
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 2, March 2023

Parameter Estimation for Hot-spot Thermal 
Model of Power Transformers Using 

Unscented Kalman Filters
Miguel Ángel González-Cagigal, José Antonio Rosendo-Macías, and Antonio Gómez-Expósito,

 Fellow, IEEE

Abstract——This paper presents a parameter estimation tech‐
nique for the hot-spot thermal model of power transformers. 
The proposed technique is based on the unscented formulation 
of the Kalman filter, jointly considering the state variables and 
parameters of the dynamic thermal model. A two-stage estima‐
tion technique that takes advantage of different loading condi‐
tions is developed, in order to increase the number of parame‐
ters which can be identified. Simulation results are presented, 
which show that the observable parameters are estimated with 
an error of less than 3%. The parameter estimation procedure 
is mainly intended for factory testing, allowing the manufactur‐
er to enhance the thermal model of power transformers and, 
therefore, its customers to increase the lifetime of these assets. 
The proposed technique could be additionally considered in 
field applications if the necessary temperature measurements 
are available.

Index Terms——Parameter estimation, power transformer, un‐
scented Kalman filter, thermal model.

I. INTRODUCTION 

INCREASING the life span of costly assets is an essential 
aspect in the operation and maintenance of power sys‐

tems. In this regard, the heating of power transformers due 
to power losses is of paramount importance, which explains 
the carefully designed cooling systems they have built in, 
usually based on heat-carrier fluids such as oil.

In order to anticipate the thermal behavior of an oil-im‐
mersed power transformer for given load conditions, dynam‐
ic thermal models must be somehow considered. This is the 
case of [1], where a hybrid numerical-analytical technique is 
proposed, or the bushing thermal model presented in [2] to 
calculate the hot-spot temperature.

Finite-element methods (FEMs) can also be used for trans‐
former thermal modeling. Reference [3] includes a 3D mag‐
neto-thermal model for the metallic cover (tank) of the trans‐
former, while [4] studies the effect of harmonic conditions in 
the hot-spot temperature.

Those dynamic thermal models are represented by a sys‐
tem of differential-algebraic equations, involving a set of pa‐
rameters related to the particular characteristics of the trans‐
former under consideration. An accurate knowledge of these 
parameters is required to properly calculate the temperature 
at different points of the transformer. In this context, parame‐
ter estimation techniques can be applied to the dynamic ther‐
mal model of the power transformer, such as those used in 
[5], where the sensitivity of the estimated parameters in lin‐
ear and nonlinear regression models is analyzed. Genetic al‐
gorithms are also considered for this purpose in [6].

In this paper, a dynamic state estimator (DSE) based on 
Kalman filter (KF) is used for the joint estimation of state 
variables and parameters arising in the hot-spot thermal mod‐
el of power transformers, as defined in the IEC 60076-7-
2018 [7]. The KF-based DSE has been used in a remarkable 
number of studies for state estimation in power systems [8], 
[9]. Regarding parameter estimation, two types of implemen‐
tations can be distinguished, namely: a joint state and param‐
eter estimation [10] - [12], and a dual estimation where two 
different estimators are sequentially applied at each time in‐
stant [13]. A particular formulation of the KF for nonlinear 
systems, the so-called unscented KF (UKF), is considered in 
this paper for a joint estimation of the state and parameters. 
This estimation technique has been widely used in the stud‐
ies related to electric power systems [14]-[16], and its results 
have been proven accurate when applied to strongly nonlin‐
ear systems such as the fully-regulated synchronous genera‐
tor [17].

A preliminary academic work [18] has concluded that it is 
impossible to estimate the whole set of parameters arising in 
the hot-spot thermal model solely from oil temperature mea‐
surements. To overcome this issue, this paper proposes a 
two-stage estimation technique, which considers measure‐
ments of the hot-spot temperature taken under different load‐
ing conditions, increasing in this way the number of observ‐
able parameters.

The remainder of this paper is organized as follows. Sec‐
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tion II reviews the UKF algorithm. Section III presents the 
modeling of hot-spot dynamic thermal model of power trans‐
formers. The implementation of the UKF is described in Sec‐
tion IV. Section V presents a case study to test the accuracy 
of the proposed technique, including a comparison with an 
alternative non-linear KF implementation. Finally, the conclu‐
sions are presented in Section VI.

II. UKF ALGORITHM 

KF implementations require a set of state equations, in‐
cluding the dynamic and the measurement equations. In the 
case of continuous-time, discrete-measurement non-linear 
systems, these equations can be expressed as:

ẋ(t)= f (x(t)u(t))+w(t) (1)

z(tk )= g(x(tk )u(tk ))+ v(tk ) (2)

where x(t) is the state vector; f (×) is the state function; g(×) is 
the measurement function; u(t) is the system input; z(tk ) is 
the measurement vector at instant tk; and w(t) and v(tk ) are 
the model and measurement noises, which are assumed 
Gaussian processes with covariance matrices Q and R, re‐
spectively.

Considering a time step Dt, the above equations have the 
following discrete counterparts:

xk = xk - 1 + f (xk - 1uk - 1 )Dt +wk (3)

zk = g(xkuk )+ vk (4)

Equations (3) and (4) are more appropriate for non-linear 
Kalman filtering techniques such as extended KF (EKF), 
which simply linearizes the state function f (x(t)u(t)) in (3), 
and the UKF.

Previous experiences on the application of the EKF to the 
equations that describe the dynamic behavior of synchronous 
machines, and their regulators, have not provided satisfacto‐
ry results [17]. Therefore, this paper makes use of the UKF, 
whose implementation is based on an iterative process with 
two different stages [19].

A. Prediction Stage

At instant k, a cloud of 2L + 1 vectors, called σ-points, is 
calculated from the previous estimate or expected value of 
the state vector x̂k - 1 (dimension L) and the covariance ma‐
trix of the state estimation error Pk - 1 using the following ex‐
pression:
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ï
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x 0
k - 1 = x̂k - 1

x i
k - 1 = x̂k - 1 + ( )(L + λ)Pk - 1

i
        i = 12...L

x i + L
k - 1 = x̂k - 1 - ( )(L + λ)Pk - 1

i + L
    i = 12...L

(5)

where ( (L + λ)Pk - 1 )
i
 is the ith column of the matrix 

(L + λ)Pk - 1 ; and λ is a scaling factor calculated from (6) 

with α and κ being two filter parameters to be tuned.

λ = α2 (L + κ)- L (6)

The σ-points are evaluated using (3), yielding 2L + 1 vec‐
tors x i -

k  from which the a-priori estimations x̂-
k  and P -

k  are 

obtained as the weighted mean and covariance of those vec‐
tors:

x̂-
k =∑

i = 0

2L

Wmi x i -
k (7)

P -
k =∑

i = 0

2L

Wci (x
i -
k - x̂-

k )(x i -
k - x̂-

k )T +Qk (8)

where Wmi and Wci are the ith elements of weighting vectors 
Wm and Wc, respectively, which are calculated as:
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where β is another tunable parameter; and the values of pa‐
rameters α, β, and κ considered in this paper will be provid‐
ed in Section V.

B. Correction Stage

On the basis of the a-priori estimations, a new cloud of 
vectors is calculated by means of similar expressions to 
those used in the prediction stage for the σ-points:
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(10)

In this case, the vectors are evaluated through the mea‐
surement function g(xkuk ) in (4), yielding

γi -
k = g(x i -

k uk )    i = 01...2L (11)

The a-priori measurement estimation ẑ-
k  is calculated as 

the weighted mean of the previous points using the vector 
Wm defined by (9):

ẑ-
k =∑

i = 0

2L

Wmi γ
i -
k (12)

Then, the covariance matrix of the measurement estima‐
tion error P -

zk and the cross-covariance matrix of state and 
measurements P -

xzk are obtained using vector Wc as:

P -
zk =∑

i = 0

2L

Wci (γ
i -
k - ẑ-

k )(γi -
k - ẑ-

k )T +Rk (13)

P -
xzk =∑

i = 0

2L

Wci (x
i -
k - x̂-

k )(γi -
k - ẑ-

k )T (14)

By using the a-priori estimations at instant k from (7) and 
(8) and the Kalman gain in (15), the respective a-posteriori 
estimations can be obtained from (16) and (17), both of 
which are necessary for the next step.

Kk =P -
xzk (P -

zk )-1 (15)

x̂k = x̂-
k +Kk (zk - ẑ-

k ) (16)

Pk =P -
k Kk P -

zk K T
k (17)
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C. Parameter Estimation

State estimation requires the previous knowledge of the 
parameters involved in the dynamic model. However, when 
these parameters are not known, estimation techniques such 
as UKF can be used for a joint estimation of state variables 
and parameters [20]. In this way, an augmented state vector 
x T

a =[xTψT ] is adopted, where x contains the state variables 
and ψ includes the model parameters to be identified. Then, 
the dynamic model (3) and (4) is replaced by the following 
augmented equations.

é
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xk

ψk

=
é

ë
ê
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ê ù

û
ú
úú
úxk - 1 + f (xk - 1ψk - 1uk - 1 )Dt

ψk - 1

+wk (18)

zk = g(xakuk )+ vk (19)

where wk is now the augmented-model noise vector includ‐
ing the state variable components, and the parameter compo‐
nents.

III. MODELING OF HOT-SPOT DYNAMIC THERMAL MODEL 
OF POWER TRANSFORMERS 

As stated above, the evolution of the thermal state of a 
power transformer can be characterized in many ways, de‐
pending on the required accuracy, transformer size, available 
sensors, and cooling system. For oil-immersed power trans‐
formers, the IEC 60076-7-2018 standard [7] considers a sim‐
ple thermal model, based on a single worst-case temperature 
(so-called hot-spot temperature), aimed at capturing the im‐
pact on transformer life of operation under different ambient 
temperatures and load conditions. This hot-spot model is 
deemed sufficiently accurate to characterize the operating 
temperatures that impact the transformer thermal aging. 
Therefore, it can be useful to improve the operation and con‐
trol of this important asset, as well as in the planning stages 
to define its thermal rating.

In this section, the standard hot-spot model, used as the 
reference model for simulation purposes, is first described. 
Then, a more compact simplified model that involves a sub‐
set of observable parameters is also presented and discussed. 
This will be the model actually considered by the KF-based 
parameter estimator.

A. Full Hot-spot Model

The dynamic equations adopted in the reference model, 
i. e., the model used in the case study below to simulate 
noisy measurements, are directly taken from [7].

First, the evolution of the top-oil temperature θo is charac‐
terized through the following expression:

θ̇o =
1

k11τo

é
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ê
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ê
ê
ê( 1 +K 2 R

1 +R ) x

Dθor - (θo - θa )
ù

û

ú
úú
ú
ú
ú

(20)

where θa is the ambient temperature; K is the transformer 
load factor, which is defined as the quotient between the cur‐
rent through the transformer and the rated one; Dθor is the 
oil temperature rise under rated-load conditions; k11 is a con‐
stant of the thermal model; τo is the oil time constant; x is 
the total loss exponent; and R is the ratio between rated-load 
and no-load losses. The hot-spot temperature is related to the 

top-oil temperature through two intermediate state variables 
Dθh1 and Dθh2 with different dynamics, which are described 
as:

Dθ̇h1 =
1

k22τw

(k21 K yDθhr -Dθh1 ) (21)

Dθ̇h2 =
k22

τo

[(k21 - 1)K yDθhr -Dθh2 ] (22)

where k21 and k22 are the constants of the thermal model; τw 
is the winding time constant; y is the current exponent; and 
Dθhr is the hot-spot temperature rise under rated load condi‐
tions.

Finally, the hot-spot temperature θh can be calculated as:

θh = θo +Dθh1 -Dθh2 (23)

This hot-spot temperature is located towards the top of the 
transformer winding, given that the degradation of the solid 
insulation with high temperatures is typically taken as the 
main aging factor.

B. Simplified Estimation Model

The whole set of parameters involved in (20)- (22) is not 
observable when the temperature measurements discussed in 
Section IV (oil and hot-spot temperatures) are regularly cap‐
tured during the transformer operation. Therefore, in order to 
obtain the values of those parameters, more sophisticated 
methods should be considered, involving specific tests for 
the thermal properties of the cooling system [21].

In this case, the lack of observability of some model pa‐
rameters is caused by the unique way in which those parame‐
ters appear in the hot-spot model equations, which prevents 
their values to be estimated separately. In particular, the four 
parameters k11, k22, τo, and τw, involved in (20)-(22), appear 
combined in only three different ways (k11τ0, k22τw, and 
k22 /τo), so they cannot be estimated independently.

To overcome the observability problem, the alternative ex‐
plored in this paper consists of algebraically rearranging the 
original full model, by introducing a smaller number of 
equivalent parameters, which leads to a more compact and 
more linear, yet accurate dynamic model to be handled by 
the KF-based parameter estimator. The goal is to transform 
the original nonlinear model (20)-(22) into the following dy‐
namic model:

θ̇o =
1
To

[ADθor - (θo - θa )] (24)

Dθ̇h1 =
1
T1

(C1 B -Dθh1 ) (25)

Dθ̇h2 =
1
T2

(C2 B -Dθh2 ) (26)

where in addition to the original parameter Dθor, five modified 
parameters To, T1, T2, C1, C2 and two auxiliary parameters A 
and B are introduced, which are related to those in the full hot-
spot model as follows: To = k11τo; T1 = k22τw; T2 = τo /k22; C1 =
k21Dθhr; C2 = (k21 - 1)Dθhr; A = [(1 +K 2 R) (1 +R)]x; and B =K y.

The following remarks are made:
1) The three time constants To, T1, and T2 embed four pa‐

rameters k11, k22, τo, and τw. So, the compact model, besides 
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being more linear, gets rid of a parameter without losing any 
accuracy, as there is no need in practice to determine individ‐
ually the four parameters embedded in those time constants.

2) The constants C1 and C2, once estimated, allow comput‐
ing the two parameters k21 and Dθhr. So, the advantage of us‐
ing C1 and C2 has to do with the enhanced linearity of the 
resulting model (products are avoided).

3) As can be noticed, the values of the auxiliary parame‐
ters A and B depend on the operating point of the power 
transformer. The technique proposed in this paper estimates 
the transformed parameters considering different load factors 
(K) and then letting the transformer reach the steady-state 
thermal conditions for each value of K. This provides differ‐
ent estimations of A and B, which are in turn used to com‐
pute estimates of the original parameters R, x, and y. From 
the defining expressions of the auxiliary parameters, it can 
be concluded that at least two estimations of A are required 
to obtain the original parameters R and x, while a single val‐
ue of B would suffice to calculate y.

In a nutshell, if the reduced set of parameters involved in 
the model (24)-(26) can be estimated (including at least two 
estimations of A), the dynamics of the hot-spot temperature 
can be fully characterized according to the standard defini‐
tion, but rather using the alternative set of parameters Dθor, 
To, T1, T2, C1, C2, R, x, and y, proposed in this paper. Re‐
garding the original parameters involved in the hot-spot mod‐
el, Dθor is directly obtained in the estimation process, while 
k21 and Dθhr can be computed using the estimated values of 
the modified parameters C1 and C2. Finally, as mentioned be‐
fore, R, x, and y are obtained using estimates of A and B.

IV. IMPLEMENTATION OF UKF 

Early attempts to implement the KF-based estimation, in‐
cluding the whole set of modified parameters in the model, 
led to convergence problems. To overcome this issue, a two-
stage estimation technique is proposed in this paper.

A. The First Stage: Full-load Conditions

At this stage, the transformer is assumed to serve the rat‐
ed load (K = 1), starting from no-load conditions (K = 0) or 
any other intermediate value. In this situation, both parame‐
ters A and B are equal to 1, regardless the values of x, y, 
and R. Therefore, (24)-(26) can be rewritten as:

θ̇o =
1
To

[Dθor - (θo - θa )] (27)

Ḋθh1 =
1
T1

(C1 -Dθh1 ) (28)

Ḋθh2 =
1
T2

(C2 -Dθh2 ) (29)

In this case, the state vector is defined as:

xT =[θo Dθh1 Dθh2 ] (30)

While the parameter vector ψ reduces to (31), leading to a 
total vector size L = 9 (rather than 11).

ψT =[T1 T2 C1 C2 Dθor To ] (31)

Four magnitudes are assumed to be measured or known, 
namely: K, θa, θo, and θh. In the proposed formulation, these 
magnitudes are divided into inputs u =[Kθa ] and measure‐
ments z =[θoθh ] [22]. The input K (load factor) is derived 
from the current through the transformer, which causes the 
heating in the oil and windings.

The vector z needs to be formulated in terms of the aug‐
mented state and input vectors, as in (19). The first compo‐
nent of z, i.e., the oil temperature θo, is a trivial case, since 
it is directly a state variable. For the hot-spot temperature θh, 
(23) is used.

B. The Second Stage: Intermediate Loads

The goal of the second stage is to estimate the parameters 
A and B. For this purpose, two intermediate loading points, 
K1 and K2, with K1 > 0 and K2 < 1 are enforced, both under 
steady-state conditions. This provides two different estima‐
tions of the synthetic parameters A and B, from which the 
original parameters R, x, and y can be calculated. Both state 
transitions can start from K = 0 or any other intermediate val‐
ue, as shown in the case study.

In this case, the parameter vector ψ contains only A and 
B, as the remaining modified parameters can be set to be 
their values estimated at the first stage. The state vector x is 
the same as at the first stage, yielding a size L = 5 for the 
augmented state vector xa at the second stage. Similar con‐
siderations as at the first stage can be made regarding the 
measurements used in the UKF implementation.

V. CASE STUDY 

In this section, the proposed parameter estimation tech‐
nique is tested using synthetic measurements obtained from 
the full hot-spot model presented in Section III, where the 
model parameters are assumed to be perfectly known. In‐
deed, it is only in simulation environments that estimation er‐
rors can be thoroughly evaluated. Note that the rated power 
and voltage of the transformer are irrelevant for our purpos‐
es, as the transformer load factor K is in per unit and the 
physical characteristics of the apparatus are reflected in the 
parameters defining the hot-spot thermal model. In any case, 
this paper is mainly focused on three-phase distribution trans‐
formers.

A. In-house Estimation of Hot-spot Dynamic Model

It is assumed that the manufacturer performs the required 
factory tests (the two stages described before) on a represen‐
tative transformer, in order to duly characterize the whole se‐
ries of transformers of the same rated power and voltage, 
manufactured with the same materials. Those tests involve 
oil and hot-spot temperature measurements. For the simula‐
tions, the ambient temperature is assumed to evolve as in 
Fig. 1 [23]. The time step considered in this work is Dt = 1 
min.

The parameter values considered for the simulation are 
taken from the IEC 60076-7-2018 standard (for distribution 
transformers up to 2500 kVA of rated power), which are 
summarized in Table I. However, the proposed technique is 
suitable for other rated power ranges.

637



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 2, March 2023

Starting from no-load conditions (K = 0), the transformer 
is sequentially subjected to three identical load steps, each 
equal to 1/3 of the rated load. The load factor profile, along 
with the evolution of the oil and hot-spot temperatures, is 
shown in Fig. 2, where 2% error has been artificially added 
to the measurements. Since the largest time constant in the 
simulated system is in the order of 3 hours, the simulation 
time is set to be 9 hours for each load step (K = 1/3, K = 2/3, 
and K = 1), i.e., three times the time constant, so as to make 
sure that steady-state conditions are reached for each loading 
point.

As noted in the figure, the information corresponding to 
the transition from K = 2/3 to K = 1 will be used for the first 
stage of the proposed technique, while the measurements 
from the first two load steps will be used for the second 

stage.
The UKF algorithm has been implemented with α = 10-4, 

κ = 0, and β = 2 according to [24], where the influence of 
these scaling parameters is analyzed, while typical values are 
considered for the covariance matrices P0, Q, and R. The val‐
ues of the modified parameters are initialized randomly, in a 
range between ±20% and ±40% of their simulated values.

The proposed two-stage estimation technique presents a 
consistent performance in its ability to properly estimate the 
modified model parameters. Figure 3 shows the estimation 
results obtained from the first stage of the proposed tech‐
nique. The evolution of the estimation error covariance is al‐
so included in this figure. For each parameter i, its estimated 

value is represented along with a three-σ band ±3 Pii  (gray 

areas). The resulting relative errors are summarized in Table 
II, from which it is concluded that the maximum relative er‐
ror remains under 3%.

TABLE I
PARAMETER VALUES FOR SIMULATION

Parameter

Dθor

k11

τo

R

x

Simulation value

55 ℃

1 p.u.

180 min

5 p.u.

0.8 p.u.

Parameter

Dθhr

k22

k21

τw

y

Simulation value

23 ℃

2 p.u.

1.5 p.u.

4 min

1.6 p.u.
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Fig. 1.　Considered profile for ambient temperature.
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Fig. 2.　Evolution of load factor and noisy measurements.
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Fig. 3.　Estimation results obtained from the first stage of proposed tech‐
nique.

TABLE II
RELATIVE ERROR IN PARAMETER ESTIMATION AT THE FIRST STAGE

Value

Simulated

Estimated

Relative 
error (%)

T1 (min)

8.000

8.004

0.046

T2 (min)

180.000

174.463

2.985

C1 (℃)

34.500

34.873

1.082

C2 (℃)

11.500

11.612

0.977

Dθor (℃)

55.000

54.528

0.858

To (min)

180.000

180.432

0.240
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At the second stage, the value of the load is suddenly 
changed, first from K = 0 to K = 1/3 and then, at t = 540 min, 
from K = 1/3 to K = 2/3. The total simulation time is 1080 
min in this case. Only the parameters A and B are included 
in the vector ψ, while the remaining modified parameters are 
given their values estimated at the first stage. Regarding the 
KF tuning (initial values for x̂a0 and the matrices P0, Q, and 
R), the similar assumptions to those at the first stage are 
made.

The estimation results obtained from the auxiliary parame‐
ters A and B at the second stage are shown in Fig. 4, where 

the deviations x̂i ± 3 Pii  are also highlighted by the gray ar‐

eas.

With the estimated values for K = 1/3 and K = 2/3, the orig‐
inal parameters R, x, and y can be calculated using a solver, 
yielding the estimated values and the relative errors included 
in Table III. In this paper, a MATLAB function is used for 
the implementation of the solver.

As previously mentioned, two intermediate loads are theo‐
retically sufficient to estimate the modified parameters A and 
B at the second stage of the proposed technique. In order to 
check the sensitivity of the results to the use of redundant 
(i. e., more than two) load factors, an additional scenario is 
simulated with four intermediate loads (K = 0.2 0.4 0.6, and 
0.8). Then, the resulting estimates of A and B are introduced 
in a least-squares function from MATLAB, in order to ob‐
tain new estimations for the original parameters R, x, and y. 
As can be observed in Table IV, the resulting relative errors 
are similar to those presented in Table III for two intermedi‐

ate loads.

Finally, Table V summarizes the relative errors of the ob‐
servable original parameters in the hot-spot model which can 
be obtained from the estimated values of the modified pa‐
rameters.

In order to assess the performance of the UKF with in‐
creasing measurement noise, Table VI includes the maxi‐
mum relative error in the parameter estimation for different 
noise levels. As expected, the estimates deteriorate with high‐
er noise levels, but the maximum relative error still remains 
under 8% even for an unrealistic 10% measurement error.

B. Comparison with EKF Formulation

The results obtained with the UKF formulation are com‐
pared in this subsection with those provided by the EKF, 
which is a popular alternative for non-linear dynamic estima‐
tion based on the linearization of the model. Although both 
KFs adopt the same simplified model presented in Section 
III, the EKF requires the computation of Jacobian matrices 
(partial derivatives with respect to the variables in the aug‐
mented state vector), as provided in Appendix A.

Similar assumptions are made regarding the test condi‐
tions for the case study, with two stages in the estimation 
process and the same step changes in the load factor K. 
First, Fig. 5 represents the comparison of the estimated val‐
ue of C2. In this figure, it is observed that the EKF presents 
a remarkably higher estimation error compared with that of 
the proposed technique using UKF. The reason for this low‐
er accuracy of the EKF formulation relates to the strong non-
linearities arising in the estimation model. Despite the modi‐

TABLE VI
THE MAXIMUM RELATIVE ERROR IN PARAMETER ESTIMATION FOR 

DIFFERENT NOISE LEVELS

Noise level (%)

2

5

10

The maximum relative error (%)

2.985

4.021

7.533
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Fig. 4.　Estimated results obtained from auxiliary parameters A and B at 
the second stage.

TABLE III
RELATIVE ERRORS IN PARAMETER ESTIMATION AT THE SECOND STAGE

Value

Simulated

Estimated

Relative error (%)

R (p.u.)

5.000

4.969

0.602

x (p.u.)

0.800

0.802

0.247

y (p.u.)

1.600

1.575

1.562

TABLE IV
RELATIVE ERRORS AT THE SECOND STAGE WITH FOUR INTERMEDIATE 

LOADS

Value

Simulated

Estimated

Relative error (%)

R (p.u.)

5.000

4.972

0.560

x (p.u.)

0.800

0.806

0.749

y (p.u.)

1.600

1.579

1.312

TABLE V
RELATIVE ERRORS OF OBSERVABLE ORIGINAL PARAMETERS

Value

Simulated

Estimated

Relative 
error (%)

Dθor (℃)

55.000

54.528

0.858

k21 (p.u.)

1.5000

1.499

0.053

Dθhr (℃)

23.000

23.261

1.135

R (p.u.)

5.000

4.969

0.602

x (p.u.)

0.800

0.802

0.247

y (p.u.)

1.600

1.575

0.155
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fied model proposed in this paper being more linear, it in‐
volves the product of some parameters in the augmented 
state vector, making the problem in hand still non-linear. 
This deteriorates the performance of the EKF (first-order ap‐
proximation of the covariance) when compared with that of 
the UKF, which approximates the covariance of the estima‐
tion error up to the third order [19].

Table VII compares the relative errors provided by each 
tested algorithm (UKF and EKF) for the whole set of modi‐
fied parameters. As can be observed, the estimation errors 
are unacceptable, particularly regarding parameters T1, T2, 
and C2.

In light of these results, it can be concluded that the per‐
formance of the proposed UKF-based technique is superior 
to that of the EKF-based technique.

C. Impact of Parameter Estimation Errors on Hot-spot Tem‐
perature Estimation

Once the parameters of the thermal model have been esti‐
mated with the proposed UKF-based technique, it is impor‐
tant to assess if the estimation errors of the hot-spot tempera‐
ture are acceptable. For this purpose, two separate simula‐
tions have been carried out.

1) Simulation using the exact value of the model parame‐

ters, the so-called exact model.
2) Simulation considering the estimated values of the orig‐

inal and modified parameters presented in the previous sec‐
tion (Tables II and III), namely the estimated model.

In both cases, the total simulation time is one week and 
the system inputs (ambient temperature and load factor) are 
the same, with a typical evolution for the ambient tempera‐
ture, as shown in Fig. 1, and a cyclic variation of the trans‐
former load, as shown in Fig. 6 (the daily load profile is 
based on [7]). Note that, unlike in the factory tests, no oil 
measurements are captured (only the ambient temperature is 
used as input).

The evolution results of the hot-spot temperatures for both 
models and the corresponding error are represented in Fig. 
7. In light of this figure, the following remarks can be made.

1) The maximum hot-spot temperature error is lower than 
4℃ , providing evidence of the accuracy of the estimated 
model.

2) In most cases, the hot-spot temperature obtained with 
the estimated model is higher than that with the exact model 
(safe side).

3) Interestingly, lower errors (even negligible) are ob‐
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Fig. 5.　Comparison of estimated value of C2.

TABLE VII
COMPARISON OF RELATIVE ERRORS PROVIDED BY UKF AND EKF 

ALGORITHMS

Parameter

T1

T2

C1

C2

Dθor

To

R

x

y

Relative error (%)

EKF

4.144

20.585

1.013

7.690

0.817

1.468

1.014

1.120

0.534

UKF

0.046

2.985

1.082

0.977

0.858

0.240

0.602

0.247

0.155
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Fig. 6.　Load profile for one-week simulation.
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Fig. 7.　Evolution results of hot-spot temperatures and corresponding error.
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tained when the transformer load is high and the hot-spot 
temperatures reach the highest values. Reciprocally, the peri‐
ods of higher estimation errors correspond to the reduced 
values of the hot-spot temperature, when the integrity of the 
transformer is not jeopardized.

VI. CONCLUSION 

In this paper, an UKF is developed, implemented, and test‐
ed to estimate the state variables and parameters of the hot-
spot dynamic thermal model of a power transformer. The 
non-observability of the parameters involved in the original 
thermal model is circumvented by introducing a reduced but 
equivalent set of modified parameters.

Additionally, to overcome the convergence problems aris‐
ing when the whole set of parameters is simultaneously han‐
dled, a two-stage estimation technique is proposed, where 
rated load conditions are considered at the first stage in or‐
der to reduce the number of parameters to be identified. The 
UKF technique requires three measurements from the power 
transformer (load factor, oil temperature, and hot-spot tem‐
perature), along with the ambient temperature, all of which 
are easily available during factory tests.

A case study has been simulated, where the maximum rel‐
ative estimation error remains under 3%. It has also shown 
that the estimation errors are not significantly affected by 
the number of intermediate load factors adopted at the sec‐
ond stage of the estimation process. As expected, increasing 
levels of measurement errors tend to deteriorate the perfor‐
mance of the UKF estimator, but even for unrealistically 
high error values (10%), the maximum estimation error is ac‐
ceptable in relative terms (7.5%).

In terms of convergence and accuracy, the proposed tech‐
nique performs significantly better than the EKF, which suf‐
fers from the non-linearity of the model when all parameters 
become unknown.

Finally, the impact of the parameter estimation errors on 
the accuracy of the hot-spot temperature evolution, during 
the transformer field operation, has been assessed through a 
simulation spanning a week, using as inputs only the load 
factor and the ambient temperature. The results obtained 
show that the hot-spot temperature obtained with the estimat‐
ed model is sufficiently close to that of the exact model, 
with a maximum absolute error lower than 4 ℃ for reduced 
values of the load factor, and approximately 2 ℃ as the rat‐
ed transformer load is approached.

The proposed technique can fill the existing gap in real-time 
thermal modeling of power transformers, by allowing manu‐
facturers to perform straightforward in-house tests, where the 
load conditions can be controlled, which in turn will let their 
customers easily monitor the hot-spot temperature during the 
field operation, based only on the actual load and ambient 
temperature.

APPENDIX A

The implementation of the EKF formulation also involves 
two stages of estimation, as those presented for the UKF. 
For the first stage, the discrete form of the model dynamic 

equations is as follows:

θok = θok - 1 +
Dt

Tok - 1

(Dθork - 1 - θok - 1 + θak - 1 ) (A1)

Dθh1k =Dθh1k - 1 +
Dt

T1k - 1

(C1k - 1 -Dθh1k - 1 ) (A2)

Dθh2k =Dθh2k - 1 +
Dt

T2k - 1

(C2k - 1 -Dθh2k - 1 ) (A3)

T1k = T1k - 1 (A4)

T2k = T2k - 1 (A5)

C1k =C1k - 1 (A6)

C2k =C2k - 1 (A7)

Tok = Tok - 1 (A8)

Dθork =Dθork - 1 (A9)

The EKF uses the Jacobian matrix of the state function at 
time k, namely Fk, where each element of this matrix is de‐
fined as:

F ij
k =

¶xik

¶xjk - 1
(A10)

Using the above definition, the partial derivatives of (A1)-
(A9) must be calculated, yielding the following expressions 
for the non-null terms, where the correspondences with the 
elements of Fk are indicated:

F 11
k = 1 -

Dt
Tok - 1

(A11)

F 18
k =-

Dt(Dθork - 1 - θok - 1 + θak - 1 )

T 2
ok - 1

(A12)

F 19
k =

Dt
Tok - 1

(A13)

F 22
k = 1 -

Dt
T1k - 1

(A14)

F 24
k =-

Dt(C1k - 1 -Dθh1k - 1 )

T 2
1k - 1

(A15)

F 26
k =

Dt
T1k - 1

(A16)

F 33
k = 1 -

Dt
T2k - 1

(A17)

F 35
k =-

Dt(C2k - 1 -Dθh2k - 1 )

T 2
2k - 1

(A18)

F 37
k =

Dt
T2k - 1

(A19)

F ii
k = 1    i = 45...9 (A20)

Note that the measurement equation (23) is linear, so that 
its Jacobian matrix is trivial. Once these Jacobian matrices 
are obtained, the iterative algorithm of the EKF is imple‐
mented, as described in [25]. Similar derivations (not report‐
ed here) are made for the second stage of the estimation 
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technique proposed in this paper, with a reduced number of 
parameters included in the augmented state vector.
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