other user strategies, such as setting wait times on some nodes to benefit from
shorter travel times after waiting.
Extending the notation used so far, let dij(t) be the travel time required to
complete arc (i, j) when the start time is t at node i. As will later be detailed,
the variation form of dij(t) will correspond to a stepped function that changes
(increasing or decreasing) its value at certain instants and remains at that con-
stant level until the next milestone.
In order to adapt the original algorithm of Dijkstra to solve the problem of de-
termining shortest paths in networks whose arc lengths can depend on the time
when the trip along each arc is started, we will make a series of modifications
to the original network.
First, we will immerse the planar network in three-dimensional space by raising
an axis orthogonal to the base plane for each of the nodes of the network. These
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axes will indicate the temporal progress at their respective node. An arc (i, j),
starting at level 0, indicates that no wait has been carried out at node i by the
user before continuing the journey to node j. On the other hand, the arc (i, j)
should start at a certain level tk indicating that the user has made a wait in
node i whose duration is tk. The vertical distance between nodes i (level 0) and
i (level tk) should be interpreted as waiting time, since geographically there is
no change in position. According to the previous assertion, the arc (i, j) that
starts at level 0 will be weighted with the value dij(0), while the arc (i, j) that
starts at level tk will have the value dij(tk) as the travel cost.
The descriptive data of this new network context includes the functional char-
acterization of those arcs (i, j) whose travel time dij(t) changes according to
the exit time of node i. We will assume that the form of variation of dij(t)
corresponds to a piecewise-constant (step) function that changes its value at
certain instants (increasing or decreasing) and staying at that level until the
next milestone. In Figure 3.6 has graphically been represented an example of a
step function that indicates that the time required to traverse the arc (i, j) is 5,
if the start time of that trip takes place inside interval [0, 7]; 9, if the trip start
takes place within [7, 10]; and so, on until the daily interval [0, 24] is completed.

Figure 3.6: Description of dij(t) as a piecewise-constant function.

According to Ortega et al. (2022), the number of times it would be necessary to
replicate a node i along its vertical axis (indicating the consumption of waiting
time) will be a function of the set of vertices j accessible from node i, denoted
by Succ(i), and the number of piecewise segments ni(j) that have been consid-
ered for explain the behaviour of the function dij(t). Therefore, the number of
replications of node i will be, in principle:∑

j∈Succ(i)

ni(j)

Actually, if we carry out a control of the time progress in each of the vertical
axes that start from each node of the network, the number of replicated nodes
can be substantially reduced. In fact, it will only make sense to consider the
incorporation of the node associated with a travel time dij(tw),, obtained after
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a waiting time tw at node i, if the sum of both times tw and dij(tw), improves,
i.e., is less than the set value without the need to enter waits. This reasoning
will be explicitly included when coding the algorithm.
The following example, that will be explained step by step, will illustrate the
proposed methodology. Consider the planar network shown in Figure 3.7 (8
nodes and 13 arcs), which has previously been embedded in three-dimensional
(3D) space. Suppose that origin and destination nodes are respectively labelled
1 and 8. At the midpoint of each arc of the graph, the numerical value (in
red) corresponds to the time needed to traverse such arc when in absence of
time dependency. In this static context, the fastest path between origin and
destination points for these weights is the sequence {1, 3, 5, 7, 8} (highlighted in
orange) with a total length of 14.5.

Figure 3.7: Instance of a planar network embedded in 3D-space.

Starting from each node of the network, vertical axes will be established where
the new nodes to be replicated can be located. In order to have a reliable con-
trol of the time when we analyse the possible alternatives, we will relocate the
intermediate nodes (that is, nodes 2−7) to the heights that correspond on their
respective axes with the shortest access time from the origin. Hence, in Figure
3.8, the intermediate nodes have been relocated to the corresponding level with
the time necessary to reach them from the origin. The origin (1) and destination
(8) nodes have not changed their location.
Suppose now that two of the three arcs starting from node 4 were time depen-
dent. Specifically, from t = 5, in the arc (4.5) its travel time decreases from 4
to 1.5. For that same mark of t = 5, the arc (4, 6) changes its travel time from
6 to 3. Similarly, suppose that the travel time of the arc (5, 4) also changes as
indicated in Figure 3.9.
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Figure 3.8: Network with replicated nodes in 3D-space.

Figure 3.9: Graphical display of functions d25(t), d46(t) and d54(t).

Since node 2 is reachable from the origin point (1) in a time t = 4, the user
will have two options if node 2 were part of the optimal route to the destination
point (8):

1. Explore the already existing arcs starting from node 2, as possible con-
tinuation alternatives with the objective of building an efficient candidate
route. This option does not involve the inclusion of new additional nodes
nor modifications in the weights of the outgoing arcs from node 2.

2. Establish a strategic stop at node 2, with the expectation of obtaining a
more competitive travel time on some outgoing arc. This second option
forces node 2 to be replicated at the higher vertical level that results after
adding the waiting time to the already existing arrival time at the node 2.
The new node 9, on the same vertical axis of node 2, represents the option
to spend 0.5 units of waiting time at node 2 before choosing to continue
towards node 5; consequently, the arc (2, 9) is weighted with the value 0.5.
Similarly, the new node 10, located along the same vertical axis, represents
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a waiting time of 1.5 units with reference to node 9. Note that both nodes
9 and 10 have been introduced as logical consequence of the configuration
of function d25(t), which describes two level changes at starting times
t = 4.6 and t = 6 along arc (2, 5). Furthermore, two new arcs must be
added to the 3D-graph, which will be weighted with the new travel times
required to reach node 5 after applying a strategic waiting time at node 2.
The new arc (9, 5) must consistently end at a specific point located along
the vertical axis corresponding to point 5, whose height coincides with the
arrival time to such node 5 from origin point 1. In the case of arc (9, 5)
it will be necessary to introduce a new point, labeled 12 in Figure 3.10,
because the access time to node 5 has changed (improving). In the case
of the arc (10, 5) it will not be necessary to introduce a new node on the
vertical of node 5, since the access time does not change with respect to
the previously existing one without applying the wait strategy.

Figure 3.10 illustrates the resulting final graph where the adapted Dijkstra’s
algorithm, coded in Section 3.3.2, can be applied to find the optimal connection
route from point 1 to point 8. The consideration of functions d25(t), d46(t) and
d54(t), such that they were described in Figure 3.9, forces the introduction of
new nodes 9, 10, 11 and 12, as well as new arcs (2, 9), (9, 10), (12, 5), (11, 4) - that
represent waiting time options - (9, 12), (9, 4), (10, 5), (10, 4), (12, 11), (12, 6) and
(12, 7) - that represent travelling times -. The sequence {1, 2, 9, 12, 11, 6, 8}, with
a total length of 12.5, is the optimal route. The presence of node 9 in the optimal
node sequence indicates that, in this case, the strategy of setting a waiting time
at node 2 has been successful.

Figure 3.10: Optimal route connecting points 1 and 8 in 3D-space.
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3.3.2 An adapted algorithm

The algorithm presented below includes the necessary modifications to be able
to determine the fastest paths between pairs of nodes within a network, with the
weights of their arcs being subject to variations according to known or forecast
schedules in advance.

Adapted Dijkstra’s Algorithm with time-dependent arcs

1. Read graph G = (V,A), adjacency matrix Ady and matrix D of dis-
placement costs between pairs of adjacent points.

2. Build vector f that will store the minimum displacement costs to the
origin from each node of G (initially, only the nodes adjacent to the origin
will not have infinite value).

3. Build vector p that stores the successor nodes to each node of G in the
optimal path (initially, only nodes adjacent to the origin can be deter-
mined).

4. Initialize set S of nodes explored by including only the origin point.
Initialize set LIST = G \ S.

5. While LIST is not empty:

5.1 Identify index j∗, j∗ := Arg[min{f(j) : j ∈ LIST}].
5.2 If all output arcs from node j∗ do not change in time then

5.2.1 Remove index j∗ from LIST.

5.2.2 For each successor k of j∗ included in LIST :
If f(k) > f(j∗) + dj∗k(0) then

a. Update f(k) := f(j∗) + dj∗k(0).

b. Update p(k) := j∗.

5.3 else For each output arc from node j∗ towards some not visited
node that changes over time and for each modification of the weight
of this arc:

5.3.1 Replicate node j∗ (let be j∗
′
), updating set V .

5.3.2 Add an arc from j∗ to j∗
′
, weighted with the required wait time

at node j∗.

5.3.3 Repeat for the new node j∗
′
the same out connections that node

j∗ already had (with the corresponding new weights).

5.3.4 Add an arc from j∗ to j∗
′
, weighted with the required wait time

at node j∗.

5.3.5 Update set A according to 5.3.2 and 5.3.3.

5.3.6 Include node j∗
′
in set LIST.

6. End.
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The complexity of this algorithm, that maintains the same structure of the
original Dijsktra’s algorithm, depends precisely on the number of arcs whose
weights are subject to time-dependent changes, as well as the number of changes
to be incorporated along the time horizon for each arc. Note that the section
labelled 5c is only activated when time-dependent output arcs are detected.

3.3.3 Conclusions

In this subsection, the problem of determining the fastest paths with time-
dependent arcs in transport networks has been analysed. There are numerous
existing bibliographical contributions related to this subject, mainly due to the
relevance that this issue acquires in logistics and travel planning for all types of
users. Specifically, the methodology presented in Wen et al. (2014a), where two
heuristic methods were proposed to solve the least cost path problem between
a pair of nodes with a time-varying road network and a congestion charge. The
tool developed by these authors was based on modifications of Dijkstra’s algo-
rithm, where a wait ban had been established on the nodes.
The fastest path algorithmic search technique with time-dependent arcs intro-
duced in this contribution follows this same methodological line of adaptation of
Dijkstra’s algorithm to this context, which guarantees a high level of efficiency
for the calculation of solutions. On the other hand, our contribution does al-
low the incorporation of strategic waiting times by extending the structure of
the original connection graph, growing both in nodes and in arcs. It would be
possible, however, to limit this growth of the solution container graph, having
a reliable control of the time when the possible alternatives are analysed.

3.4 Chapter conclusions

In this chapter we have presented two different problems on transport optimiza-
tion problems whose common interest is the management of waiting times from
perspectives of operator or users and we have proposed a new matheuristic/al-
gorithm respectively to solve its.
In section 3.2 we have worked on skip–stop strategies to reduce travel time of
particular train services by not stopping (skipping) at less densely populated
stations. This decision of omitting some stops reduces the travel time for the
users within the vehicle and increases the speed of operation, favouring the pro-
vision of new transit services where are more necessary. In this work, the best
A/B stop–skip patterns for a set of transit services along a railway corridor has
been determined by means a three-phase methodology that includes the for-
mulation of a nonlinear integer programming inspired in the multiple knapsack
problem and the application of a heuristic algorithm based on mathematical
properties (matheuristic).
In section 3.3 we have worked on an extension of the Shortest Path Problem that
initially consists of finding a path with a minimum travel cost from one origin
to one destination through a connected network. It is an important and well-
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known problem, due to its wide range of applications in means of transport. The
determination of the shortest routes in a network whose arcs depend on time (as
consequence of traffic congestion, weather conditions, possible incidents, etc.)
can result in a diversity of optimal routes for the same origin-destination pair
based on different departure times. In this section has been shown that short-
est path search techniques can continue to be valid if the original graphs are
suitably extended, by duplicating nodes and arcs, and the solving algorithm
is conveniently adapted to deal with networks whose arcs are time-dependent
and/or the introduction of waiting times at nodes is allowed. The theoretical
development has been illustrated with an example to clarify the concepts used
throughout the article and to show the efficiency of the provided algorithm.
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Chapter 4

Conclusions and future
research lines

Below, we briefly summarize the main achievements and discuss possible future
lines of research for each chapter. Chapter 1 presents three optimization prob-
lems related to improving people’s quality of life. In the first contribution, a new
criterion is provided for the design of rapid transit lines, so that the criterion of
greater population does not have as decisive a role as it occurs in most existing
models in the literature, but rather other factors be taken into account such as
workplaces, the existence of tourist attractions or educational centers, among
many others. In this way, we have proposed that those areas that present more
imbalances in these factors come together to favor greater territorial cohesion,
which should produce a reduction in the need to make forced trips. There are
therefore two repercussions of the use of this new criterion for the design of
urban transit lines in a metropolitan context: to cover the demand for trips
for reasons not foreseen in the classic models of transport network planning
and, furthermore, to reduce the existing territorial differences by uniting them
through a rapid transit connection.

In the second of the discussed problems, we initially give a description of the
park-and-ride service location problem and then model a user demand pattern
that distinguishes different levels of information regarding the availability of
facilities. of parking. Based on the assumption that users are aware of the num-
ber of vacant spaces currently offered by the city’s parking facilities, consulted
online through an internet device, it could be estimated, with knowledge of the
historical evolution From the behavior of this data, the availability of parking
spaces at the time of arrival at the car park, taking into account the charac-
teristics of the traffic in the transit network. We develop, for this context, a
mathematical programming formulation where the objective function integrates
several cost attributes with the objective of determining efficient routes through
a multimodal network; Among them, time-dependent transit times, minimiza-
tion of parking costs and an additional attractiveness criterion related to the
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risk of finally not having a parking space available at the time of arrival at
the chosen facility have been considered. This formulation is novel compared to
other models previously published in the literature on this topic, because it con-
siders restrictions that reasonably limit the travel time and the attractiveness of
the candidate parking lots. We show that the problem can be quickly solved by
using ad-hoc polynomial time algorithms, such as the modified Dijkstra shortest
path algorithm. The results of a computational experiment based on data from
the city of Seville (Spain) are reported, which empirically show the sensitivity
of the model to the input parameters.
Finally, in this same chapter, we have solved the problem of locating charging
stations for electric vehicles, partially transforming the old gas stations of the
existing network, using typically complementary criteria: government point of
view and perspective of the concessionary company. One of these objectives
has been that, for each existing charging point, there is at least another nearby
charging point, to prevent incidents. A conditional coverage model has been
introduced into the formulation so that if the selected power station were to fail,
the user could find another station a short distance away. Complementarily, the
objective of companies to capture the largest number of potential customers
has also been taken into account, maximizing the benefit without exceeding the
existing capacity. Both objectives have been combined, giving rise to a bilevel
formulation, which has been solved using various methodologies.
As future work, progress can be made in achieving new results in each of these
lines of research. In the first of these lines, we could propose the formulation
of a model to decide the layout of a new rapid transit line, starting from the
assumption that there are others already determined. Likewise, and as a pre-
liminary step, a methodology could be developed to divide the city into regions
so that the result would be as homogeneous as possible in terms of the different
criteria that would intervene in the configuration of the connection network. In
the second of the lines, one could choose to incorporate a probabilistic approach
to model the uncertainty along time of the number of available parking spaces
that the user will find at the end of his journey by vehicle. Finally, in the third
line of work, it would be interesting to incorporate technical criteria on the
electrical voltage available at some (electric-)gas stations that could limit the
capacity of charging points offered in certain locations.
Chapter 2 presents three problems on waste management. We have optimized
the location of containers for the selective collection of urban waste in the first
two thesis sections, minimizing the cost, as a generic criterion. In the first of
the problems dealt with, we have assumed that users behave by minimizing
the distance to the container used to deposit their waste, while in the second
problem, we have considered that users do not necessarily have to go to the
nearest container, but rather they can do it to a container that is within a pre-
defined radius. We have seen through different computational experiences that
this second problem improves the solution obtained with respect to the first.
Finally, in the third problem we have verified that the previous design of the
configuration of the multiple containers, which is going to be transported by the
vehicle, significantly influences the determination of the optimal route for the
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selective collection of the different types of garbage generated in its respective
places of generation. The mathematical model developed has been in the Bin
Packing (BP) Problem and the Vehicle Routing (VR) Problem, two well-studied
classic problems that are highly complex to solve using exact algorithms. We
have designed a heuristic to be able to solve real problems on a large scale. We
proposed two different strategies, the first, establishing a fixed configuration for
all containers and, in the second, using a configuration adapted to the charac-
teristics of the demand for waste to be collected. This second strategy has given
us better results (least cost routes) in the computational experiments carried
out. As future work we propose to apply the methodology, that has been shown
to be efficient as a strategy in the deployment of ecopoints, to the daily case of
selective collection of habitual waste. Likewise, we understand that it would be
interesting to introduce, in the frequency of selective collection routes, certain
climatic characteristics of the places (excessive heat to which the containers of
certain materials may be exposed), as well as a predominant profile in certain
areas of the city (greater density of bars that produce glass waste, etc.).
Finally, in chapter 3, two problems are presented in which the management of
waiting times can favour obtaining efficient results, either for the whole system,
or for the final interest of the user. In the first one, the problem of classifying the
trains of a transport line into two types of trains A and B has been dealt with, so
that the trains of type A have the possibility of stopping at the stations of type
A or AB, while that type B trains can do it in type B or AB trains. Imposing
the condition that all stations must be covered by at least one type of train, it is
intended to determine said classification so that the average travel time of users
is efficiently reduced. To solve this problem, we have proposed a mathematical
methodology consisting of three phases. In the first, an optimization model
is applied to the problem of establishing where each train would have to stop
in order to maximize the trip coverage of demanding passengers, taking into
account that the demand of these users decreases as their waiting time increases
at station platform. The second phase consists of, with the Hamming distance,
seeing which two trains are further away (they differ in more stops) in order to
lead the configurations of the routes of the rest of the trains, which must finally
be type A or type B.
The second of the problems addressed in this chapter is the design of an al-
gorithm to solve the shortest path between two points of a transport network,
where the cost of traversing its arcs may depend on the time of the start of the
journey. Additionally, it includes the possibility that the user can strategically
enter waiting times in the nodes, with the purpose of taking advantage of a
better situation in traffic conditions that allows him to reach his destination
using less time. Inspired by the idea initially proposed by Wen et al. (2014a),
a decision graph is built from the geographic graph of connections, on which
the solution of the problem is obtained using a modification of Dijkstra (1959)
algorithm. Since the extension of the original graph is controlled in its growth
(in number of new nodes and in number of new arcs), the approach efficiency
in obtaining solutions is guaranteed.
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R. Garćıa and A. Maŕın. Parking capacity and pricing in park’n ride trips: a con-
tinuous equilibrium network design problem. Annals of operations research,
116(1):153–178, 2002.

M. R. Garey. A guide to the theory of np-completeness. Computers and in-
tractability, 1979.

M. R. Garey and D. S. Johnson. Approximation algorithms for bin packing
problems: A survey. In Analysis and design of algorithms in combinatorial
optimization, pages 147–172. Springer, 1981.

M. Gendreau, G. Laporte, and J. A. Mesa. Locating rapid transit lines. Journal
of Advanced Transportation, 29:145–162, 6 1995. ISSN 2042-3195. doi: 10.1
002/ATR.5670290202. URL https://onlinelibrary.wiley.com/doi/full

/10.1002/atr.5670290202https://onlinelibrary.wiley.com/doi/abs/

10.1002/atr.5670290202https://onlinelibrary.wiley.com/doi/10.1

002/atr.5670290202.

M. Gendreau, G. Ghiani, and E. Guerriero. Time-dependent routing problems:
A review. Computers & operations research, 64:189–197, 2015.

G. Ghiani and E. Guerriero. A note on the ichoua, gendreau, and potvin (2003)
travel time model. Transportation Science, 48(3):458–462, 2014.
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C. Leiva, J. C. Muñoz, R. Giesen, and H. Larrain. Design of limited-stop
services for an urban bus corridor with capacity constraints. Transportation
Research Part B: Methodological, 44:1186–1201, 12 2010. ISSN 0191-2615.
doi: 10.1016/J.TRB.2010.01.003.

S. Li and Y. Huang. Heuristic approaches for the flow-based set covering prob-
lem with deviation paths. Transportation Research Part E: Logistics and
Transportation Review, 72:144–158, 2014.

S. Li, Y. Huang, and S. J. Mason. A multi-period optimization model for the
deployment of public electric vehicle charging stations on network. Trans-
portation Research Part C: Emerging Technologies, 65:128–143, 2016.

145

https://link.springer.com/article/10.1007/BF02568532
https://link.springer.com/article/10.1007/BF02568532
https://doi.org/10.3141/2197-08
https://doi.org/10.3141/2197-08
www.springer.com/12205
www.springer.com/12205
https://digitalcommons.usf.edu/jpt/vol17/iss2/7


D. Y. Lin and Y. H. Ku. Using genetic algorithms to optimize stopping patterns
for passenger rail transportation. Computer-Aided Civil and Infrastructure
Engineering, 29:264–278, 4 2014. ISSN 1467-8667. doi: 10.1111/MICE.12020.
URL https://onlinelibrary.wiley.com/doi/full/10.1111/mice.1202

0https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12020http

s://onlinelibrary.wiley.com/doi/10.1111/mice.12020.

Z. Liu, Y. Yan, X. Qu, and Y. Zhang. Bus stop-skipping scheme with random
travel time. Transportation Research Part C: Emerging Technologies, 35:46–
56, 10 2013. ISSN 0968-090X. doi: 10.1016/J.TRC.2013.06.004.

E. Lorentzen, P. Haugneland, C. Bu, and E. Hauge. Charging infrastructure
experiences in norway-the worlds most advanced ev market. 2017.

V. Lotfi and I. D. Moon. Hybrid heuristics for conditional covering problems.
International Journal of Modelling and Simulation, 17(3):185–190, 1997.

A. Lozano and G. Storchi. Shortest viable path algorithm in multimodal net-
works. Transportation Research Part A: Policy and Practice, 35(3):225–241,
2001.

A. Lozano and G. Storchi. Shortest viable hyperpath in multimodal networks.
Transportation Research Part B: Methodological, 36(10):853–874, 2002.

B. J. Lunday, J. C. Smith, and J. B. Goldberg. Algorithms for solving the
conditional covering problem on paths. Naval Research Logistics (NRL), 52
(4):293–301, 2005.

W. Makhlouf, M. Kchaou-Boujelben, and C. Gicquel. A bi-level programming
approach to locate capacitated electric vehicle charging stations. In 2019 6th
International Conference on Control, Decision and Information Technologies
(CoDIT), pages 133–138. IEEE, 2019.

J. W. Male and J. C. Liebman. Districting and routing for solid waste collection.
Journal of the Environmental Engineering Division, 104(1):1–14, 1978. doi:
10.1061/JEEGAV.0000720. URL https://ascelibrary.org/doi/abs/10

.1061/JEEGAV.0000720.

V. Maniezzo, S. Voss, and P. Hansen. Special issue on mathematical contri-
butions to metaheuristics. Journal of Heuristics, 15, 2009. URL http://

www.csr.unibo.it/~maniezzohttp://www1.uni-hamburg.de/IWI/http:

//www.hec.ca/profs/pierre.hansen.html.
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dependent travel times and paths. Transportation Science, 55(3):706–724,
2021.

V. Vuchic. Skip-stop operation as a method for transit speed increase. Traffic
Quarterly, 27:307–327, 1973. URL https://repository.upenn.edu/ese_p

apers.

V. Vuchic. Skip-stop operation: High speed with good area coverage. Revue de
I’UITP, 2:105–128, 1976. URL https://repository.upenn.edu/ese_pap

ers/745.

V. Vuchic. Urban Transit: Operations, Planning and Economics. 1 2005. ISBN
ISBN: 978-0-471-63265-8. URL https://www.worldtransitresearch.inf

o/research/4139.

F. B. Walker, D. B. Gana, and J. R. Fernández. Efectos de la entropia urbana
en el coste energetico del trasporte. Urbano, 14:20–27, 2011.

D. Z. W. Wang, A. Nayan, and W. Y. Szeto. Optimal bus service design with
limited stop services in a travel corridor. Transportation Research Part E:
Logistics and Transportation Review, 111:70–86, 2018. ISSN 1366-5545. doi:
https://doi.org/10.1016/j.tre.2018.01.007. URL https://www.sciencedir

ect.com/science/article/pii/S1366554517302922.

J. Wang, H. Wang, and X. Zhang. A hybrid management scheme with park-
ing pricing and parking permit for a many-to-one park and ride network.
Transportation Research Part C: Emerging Technologies, 112:153–179, 2020.

X. Wang, C. Yuen, N. U. Hassan, N. An, and W. Wu. Electric vehicle charg-
ing station placement for urban public bus systems. IEEE Transactions on
Intelligent Transportation Systems, 18(1):128–139, 2016.

Y.-W. Wang and C.-C. Lin. Locating road-vehicle refueling stations. Trans-
portation Research Part E: Logistics and Transportation Review, 45(5):821–
829, 2009.

Y.-W. Wang and C.-R. Wang. Locating passenger vehicle refueling stations.
Transportation Research Part E: Logistics and Transportation Review, 46(5):
791–801, 2010.
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