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A B S T R A C T

Considering an infinite linear elastic isotropic solid in antiplane shear, the Mode III crack-tip
solution for a semi-infinite crack located in a straight spring interface is systematically studied
for the first time. A new analytic expression for this crack-tip solution is given in the form of
a double asymptotic series of the main and the so-called associated shadow terms. It is shown
that the series of the shadow terms associated with a main term is infinite, and all shadow terms
include logarithmic terms. Thus, although the interface tractions are bounded, the linear elastic
solution at this crack-tip has a logarithmic stress singularity which is comprehensively analysed.
Noteworthy, the character of this stress singularity is very different from the well-known square
root singularity at the crack tip in the classical fracture mechanics. A key advantage of the
present approach is its simplicity, as only elementary mathematical tools are employed, and
also its easy implementation in a computer algebra software. The latter fact is very relevant
because the expressions of higher-order shadow terms become increasingly complicated, so their
generation by a computer code becomes crucial. The present results allow the implementation of
new enriched or singular crack-tip finite elements for such cracks, and the automatic generation
of analytic solutions for benchmark problems for testing the finite-element codes using these
special elements. Such codes can be applied to efficient numerical modelling of interface cracks,
e.g., in adhesively bonded joints with a thin adhesive layer.

. Introduction

The classical Winkler spring interface model [1], which considers a continuous distribution of independent linear elastic springs,
s widely used to solve many engineering problems due to simplicity of analytical studies and for the sake of computational
fficiency in numerical models. In particular, thin adhesive layers are often modelled using the related shear-lag model [2] and
ts generalizations [3,4]. A recent review of the spring model can be found in [5], and comprehensive classifications of interface
odels including the spring model in [6,7].

Design and analysis of adhesively bonded joints working under different loading conditions requires suitable computational
odels for crack onset and propagation in adhesive layers [8]. In this context, although several models on different scales exist for

he study of crack initiation and growth in adhesive layers, one of the most widely used in analytical and computational studies is
he spring interface, also referred to as weak, imperfect, linear elastic or Robin interface, see [9–14].

It is well known that according to a general mathematical analysis of singularities in elliptic partial differential equations
eveloped in [15,16], the displacements and stresses around a singular point can be described analytically through an asymptotic
eries expansion, including power-logarithmic terms in the radial variable.
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Nomenclature

𝑎(𝑙)𝑗,𝑘, 𝑏
(𝑙)
𝑗,𝑘 Constant coefficients in the asymptotic series

𝐁𝑗,𝑘 Vector of coefficients in the system of equations
𝑒𝑗 Relative error in the Robin boundary condition
𝑘 Stiffness of the linear-elastic spring distribution
𝐾𝑗 Generalized Stress Intensity Factors (GSIFs)
𝜇 Shear modulus
𝐺 Energy Release Rate (ERR)
𝐆𝑗,𝑘 Right-hand side vector of the system of equations
𝐌𝑗,𝑘 Matrix of the system of equations
𝐿 Characteristic length in the studied problem
𝑁 Number of main terms considered in the asymptotic series
𝑆𝑗 Number of shadow terms considered for the 𝑗th main term
𝑢𝑒, 𝑢𝑜 Even and odd part of the out-of-plane displacement solution
𝑢𝑗 𝑗th element of the asymptotic series
𝑢𝑘𝑗 𝑘th shadow term associated to the 𝑗th main term
𝑥, 𝑦 Cartesian coordinates
𝛿 Virtual crack length increment
𝛾 Governing parameter of the problem
𝛤1, 𝛤2 Boundary parts
𝜆𝑗 Singularity exponent
𝛺+, 𝛺− Upper and lower half domain
𝑟, 𝜃 Polar coordinates
𝜎𝑟𝑧, 𝜎𝜃𝑧 Stress components in the cylindrical coordinates system
BVP Boundary Value Problem
ERR Energy Release Rate
FEM Finite Element Method
GSIF Generalized Stress Intensity Factor
LEFM Linear Elastic Fracture Mechanics
N–N Neumann–Neumann problem
N–R Neumann–Robin problem
R–N Robin–Neumann problem

Considering a particular case of a crack in a thin adhesive layer modelled by a spring interface, the question about the character
f the asymptotic crack-tip solution arises, which seems to be quite different from that of a crack in a homogeneous linear elastic
aterial described by the classical Linear Elastic Fracture Mechanics (LEFM). As it can be seen in the asymptotic series for the crack

ip solution in LEFM, deduced in [17,18] for plane problems (Mode I and II), and in [19] for antiplane shear problems (Mode III),
tresses near the crack tip have singular solutions, with square root singularities, multiplied by Stress Intensity Factors (SIFs). In
articular, the asymptotic series for the Mode III crack-tip solution can be easily obtained by separation of variables applied to the
isplacement solution in polar coordinates, as shown, e.g., in [20].

The behaviour of stresses and displacements around the tip of a crack situated in a spring interface has not been fully
haracterized so far, although some relevant results have been obtained by several authors [10–13,21–25], indicating that a
ogarithmic stress singularity takes place at such a crack-tip. Especially significant for the present work are the contributions [22,23],
or the antiplane elastic problem, and [24], for the plane elastic problem, who deduced the first terms of the asymptotic expansions
t the tip of a crack situated at a spring type interface. While an approach based on the well-known Wieghardt–Williams procedure
as used in [22], more advanced mathematical tools such as singular integral equations and Mellin transformations were used

n [23,24].
Regarding the related asymptotic series for corners (angular sectors) of any interior angle with spring type boundary condition,

everal relevant results were obtained by various authors. Truncated asymptotic series including also logarithmic terms were
ntroduced in [22,26–28] to approximate the linear elastic solutions in corners of various specific angles with spring boundary
ondition at one or both faces, for antiplane and plane elasticity. However, the number of terms in these asymptotic series was quite
imited. A general mathematical approach for the Laplace equation in corners with one or two spring (Robin) boundary conditions,
ased on the solution of suitably defined recursive boundary value problems (BVPs), was introduced in [29]. These developments
otivated a more computationally oriented procedure presented in [30], for the singularity analysis of linear elastic corners under

ntiplane shear with a spring boundary condition on one corner face.
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Fig. 1. A semi-infinite crack in a straight spring (adhesive) interface between two half-planes. Notice that the spring distribution is acting in the out-of-plane
direction.

In the present paper, the antiplane solution for a semi-infinite crack located in a straight spring-interface between two linear
elastic isotropic half-planes of the same material is deduced in the form of an asymptotic series, for the first time. This series
represents the local solution in the neighbourhood of the tip of a finite crack in a linear elastic (spring type) interface. Due to
symmetry arguments the solution is decomposed into a symmetric and a skew-symmetric part with respect to the interface line.
Whereas the symmetric part of this solution is given by a series of smooth functions, the skew-symmetric part is given by the
singular Mode III solution. An analytic expression for the displacements in this Mode III solution is given in the form of a double
asymptotic series of the main and the so-called associated shadow terms. It is shown that the series of the shadow terms associated to
a main term is infinite and all shadow terms include logarithmic terms. Therefore, the solution for stresses at the crack tip includes
a logarithmic stress singularity, this singularity being comprehensively analysed. This Mode III solution, can be considered as the
crack-tip solution in Mode III for a crack in a locally straight spring-interface between linear elastic adherents of the same isotropic
material.

A key advantage of the present novel procedure is its simplicity and the fact that it provides the complete asymptotic series
for the crack-tip solution, which is an advantage in comparison to some previous related works where only the first terms were
presented. Moreover, it can be easily implemented in a computer algebra software, like Mathematica [31], which has been shown
to be a key feature as the higher-order shadow terms become progressively increasingly complicated. The automatic generation of
the expressions for the terms of the asymptotic series can be very useful for their usage in the implementation of new enriched or
singular crack-tip finite elements for cracks propagating in spring interfaces, and also for the generation of testing problems for FEM
codes.

In Section 2 the antiplane shear problem for a semi-infinite crack at a straight spring-interface is formulated, and the symmetry
arguments are used to reduce it to a corner-singularity problem for a half-plane. Then, in Section 3 the analytic procedure based on
the complex variable formulation is presented, a pseudocode implementing this procedure being shown in Section 4. The analytical
expressions for the main terms and for the first two shadow terms are presented in Section 5. Graphical representations of the
singular solution, given by a number of terms in the asymptotic series providing a sufficiently high accuracy of plots, are shown
and discussed in Section 6. Finally, the Energy Release Rate (ERR) is computed for a crack in a spring interface by the Irwin crack
closure integral in Section 7.

2. Description of the model

As mentioned in Section 1, the aim of this paper is to study an antiplane elastic problem of a semi-infinite crack in a straight
spring interface between two half-planes (two half-spaces in 3D view) of the same linear elastic isotropic materials. Therefore,
linear elastic springs are acting in the out-of-plane 𝑧-direction. The solution of the problem is described in terms of the out-of-plane
displacement 𝑢(𝑥, 𝑦) = 𝑢𝑧(𝑥, 𝑦), a harmonic function that can be approximated by an asymptotic series expansion in the vicinity of
the crack-tip. The crack-tip is located at the origin 𝑂 of the Cartesian coordinate system, see Fig. 1.

The considered BVP (Pc), defined in the two-half planes, (𝛺+ ∪𝛺−) ⊂ R2, bonded by a semi-infinite spring interface, represented
in Fig. 1, is formulated as follows

𝛥𝑢 = 0 in 𝛺+ ∪𝛺−, (1)
(Pc) 𝜎 = 𝑘

[

𝑢(𝑥, 0+) − 𝑢(𝑥, 0−)
]

for 𝑥 > 0 and 𝑦 = 0, (2)
3
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𝜎𝑦𝑧 = 0 for 𝑥 < 0 and 𝑦 = 0. (3)

long the positive part of the 𝑥-axis the adhesive interface between half-planes 𝛺+ and 𝛺− is modelled by a continuous distribution
f linear elastic springs, known in the applied-mathematics community as the Robin boundary condition, cf. [29,32], which is
haracterized by the stiffness 𝑘 = 𝑘𝑧 > 0, associated to the out-of-plane 𝑧-direction. The semi-infinite crack located along the
egative part of the 𝑥-axis is described by the stress-free condition.

The stress component 𝜎𝑦𝑧(𝑥, 𝑦) is related to 𝑢(𝑥, 𝑦) using the constitutive law 𝜎𝑦𝑧 = 𝜇 𝑢,𝑦 and 𝜎𝑥𝑧 = 𝜇 𝑢,𝑥, with 𝜇 > 0 being the
shear elastic modulus of the bulk material. Therefore, (2) and (3) can be rewritten as

𝜕𝑢
𝜕𝑦

= 𝑘
𝜇
[

𝑢(𝑥, 0+) − 𝑢(𝑥, 0−)
]

if 𝑥 > 0 and 𝑦 = 0, (4)

𝜕𝑢
𝜕𝑦

= 0 if 𝑥 < 0 and 𝑦 = 0. (5)

Similarly as in [33], the solution 𝑢(𝑥, 𝑦) is decomposed as the sum of an even (symmetric) and an odd (skew-symmetric) part with
respect to the coordinate 𝑦, as

𝑢e(𝑥, 𝑦) =
𝑢(𝑥, 𝑦) + 𝑢(𝑥,−𝑦)

2
= 𝑢e(𝑥,−𝑦), (6)

𝑢o(𝑥, 𝑦) =
𝑢(𝑥, 𝑦) − 𝑢(𝑥,−𝑦)

2
= −𝑢o(𝑥,−𝑦). (7)

he superscripts e and o denote the even and the odd part, respectively, the sum of them gives the original-problem solution,

𝑢(𝑥, 𝑦) = 𝑢e(𝑥, 𝑦) + 𝑢o(𝑥, 𝑦). (8)

s we can see from (6) and (7), once we know 𝑢e or 𝑢o in a half plane, 𝛺+ or 𝛺−, it is also given in the other half-plane.
Applying the definitions for 𝑢e(𝑥, 𝑦) and 𝑢o(𝑥, 𝑦), and the equilibrium of tractions on the interface (i.e., the continuity of 𝜎𝑦𝑧 and

of 𝑢,𝑦 across the interface), the BVP (Pc) previously presented is split into two problems defined, e.g., in the half-plane 𝛺+. The first
one is for the even part of 𝑢(𝑥, 𝑦)

𝛥𝑢e = 0 in 𝛺+, (9)

(Pe) 𝜕𝑢e

𝜕𝑦
= 0 if 𝑥 > 0 and 𝑦 = 0, (10)

𝜕𝑢e

𝜕𝑦
= 0 if 𝑥 < 0 and 𝑦 = 0, (11)

and the second for the odd part of 𝑢(𝑥, 𝑦)

𝛥𝑢o = 0 in 𝛺+, (12)

(Po) 𝜕𝑢o

𝜕𝑦
= 𝛾𝑢o(𝑥, 0+) if 𝑥 > 0 and 𝑦 = 0, (13)

𝜕𝑢o

𝜕𝑦
= 0 if 𝑥 < 0 and 𝑦 = 0. (14)

A governing parameter 𝛾 of dimension 1∕length used in (13) is defined as

𝛾 = 2𝑘
𝜇
. (15)

The solutions to the BVP (Pe) in the Cartesian coordinates system are given by any finite linear combination or an infinite series of
a subset of homogeneous harmonic polynomials, which include an even power of 𝑦, as it was obtained in [33]. These homogeneous
harmonic polynomials can be written in the polar coordinates system as

𝑢𝑒𝑗 (𝑟, 𝜃) = 𝑟𝜆𝑗 cos(𝜆𝑗𝜃), for 𝜆𝑗 = 𝑗 − 1, 𝑗 ∈ N. (16)

For example, for 𝑗 = 1, 2 and 3, these polynomial solutions to the BVP (Pe) written in Cartesian coordinates are: 𝑢𝑒𝑗 (𝑥, 𝑦) = 1, 𝑥 and
2 − 𝑦2. Notice that in (16) the index 𝑗 ∈ N1 to avoid an infinite energy in the vicinity of the crack-tip, which corresponds to the
ase 𝑗 ≤ 0 and 𝑗 ∈ Z.

The BVP named as (Po) is solved and studied in the following sections. This problem is also called the Robin–Neumann problem
ecause of the boundary conditions imposed on the boundary of the half-plane 𝛺+, the 𝑥-axis. For the sake of notation simplicity, in
he next sections the odd part of the complete problem solution, which corresponds to a spring interface with a crack under Mode
II loading condition, will be also denoted as 𝑢 = 𝑢o. Noteworthy, the solution 𝑢𝑒 and 𝑢𝑜 are not unique, because no remote boundary

conditions are prescribed at infinity.

1 The following subsets of real numbers will be used in this work: Z the set of integer numbers, N the set of natural numbers.
4
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Fig. 2. Scheme of the problem in the vicinity of the singularity. Notice that the spring distribution is acting in the out-of-plane direction.

3. Deduction of the asymptotic series expansion

The solution to the Robin–Neumann problem (Po) in 𝛺+ can be represented by a doubly infinite asymptotic series expansion,
which can be considered as a particular case of the general asymptotic expansion deduced in [30] for corners, by setting the inner
angle of corner (angular sector) as 𝜔 = 𝜋, i.e. defining a half-plane. The 𝑗th element of this series, denoted as 𝑢𝑗 , is defined by the
sum of a main term (main singularity) 𝑢(0)𝑗 and an infinite series of shadow terms (shadow singularities) 𝑢(𝑘)𝑗 . This doubly infinite
asymptotic series expansion can be approximated by a truncated series of 𝑁 terms 𝑢𝑗 , each one with 𝑆𝑗 shadow terms,

𝑢(𝑟, 𝜃) ≈
𝑁
∑

𝑗=1
𝐾𝑗𝑢𝑗 (𝑟, 𝜃) =

𝑁
∑

𝑗=1
𝐾𝑗

⎛

⎜

⎜

⎝

𝑢(0)𝑗 (𝑟, 𝜃) +
𝑆𝑗
∑

𝑘=1
𝑢(𝑘)𝑗 (𝑟, 𝜃)

⎞

⎟

⎟

⎠

, (17)

For 𝑁 and 𝑆𝑗 going to infinity the complete doubly infinite asymptotic series is recovered. The coefficients 𝐾𝑗 are called Generalized
Stress Intensity Factors (GSIFs), and are defined by the overall configuration of the problem, i.e., the loads applied and the whole
geometry of the specimen. The expression (17) is written in a polar coordinates system that is located at the origin 𝑂, the crack tip,
as it can be seen in Fig. 2.

For the sake of simplicity in the application of the boundary conditions, first we find the asymptotic series expansions of the
solution for the so-called Neumann–Robin (N–R) problem, see Fig. 2(a). Then, by a change of variable

𝜃 = 𝜋 − 𝜃, (18)

the solution to the Robin–Neumann (R–N) problem is obtained, see Fig. 2(b). This change is made to follow the tradition of
representing a crack growing from left to right, so in Fig. 2(b), 𝛤2 corresponds to the upper face of the crack.

The main terms 𝑢(0)𝑗 are calculated replacing the Robin boundary condition (13) by a homogeneous Neumann boundary condition,
i.e., solving the Neumann–Neumann problem. Its analytical solution is given by an asymptotic series whose terms are in fact defined
in (16). As follows from (16) and (17), the dimension of 𝐾𝑗 is (length)1−𝜆𝑗 = (length)2−𝑗 . It is important to highlight that only 𝑗 ∈ N
are considered, since an infinite strain energy is obtained for 𝑗 ≤ 0, as explained above.

The shadow terms 𝑢(𝑘)𝑗 in the N–R problem, with 𝑘 = 1,… , 𝑆𝑗 , are obtained by solving the following recursive BVPs

𝛥𝑢(𝑘)𝑗 = 0 in 𝛺+, (19)

(Pk
𝑗 )

𝜕𝑢(𝑘)𝑗

𝜕𝜃
= 0 on 𝛤1, (20)

1
𝑟

𝜕𝑢(𝑘)𝑗

𝜕𝜃
= −𝛾𝑢(𝑘−1)𝑗 on 𝛤2, (21)

where 𝛤1 and 𝛤2 are the boundary parts defined by 𝑦 = 0 and 𝑥 > 0 and 𝑥 < 0, respectively, see Fig. 2(a).
Following [30], terms 𝑢(𝑘)𝑗 (𝑟, 𝜃) are given by the complex variable expression written as

𝑢(𝑘)𝑗 (𝑧) =
𝑘
∑

𝑙=0

[

𝑎(𝑙)𝑗,𝑘 ⋅ Im
{

𝑧𝜆𝑗+𝑘 log𝑙 𝑧
}

+ 𝑏(𝑙)𝑗,𝑘 ⋅ Re
{

𝑧𝜆𝑗+𝑘 log𝑙 𝑧
}

]

, (22)

where the complex number associated to a point in the upper half-plane is 𝑧 = 𝑥 + 𝑖𝑦 = 𝑟 exp(𝑖𝜃), and 𝑎(𝑙)𝑗,𝑘 and 𝑏(𝑙)𝑗,𝑘 are real constant
coefficients providing real valued displacements 𝑢(𝑘)𝑗 (𝑧). Since 𝑘 is the index related to each shadow term in the series, we can observe
that the maximum power of the logarithmic terms in the expression of 𝑢𝑗 is increased each time we include an additional shadow
term in the series. The expression in (22) can be rewritten using real variables and applying the binomial expansion as

𝑢(𝑘)𝑗 (𝑟, 𝜃) = 𝑟𝜆𝑗+𝑘
𝑘
∑

𝑙
∑

(

𝑙
)

log𝑚(𝑟) 𝜃𝑙−𝑚
[

𝑎(𝑙)𝑗,𝑘 sin 𝑡
(𝑙−𝑚)
𝑗,𝑘 (𝜃) + 𝑏(𝑙)𝑗,𝑘 cos 𝑡

(𝑙−𝑚)
𝑗,𝑘 (𝜃)

]

, (23)
5
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where
( 𝑙
𝑚

)

= 𝑙!
𝑚!(𝑙−𝑚)! and

𝑡(𝑙−𝑚)𝑗,𝑘 (𝜃) = (𝜆𝑗 + 𝑘)𝜃 +
𝜋(𝑙 − 𝑚)

2
. (24)

Regarding the homogeneous Neumann boundary condition in (20), we have

𝜕𝑢(𝑘)𝑗

𝜕𝜃

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝜃=0

= 𝑟(𝜆𝑗+𝑘)
𝑘
∑

𝑙=0
𝑎(𝑙)𝑗,𝑘

(

(𝜆𝑗 + 𝑘) log𝑙 𝑟 + 𝑙 log𝑙−1 𝑟
)

= 0. (25)

In order to fulfil (25) for all 𝑟 > 0, coefficients 𝑎(𝑙)𝑗,𝑘 for all 𝑗, 𝑘 and 𝑙 are zero. The Robin boundary condition in (21) is written
using real variables and simplifying terms 𝑟𝜆𝑗+𝑘−1 in both sides as

𝑘
∑

𝑙=0
𝑏(𝑙)𝑗,𝑘

𝑙
∑

𝑚=0

(

𝑙
𝑚

)

log𝑚(𝑟)𝜋𝑙−𝑚
[ 𝑙 − 𝑚

𝜋
cos 𝑡(𝑙−𝑚)𝑗,𝑘 (𝜋) − (𝜆𝑗 + 𝑘) sin 𝑡(𝑙−𝑚)𝑗,𝑘 (𝜋)

]

= −𝛾
𝑘−1
∑

𝑙=0
𝑏(𝑙)𝑗,𝑘−1

𝑙
∑

𝑚=0

(

𝑙
𝑚

)

log𝑚 (𝑟)𝜋𝑙−𝑚 cos 𝑡(𝑙−𝑚)𝑗,𝑘−1(𝜋). (26)

ince (26) must be verified for all 𝑟 > 0, coefficients 𝑏(𝑙)𝑗,𝑘 are determined by comparing terms with the same power of log𝑚 𝑟 on both
sides of the equation, leading to a linear system of 𝑘 + 1 equations. For each 𝑘th shadow term, this system is expressed in matrix
form as

𝐌𝑗,𝑘𝐁𝑗,𝑘 = 𝐆𝑗,𝑘, (27)

to determine the vector of coefficients 𝐁𝑗,𝑘 =
[

𝑏(0)𝑗,𝑘,… , 𝑏(𝑚)𝑗,𝑘 ,… , 𝑏(𝑘)𝑗,𝑘

]𝑇
. The terms in the vector 𝐆𝑗,𝑘 =

[

𝐺(0)
𝑗,𝑘,… , 𝐺(𝑚),… , 𝐺(𝑘)

𝑗,𝑘

]𝑇
are

ritten, after some simplifications, as

𝐺(𝑚)
𝑗,𝑘 = 𝛾

𝑘−1
∑

𝑙=𝑚
𝑏(𝑙)𝑗,𝑘−1

(

𝑙
𝑚

)

𝜋𝑙−𝑚 cos
[

𝜋(𝑙 − 𝑚)
2

]

, for 0 ≤ 𝑚 < 𝑘, (28)

𝐺(𝑘)
𝑗,𝑘 = 0. (29)

This last element of the vector 𝐆𝑗,𝑘 is always zero because it is associated with the 𝑘th power of the logarithm, and in the (𝑘− 1)th
shadow term (the shadow term used to define the vector 𝐆𝑗,𝑘) this power does not appear.

The overall structure of the square matrix 𝐌𝑗,𝑘 is

𝐌𝑗,𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 ⋯ 𝑀 (0,𝑙)
𝑗,𝑘 ⋯ 𝑀 (0,𝑘)

𝑗,𝑘
0 ⋱ ⋮
⋮ ⋱ ⋱ ⋮
⋮ 0 ⋱ ⋮
0 ⋯ ⋯ 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (30)

here each term of the matrix is expressed, after some simplifications, as

𝑀 (𝑚,𝑙)
𝑗,𝑘 =

(

𝑙
𝑚

)

𝜋𝑙−𝑚
[

𝑙 − 𝑚
𝜋

cos
[

𝜋(𝑙 − 𝑚)
2

]

− (𝜆𝑗 + 𝑘) sin
[

𝜋(𝑙 − 𝑚)
2

]]

for 𝑚 < 𝑙, (31)

𝑀 (𝑚,𝑙)
𝑗,𝑘 = 0 for 𝑚 ≥ 𝑙. (32)

Since the first column of the matrix 𝐌𝑗,𝑘 is zero, the first coefficient 𝑏(0)𝑗,𝑘 is undefined, and the terms 𝑢(𝑘)𝑗 (𝑟, 𝜃) are not unique.
However, it can be verified that the singularity order related to the coefficient 𝑏(0)𝑗,𝑘, 𝜆𝑗 + 𝑘, is equal to the singularity order of other
main term in the series, 𝑗′ > 𝑗, which is 𝜆𝑗′ = 𝜆𝑗 + 𝑘. The difference between two particular solutions of Eqs. (19)–(21) is therefore
the solution to the Neumann–Neumann problem, which means that it is included in the main term in the other 𝑗′th element of the
series, as it was explained for a general case in [30]. Thus, for the sake of simplicity and without lost of generality we can assume

𝑏(0)𝑗,𝑘 = 0, for 𝑘 ≥ 1. (33)

Hence, the non-uniqueness of the solution would be solved if we considered an infinite series for the solution, which is, unfortunately,
numerically impossible. On the other hand, coefficients 𝑏(𝑚)𝑗,𝑘 for 𝑚 ≠ 0 are expressed taking advantage of the fact that the matrix
𝐌𝑗,1 has upper triangular form, and therefore they can be obtained by a procedure similar to the Gaussian back substitution,

𝑏(𝑘)𝑗,𝑘 =
𝐺(𝑘−1)
𝑗,𝑘

𝑀 (𝑘−1,𝑘)
𝑗,𝑘

, (34)

𝑏(𝑙)𝑗,𝑘 = 1
(𝑙−1,𝑙)

[

𝐺(𝑙−1)
𝑗,𝑘 −

𝑘
∑

𝑀 (𝑙−1,𝑠)
𝑗,𝑘 𝑏(𝑠)𝑗,𝑘

]

, for 1 ≤ 𝑙 ≤ 𝑘 − 1. (35)
6
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Notice that the initial vector of coefficients, for 𝑘 = 1, is defined through the main term, 𝑢(0)𝑗 (𝑟, 𝜃). This is equivalent to set 𝑏(0)𝑗,0 = 1
in the iterative process we have described.

Moreover, remember that in this section we have obtained the solution to the Neumann–Robin (N–R) problem in 𝛺+. Therefore,
the change of variable given in (18) is applied to (23) to get the shadow terms in the so-called Robin–Neumann (R–N) problem.
As it has been shown in this section, solving N–R has less computational complexity than solving R–N, because coefficients 𝑎(𝑙)𝑗,𝑘 are
reduced to zero by applying the Neumann boundary condition at 𝜃 = 0.

Finally, with a finite number of terms in the asymptotic series the Robin boundary condition is not exactly fulfilled. Nevertheless,
the error decreases in the vicinity of the crack tip when more shadow terms are included in the series, i.e., 𝑆𝑗 is increased. Therefore,
a suitable choice of 𝑆𝑗 depends on the desired accuracy of the solution, which can be defined through the relative error 𝑒𝑗 (𝑟),

𝑒𝑗 (𝑟) =

1
𝑟
𝜕𝑢𝑗
𝜕𝜃

(𝑟, 0)

𝛾𝑢𝑗 (𝑟, 0)
− 1

?
≈ 0. (36)

The minimum number of shadow terms 𝑆𝑗 to be included in the truncated series depends on the range of 𝑟 where an accuracy,
defined by a maximum value of error, is requested. A study of the function 𝑒(𝑟) in this range is required to decide a suitable value
f 𝑆𝑗 . Notice that higher 𝑆𝑗 lead to higher computational complexities.

The order (in terms of the power of 𝑟) of the error of a truncated series increases with increasing 𝑆𝑗 . This leads to more accurate
pproximations of the exact solution in a vicinity of the crack tip by the series with increasing 𝑆𝑗 , but outside this region the
igher-order terms diverge more rapidly than the lower order terms, so the truncated series with a higher 𝑆𝑗 can provide worse
pproximations for the solution far away from the crack tip, see e.g. Fig. 9. Recall that a similar behaviour can be observed in
pproximations of smooth functions by the Taylor series.

. Pseudocode computing asymptotic series expansion

A key advantage of the above procedure to deduce the asymptotic series expansion for a semi-infinite crack in a straight spring
nterface is that its implementation in computer algebra software is straightforward and very efficient. Thus, this implementation
llows to obtain a fully analytical solution in terms of truncated series, which depends on how many shadow terms are considered
n the series associated to a 𝑗th main term. In the following lines we propose a pseudocode implementing this procedure for R–N
roblem. In this code, 𝐵[𝑘, 𝑙] represents the unknown coefficients.
efine 𝛾, 𝐺, 𝑗, 𝑆𝑗

𝜆𝑗 = 𝑗 − 1, 𝑢(0)𝑗 (𝑟, 𝜃) = 𝑟𝜆𝑗 cos 𝜆𝑗𝜃, and 𝐵[0, 0] = 1

𝑡[𝜃, 𝑘, 𝑙, 𝑚] = (𝜆𝑗 + 𝑘)𝜃 +
𝜋(𝑙 − 𝑚)

2
For 𝑘 = 1 To 𝑆𝑗 Do

𝑀 [𝑚, 𝑙] =
(

𝑙
𝑚

)

𝜋(𝑙−𝑚)
[

𝑙 − 𝑚
𝜋

cos
[

𝜋(𝑙 − 𝑚)
2

]

− (𝜆𝑗 + 𝑘) sin
[

𝜋(𝑙 − 𝑚)
2

]]

𝐺 [𝑚] = 𝛾
𝑘−1
∑

𝑙=𝑚
𝐵[𝑘 − 1, 𝑙]

(

𝑙
𝑚

)

𝜋𝑙−𝑚 cos
[

𝜋(𝑙 − 𝑚)
2

]

𝐵 [𝑘, 𝑘] = 𝐺 [𝑘 − 1]
𝑀 [𝑘 − 1, 𝑘]

and 𝐵 [𝑘, 0] = 0

𝐅𝐨𝐫 𝑙 = 𝑘 − 1 𝐓𝐨 1 𝐃𝐨

𝐵 [𝑘, 𝑙] = 1
𝑀[𝑙 − 1, 𝑙]

[

𝐺[𝑙 − 1] −
𝑘
∑

𝑠=𝑙+1
𝑀[𝑙 − 1, 𝑠]𝐵[𝑘, 𝑠]

]

𝐄𝐧𝐝𝐅𝐨𝐫

EndFor

𝑢𝑗 (𝑟, 𝜃) = 𝑢(0)𝑗 (𝑟, 𝜃) +
𝑆𝑗
∑

𝑘=1
𝑟𝜆𝑗+𝑘

𝑘
∑

𝑙=0
𝐵[𝑘, 𝑙]

𝑙
∑

𝑚=0

(

𝑙
𝑚

)

log𝑚 (𝑟)𝜃𝑙−𝑚 cos (𝑡[𝜃, 𝑘, 𝑙, 𝑚])

𝑢𝑗 (𝑟, 𝜃) = 𝑢𝑗 (𝑟, 𝜋 − 𝜃)

𝑒𝑗 (𝑟) =

1
𝑟
𝜕𝑢𝑗
𝜕𝜃

(𝑟, 0)
− 1
7
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𝜎𝑟𝑧𝑗 (𝑟, 𝜃) = 𝜇
𝜕𝑢𝑗 (𝑟, 𝜃)

𝜕𝑟

𝜎𝜃𝑧𝑗 (𝑟, 𝜃) =
𝜇
𝑟
𝜕𝑢𝑗 (𝑟, 𝜃)

𝜕𝜃

. Explicit expressions of the first two terms of the asymptotic series solution

In this section, we deduce explicit expressions of the first terms of the asymptotic series solution for a semi-infinite crack situated
n a straight spring interface, following the theoretical procedure explained above. We first solve the Neumann–Robin and then the
obin–Neumann problem shown in Fig. 2, deducing the expressions of the first two shadow terms, i.e., 𝑆𝑗 = 2, for the sake of
implicity, giving

𝑢𝑗 (𝑟, 𝜃) = 𝑢(0)𝑗 (𝑟, 𝜃) + 𝑢(1)𝑗 (𝑟, 𝜃) + 𝑢(2)𝑗 (𝑟, 𝜃), (37)

where the main term representing a solution to the homogeneous Neumann–Neumann problem for the upper half-plane is expressed
as

𝑢(0)𝑗 (𝑟, 𝜃) = 𝑟𝑗−1 cos [(𝑗 − 1)𝜃], (38)

see (16) and the associated discussion.

5.1. Explicit expressions for the Neumann–Robin problem

For a better understanding of the matrix procedure explained above for the Neumann–Robin problem, see (27), the coefficients
𝑏(𝑙)𝑗,𝑘 in (22), are explicitly computed for 𝑘 = 1 and 2. As it was previously mentioned, the recursive explicit expressions for 𝑏(𝑙)𝑗,𝑘 can
be obtained by a procedure similar to the Gaussian back substitution (34)–(35), which also has lower computational complexity.

For the first shadow term, 𝑘 = 1, the following system of equations 𝐌𝑗,1𝐁𝑗,1 = 𝐆𝑗,1 is solved, applying (28)–(29) to compute
vector 𝐆𝑗,1 and (31)–(32) to compute matrix 𝐌𝑗,1. The resulting system has the form

(

0 −𝑗𝜋

0 0

)

⎛

⎜

⎜

⎝

𝑏(0)𝑗,1

𝑏(1)𝑗,1

⎞

⎟

⎟

⎠

=
(

𝛾
0

)

. (39)

This gives 𝑏(1)𝑗,1 = −𝛾
𝑗𝜋 and 𝑏(0)𝑗,1 = 0, see (33). By substituting these coefficients in (23), the final expression of the first shadow term,

= 1, for the N–R problem, is obtained,

𝑢(1)𝑗 (𝑟, 𝜃) =
𝛾𝑟𝑗

𝑗𝜋
[

𝜃 sin (𝑗𝜃) − log 𝑟 cos (𝑗𝜃)
]

. (40)

Similarly, the system of equations for the second shadow term, 𝑘 = 2, is obtained,

⎛

⎜

⎜

⎜

⎝

0 −𝜋(1 + 𝑗) −2𝜋

0 0 −2𝜋(1 + 𝑗)

0 0 0

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝑏(0)𝑗,2

𝑏(1)𝑗,2

𝑏(2)𝑗,2

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

0

− 𝛾2

𝑗𝜋

0

⎞

⎟

⎟

⎟

⎟

⎠

. (41)

he solution of this system gives the expressions for the coefficients 𝑏(0)𝑗,2 = 0, 𝑏(1)𝑗,2 = −𝛾2

𝑗𝜋2(1+𝑗)2 and 𝑏(2)𝑗,2 = 𝛾2

2𝜋2𝑗(1+𝑗) , see (33). The final
expression for the second shadow term, 𝑘 = 2, is

𝑢(2)𝑗 (𝑟, 𝜃) =
−𝛾2𝑟1+𝑗

𝑗(𝑗 + 1)𝜋2

[

𝑈1(𝑟, 𝜃) + 𝑈2(𝑟, 𝜃)
]

, (42)

where

𝑈1(𝑟, 𝜃) = −1
(𝑗 + 1)

(𝜃 sin [(1 + 𝑗)𝜃] − cos [(1 + 𝑗)𝜃] log 𝑟) (43)

𝑈2(𝑟, 𝜃) = 1
2
[

cos [(1 + 𝑗)𝜃]𝜃2 + log 𝑟 2𝜃 sin [(1 + 𝑗)𝜃] − log2 𝑟 cos [(1 + 𝑗)𝜃]
]

. (44)

By combining the previous expressions (38), (40) and (42), the asymptotic series solution of the N–R problem in (37) for 𝑗 = 1 with
two shadow terms, 𝑆1 = 2, is obtained

𝑢1(𝑟, 𝜃) = 1 +
𝛾𝑟
𝜋

[

𝜃 sin (𝜃) − cos (𝜃) log 𝑟
]

+
𝑟2𝛾2

4𝜋2

{

−𝜃2 cos 2𝜃 + 𝜃 sin 2𝜃 − (cos 2𝜃 + 2𝜃 sin 2𝜃) log 𝑟 + cos 2𝜃 log2 𝑟
}

. (45)

Noteworthy, the main term 𝑢(0)1 is given by a unit rigid body translation in the 𝑧−direction. The stress components associated with
this solution are

𝜎 (𝑟, 𝜃) =
𝛾𝜇 [

𝜃 cos 𝜃 + sin 𝜃 + sin 𝜃 log 𝑟
]

+
𝑟𝜇𝛾2 [

sin 2𝜃(1 + 2𝜃2) − 4𝜃 cos 2𝜃 log 𝑟 − 2 sin 2𝜃 log2 𝑟
]

, (46)
8
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𝜎𝑟𝑧1(𝑟, 𝜃) =
𝛾𝜇
𝜋

[

𝜃 sin 𝜃 − cos 𝜃 − cos 𝜃 log 𝑟
]

−
𝑟𝜇𝛾2

4𝜋2

[

cos 2𝜃(1 + 2𝜃2) + 4𝜃 sin 2𝜃 log 𝑟 − 2 cos 2𝜃 log2 𝑟
]

, (47)

As follows from expressions (46) and (47), both stress components have a logarithmic singularity at the singular point 𝑟 = 0.
Nevertheless, as it could be expected, 𝜎𝜃𝑧1 is bounded along the negative part of the 𝑥-axis (𝜃 = 𝜋) in the neighbourhood of this
singular point, due to the Robin boundary condition there, whereas it vanishes along the positive part of the 𝑥-axis (𝜃 = 0).

It should be mentioned that Sinclair [22] presented the singular solution for the displacement 𝑢1(𝑟, 𝜃) up to the first shadow
term and for the stress 𝜎𝜃𝑧1(𝑟, 𝜃) up to the second shadow term, matching the corresponding parts of the expressions (45) and (46),
respectively.

5.2. Explicit expressions for the Robin–Neumann problem

As explained in Section 3, the asymptotic series solution of the R–N problem in (37) with two shadow terms, 𝑆1 = 2, can be
easily obtained by applying the change of variable (18) to the asymptotic series solution of the N–R problem in (45),

𝑢1(𝑟, 𝜃) = 1 +
𝛾𝑟
𝜋

[

(𝜋 − 𝜃) sin 𝜃 + cos 𝜃 log 𝑟
]

+
𝛾2𝑟2

4𝜋2

[

−(𝜋 − 𝜃) sin 2𝜃 − (𝜋 − 𝜃)2 cos 2𝜃 − (−2(𝜋 − 𝜃) sin 2𝜃 + cos 2𝜃) log 𝑟 + cos 2𝜃 log2 𝑟
]

. (48)

The stresses corresponding to these displacements are expressed as

𝜎𝜃𝑧1(𝑟, 𝜃) = −
𝛾𝜇
𝜋

[

sin 𝜃 − (𝜋 − 𝜃) cos 𝜃 + sin 𝜃 log 𝑟
]

+
𝑟𝜇𝛾2

4𝜋2

[

(2(𝜋 − 𝜃)2 + 1) sin 2𝜃 + 4(𝜋 − 𝜃) cos 2𝜃 log 𝑟 − 2 sin 2𝜃 log2 𝑟
]

, (49)

and

𝜎𝑟𝑧1(𝑟, 𝜃) =
𝛾𝜇
𝜋

[

(𝜋 − 𝜃) sin 𝜃 + cos 𝜃 + cos 𝜃 log 𝑟
]

+
𝑟𝜇𝛾2

4𝜋2

[

−
(

1 + 2(𝜋 − 𝜃)2
)

cos 2𝜃 + 4(𝜋 − 𝜃) sin 2𝜃 log 𝑟 + 2 cos 2𝜃 log2 𝑟
]

. (50)

Similarly as in the N–R problem, these stresses have a logarithmic singularity at 𝑟 = 0, and 𝜎𝜃𝑧1 is bounded along the positive part
of the 𝑥-axis (𝜃 = 0) near the singular point.

Remark. According to Mishuris [23], displacements and stresses in the upper half domain of this R–N problem are expressed as

𝑢𝑀 ≈ 1
𝜋𝜇

{

𝜇∗𝜏∗𝜋
1 + 𝜇∗

𝑎−0 + [𝐺𝑀 (−1) − 𝑐−0 − 𝑎−0 (1 − log 𝑟)]𝑟 cos 𝜃 + 𝑎−0 (𝜋 − 𝜃)𝑟 sin 𝜃
}

, (51)

𝜎𝜃𝑧𝑀 ≈ − 1
𝜋
[

𝑎−0 log 𝑟 sin 𝜃 + [𝐺𝑀 (−1) − 𝑐−0 ] sin 𝜃 − 𝑎−0 (𝜋 − 𝜃) cos 𝜃
]

, (52)

𝜎𝑟𝑧𝑀 ≈ 1
𝜋
[

𝑎−0 log 𝑟 cos 𝜃 + [𝐺𝑀 (−1) − 𝑐−0 ] cos 𝜃 + 𝑎−0 (𝜋 − 𝜃) sin 𝜃
]

, (53)

where the original author’s notation, with a subscript ‘‘𝑀 ’’ indicating a solution or parameter by Mishuris [23], is employed. In the
present case, the materials, in the upper and in the lower half-planes, are considered identical. For this reason, 𝜇∗ = 1. Moreover,
the function 𝐺𝑀 (𝑠) = 𝜇 𝜕𝑢

𝜕𝜃 (𝑠, 𝜋) evaluated in 𝑠 = −1 is 𝐺𝑀 (−1) = 0. The coefficient 𝜏∗ = 2
𝛾 . Therefore, we get

𝑢𝑀 ≈
𝑎−0
𝛾𝜇

−
(𝑐−0 + 𝑎−0 )

𝜋𝜇
𝑟 cos 𝜃 +

𝑟𝑎−0
𝜋𝜇

cos 𝜃 log 𝑟 +
𝑟𝑎−0
𝜋𝜇

(𝜋 − 𝜃) sin 𝜃, (54)

𝜎𝜃𝑧𝑀 ≈ −1
𝜋

[

𝑎−0 sin 𝜃 log 𝑟 − 𝑐−0 sin 𝜃 − 𝑎−0 (𝜋 − 𝜃) cos 𝜃
]

, (55)

𝜎𝑟𝑧𝑀 ≈ 1
𝜋
[

𝑎−0 cos 𝜃 log 𝑟 − 𝑐−0 cos 𝜃 + 𝑎−0 (𝜋 − 𝜃) sin 𝜃
]

, (56)

which can be compared to our solution for 𝑗 = 1 and 𝑆1 = 1,

𝑢1(𝑟, 𝜃) = 1 +
𝑟𝛾
𝜋

cos 𝜃 log 𝑟 +
𝑟𝛾
𝜋
(𝜋 − 𝜃) sin 𝜃, (57)

𝜎𝜃𝑧1(𝑟, 𝜃) = −
𝛾𝜇
𝜋

[

sin 𝜃 log 𝑟 + sin 𝜃 − (𝜋 − 𝜃) cos 𝜃
]

(58)

𝜎𝑟𝑧1(𝑟, 𝜃) =
𝛾𝜇
𝜋

[

cos 𝜃 log 𝑟 + cos 𝜃 + (𝜋 − 𝜃) sin 𝜃
]

. (59)

If we normalize Mishuri’s solution in (54) by considering 𝑎−0 = 𝛾𝜇, we get the same solution as in (57) except of a term given by a
constant times 𝑟 cos 𝜃, which represents the following higher order main term for 𝑗 = 2 in (38). It is easy to see that this difference
is associated with the choice of 𝑏(0)𝑗,𝑘 = 0 in (33). Actually, taking 𝑎−0 = 𝛾𝜇 and 𝑐−0 = −𝛾𝜇, the solution obtained in [23] in (54)–(56)
is exactly the same as the one deduced in the present paper given by expressions (57)–(58), for 𝑗 = 1 and 𝑆 = 1.
9
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Fig. 3. Out-of-plane displacement 𝑢1(𝑟, 𝜃) in a rectangular plate, for 𝛾 = 1 and 𝑆1 = 8.

Note that the solution in [23] essentially corresponds to the first main term 𝑗 = 1 and the first shadow term 𝑆1 = 1, whereas the
present work allows us to easily compute an asymptotic series expansion for any number of main terms and up to any order of the
shadow terms. In fact, in the next section, asymptotic solutions with shadow terms up to order of 𝑆1 = 8 are used to achieve a high
accuracy of the solutions plotted. Furthermore, in the supplementary material, shadow terms up to forth order, 𝑆1 = 4, are included
for the sake of completeness. As it will be shown in the following section, the error in the Robin boundary condition is reduced in
the vicinity of the crack-tip when more shadow terms are used to approximate the solution.

6. Graphical representation of the solution for the Robin–Neumann problem

In this section the first term 𝑢1(𝑟, 𝜃) of the series (17), solving the R–N problem, is represented, since it is the one related to
stress singularities in the vicinity of the crack-tip. The total number of shadow terms employed is indicated in each figure, and the
maximum number of shadow terms used is 𝑆1 = 8 or 9. The main reason for this selection is the error in the Robin boundary condition
in the neighbourhood of the crack-tip, discussed at the end of the section, with the aim to achieve a sufficiently high accuracy of the
plots of solutions presented. Recall that we are representing here just the skew-symmetric part of the full-crack-problem solution,
which is the non-smooth and singular one, denoted in Section 2 as 𝑢𝑜(𝑟, 𝜃). The singular part of the crack solution can be completed
by any smooth even part of the crack solution 𝑢𝑒(𝑟, 𝜃). For the sake of simplicity, in the graphical representations we consider the
shear modulus 𝜇 = 1 in this section.

In Fig. 3 the out-of-plane displacement 𝑢1(𝑟, 𝜃) in the upper half-plane 𝛺+ is represented in a rectangle [−1, 1] × [0, 1], for 𝛾 = 1.
Notice that the solution in the lower half-plane 𝛺− is skew-symmetric with respect to the 𝑥-axis, i.e., 𝑢(𝑥,−𝑦) = −𝑢(𝑥, 𝑦). It is observed
that the displacement is higher at the upper crack face at 𝜃 = 𝜋 (homogeneous Neumann boundary condition) than at the upper
face of the springs interface at 𝜃 = 0 (Robin boundary condition).

The evolution of the out-of-plane displacement 𝑢1(𝑟, 𝜃) at the interface, for 𝛾 = 1, is shown in Fig. 4, where the number of shadow
terms is increased up to 𝑆1 = 8. It is observed that the solution is not so different between 𝑆1 = 4 and 𝑆1 = 8. Moreover, the constant
main term, 𝑆1 = 0, of the unit value can be observed along the Neumann and Robin boundary parts, since it is the solution to the
Neumann–Neumann problem. The displacement value at the origin of polar coordinates is 𝑢1(0, 0) = 𝑢1(0, 𝜋) = 1, which can be used
to define the Generalized Stress Intensity Factor 𝐾1, introduced in (17), as the half of the jump, across the interface, of the crack-tip
value of the displacement in any antiplane-strain BVP including a crack on a spring interface. It is also interesting to observe that
𝑢1(𝑟, 𝜃) decreases with growing 𝑟 on the Robin interface.

The evolution of 𝑢1(𝑟, 𝜃) when 𝛾 is changed is shown in Fig. 5 on the bottom boundary of the half-plane 𝛺+ (at 𝜃 = 0 and 𝜋) for
𝛾 = 1, 𝛾 = 5 and 𝛾 = 10. Both the number of shadow terms for each 𝛾 and the range of representation, 𝑟 ∈ (0 − 0.15), have been
selected considering that the relative error in the Robin boundary condition should be similar in the three cases. This is explained
at the end of this section. It can be observed that at 𝜃 = 0, where the linear elastic springs distribution is located, the displacement
decreases when the parameter 𝛾 increases, because the spring interface is stiffer. The opposite effect is produced at 𝜃 = 𝜋, where
𝑢1(𝑟, 𝜃) increases with growing 𝛾. Note that, for all the values chosen for 𝛾, 𝑢1(0, 0) = 𝑢1(0, 𝜋) = 1.

Fig. 6 shows stresses in the rectangle [−1, 1] × [0, 1], for 𝑆1 = 8. It is observed that there is a logarithmic singularity in the
two stress components when 𝑟 → 0. These stresses have a different behaviour especially on the bottom half-plane boundary. The
logarithmic singularity is observed in 𝜎𝑟𝑧1(𝑟, 𝜃), shown in Fig. 6(a), on both the Robin and Neumann boundary parts, 𝜃 = 0 and 𝜋,
respectively, for 𝑟 → 0. However, this singularity is not observed on these boundary parts in 𝜎𝜃𝑧1(𝑟, 𝜃), shown in Fig. 6(b), where it
vanishes on the Neumann part and it is bounded on the Robin part.

In Fig. 7 the approximation of the stress component 𝜎𝜃𝑧1(𝑟, 𝜃) by the asymptotic series is plotted on the Robin boundary part
(𝜃 = 0) and the Neumann boundary part (𝜃 = 𝜋) for increasing number of shadow terms. The Neumann boundary condition is
fulfilled at 𝜃 = 𝜋, since 𝜎𝜃𝑧1 (𝑟, 𝜋) = 0. Notice that at the crack tip a discontinuity appears, lim𝑟→0+ 𝜎𝜃𝑧1(𝑟, 0) = 2𝑘𝑢1(𝑟, 0) = 2𝑘, due to
the Robin boundary condition, in the present case 2𝑘 = 1, whereas lim𝑟→0+ 𝜎𝜃𝑧1(𝑟, 𝜋) = 0, due to the Neumann boundary condition.
It is also observed that, although there is a stress singularity in the neighbourhood of the crack tip, it is not observed when the
10
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Fig. 4. Out-of-plane displacement 𝑢1(𝑟, 𝜃) at the Neumann (a) and Robin (b) boundary parts, for several values of 𝑆1 up to 𝑆1 = 8, with 𝛾 = 1.

Fig. 5. Out-of-plane displacement 𝑢1(𝑟, 𝜃) for several values of 𝛾, at 𝜃 = 0 and 𝜃 = 𝜋.

solution is studied at the bottom boundary of the half-plane. For a better representation we have omitted the case of 𝑆1 = 0, giving
just the constant main term with 𝜎𝜃𝑧1(𝑟, 𝜃) = 0, for all 𝑟 and 𝜃. Note that the curves for 𝑆1 = 2 correspond to the expression in (49).

In Fig. 8(a) the stress component 𝜎𝑟𝑧1(𝑟, 𝜃) is represented on the Neumann boundary part, at 𝜃 = 𝜋. Fig. 8(b) shows 𝜎𝑟𝑧1(𝑟, 𝜃) on
the Robin boundary part, at 𝜃 = 0. In this case a logarithmic singularity is observed in the vicinity of the crack tip. The curves for
𝑆1 = 2 correspond to (50).

Finally, the relative error in the Robin boundary condition (36) is analysed. At first, Fig. 9 shows 𝑒(𝑟) for 0 ≤ 𝑟 ≤ 1, where it
is observed that the accuracy of the solution increases near the crack tip with growing number of shadow terms 𝑆1 included in
the asymptotic series. Theoretically, if we had an infinite number of shadow terms, the solution would have zero error for all 𝑟.
Nevertheless, the accuracy is strictly related to the computational complexity, thus, 𝑆1 is limited in practice. The aim is to minimize
𝑆1 for which 𝑒1(𝑟) ≪ 1 for 0 ≤ 𝑟 ≤ 1. Attending to this balance between the accuracy and computational cost, 𝑆1 = 8 is chosen
for the 3D representations of the solution in Figs. 3 and 6, since the computational complexity is highly increased when 𝑆1 = 9 is
applied.

In the analysis presented in Fig. 5, the displacement behaviour for different values of 𝛾 was compared. In that figure, the number
of shadow terms for each value of 𝛾 was selected to have a maximum relative error in the Robin boundary condition of 10−3, for
0 ≤ 𝑟 ≤ 0.11. In Fig. 10 this error is represented for several values of 𝛾, and the used number of shadow terms, 𝑆1. As it could be
expected, for higher values of 𝛾 more shadow terms are necessary to obtain the same accuracy in the solution.

7. Energy release rate calculated by the Irwin crack closure integral

To predict crack propagation along a spring interface, the calculation of the Energy Release Rate (ERR) 𝐺 is fundamental. The
issue of ERR for a crack in a spring interface has been analysed and discussed by several authors [11,13,14,21,34–39], in most cases
apparently independently, which is somewhat surprising. Nevertheless, it is useful to compute 𝐺 considering the present crack tip
solution (17) by employing the Irwin crack closure integral [40].
11
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Fig. 6. Stress components in a rectangular plate, for 𝛾 = 1 and 𝑆1 = 8.

Fig. 7. Stresses 𝜎𝜃𝑧1(𝑟, 𝜃) on the Neumann (a) and Robin (b) boundary parts, for 𝛾 = 1.

Considering the decomposition of the solution into the even and the odd part, see Section 2, and given that the interface shear
traction and the relative displacement of the even part are zero on the interface, it is sufficient to consider only the odd part of the
solution analysed in Sections 3–6.

As follows from the asymptotic series expansion (17) and the expressions of its terms in Section 5, the interface displacement
𝑢𝑧 is continuous along the interface, having however an infinite derivative at the crack tip. The only nonzero contribution to the
crack tip value of displacement is provided by the main term 𝑢(0)1 which represents the unit rigid body translation, whereas the other
remaining main and shadow terms vanish at the crack tip. Thus, the relative displacement at the crack tip is 2𝐾1, where 𝐾1 is the
GSIF. Recall that the dimension of 𝐾1 is length, see Section 3.

According to the expressions of stresses in Section 5, the interface shear traction 𝜎𝑦𝑧 is discontinuous at the crack tip, having a
finite one-sided limit approaching the crack tip from the spring interface part, with an infinite tangential derivative therein. The
only nonzero contribution to the crack tip value of this interface shear traction is given by the first shadow term, whereas all the
main terms and other remaining shadow terms evaluated on the interface vanish at the crack tip. Thus, the interface shear traction
12
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Fig. 8. Stresses 𝜎𝑟𝑧1(𝑟, 𝜃) on the Neumann (a) and Robin (b) boundary parts, for 𝛾 = 1.

Fig. 9. Relative error in the Robin boundary condition 𝑒1(𝑟) at 𝜃 = 0, for several values of 𝑆1, with 𝛾 = 1.

Fig. 10. Relative error in the Robin boundary condition 𝑒1(𝑟) at 𝜃 = 0, for several values of 𝛾.

at the crack tip is 𝐾1𝛾𝜇. This value can also be computed by multiplying the relative displacement at the crack tip by the spring
stiffness giving 𝑘(2𝐾1).

Two elastic states for the interface crack are considered in the following analysis: the real state with the crack tip at the origin
𝑂 of the Cartesian coordinate system as shown in Fig. 1, and the virtual 𝛿-state with the crack length incremented by a small length
𝛿 > 0, Fig. 11.

The Irwin crack closure integral involves the shear tractions in the real elastic state, 𝜎𝜃𝑧(𝑟, 𝜃 = 0), and the relative displacement
between crack faces in the virtual 𝛿-state, 𝑢𝛿(𝑟, 𝜋) − 𝑢𝛿(𝑟,−𝜋) = 2𝑢𝛿(𝑟, 𝜋). Considering a unit thickness of the specimen, the limit of
13
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Fig. 11. Virtual crack in a straight spring (adhesive) interface with a small crack length increment 𝛿 > 0 with respect to the real crack configuration.

the Irwin integral giving ERR 𝐺 can be computed as

𝐺 = lim
𝛿→0+

1
𝛿 ∫

𝛿

0

1
2
𝜎𝜃𝑧(𝑟, 0) 2𝑢𝛿𝑧(𝛿 − 𝑟, 𝜋)d𝑟 mean theorem

= lim
𝛿→0+

1
2
𝜎𝜃𝑧(𝑟′, 0) 2𝑢𝛿𝑧(𝛿 − 𝑟′, 𝜋)

continuity of displacement
variations from 𝛿-state to the real state= 1

2
𝜎𝜃𝑧(0, 0) 2𝑢𝑧(0, 𝜋) =

1
2
𝑘(2𝐾1)2 = 2𝑘𝐾2

1 , (60)

where the first mean value theorem for integrals has been applied, with 𝑟′ being a point in the virtual crack increment zone,
i.e. 0 ≤ 𝑟′ ≤ 𝛿, and then the continuity of displacement variation between the 𝛿-state and the real state for 𝛿 → 0+ has been
assumed, i.e. lim𝛿→0+ 𝑢𝛿𝑧(𝑟, 𝜋) = 𝑢𝑧(𝑟, 𝜋) at any point 𝑟 on the interface, cf. [14,39]. The term 1

2𝜎𝜃𝑧(0, 0) 2𝑢𝑧(0, 𝜋) represents the energy
per unit area stored in the spring at the crack tip. Recall that 𝜎𝜃𝑧(0, 0) is given by the first shadow term, as the contribution of the
main term to stresses is zero, and 𝑢𝑧(0, 𝜋) is given by the main term, for 𝑗 = 1.

8. Concluding remarks

In this paper, a new asymptotic linear elastic solution for semi-infinite cracks in a straight spring interface, modelled by a
continuous spring distribution, has been deduced and analysed for antiplane strain state. The solution of this crack problem has
been split into a regular even (symmetric) part and a singular odd (skew-symmetric) part with respect to a straight interface. While
the regular solutions are given by linear combinations of a subset of homogeneous harmonic polynomials, the deduction of the
singular solutions is much more sophisticated because their expressions include an infinite series of shadow terms associated with
each smooth main term. For the first time, it has been shown that all these shadow terms include the powers of the logarithmic
function increasing with the order of the shadow term. The corresponding Neumann–Robin and Robin–Neumann problems in the
upper half-plane are analysed to describe the behaviour of the linear elastic singular solution in the vicinity of the crack tip in a
spring interface.

The Neumann–Robin problem in the half plane, can be considered as a particular case of the Neumann–Robin problem for a
corner given by an angular sector of angle 𝜔 studied in [30], considering 𝜔 = 𝜋 in the present case of half-plane. However, the
present procedure used to obtain the singular solution for the half-plane has been simplified and is more explicit with respect to
that for a general corner. Following a technique inspired in the Gaussian back substitution, the unknown coefficients 𝑏(0)𝑗,𝑘 of the
general expression proposed are explicitly calculated using more simplified expressions due to the fact that the boundary conditions
are applied at 𝜃 = 0 and 𝜋. This is very important from the point of view of the computational complexity, since the asymptotic
series with more shadow terms can be easily computed, obtaining a lower error in the Robin boundary condition.

A clear enhancement in the accuracy of the approximate solution is observed for growing number of shadow terms 𝑆𝑗 . This
is specially important when the material properties plays a major role, i.e., when the ratio of the spring stiffness 𝑘 and the shear
modulus of the adherent material 𝜇 is increasing.

A successful numerical verification of the analytic solution deduced in the present work has been made in [41] by the FEM code
FEniCS, and in [42] by the Matlab FEM code [43] modified to include the Robin boundary condition.

A logarithmic singularity is observed in the stress components, 𝜎𝜃𝑧 and 𝜎𝑟𝑧 at the crack tip. However, due to the imposition of the
homogeneous Neumann and Robin (spring) boundary conditions for the half-plane problem, this singularity is not observed in the
tractions on the spring interface, where these tractions are bounded, just a discontinuity in the interface tractions and a singularity
in the gradient (tangential derivative) of these tractions occur at the crack tip. In fact, this logarithmic singularity in the gradient
of shear tractions and equivalently also in the gradient (tangential derivative) of displacements on the spring interface makes often
14
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difficult to compute the crack tip values of shear tractions and displacements in this spring interface. Since, as it has been shown,
these maximum values determine the Energy Release Rate (ERR) of the crack, an accurate calculation of these values is crucial in
the prediction of crack growth along the spring interface.

To improve the accuracy of the calculation of these crack tip values, the obtained analytical approximation of the singular solution
can be implemented in the shape functions of singular or enriched finite elements in the vicinity of the crack tip on spring-interface,
for a better representation of the exact solution, reducing the computational complexity of such calculations. The first crack tip
element with logarithmic singularity of stresses of this type has recently been implemented and successfully tested in [42].

In practical applications it can be useful to work with the following dimensionless governing parameter, instead of that defined
in (15),

𝛾 = 2𝑘𝐿
𝜇

, (61)

where 𝐿 is a characteristic length in the studied problem, as the finite crack size or the thickness of the adherent layer in a laminate,
etc. The corresponding dimensionless expressions of the main and shadow terms in the asymptotic series expansion (17) could be
derived, however they are not presented here for the sake of simplicity of the expressions.

The asymptotic series expansion for a crack in a spring (Robin) interface deduced in the present work can be considered as the
first step towards the derivation of the crack tip solution for widely used cohesive cracks with intrinsic cohesive laws.

Noteworthy, although the present work is focused on crack-tip solutions with non-negative singularity exponents 𝜆 ≥ 0, i.e., with
a finite strain energy in the vicinity of crack tip, we have checked that the present procedure can be adapted to compute crack-tip
solutions with negative singularity exponents 𝜆 < 0, with an infinite strain energy in the vicinity of crack tip. These solutions with
𝜆 < 0, usually referred to as quasi-dual functions including the dual main terms and the associated dual shadow terms, might be
used to extract GSIFs 𝐾𝑗 in (17), in a similar way as in the Quasi-Dual Function Method (QDFM) developed in [20,44], for extraction
of Edge SIFs (ESIFs) along a crack front in a 3D fracture problem.

In view of other physical interpretations of the Robin boundary condition as, e.g., thermal boundary resistance condition in
heat transfer and impedance conditions in electro-magnetics and acoustic, this solution can be applied to solve analogous problems
governed by the Laplace equation in other engineering branches.
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