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Abstract: In this paper, the nexus between the Bell-state measurement and extracting phase infor-
mation from the zeropoint field is investigated. For this purpose, the Wigner representation in the
Heisenberg picture is applied in a Bell-type experiment in which the polarisation-entangled photon
pairs generated in a type-II parametric down-conversion do not overlap. The signal intensities at the
detectors are calculated in a four-mode approximation, being expressed as functions of the modules
and phases of the four zeropoint amplitudes entering the crystal. A general criterion for identifying
the correlated detectors is proposed based on the equality of the signal intensities, and without
involving the calculation of the joint detection probabilities. In addition, from the analyses in the
rectilinear and diagonal basis, it is shown that the distinguishability of the polarisation Bell states,
which is in direct correspondence with the joint detection events in each experiment, can be related to
the knowledge of the phases of the vacuum field entering the entanglement source, and giving rise to
correlated detections. To this purpose, it is conjectured that a detection event is associated with a
maximum value of the signal intensity averaged in the modules of the zeropoint amplitudes, as a
function of the vacuum phases.

Keywords: zeropoint field; Wigner representation; parametric down-conversion; entanglement;
Bell-state analysis

1. Introduction

In the last few years, the role of the zeropoint field (ZPF) in optical quantum commu-
nication using a parametric down-conversion (PDC) has been investigated [1]. To achieve
this goal, the Wigner representation in the Heisenberg picture (WRHP) has been used [2].
New physical insights allow for a profound understanding of the optical implementation
of quantum information using PDC. Specifically, the use of the WRHP formalism in experi-
ments on quantum cryptography [3], Bell-state analysis [4] and teleportation [5] has been
revealed as a new perspective focused on the wave nature of light.

As described elsewhere [4], the zeropoint inputs that intervene in a given experiment
on Bell-state measurement (BSM) of two photons entangled in n dichotomic degrees of
freedom, using linear evolution and local measurement (LELM), are related to the maximal
information that can be extracted in the experiment. On the one hand, the quantum informa-
tion is storaged in the vacuum amplitudes that are amplified at the source of entanglement.
On the other hand, the zeropoint inputs corresponding to the idle channels inside the Bell-
state analyser constitute a source of noise that limits the capacity for extracting information.
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At a more concrete level, it has been demonstrated that the maximal distinguishability in
experiments in which the two photons are not brought together at the apparatus is just the
difference between the number of sets of zeropoint amplitudes that are amplified at the
source and enter the analyser, and the corresponding one to the zeropoint inputs inside the
area of a single detection event.

The question that arises naturally is whether the total information extracted via Bell-
state analysis can be associated with some piece of information related to the sets of
zeropoint amplitudes entering the source of entanglement. The following reasoning sup-
ports an affirmative response: given that the distinguishability of Bell-states is in direct
correspondence with the number of zeropoint inputs at the crystal and the analyser, there
should be a correspondence between the information concerning the distinguishable Bell
states and the one corresponding to the values of the vacuum amplitudes that are amplified
at the source. In this way, both formalisms, the Hilbert-space approach that highlights
the particle behaviour of light through the concept of photon, and the WRHP formalism
that resembles the undulatory behaviour of light through the consideration of the ZPF,
would be in total correspondence. Hence, a given optical experiment in which a Bell state
is measured should extract some information about the amplitudes of the zeropoint field
at the crystal, concretely the vacuum phases. Needless to say, the amount of information,
either concerning Bell states or vacuum phases, should be the same. To this purpose,
the WRHP formalism is applied to a general Bell-type experiment in which the two pho-
tons, entangled in any of the four polarisation Bell states (n = 1), do not overlap at the
Bell-state analyser [6].

The paper is organised as follows. Sections 2 and 3 contain introductory material.
In Section 2, some basic aspects of the Bell-state analysis in the Hilbert-space formalism are
reviewed. The relevant ingredients of the WRHP description of entanglement generated
via type-II PDC, which are necessary for the understanding and notation of the rest of
the paper, are given in Section 3. In Section 4, the field amplitudes at the detectors are
calculated as functions of the experimental parameters and the modules and phases of the
zeropoint amplitudes entering the crystal. The key contributions to this paper are given in
Sections 5–8. In Section 5, the relationship between the partial analysis of Bell states and
zero point inputs is reviewed and extended to the complete analysis when two consecutive
experiments, one of them in the rectilinear basis and the other in the diagonal one, are
performed. In Section 6, the signal intensities at the detectors, i.e., the intensities above the
zeropoint background are calculated and expressed as functions of the vacuum amplitudes
and the experimental parameters. The rectilinear and diagonal analyses are described in
Section 7. It is demonstrated that the signal intensities corresponding to the correlated
detectors are exactly the same, so that a general criterion for establishing which detectors
are correlated can be defined without the calculation of the joint detection probabilities.
In this sense, this paper constitutes a general extension of the ideas developed in Section 3
of [1], where an analysis of this experiment in the rectilinear basis was made. In Section 8,
in order to establish a correspondence between the which-path information and phase
information, both leading to the distinguishability of Bell states, a conjecture is made
concerning the relationship between a joint detection event in ideal photodetectors and the
maximum value taken by the signal intensity averaged in the modules of the zeropoint
amplitudes, as a function of the vacuum phases. As a consequence, a table of information is
generated with a one-to-one correspondence between the values of the vacuum phases and
the sequence of joint detection events for two copies of each of the four Bell states, when
the two analyses are made consecutively. Finally, in Section 9, the main conclusions and
further steps of this paper are presented.

2. General Aspects of BSM in the Hilbert Formalism

Type-II PDC is widely used as a source of entangled states in optical experiments
for testing Bell inequalities [7–12] and the implementation of quantum communication
schemes [13–18]. A monochromatic pumping laser impinges on one side of a nonlinear
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crystal, giving rise to pairs of conjugated beams with orthogonal polarisations. In the
Hilbert formalism, the corpuscular nature of light is emphasised. In this approach, a photon
of the laser field, with frequency ω0 and wave vector k0, splits into two photons, 1 and
2, with frequencies ω1 and ω2, and wave vectors k1 and k2, fulfilling the exact matching
conditions ω0 = ω1 + ω2 and k0 = k1 + k2, which are related to energy and momentum
conservation, respectively. If the two photons correspond to the intersection between
the ordinary and extraordinary cones, the emitted state is entangled in polarisation [19].
Then, the manipulation of one of the particles via a unitary transformation gives rise to
the generation of any of the four Bell states, which constitute a basis of the Hilbert space
corresponding to the two particle system:

∣∣Ψ±〉 = 1√
2
[|H〉1|V〉2 ± |V〉1|H〉2], (1)

∣∣Φ±〉 = 1√
2
[|H〉1|H〉2 ± |V〉1|V〉2], (2)

where H represents extraordinary, i.e., horizontal polarisation, and V represents ordinary,
i.e., vertical polarisation. Equations (1) and (2) describe the entanglement between two
particles (photons) that have been generated at the crystal, which propagate throughout
the experimental setup and are finally detected.

The possibility of measuring the four Bell states is the base of quantum dense coding,
consisting of the sending of two bits of classical information by only manipulating one of the
qubits [14]. In addition, BSM is an essential ingredient in quantum teleportation [15]. Let
us consider two photons entangled in n dichotomic degrees of freedom. The corresponding
Hilbert-space is 4n dimensional, and the standard analysis gives an upper bound to the
maximal distinguishability of Bell-state classes equal to 2n+1, since the first detection event
does not provide any information about the Bell state. The optimal BSM allows for the
distinguishability of Nmax,class = 2n+1 − 1 Bell-state classes when the two photons are
overlapped at a balanced beam-splitter [20]. In contrast, if the two photons are not brought
together at the apparatus, then the maximal distinguishability is given by Nmax,class = 2n.

As it is well-known, in the case n = 1, the four polarisation Bell states cannot be
distinguished by using a LELM apparatus [21]. If the two photons are overlapped at a
balanced beam-splitter, then Nmax,class = 3. If the two photons do not interact, only two
classes can be distinguished. The use of hyperentanglement, i.e., the entanglement in n > 1
degrees of freedom, allows for the BSM of the four polarisation Bell states [22–24].

In the experimental setup shown in Figure 1, photon 1 is manipulated via a wave
retarder that introduces a phase shift κ = {0, π} between the vertical and horizontal
component of the electric field, and a polarisation rotator of angle β = {0, π/2}. This allows
for the generation of any of the four polarisation Bell states (see Equations (1) and (2)).
For instance, if the emitted state is |Ψ+〉, the values (κ = 0, β = 0) would correspond to the
identity operation, and the pair (κ = π, β = 0) would transform this state in |Ψ−〉. On the
other hand, (κ = 0, β = π/2) [(κ = π, β = π/2)] stands for |Φ−〉 (|Φ+〉).

Then, the photon 1 (2) is directed to a polarisation rotator of angle θ1 (θ2) and a
polarizing beam-splitter (PBS) that transmits (reflects) vertical (horizontal) polarisation.
Two photodetectors D1V and D1H (D2V and D2H) are placed at the outgoing channels of
PBS1 (PBS2).

The situation θ1 = θ2 = 0 (θ1 = θ2 = π/4) corresponds to the measurement in
the rectilinear (diagonal) basis. Only in these two cases, a partial analysis of Bell states
can be achieved. Concretely, if the rectilinear basis is used, a joint detection in D1H and
D2V, or D1V and D2H, would identify the class {|Ψ+〉, |Ψ−〉}. In contrast, a detection
in D1H and D2H, or D1V and D2V, would correspond to the class {|Φ+〉, |Φ−〉}. Hence,
in the rectilinear analysis, it is not possible to determine the value of κ. Nevertheless,
if the diagonal basis is used, a detection in D1H and D2V, or D1V and D2H, would
identify the class {|Ψ−〉, |Φ−〉}. In contrast, a detection in D1H and D2H, or D1V and D2V
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would correspond to the class {|Ψ+〉, |Φ+〉}. Each of the two analyses gives the maximal
distinguishability in this kind of experiment, in which the two photons are not brought
together at the apparatus, and corresponds to the possibility of distinguishing two classes
of Bell states. On the other hand, if two consecutive experiments are carried out by starting
from the same initial state, one of them in the rectilinear basis and the other one in the
diagonal one, a complete distinguishability of the four polarisation Bell states is possible.
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Figure 1. Setup for partial Bell-state analysis. The different zeropoint inputs are represented, and the
number of sets of vacuum modes is written between brackets. (a) Source. Two correlated beams,
F(+)

1 and F(+)
2 , are generated via the coupling between the zeropoint field amplitudes, F(+)

v1 and

F(+)
v2 , and the laser beam into the crystal. The number of sets of ZPF modes that enter the source

is (NZPF,S = 4). (b) Preparer. Beam F(+)
1 is modified using a wave retarder (κ) and a polarisation

rotator (β). (c) Analyser. The polarisation of beam 1 (2) is analysed by using a polarisation rotator
of angle θ1 (θ2) and a polarizing beam-splitter. Each of the idle channels of the PBSs introduces two
sets of zeropoint modes, so that the number of sets of ZPF modes entering each single detection area
is (Nnoise

Sing.det.area = 2). The maximum distinguishability corresponding to this setup is Nmax.class =

NZPF,S − Nnoise
Sing.det.area = 4 − 2 = 2, and it can be accomplished only in the cases of rectilinear

(θ1 = θ2 = 0) or diagonal (θ1 = θ2 = π/4) analyses.

3. WRHP Description of Entanglement Generation Using Type-II PDC

In the WRHP approach, photons are just wave packets generated via the interaction
into the crystal between the zeropoint field and a classical wave corresponding to the laser
pumping. The Wigner formalism emphasises the undulatory nature of light, so that the
information is not carried out by a particle but storaged into the electromagnetic field.
Let us now review the basic aspects of the WRHP approach applied to the polarisation
entanglement generated via type-II PDC [2]. The crystal is pumped by a laser field, which
is represented by a monochromatic plane wave:

Vp(r, t) = Vpei(k0 ·r−ω0t) + c.c. , (3)

and two zeropoint input beams, which are represented by the stochastic fields:

Evj(r, t) = E(+)
vj (r, t) + E(−)

vj (r, t), (4)

where

E(+)
vj (r, t) = i ∑k∈[k]j ,λ

(
h̄ωk

2ε0L3

) 1
2
αk,λεk,λei(k·r−ωkt) ; j = {1, 2}. (5)



Entropy 2023, 25, 393 5 of 21

From now on, the lowercase letter “v” will refer to the vacuum or zeropoint field. The sum
is restricted to the set of wave vectors centered at a given kj, with frequencies ωk ≈ ωj,
being ωk = c|k|, and λ = {H, V} represents polarisation. On the other hand, L3 is the
normalisation volume and εk,λ is a unit polarisation vector. The wave vectors and frequen-
cies corresponding to the zeropoint beams described in Equation (5) fulfill the matching
conditions, so that if k ∈ [k]1 and k′ ∈ [k]2, then ωk + ωk′ ≈ ω0 and k + k′ ≈ k0. Given
that each of the input fields contains two sets of orthogonal vacuum modes, the number of
sets of ZPF modes that are amplified at the crystal is equal to four.

The set of zeropoint amplitudes, α ≡ {αkandλ}, are distributed according the Wigner
function for the vacuum state, and correspond to the Gaussian:

WZPF(α) = ∏
k,λ

WZPF(αk,λ) ; WZPF(αk,λ) =
2
π

e−2|αk,λ |2 . (6)

By putting αk,λ = |αk,λ|exp(iϕk,λ), the marginal probability distributions of |αk,λ| and
ϕk,λ can be easily calculated. By considering that dαk,λ = |αk,λ|d|αk,λ|dϕk,λ, we have:

w1(|αk,λ|) =
∫ 2π

0
WZPF(αk,λ)dϕk,λ = 2πWZPF(αk,λ) = 4e−2|αk,λ |2 , (7)

w2(ϕk,λ) =
∫ ∞

0
WZPF(αk,λ)|αk,λ|d|αk,λ| =

1
2π

, (8)

where the integral expression ∫ ∞

0
x2n+1e−bx2

dx =
n!

2bn+1 , (9)

has been taken into account. In addition, from Equations (6)–(8), it can be observed that
|αk,λ| and ϕk,λ are independent. That is,

WZPF(αk,λ) = w1(|αk,λ|)w2(ϕk,λ). (10)

Given two complex amplitudes, A(r, t; α) and B(r′, t′; α), the correlation between them
is given by:

〈AB〉 ≡
∫

WZPF(α)A(r, t; α)B(r′, t′; α)dα. (11)

For instance, from (6), the well known correlation properties hold:

〈αk,λαk′ ,λ′〉 = 〈α∗k,λα∗k′ ,λ′〉 = 0 (12)

〈αk,λα∗k′ ,λ′〉 =
1
2

δk,k′δλ,λ′ . (13)

Equations (12) and (13) are closely related to the randomness of the vacuum phases.
The zeropoint beams E(+)

v1 = (E(+)
v1,H , E(+)

v1,V) and E(+)
v2 = (E(+)

v2,H , E(+)
v2,V) couple with the

laser pumping into the nonlinear source giving rise to two correlated beams E(+)
1 and E(+)

2 .
On the other hand, the field amplitudes are usually expressed in terms of slowly varying
amplitudes (see on the left side of the Figure 1):

F(+)
j = eiωjtE(+)

j ; j = {1, 2}. (14)
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The exiting fields at the centre of the nonlinear source are expressed by means of the
following amplitudes (for simplicity, the space–time notation will be discarded):

F(+)
1 =

F(+)
1H

F(+)
1V

 =

(1 + g2|V|2 J)F(+)
v1,H + gVGF(−)

v2,V

(1 + g2|V|2 J)F(+)
v1,V + gVGF(−)

v2,H

, (15)

F(+)
2 =

F(+)
2H

F(+)
2V

 =

 (1 + g2|V|2 J)F(+)
v2,H + gVGF(−)

v1,V

(1 + g2|V|2 J)F(+)
v2,V + gVGF(−)

v1,H

, (16)

where g is a coupling parameter, and G and J are linear operators. On the other hand,
V = Vp/

√
2, in order to consider that the energy of the classical wave corresponding to the

laser, which is proportional to the squared amplitude, must be divided into four amplitudes.
Equations (15) and (16) represent the WRHP description of two beams whose correla-

tion properties reproduce the theoretical predictions of the state |Ψ+〉 (see Equation (1)).
As a matter of fact, the correlation properties of the vacuum amplitudes, represented by
Equations (12) and (13), give rise to a correlation between F(+)

1H and F(+)
2V , and an identical

correlation between F(+)
1V and F(+)

2H , that identify entanglement in the Wigner formalism.
Each of these correlations is calculated, to the first order in the coupling constant, and
expressed through the sum of two equal addends, each of them involving the zeroth order
term of one field and the first order term of the other.

4. The Experiment: Field Amplitudes at the Detectors

Let us now consider the joint action of a wave retarder (κ) and a polarisation rotator
(β) on beam 1, each of them introducing two possible elements of classical information.
By considering the possibilities κ = {0, π} and β = {0, π/2}, four situations can be
generated, each one corresponding to a given Bell state (see Equations (1) and (2)). The joint
action of these two apparatuses gives rise to a field F′(+)

1 , given by:

F′(+)
1 = P̃(β, κ)F(+)

1 ; P̃(β, κ) = R̂(β)M̂(κ), (17)

where P̃(β, κ) is the matrix corresponding to the preparer, R̂(β) represents a rotation of
angle β and M̂(κ) represents a wave retarder of phase κ. That is,

P̃(β, κ) =

cos β − eiκ sin β

sin β eiκ sin β

. (18)

Once beam 1 is modified, the polarisation is measured on beam 1 (2) by using a polari-
sation rotator of angle θ1 (θ2), a polarizing beam-splitter that transmits (reflects) vertical
(horizontal) polarisation and two detectors. This corresponds to the use of a different basis
for the measurement of the polarisation on beams 1 and 2. The field amplitudes entering
PBS1 (see Equation (17)) and PBS2 are:

F′′(+)
1 = R̂(θ1)F′

(+)
1 = R̂(β + θ1)M̂(κ)F(+)

1 , (19)

F′(+)
2 = R̂(θ2)F

(+)
2 . (20)
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By substituting Equations (15) and (16) into (19) and (20), respectively, the field ampli-
tudes entering the PBSs are given by:

F′′(+)
1 =

F′′(+)
1H

F′′(+)
1V

 =



[(1 + g2|V|2 J)F(+)
v1,H + gVGF(−)

v2,V ] cos(θ1 + β)

−[(1 + g2|V|2 J)F(+)
v1,V + gVGF(−)

v2,H ]e
iκ sin(θ1 + β)

[(1 + g2|V|2 J)F(+)
v1,H + gVGF(−)

v2,V ]sin(θ1 + β)

+[(1 + g2|V|2 J)F(+)
v1,V + gVGF(−)

v2,H ]e
iκ cos(θ1 + β)


, (21)

F′(+)
2 =

F′(+)
2H

F′(+)
2V

 =



[(1 + g2|V|2 J)F(+)
v2,H + gVGF(−)

v1,V ] cos θ2

−[(1 + g2|V|2 J)F(+)
v2,V + gVGF(−)

v1,H ]sin θ2

[(1 + g2|V|2 J)F(+)
v2,H + gVGF(−)

v1,V ]sin θ2

+[(1 + g2|V|2 J)F(+)
v2,V + gVGF(−)

v1,H ] cos θ2


. (22)

In the following, a four-mode approximation will be used, so that G and J will be
replaced by 1 and 1/2, respectively [1]. In addition, in order to investigate the role of
the vacuum phases in the Bell-state analysis, Equations (21) and (22) will be modified
by putting V = |V| exp(iθ) and F(+)

vj,X =|F(+)
vj,X | exp(iϕvj,X) with j = {1, 2} and X = {H, V}.

That is,

F′ ′(+)
1 =


F′′(+)

1H

F′′(+)
1V

 =



|F(+)
v1,H |e

iϕv1,H cos(θ1 + β)− |F(+)
v1,V |e

i(ϕv1,V+κ) sin(θ1 + β)

+gV
[
|F(+)

v2,V |e
−i(ϕv2,V−θ) cos(θ1 + β)− |F(+)

v2,H |e
−i(ϕv2,H−θ−κ) sin(θ1 + β)

]
+ g2 |V|2

2

[
|F(+)

v1,H |e
iϕv1,H cos(θ1 + β)− |F(+)

v1,V |e
i(ϕv1,V+κ) sin(θ1 + β)

]

|F(+)
v1,H |e

iϕv1,H sin(θ1 + β) + |F(+)
v1,V |e

i(ϕv1,V+κ) cos(θ1 + β)

+gV
[
|F(+)

v2,V |e
−i(ϕv2,V−θ)sin(θ1 + β) + |F(+)

v2,H |e
−i(ϕv2,H−θ−κ) cos(θ1 + β)

]
+ g2 |V|2

2

[
|F(+)

v1,H |e
iϕv1,H sin(θ1 + β) + |F(+)

v1,V |e
i(ϕv1,V+κ) cos(θ1 + β)

]



, (23)

F′(+)
2 =

F′(+)
2H

F′(+)
2V

 =



|F(+)
v2,H |e

iϕv2,H cos θ2 − |F
(+)
v2,V |e

iϕv2,V sin θ2

+gV
[
|F(+)

v1,V |e
−i(ϕv1,V−θ) cos θ2 − |F

(+)
v1,H |e

−i(ϕv1,H−θ) sin θ2

]
+

g2|V|2
2

[
|F(+)

v2,H |e
iϕv2,H cos θ2 − |F

(+)
v2,V |e

iϕv2,V sin θ2

]

|F(+)
v2,H |e

iϕv2,H sin θ2 + |F
(+)
v2,V |e

iϕv2,V cos θ2

+gV
[
|F(+)

v1,V |e
−i(ϕv1,V−θ)sin θ2 + |F

(+)
v1,H |e

−i(ϕv1,H−θ) cos θ2

]
+

g2|V|2
2

[
|F(+)

v2,H |e
iϕv2,H sin θ2 + |F

(+)
v2,V |e

iϕv2,V cos θ2

]



. (24)
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Presently, by taking into account the action of PBSj on beam j, which introduces a
vacuum field F(+)

ZPFj = (F(+)
ZPFj,H , F(+)

ZPFj,V), the field amplitudes at the detectors are:

F(+)
D1H =

 iF′′(+)
1H

F(+)
ZPF1,V

 ; F(+)
D1V =

iF(+)
ZPF1,H

F′′(+)
1V

 ; F(+)
D2H =

 iF′(+)
2H

F(+)
ZPF2,V

 ; F(+)
D2V =

iF(+)
ZPF2,H

F′(+)
2V

, (25)

where F′′(+)
1H and F′′(+)

1V (F′(+)
2H and F′(+)

2V ) are given in Equations (23) and (24), respectively.

5. ZPF Inputs and Distinguishability

As it has been demonstrated elsewhere [4], for two photons entangled in n dichotomic
degrees of freedom, the number of sets of ZPF modes that are amplified at the source,
NZPF,S=2n+1, just coincides with the upper bound to maximal distinguishability of Bell
states. In the setup described in Figure 1, given that n = 1, we have:

NZPF,S = 4. (26)

In experiments in which there are no additional zeropoint entries between the source and
the Bell-state analyser, NZPF,S = NZPF,A, where NZPF,A is the number of sets of ZPF modes
entering the analyser.

Furthermore, if the two photons are not overlapped at a balanced beam-splitter,
the maximal distinguishability in this kind of experiments, 2n, can be calculated via the
difference between the number of sets of zeropoint amplitudes that are amplified at the
source and enter the analyser, and the number of sets of zeropoint modes that enter the
area of a single detection event. In this case (see Figure 1),

Nnoise
sing.det.area =

Nnoise
ZPF,A

2
= 2n = 2, (27)

Nnoise
ZPF,A = 2n+1 = 4 being the total number of sets of ZPF modes entering the idle channels

of the PBSs inside the analyser. By taking into consideration Equations (26) and (27),
the following result has been obtained elsewhere [1]:

Nmax,class = NZPF,S − Nnoise
sing.det.area = 2n = 2. (28)

In the experimental situation described in Figure 1, the use of the rectilinear basis
(θ1 = θ2 = 0) allows for the discrimination of the classes {|Ψ+〉, |Ψ−〉} and {|Φ+〉, |Φ−〉}.
On the other hand, the classes {|Ψ+〉, |Φ+〉} and {|Ψ−〉, |Φ−〉} can be distinguished by
using a diagonal analysis (θ1 = θ2 = π/4). In both cases, the number of distinguishable
classes corresponds to the difference between the number of sets of ZPF modes that are
amplified at the source and the number of sets of ZPF modes entering the single detection
area (see Equation (28)).

If two experiments are made consecutively by starting from the same initial state,
one of them in the rectilinear basis, and the other in the diagonal one, then a complete
distinguishability is possible, i.e., the two dichotomic parameters, β and κ, are recognised
through these two experiments. By taking into account that both the number of sets of
ZPF modes entering the source and the number of sets of ZPF modes entering the single
detection area must be multiplied by a factor 2 in the consideration of the two consecutive
experiments in the information-to-noise balance, complete distinguishability is explained
from a sufficient balance that allows for the BSM of the four Bell states:

Nmax,class = 2(NZPS,S − Nnoise
sing.det.area) = 8− 4 = 4. (29)
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6. The Signal Intensities at the Detectors

The intensity of light at a given detector DjX is proportional to the squared electric
field amplitude, that is IDjX(α; φj) ∝ F(+)

DjX · F
(−)
DjX , and it depends on the vacuum amplitudes

(α) and controllable parameters of the experimental setup corresponding to the propagation
of the electric field from the source to the detector area j, which are represented by φj. Given
that the electric field amplitudes at the detectors are expressed as linear transformations,
to the second order in the coupling constant, of the zeropoint amplitudes entering the
source, the intensity can be decomposed as a sum of two terms:

IDjX = ĨDjX + IDjX,ZPF, (30)

where IDjX,ZPF is the contribution to the intensity of the pure zeropoint field, i.e., the intensity
if the radiation sources were turned off. In the case of PDC, IDjX,ZPF = IDjX(g = 0). On the
other hand, ĨDjX is the signal intensity, i.e., the part of the total intensity in which the
zeropoint contribution has been removed.

The single detection probability in PDC experiments is usually calculated by means of
the expression [1]:

PDjX ∝ 〈IDjX − Iv,DjX〉, (31)

where Iv,DjX is the mean value of the zeropoint intensity at the position of the detector,
i.e., Iv,DjX = 〈IDjX,ZPF〉. Therefore, the use of Iv,DjX or IDjX,ZPF in Equation (31) gives rise
to the same result for the single detection probability, resulting in:

PDjX ∝ 〈 ĨDjX(α; φj)〉. (32)

Let us now consider the joint detection probability corresponding to two detectors,
D1X and D2X′. If the electric field operators corresponding to positions rD1X and rD2X′

commute, as in the case of Bell-type experiments, the joint detection probability is given by
the expression:

PD1X,D2X′ ∝ 〈[ID1X(α; φ1)− Iv,D1X ]
[
ID2X′(α; φ2)− Iv,D2X′

]
〉, (33)

where the mean value of the zeropoint intensity at each detector must be removed. At this
point, it must be stressed that Iv,DjX cannot be substituted by IDjX,ZPF in Equation (33), so
that 〈[ID1X − Iv,D1X ]

[
ID2X′ − Iv,D2X′

]
〉 6= 〈 ĨD1X ĨDjX′〉.

In PDC experiments involving polarisation, the following expression is usually used
for calculation purposes, in which the joint detection probability is calculated in terms of
the field amplitudes [2]:

PD1X,D2X′ ∝ ∑
λ

∑
λ′
|F(+)

D1X,λ(α; φ1)F(+)
D2X′ ,λ′(α; φ2)|2. (34)

The use of the former expression in the calculation of the joint detection probabilities,
in the experimental setup given in Figure 1, gives rise to the known results described in
Section 2. As a matter of fact, a similar experiment has been studied elsewhere with the
WRHP formalism, concerning the polarisation encoding the quantum key distribution [3].

In this paper, no calculation of the joint detection rates will be made. In contrast,
the main results of this work will emerge from granting a main role to the signal intensities
at the detectors as functions of the modulus and phases of the vacuum amplitudes.

By using Equations (23)–(25) and (30), the signal intensities and the zeropoint in-
tensities have been calculated as functions of the modules and phases of the zeropoint
amplitudes and the experimental parameters. The dependence with the four vacuum
phases ϕvj,X (j = {1, 2} and X = {H, V}) is represented by the six phase combinations
ϕv1,H + ϕv2,V − θ, ϕv1,V + ϕv2,H − θ, ϕv1,H + ϕv2,H − θ, ϕv1,V + ϕv2,V − θ, ϕv2,H − ϕv2,V and
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ϕv1,H − ϕv1,V , from which only three of them are independent. For instance, by defining
the following phases:

Ω1 ≡ ϕv1,H + ϕv2,V − θ, (35)

Ω2 ≡ ϕv1,V + ϕv2,H − θ, (36)

Ω3 ≡ ϕv1,H + ϕv2,H − θ, (37)

the rest of the combinations can be expressed as:

ϕv1,V + ϕv2,V − θ = Ω1 + Ω2 −Ω3, (38)

ϕv2,H − ϕv2,V = Ω3 −Ω1, (39)

ϕv1,H − ϕv1,V = Ω3 −Ω2. (40)

Phases Ω1 and Ω2 have been defined elsewhere (see Equation (50) of [1]), and they arose
from the analysis of the experiment in the rectilinear basis. The appearance of new phases
is a consequence of the consideration of a generic experimental context, in which θ1 and θ2
can take any value.

The zeropoint intensities are:

ID1H,ZPF = |F(+)
ZPF1,V |2 + cos2(β + θ1)|F

(+)
v1,H |2 + sin2(β + θ1)|F

(+)
v1,V |2

− sin[2(β + θ1)] cos κ|F(+)
v1,H ||F

(+)
v1,V | cos(Ω3 −Ω2),

(41)

ID1V,ZPF = |F(+)
ZPF1,H |2 + sin2(β + θ1)|F

(+)
v1,H |2 + cos2(β + θ1)|F

(+)
v1,V |2

+ sin[2(β + θ1)] cos κ|F(+)
v1,H ||F

(+)
v1,V | cos(Ω3 −Ω2),

(42)

ID2H,ZPF = |F(+)
ZPF2,V |2 + cos2 θ2|F

(+)
v2,H |2 + sin2 θ2|F

(+)
v2,V |2

− sin(2θ2)|F
(+)
v2,H ||F

(+)
v2,V | cos(Ω3 −Ω1),

(43)

ID2V,ZPF = |F(+)
ZPF2,H |2 + sin2 θ2|F

(+)
v2,H |2 + cos2 θ2|F

(+)
v2,V |2

+ sin(2θ2)|F
(+)
v2,H ||F

(+)
v2,V | cos(Ω3 −Ω1),

(44)

where each zeropoint contribution to the total intensity, IDjX,ZPF, contains a term related to

the zeropoint input at the vacuum channel of the corresponding PBS, |F(+)
ZPFj,X⊥

|2, X⊥ being
the orthogonal polarisation to X.

In order to express the signal intensities in a simplified form, the following functions
of the zeropoint amplitudes and the crystal and laser parameters will be defined:

R1(|F
(+)
v1,H |, |F

(+)
v2,V |; Ω1) ≡ 2g|V||F(+)

v1,H ||F
(+)
v2,V | cos Ω1 + g2|V|2(|F(+)

v1,H |
2 + |F(+)

v2,V |
2), (45)

R2(|F
(+)
v1,V |, |F

(+)
v2,H |; Ω2) ≡ 2g|V||F(+)

v1,V ||F
(+)
v2,H | cos Ω2 + g2|V|2(|F(+)

v1,V |
2 + |F(+)

v2,H |
2), (46)
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D(|F(+)
v1,H |, |F

(+)
v1,V |, |F

(+)
v2,H |, |F

(+)
v2,V |; Ω1, Ω2, Ω3)

≡ g|V|
[
|F(+)

v1,H ||F
(+)
v2,H | cos Ω3 + |F

(+)
v1,V ||F

(+)
v2,V | cos(Ω1 + Ω2 −Ω3)

]
+g2|V|2

[
|F(+)

v1,H ||F
(+)
v1,V | cos(Ω3 −Ω2) + |F

(+)
v2,H ||F

(+)
v2,V | cos(Ω3 −Ω1)

]
.

(47)

In terms of the functions R1, R2 and D, and the preparation (β, κ) and measurement
(θ1, θ2) parameters, the signal intensities at the detectors have been calculated, resulting in:

ĨD1H = R1 cos2(β + θ1) + R2 sin2(β + θ1)− D sin[2(θ1 + β)] cos κ, (48)

ĨD1V = R1 sin2(β + θ1) + R2 cos2(β + θ1) + D sin[2(θ1 + β)] cos κ, (49)

ĨD2H = R1 sin2 θ2 + R2 cos2 θ2 − D sin(2θ2), (50)

ĨD2V = R1 cos2 θ2 + R2 sin2 θ2 + D sin(2θ2). (51)

At this point, the following properties concerning Equations (41) to (51) should be
emphasised for further consideration:

• The factor (−1)n(X) cos κ sin[2(β + θ1)], where n(X) = 1 if X = H and n(X) = 0
if X = V, takes opposite values in the zeropoint intensities ID1H,ZPF and ID1V,ZPF
(see Equations (41) and (42)), and also in the signal intensities ĨD1H and ĨD1V (see
Equations (48) and (49)). Analogously, the factor (−1)n(X) sin(2θ2) takes opposite
values in ID2H,ZPF and ID2V,ZPF (see Equations (43) and (44)), and also in ĨD2H and
ĨD2V (see Equations (50) and (51)).

• The phases Ω1, Ω2 and Ω3, and the phase combination Ω1 + Ω2 − Ω3, appear in
the first order term of ĨDjX (see Equations (45)–(47)). Specifically, the opposite sign
first-order terms of ĨDjX and ĨDjX⊥ contain the phases Ω3 and Ω1 + Ω2 −Ω3.

• The phase combination Ω3 −Ω2 appears in the opposite sign terms of ID1H,ZPF and
ID1V,ZPF (see Equations (41) and (42)), and also in the opposite second order contribu-
tions of ĨD1H and ĨD1V (see Equations (47)–(49)).

• Analogously, Ω3 −Ω1 appears in the opposite sign terms of ID2H,ZPF and ID2V,ZPF
(see Equations (43) and (44)), and also in the opposite second order contributions of
ĨD2H and ĨD2V (see Equations (47), (50) and (51)).

The single detection probabilities at the detectors can be calculated via Equation (32).
By averaging the signal intensities given in Equations (48)–(51) and taking into consider-
ation the randomness of the vacuum phases, the contribution of the terms including Ωi

(i = 1, 2, 3) in Equations (45)–(47) is equal to zero. In addition, by considering that 〈|F(+)
vj,X |

2〉
takes the same value, independently of i and X, the mean values of R1, R2 and D are:

〈R1〉 = 〈R2〉 = 2g2|V|2 A ; 〈D〉 = 0, (52)

where
A ≡ 〈|F(+)

vj,X |
2〉 ; ∀ j = {1, 2}, X = {H, V}. (53)

This gives the following result, which is independent of β, κ, θ1 and θ2:

PDjX ∝ 〈Rj〉 = 2g2|V|2 A ; j = {1, 2}, X = {H, V}. (54)

Phases Ω1 and Ω2 play an essential role in the description of entanglement in the
WRHP formalism [1]. By adding Equations (48)–(51) the opposite factors are cancelled with
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each other, and the total signal intensity corresponding to the beam F(+)
j emitted by the

crystal (see Equations (15) and (16)) and carried out throughout the setup is:

Ĩbeam = ĨD1H + ĨD1V = ĨD2H + ĨD2V = R1 + R2

= 2g|V|
[
|F(+)

v1,H ||F
(+)
v2,V | cos Ω1 + |F

(+)
v1,V ||F

(+)
v2,H | cos Ω2

]
+g2|V|2

[
|F(+)

v1,H |2 + |F
(+)
v2,V |2 + |F

(+)
v1,V |2 + |F

(+)
v2,H |2

]
.

(55)

The former Equation reveals that the signal intensity corresponding to the beam F(+)
j has

a dependence with the vacuum phases through Ω1 and Ω2 (see Equations (35) and (36))
in the first order term, and there is no dependence with the vacuum phases to the second
order. Specifically, Ω1 represents the interference between F(+)

v1,H and gVGF(−)
v2,V in the signal

intensity corresponding to F(+)
1H , and also the interference between F(+)

v2,V and gVGF(−)
v1,H in

the signal intensity corresponding to F(+)
2V . In the same way, the interference between F(+)

v1,V

and gVGF(−)
v2,H (F(+)

v2,H and gVGF(−)
v1,V) in the signal intensity corresponding to F(+)

1V (F(+)
2H ) is

represented by Ω2.
If a detector is placed at the path-way of the beam F(+)

j , the single detection probability is

Pj ∝ 〈 ĨDjH + ĨDjV〉 = 4Ag2|V|2 ; j = {1, 2}. (56)

7. Signal Intensities and Distinguishability

In this section, the relationship between the distinguishability of Bell states and the
signal intensities at the detectors will be investigated. To this purpose, two situations
corresponding to the maximal distinguishability are considered: the rectilinear and diagonal
analyses. As will be shown below, the signal intensities corresponding to correlated
detectors are equal.

7.1. Analysis in the Rectilinear Basis

Let us consider the situation θ1 = θ2 = 0. In this case, sin[2(β + θ1)] = sin(2θ2) = 0
and ∀ β = {0, π/2}, so that the information concerning the parameter κ is erased from
Equations (48) and (49). Given that the function D (see Equation (47)) does not contribute
in the rectilinear analysis, the phase information in the signal intensities is reduced to Ω1
and Ω2. We have:

ĨD1H(β, κ; θ1 = 0) = R1 cos2 β + R2 sin2 β, (57)

ĨD1V(β, κ; θ1 = 0) = R1 sin2 β + R2 cos2 β, (58)

ĨD2H(θ2 = 0) = R2, (59)

ĨD2V(θ2 = 0) = R1, (60)

From Equations (46) and (59), for a given value of |F(+)
v2,H | and |F(+)

v1,V |, ĨD2H is an
oscillating function of Ω2. In the same way, from Equations (45) and (60), ĨD2V is an
oscillating function of Ω1 for a given value of |F(+)

v2,V | and |F(+)
v1,H |. Presently, the following

two situations are analysed:

• In the case β = 0, which corresponds to the states |Ψ±〉, detectors corresponding to
the orthogonal polarisations are correlated. In this case, it can be easily observed that

ĨD1V(β = 0, κ; θ1 = 0) = ĨD2H(θ2 = 0) = R2, (61)
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and
ĨD1H(β = 0, κ; θ1 = 0) = ĨD2V(θ2 = 0) = R1. (62)

• On the other hand, in the case β = π/2, which corresponds to the states |Φ±〉,
detectors corresponding to the same polarisation component are correlated:

ĨD1V(β =
π

2
, κ; θ1 = 0) = ĨD2V(θ2 = 0) = R1, (63)

ĨD1H(β =
π

2
, κ; θ1 = 0) = ĨD2H(θ2 = 0) = R2. (64)

7.2. Analysis in the Diagonal Basis

By substituting the values θ1 = θ2 = π/4 in Equations (48)–(51), the corresponding
signal intensities at the detectors are given by the following expressions:

ĨD1X(β, κ; θ1 =
π

4
) =

R1 + R2

2
+ (−1)n(X)D cos(2β) cos κ, (65)

ĨD2X(θ2 =
π

4
) =

R1 + R2

2
+ (−1)n(X)D, (66)

where X = {H, V}, being n(H) = 1 and n(V) = 2. In this case, the analysis of which
detectors are correlated must be conducted by studying the parameter cos(2β) cos κ:

• Case I. cos(2β) cos κ = 1. This situation happens in the case (β = 0, κ = 0), i.e., the state
|Ψ+〉, and (β = π/2, κ = π) corresponding to |Φ+〉. From Equations (65) and (66), it
can be easily observed that the correlated detectors are those corresponding to the same
polarisation component. That is

ĨD1X(β = 0, κ = 0; θ1 = π
4 ) = ĨD1X(β = π

2 , κ = π; θ1 = π
4 )

= ĨD2X(θ2 = π
4 ) =

R1+R2
2 + (−1)n(X)D.

(67)

• Case II. cos(2β) cos κ = −1. The two possibilities are (β = 0, κ = π), i.e., the
state |Ψ−〉, and (β = π/2, κ = 0), which corresponds to the state |Φ−〉. From
Equations (65) and (66), the joint detection corresponds to detectors having orthog-
onal polarisation components. We have,

ĨD1X(β = 0, κ = π; θ1 = π
4 ) = ĨD1X(β = π

2 , κ = 0; θ1 = π
4 )

= ĨD2X⊥(θ2 = π
4 ) =

R1+R2
2 − (−1)n(X⊥)D,

(68)

X⊥ being the orthogonal polarisation to X.

The former analyses give rise to one of the main results of this paper:
“The signal intensities corresponding to correlated detectors, as functions of the crystal and

laser parameters, and the modules and phases of the zeropoint amplitudes that intervene in the
experiment, are equal”.

This result sharply contrasts with the standard approach based on the calculation of
the joint detection rates in order to establish which detectors are correlated.

8. Extracting Phase Information from the Zeropoint Field

The subtraction of the two sets of ZPF modes entering a single detection area, from the
four sets of ZPF modes entering the source (see Equation (28)), gives the maximal distin-
guishability of the polarisation of Bell states in the experimental setup described in Figure 1.
This reflects the relationship between the measurement (i.e., detection) and the subtraction
of the zeropoint background (see Equations (31) and (32)).
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More concretely, the zeropoint intensity at the detector DjX, IDjX,ZPF (j = {1, 2},
X = {H, V}) (see Equations (41)–(44)), contains an addend related to the zeropoint input at
the idle channel of the corresponding PBS, |F(+)

ZPFj,X⊥
|2, where X⊥ is the orthogonal polarisa-

tion to X. These stochastic contributions to the zeropoint intensities are different from each
other, because they involve uncorrelated modes. As a consequence, even when the signal
intensities at two correlated detectors are equal, the total intensities are not. By taking
into consideration that the zeropoint amplitudes that are amplified at the crystal carry the
quantum information through the setup, from the source to the detectors, the zeropoint
entries at the detection areas act as sources of noise. In other words, the information
concerning the zeropoint amplitudes entering the crystal and the preparation parameters
remains hidden before detection.

Given that the access to the values of β and κ is only through detection, and detection
implies the subtraction of the zeropoint intensity, the maximal distinguishability is related to
the subtraction of a sufficient zeropoint contribution coming from the measuring apparatus,
from the number of sets of ZPF modes that are amplified at the source, in which the
quantum information is stored. Why one half of the total noise represented by the four sets
of ZPF modes? Because once the first detection event has been produced, by removing the
noise contribution of the other single detection area and observing the signal intensities,
one could distinguish which signal intensity fits with the first detection, and so to establish
which detectors are correlated. Thus, the idle channels of the PBSs have an effect of limiting
the capacity for extracting information.

The question arises of whether the total information extracted via a Bell state analysis
could fit to some piece of information drawn from the zeropoint field entering the source.
Even though the vacuum amplitudes are intrinsically stochastic, so that the predictions
concerning single and joint detection rates in the WRHP formalism (see Equations (31)–(34))
involve the calculation of averages by using the Wigner function of the zeropoint field
given in Equation (6), from now on a different approach will be considered.

The signal intensities at the detectors have been calculated in the cases of rectilinear
and diagonal basis, as functions of the modules and phases of the zeropoint field amplitudes.
Given that entanglement is a property directly related to phase coupling, from now on
Equations (57)–(60), (65) and (66), will be substituted by their corresponding averages,
by integrating with respect to the modules of the vacuum amplitudes. From now on,
the abbreviation SIAM (signal intensity averaged in the modules) will be used.

Therefore, Equations (45)–(47) must be conveniently modified. It follows that:

〈R1〉||(Ω1) = 2g|V|B2 cos Ω1 + 2g2|V|2 A′, (69)

〈R2〉||(Ω2) = 2g|V|B2 cos Ω2 + 2g2|V|2 A′, (70)

〈D〉||(Ω1, Ω2, Ω3) = g|V|B2{cos Ω3 + cos(Ω1 + Ω2 −Ω3)

+g|V|[cos(Ω3 −Ω2) + cos(Ω3 −Ω1)]},
(71)

where the following parameters have been defined:

B ≡ 〈|F(+)
vj,X |〉|| ; A′ ≡ 〈|F(+)

vj,X |
2〉|| ; j = {1, 2}, X = {H, V}. (72)

〈...〉|| denotes averaging over the modules of the vacuum amplitudes. By using Equation (10),

it can be easily observed that 〈|F(+)
vj,X |

2〉|| = 〈|F
(+)
vj,X |

2〉/(2π), so that A′ = A/(2π), where A
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is given in Equation (53). On the other hand, by using Equations (5), (6) and (13), and the
following integral expression for the calculation of B:

∫ ∞

0
x2ne−bx2

dx =
(2n− 1)!!

bn2n+1

√
π

b
, (73)

the following relationship between B2 and A′ is obtained:

B2

A′
=

1
8

. (74)

In terms of Equations (69)–(71), the expressions for the SIAMs in the rectilinear basis
(see Equations (57)–(60)), as functions of the vacuum phases and the crystal and laser
parameters, are:

〈 ĨD1H〉||(β, κ; θ1 = 0; Ω1, Ω2) = 〈R1〉||(Ω1) cos2 β + 〈R2〉||(Ω2) sin2 β, (75)

〈 ĨD1V〉||(β, κ; θ1 = 0; Ω1, Ω2) = 〈R1〉||(Ω1) sin2 β + 〈R2〉||(Ω2) cos2 β, (76)

〈 ĨD2H〉||(θ2 = 0; Ω2) = 〈R2〉||(Ω2), (77)

〈 ĨD2V〉||(θ2 = 0; Ω1) = 〈R1〉||(Ω1), (78)

and the corresponding ones in the diagonal basis:

〈 ĨD1X〉||(β, κ; θ1 = π
4 ; Ω1, Ω2, Ω3)

=
〈R1〉||(Ω1)+〈R2〉||(Ω2)

2 + (−1)n(X)〈D〉||(Ω1, Ω2, Ω3) cos(2β) cos κ,
(79)

〈 ĨD2X〉||(θ2 =
π

4
; Ω1, Ω2, Ω3) =

〈R1〉||(Ω1) + 〈R2〉||(Ω2)

2
+ (−1)n(X)〈D〉||(Ω1, Ω2, Ω3), (80)

where
〈R1〉||(Ω1) + 〈R2〉||(Ω2) = 2g|V|B2[cos Ω1 + cos Ω2] + 4g2|V|2 A′. (81)

Next, the following question will be addressed: which fixed values of Ω1, Ω2 and
Ω3 could give rise to the same amount of information that the one given in BSM does?
In other words, is it there the possibility to translate the information obtained through
the Bell-state analysis to information related to the phases of the vacuum field entering
the source? This question makes sense in the framework of the WRHP formalism, where
photons are represented by wave packets that are generated in the crystal and propagate
throughout the setup from the source to the detectors. Given that correlated detectors are
characterised for having identical expressions for the signal intensities, the question of
which is the property of the field directly related to a joint photo-detection event arises.
From now on, the following hypothesis will be considered in the case of perfect detectors:

For an ideal photodetector, DjX, a detection is produced in the situation in which the SIAM,
〈 ĨDjX〉||, takes its maximum value as a function of the vacuum phases. In this way, in two correlated
detectors where a joint detection is produced, the SIAMs are maximum and equal.

8.1. Vacuum Phases in the Rectilinear Analysis

In this situation, a detection is produced in D2V (D2H) in the case Ω1 = 0 (Ω2 = 0), so
that (see Equations (69), (70), (77) and (78)):

〈Ri〉||,max = 〈Ri〉||(Ωi = 0) = 2g|V|B2 + 2g2|V|2 A′ ; i = {1, 2}, (82)
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〈 ĨD2H〉||,max(θ2 = 0) = 〈R2〉||(Ω2 = 0) = 2g|V|B2 + 2g2|V|2 A′, (83)

〈 ĨD2V〉||,max(θ2 = 0) = 〈R1〉||(Ω1 = 0) = 2g|V|B2 + 2g2|V|2 A′. (84)

It is obvious that if a joint detection event is produced at two correlated detectors, then
the other two detectors cannot be activated. Therefore, a new question must be addressed:
which is the relationship between the absence of joint detection and the values taken by
the vacuum phases? In principle, one could be tempted to state that the corresponding
SIAMs should be minimal. In this situation, by using Equations (69), (70), (77) and (78),
the corresponding value of Ωj (j = {1, 2}), would be Ωj = π. Then, by substituting Ωi = 0
and Ωj = π, i 6= j, in Equation (71), a null value for 〈D〉|| would be obtained, giving rise to
identical values of 〈 ĨD1X〉||(β, κ; θ1 = π/4) and 〈 ĨD2X′〉||(θ2 = π/4), ∀ X, X′ ∈ {H, V} (see
Equations (79) and (80)). In such a situation, the possibility of establishing a relationship
between BSM and the values of the phases of the zeropoint field would be prevented.

From now on, the following conjecture will be considered for the characterisation of
non detection events in the rectilinear analysis:

The first order contribution to the SIAMs, corresponding to two non activated detectors, is zero.
This happens for Ωi = ±π/2, that is:

〈Ri〉||(Ωi = ±
π

2
) = 2g2|V|2 A′ ; i = {1, 2}, (85)

〈 ĨD2H〉||(θ2 = 0; Ω2 = ±π

2
) = 〈R2〉||(Ω2 = ±π

2
) = 2g2|V|2 A′, (86)

〈 ĨD2V〉||(θ2 = 0; Ω1 = ±π

2
) = 〈R1〉||(Ω1 = ±π

2
) = 2g2|V|2 A′. (87)

By taking into consideration that in the case β = 0 (β = π/2), which corresponds to
the states |Ψ±〉 (|Φ±〉), detectors corresponding to orthogonal (identical) polarisations are
correlated, one of the following two couples (Ω1, Ω2) could be associated to every couple
(β, κ) and activated detectors (D1X, D2Y): (Ω1 = 0, Ω2 = ±π/2) and (Ω1 = ±π/2,
Ω2 = 0). Each of these two couples would identify a given sequence of joint detections for
every state:

• For the states |Ψ±〉 (|Φ±〉), the couple (Ω1 = 0, Ω2 = ±π/2) would correspond to the
joint detection (D1H, D2V) [(D1V, D2V)]. In both cases, the detector D2V is activated
(see Equation (78)).

• The couple (Ω1 = ±π/2, Ω2 = 0) would identify a joint detection (D1V, D2H) for
|Ψ±〉, and (D1H, D2H) for |Φ±〉. In both cases, a detection is produced at detector
D2H (see Equation (77)).

In this analysis, the value of Ω3 remains completely unknown. It must be emphasised
that the amount of information that a concrete joint detection event gives about the state
is equal to the one corresponding to the couple (Ω1, Ω2), both being complementary.
Table 1 illustrates the relationship between BSM in the rectilinear basis and the information
provided by the vacuum phases.

Table 1. Partial Bell-state analysis and phase information in the rectilinear basis (θ1 = θ2 = 0).

Class States Activated Detectors Phase Information (Ω1, Ω2)

1 {|Ψ+〉, |Ψ−〉} (D1H, D2V) (0, ±π
2 )

(D1V, D2H) (±π
2 , 0)

2 {|Φ+〉, |Φ−〉} (D1H, D2H) (±π
2 , 0)

(D1V, D2V) (0,±π
2 )
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8.2. Vacuum Phases in the Diagonal Analysis

From Equations (71), (79) and (80), the analysis of the maximum value of 〈 ĨD1X〉|| and
〈 ĨD2X〉|| depends on the behaviour of 〈D〉|| as a function of Ω3, for the possible couples
(Ω1 = 0, Ω2 = ±π/2) and (Ω1 = ±π/2, Ω2 = 0). The function 〈D〉|| becomes:

〈D〉||(Ω1 = 0, Ω2 = ±π
2 , Ω3) = 〈D〉||(Ω1 = ±π

2 , Ω2 = 0, Ω3)

= g|V|B2(1 + g|V|) f±(Ω3) ; f±(Ω3) = cos Ω3 ± sin Ω3.
(88)

By substituting Equation (88) into Equations (79) and (80), and by taking into account
that cos Ω1 + cos Ω2 = 1 in Equation (81), we have:

〈 ĨD1X〉||(β, κ; θ1 = π
4 ; Ω3) = g|V|B2 + 2g2|V|2 A′

+(−1)n(X)g|V|B2(1 + g|V|) f±(Ω3) cos(2β) cos κ,
(89)

〈 ĨD2X〉||(θ2 =
π

4
; Ω3) = g|V|B2 + 2g2|V|2 A′ + (−1)n(X)g|V|B2(1 + g|V|) f±(Ω3). (90)

The relative extreme of f±(Ω3) give the maximum and minimum values of 〈D〉||. Let us
consider the following cases:

• Case I. Sign “+”, i.e., (Ω1 = 0, Ω2 = π/2) or (Ω1 = π/2, Ω2 = 0). In this situation:

f+,max = f (Ω3 =
π

4
) =
√

2 ; f+,min = f (Ω3 =
−3π

4
) = −

√
2. (91)

• Case II. Sign “−”, i.e., (Ω1 = 0, Ω2 = −π/2) or (Ω1 = −π/2, Ω2 = 0). In this case,

f−,max = f (Ω3 =
−π

4
) =
√

2 ; f−,min = f (Ω3 =
3π

4
) = −

√
2. (92)

The maximum value of the SIAM, corresponding to a joint detection event, is given by:

〈 ĨDjX〉||,max(θj =
π

4
) = g|V|B2 + 2g2|V|2 A′ + g|V|B2(1 + g|V|)

√
2 ; j = {1, 2}, X = {H, V}. (93)

On the other hand, in the diagonal analysis, the SIAM takes its minimal value for two
detectors where no joint detection is produced:

〈 ĨDjX〉||,min(θj =
π

4
) = g|V|B2 + 2g2|V|2 A′ − g|V|B2(1 + g|V|)

√
2 ; j = {1, 2}, X = {H, V}. (94)

By observing Equation (90), and taking into consideration that n(H)=1 and n(V)=2,
a detection event is produced at the detector D2V (D2H) if f± = f (Ω3) takes its maximum
(minimum) value, which gives rise to a maximum value for the SIAM 〈 ĨD2V〉|| (〈 ĨD2H〉||).
Given that the signal intensities for two correlated detectors are equal, and by using the
results described in Equations (67) and (68), the relationship between BSM in the diagonal
basis and the information concerning Ω3, conditioned by the couples (Ω1 = 0, Ω2 = ±π/2)
or (Ω1 = ±π/2, Ω2 = 0) obtained in the rectilinear analysis, is illustrated in Table 2.

Table 2. Partial Bell-state analysis and phase information in the diagonal basis (θ1 = θ2 = π/4).

Class States Activated Detectors Phase Information Ω3

1 {|Ψ−〉, |Φ−〉} (D1H, D2V) ±π
4

(D1V, D2H) ∓ 3π
4

2 {|Ψ+〉, |Φ+〉} (D1H, D2H) ∓ 3π
4

(D1V, D2V) ±π
4
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By using the information provided by Tables 1 and 2, the distinction of a given Bell
state through two consecutive experiments, one of them in the rectilinear basis and the
other in the diagonal one, can be associated to one of the four triple lists, (0,±π/2,∓3π/4),
(0,±π/2,±π/4), (±π/2, 0,∓3π/4), and (±π/2, 0,±π/4), depending on the sequence of
activated detectors for each analysis (see Table 3). The amount of obtained information,
either via Bell-state distinction or through the extraction of phase information from the vac-
uum field, is the same, independently of the number of performed experiments, as shown
by Tables 1–3.

Table 3. Complete Bell-state analysis and phase information by considering two consecutive experiments.

State Rectilinear Analysis Diagonal Analysis Phase Information (Ω1, Ω2, Ω3)

|Ψ+〉 (D1H, D2V) (D1H, D2H) (0,±π
2 ,∓ 3π

4 )
(D1H, D2V) (D1V, D2V) (0,±π

2 ,±π
4 )

(D1V, D2H) (D1H, D2H) (±π
2 , 0,∓ 3π

4 )
(D1V, D2H) (D1V, D2V) (±π

2 , 0,±π
4 )

|Ψ−〉 (D1H, D2V) (D1H, D2H) (0,±π
2 ,∓ 3π

4 )
(D1H, D2V) (D1V, D2V) (0,±π

2 ,±π
4 )

(D1V, D2H) (D1H, D2H) (±π
2 , 0,∓ 3π

4 )
(D1V, D2H) (D1V, D2V) (±π

2 , 0,±π
4 )

|Φ+〉 (D1H, D2H) (D1H, D2V) (±π
2 , 0,±π

4 )
(D1H, D2H) (D1V, D2H) (±π

2 , 0,∓ 3π
4 )

(D1V, D2V) (D1H, D2V) (0,±π
2 ,±π

4 )
(D1V, D2V) (D1V, D2H) (0,±π

2 ,∓ 3π
4 )

|Φ−〉 (D1H, D2H) (D1H, D2V) (±π
2 , 0,±π

4 )
(D1H, D2H) (D1V, D2H) (±π

2 , 0,∓ 3π
4 )

(D1V, D2V) (D1H, D2V) (0,±π
2 ,±π

4 )
(D1V, D2V) (D1V, D2H) (0,±π

2 ,∓ 3π
4 )

9. Discussion and Conclusions

In this paper, the WRHP formalism of quantum optics has been applied to a Bell-type
experiment, in which the two photons, entangled in any of the four polarisation Bell states
(represented by the preparation parameters β and κ) do not interact at the Bell-state analyser.
The signal intensities at the detectors, i.e., the intensities above the pure zeropoint intensity
(see Equation (30)), have been calculated as functions of the phases and modules of the
four zeropoint amplitudes that couple with the laser field, and the measuring parameters
(represented by the angles θ1 and θ2). This calculation (see Equations (45)–(51)) constitutes
a generalisation of a previous one in the rectilinear basis [1]. The relationship between
the Bell-state analysis and phase information in the beam-splitter-based BSM [21] will be
investigated in a further work.

One of the main results of this paper has been derived in Section 7. The signal
intensities, as functions of the phases and modules of the zeropoint amplitudes, are equal
for two correlated detectors. This property allows for a characterisation in which detectors
are correlated, without involving the calculation of the joint detection rates. Based on this
result, in Section 8, a table of information has been generated concerning the values of the
phases of the ZPF, Ω1, Ω2 and Ω3 (see Equations (35)–(37)), in the complete analysis of Bell
states through two consecutive experiments, one of them in the rectilinear basis and the
other in the diagonal one (see Table 3). This table gives the same amount of information,
but is complementary to the one provided by the usual analysis that relates Bell states and
which-path information.

The generation of Table 3 implies the use of the SIAMs, i.e., the average of the signal
intensities integrating over the modules of the zeropoint amplitudes, and the consideration
of a conjecture concerning the nexus between the joint photodetection at two correlated
detectors and the maximum value taken for the SIAM as a function of the vacuum phases.
In addition, the hypothesis that non detection at the other two detectors is related to the
null value of the first order term in the SIAM in the rectilinear analysis, leads to the couples
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of values (Ω1 = ±π/2, Ω2 = 0) and (Ω1 = 0, Ω2 = ±π/2) that are applied further in
the diagonal analysis. In this sense, BSM can be observed as a way of extracting phase
information from the ZPF. The knowledge of the pair of activated detectors for each couple
of the preparation parameters, (β, κ), is directly related to the values taken by the vacuum
phases at the source of entanglement. The visible presence of the ZPF in an optical quantum
communication has been previously emphasised via the use of the WRHP formalism [1,4],
and similar approaches are leading to the consideration of a real zeropoint field [25,26].

The consideration of fixed values for the vacuum phases leading to detection seems
to contradict the consideration of the randomness of the zeropoint amplitudes in the
prediction of the single and joint detection rates (see Equation (6)). From our point of view,
the same controversy appears when the detection is related to which-path information,
in the sense that photons cannot be associated with particles that travel from the source to
the detectors through the setup [27–30].

In the rectilinear analysis, the relationship between Ω1 and Ω2, Ω1 + Ω2 = ±π/2, is
obtained by considering that if the SIAM is maximal in two correlated detectors, the absence
of a joint detection event at the other couple of detectors reveals that the first-order term
of the corresponding signal intensity must be zero. Although this relationship could,
in principle, be considered as artificial, it is supported by a recent work of Jung [31].
Moreover, and this should be studied in a further work, our conjecture is that the results
concerning the calculation of single and joint detection rates in the WRHP formalism are
invariant under the exchange Ω2 → ±π/2−Ω1. In our opinion, the relationship proposed
in [31] between the phases of the two strongly correlated wave-packets emitted by the
crystal has its origin in the ZPF amplitudes at the source of entanglement, as pointed out in
this work.

From Equations (69)–(71), and (48)–(51), it can be observed that the values of Ω1,
Ω2 and Ω3 leading to a maximum value of the SIAMs, for any values of the measuring
(θ1, θ2) and preparation (β, κ) parameters, are dependent on the concrete experimental
context. In this way, although the vacuum phases are intrinsically stochastic, each ex-
periment selects fixed values of Ωi compatible with the results (joint detection). In this
sense, in Equations (83), (84), (86), (87), (93) and (94), the maximum and minimum values
of the SIAMs in the rectilinear and diagonal analyses, respectively, show the following
counterintuitive results: (a) the corresponding values of the maximal SIAMs are different;
(b) the values of the corresponding intensities to non activated detectors are different in
both basis; (c) the minimal values of the SIAMs in the rectilinear (diagonal) analysis are
positive (negative), which can be deduced by substituting the relationship between B2/A′

(see Equation (74)) into Equations (93) and (94). From our point of view, these results are
consistent with the quantum contextuality [32–36], but this subject deserves further study.

Author Contributions: Conceptualization, A.C. and S.G.; methodology, A.C. and S.G.; formal analy-
sis, A.C. and S.G.; investigation, A.C and S.G.; writing—original draft preparation, A.C. and S.G.;
writing—review and editing, A.C.; supervision, A.C.; funding acquisition, S.G. All authors have read
and agreed to the published version of the manuscript.

Funding: A.C and S.G. acknowledge to Open Access funds were provided by the Division of
Thermal Engineering & Instrumentation (IDeTIC). Universidad de Las Palmas de Gran Canaria.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: A.C. acknowledges Professor E. Santos for stimulating discussions.

Conflicts of Interest: The authors declare no conflict of interest.



Entropy 2023, 25, 393 20 of 21

Abbreviations
The following abbreviations are used in this manuscript:

ZPF Zeropoint field
PDC Parametric down-conversion
WRHP Wigner representation in the Heisenberg picture
BSM Bell-state measurement
LELM Linear evolution and local measurement
PBS Polarizing beam-splitter
SIAM Signal intensity averaged in the modules of the vacuum amplitudes.
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