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bstract

A simplified model for gas–solid reactions in fluidised bed (FB) is proposed. Such models already exist for catalytic gas–solid reactions (CGSRs),
roviding general description of the system in terms of main governing parameters. Expansion of this approach to non-catalytic gas–solid reactions
NCGSRs) is difficult, because the solid reactant takes part in the reaction. Therefore, FB reactor models for NCGSR are usually devised only
or specific cases, and a general analysis has not been presented up to date. The present model allows analysis of different types of NCGSR in a
eneralised way, handling catalytic reactions as a particular, simpler, case. It is shown that the reactor behaviour can be described by three governing
imensionless parameters. Two additional parameters, quantifying the importance of diffusion effects in single particles are also identified, and
heir impact on reactor behaviour is analysed. Possible simplifications are explored. Model limitations, that is, assumption of isothermal bed and
article and the occurrence of only one reaction, are discussed. Examples are outlined to show the applicability of the method.

eywords: Fluidised beds; Gas–solid reactions; Transport processes; Modelling; Non-catalytic reactions; Diffusion effects
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Many important processes, in which non-catalytic gas–solid
eactions are involved, take place in fluidised bed. Typical
pplications are found in metallurgical and thermochemical
onversion processes. Examples of metallurgical importance
omprise the reduction of metals oxides (iron, nickel, etc.), roast-
ng of ores of heavy metals in sulphide form, such as copper,
ickel, zinc and lead. Thermochemical examples are combus-
ion, gasification and pyrolysis of coal and biomass, including
ulphur capture (in-bed desulphurisation) using mineral rocks,
uch as dolomite or limestone. To this class of processes belong
lso thermal decomposition reactions, fluorination of uranium
nd plutonium compounds, some granulation processes, etc. The
ptimisation and scale-up of these processes benefit greatly from
odelling of the system. Detailed description of physical and

 

bbreviations: BFB, bubbling fluidised bed; CGSR, catalytic gas solid reac-
; FB, fluidised bed; FDE, free of diffusion effects; NCGSR, non-catalytic gas

reaction; SIM, sharp interface model; UCM, uniform conversion model.
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mical processes occurring inside an FB for NCGSR is, how-
r, a difficult task. Simple methods providing approximate
tions for first estimates are quite useful. For instance, an
roximate description of gas–solid reactions in FB can be suf-
ent for selection of mode of gas–solid contact, preliminary
ign, and optimal operating conditions by sensitivity analysis.
h models already exist for CGSR in FB [1–4]. In this type of
tem, the solids are unchanged as reaction proceeds and bed
oval is not usually undertaken during steady-state operation
e catalyst is not poisoned. In contrast, simple models have not
n developed for NCGSR due to their complexity compared
heir catalytic counterparts. Although many FB reactor mod-
have been published, they are devised for specific reactions
y. A general framework for simplified treatment of NCGSR
ot yet available.
he performance of gas–solid reactions in FB has been

cribed by several approaches. Early models treated the FB
tor as if the gas and solids were mixed, avoiding the multi-
se nature of the bed. These ‘single-phase’ models assumed
the reactor performance was determined by the residence

e of the gas. The breakthrough caused by the introduction

he two-phase theory proposed in the early 1950s, allowed
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Nomenclature

A Non-reactive component in the solids (ash or
equivalent)

AT bed cross section (m2)
Bi Biot number
c gas concentration (mol m−3)
C reactive component in the solids
De effective diffusivity of the reactant solid particle

(m2 s−1)
Dt bed diameter (m)
Dap Damköhler number at particle scale, defined in

Eq. (30)
DaR Damköhler number at reactor scale, defined in Eq.

(22)
Das Damköhler number for the solid reactant, defined

in Eq. (40)
f function
f1(xc0, λ) function defined in Eq. (45)
f2(xc0, λ) function defined in Eq. (48)
F(xc) function expressing the dependence of dxc/dt on

xc for any ηp
Fi(xc) function expressing the dependence of dxc/dt on

xc when ηp = 1 (kinetic regime)
F0, F1 inlet and outlet flowrate of solids (kg s−1)
g acceleration of gravity (m s−2)
g(xc) function expressing the change of effective diffu-

sivity with xc
G gas reactant
H height of the vessel containing the bed (m)
k nth-order kinetic coefficient in the kinetics

((−r) = kcn) ((kgmol m−3)1−n s−1)
kb coefficient of interchange between bubble and

emulsion (s−1)
kG external mass-transfer coefficient (m s−1)
Kr kinetic coefficient accounting for gas concentra-

tion and temperature (s−1)
Lequ equivalent size of solid particle (m)
Lf bed height (m)
M Thiele module, function of conversion
Mc molecular mass of solid reactant (kg kgmol−1)
n order of reaction
Na concentration efficiency, defined in Eq. (23)
NTU number of transfer units, defined in Eq. (24)
pb(xc) distribution of conversion in the bed (mass basis)
p0, p1 distribution of conversion in the inlet and outlet

streams (mass basis)
�Pb pressure drop across the bed (Pa)
(−r) intrinsic reaction rate per unit of particle volume

((−r) = kcn) (kgmol m−3 s−1)
rc,b overall rate of reaction in the bed (kg s−1)
(−R) observed reaction rate per unit of particle volume

(kgmol m−3 s−1)
R(xc) reactivity of solid reactant (s−1)
Rep particle Reynolds number
s dummy variable of integration

Sh Sherwood number
t time (s)
Tb bed temperature (K)
u gas velocity (m s−1)
Vp particle volume (m3)
wb mass of A and C in the bed (wb = wA + wc) (kg)
wc mass of solid reactant (C) in the bed (kg)
wTb total mass of the bed (wTb = wb + winert) (kg)
xc conversion of solid reactant in a particle
xc,b average conversion of solids in the bed
Xg gas conversion
Yc0 mass fraction of solid reactant in the feed
Yc,b mass fraction of solid reactant in the bed
z axial coordinate

Greek symbols
α dimensionless parameter at reactor level, defined

in Eq. (52)
β dimensionless excess of flow, defined in Eq. (25)
δ kinetic parameter in Eq. (60), also Dirac’s delta

function
ε porosity
εb bubble fraction ((m3 bubbles) (m−3 bed))
ηe external effectiveness factor
ηi internal effectiveness factor
ηp particle effectiveness factor
ηph interphase effectiveness factor
κ parameter defined in Eq. (59)
λ dimensionless parameter defined in Eq. (41)
ν stoichiometric factor of the reaction
ξ kinetic parameter (see Table 1)
ρ density of solid (kg m−3)
τR solid residence time (s)
Θ(xc) function defined in Eq. (39)

Subscripts
b bubble, bed, average in the bed
c reactive component in the particle
crit critical
e emulsion
i intraparticle
in inlet
out outlet
p particle
r reaction

c
a
t
‘
t
t
[
g

s surface
0 initial, superficial

onsideration of the multiphase nature of the FB by means of
simplified description of two phases, in which the solids and

he gas were distributed in the bed. Thereafter the concept of
contact time distribution’ was recognized as a key factor for

aking into account the time of gas contact with the solid reac-
ant [2]. May [1], Orcutt et al. [3] and Davidson and Harrison
4] used the two-phase theory of fluidisation for calculation of
as conversion in various isothermal FB catalytic gas reactors.
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Table 1
Main models applied to NCGSR kinetics

Name Abbreviation Fi(xc) Θ(X) Reference

Volumetric model UCM 1 − xc −ln(1 − xc) [22]
Grain model; or sharp interface model GM (SIM) (1 − xc)2/3 3(1 − (1 − xc)1/3) [23,24]
Random pore model RPM (1 − xc)(1 − ξ ln(1 − xc)) (2/ξ)(1 − ξ ln(1 − xc))1/2 [25]
Simons model SM (1 − xc)(xc + ξ(1 − xc))1/2 2arctgh((1 − ξ)xc + ξ)1/2 [26]

Johnson model JM (1 − xc)2/3 eξx
2
c NAEF [27]

Dutta model DM [1 ± 100xξ1ξ2c exp(−ξ2xc)](1 − xc) NAEF [20]
Gardner model GM (1 − xc) e−ξxc NAEF [28]
Chornet model CM

√
xc(1 − xc) 2arctgh(

√
xc) [29]

Modified volumetric model MVM ξ1/2
1 ξ2(1 − xc)[−ln(1 − xc)] NAEF [30]

Traditional model TM (1 − xc)ξ (ξ− 1)−1[(1 − X)1−ξ − 1] [31]

Polynomial model PM

n∑
i=1

ξixc(1 − xc)i NAEF [32]
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he third column presents Fi(xc), the function modelling the behaviour defined
arameters; NAEF: not analytical expression found.

xtensive reviews have been published on modelling of FB reac-
ors [2,5–7], where the analyses were performed with different
egree of sophistication.

Several publications have surveyed the ability of FB reactor
odels in a variety of gas–solid reactions [5,8–11]. Generally,

olutions of two-phase models based on isothermal catalytic
ystems have been presented in terms of two main dimension-
ess groups: one representing the dimensionless reaction rate
nd the other accounting for the interphase mass-transfer resis-
ance [2,5–7]. Analytical solutions have been reported for simple
inetic schemes, such as first-, second-, etc., order kinetic (see for
nstance Table 11.5 in [2]). Solutions for more complex kinetics
ave been presented for catalytic reactions, based on conven-
ional two-phase models and Kunii–Levenspiel’s model [12,13].
xpansion to include thermal effects has also been undertaken

n catalytic systems for simple reactions [7], but this extension
auses difficulties because of the complexity of the treatment
ven for the simplest reaction scheme.

In FB catalytic systems the solids are unchanged as reaction
roceeds (if no catalyst poisoning occurs) and the solids are only
onsidered as a sink in the evaluation of the reaction rate. The
eaction rate on the catalyst particle can be subjected to diffusion
ffects, but these do not change with time. For NCGSR in an FB,
n contrast, the solid reactant is constantly consumed and solids

ake-up is required for steady-state operation. At any instant,
he reactor contains particles that have spent different lengths of
ime inside the bed, and, thus, they have a wide burn-off distri-
ution or particle age. During the course of reaction, the solid
eactant contained in the particles is gradually affected, and the
ensity and size of the particles change depending on the oper-
ting conditions in the bed. This behaviour can change from one
article-size fraction to another depending on the concentration
f the solid reactant within the particles. A general description
f the bed should account for variation in size and density of the
eacting particles [14,15]. In addition to the aforementioned two

ain dimensionless groups appearing in the isothermal FB cat-

lytic reactor, a third parameter taking into account the relative
mounts of gas and solid reactants fed to the reactor is required
o describe the NCGSR in an FB [9,10].

2

i

(1). The fourth column is the function defined in Eq. (39). ξi are kinetic model

The abbreviation NCGSR represents heterogeneous reac-
ions where the active solid participates in the reaction, in
ontrast to catalytic systems, which, if not poisoned, remain
nchanged during reaction. Some catalytic effects may exist any-
ay caused by the inert material, for instance, minerals in coal or
iomass particles in thermochemical processes. However, such
ffects are included in the gas–solid kinetics (expression dxc/dt,
ee Eq. (1)) determined in the laboratory, in this way being an
nput to the model presented.

From this discussion it is clear that an FB reactor model
or NCGSR should consider: (1) continuous bed removal; (2)
ariation of physical properties and reaction rate of single par-
icles as reaction proceeds; (3) the distribution of conversion
f the particles in the bed; (4) varying diffusion film and intra-
article mass-transfer limitations with burn-off. As a result, FB
eactor models for catalytic reactions are not generally valid
or NCGSR. The need for all these (and in some cases other)
onsiderations is the reason why dedicated models have been
eveloped for NCGSR in FB. Many reactor models exist, but
hey are devised solely for specific reactions. The reviews of
ates [16], Doraiswamy and Sharma [17], and Grace [2] survey

he most popular models developed until the end of 1980s.
In the present work, a method is developed for the solution

f NCGSR in an isothermal FB, allowing analysis of general
CGSR by a common procedure. In this way, the simple mod-

lling approach already existing for catalytic systems is extended
o non-catalytic systems. The treatment considers isothermal
onditions both in the phases and within the reacting particles,
hich imposes some limitations to the application of the method.
urthermore, some NCGSRs imply consideration of various het-
rogeneous reactions, and this could limit the method further.
his and other limitations are dealt with at the end of this work
here extension of the method and possibilities to overcome

imitations are discussed.
. Problem description and definitions

Fig. 1 illustrates the problem dealt with. The gas reactant G
s introduced into the FB reactor as part of the fluidisation agent

3



Fig. 1. (a) Model concept showing the hypothesis assumed in this work: the right-hand drawing of (a) presents the basis of the two-phase model developed showing
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he resistance to mass transfer between bubble and emulsion. Left-hand drawing
or simplification), including the main resistances to mass transport: in the film
esistances). (b) Process scheme showing the contact pattern in an FB and popu

ith a concentration cin. It passes through the bed as bubbles
ith a concentration cb, and through the well-mixed emulsion
hase with a concentration ce. The G species is transferred from
ubble to emulsion to reach the reacting sites within the react-
ng particles, where the reaction is C(s) + νG(g) → products.
he resistances of transport and reaction and the main assump-

ions that have been made to develop the mathematical model
re shown in Fig. 1a. The resistances are: bubble to emulsion
esistance, external film resistance around the solid particle (the
esistance within the emulsion phase is assumed to be concen-
rated around the particles), and intraparticle resistance. The inlet
nd outlet streams of the solids including reactant C are shown
n Fig. 1b, where the bed inventory, wb, is also specified. The
eactor contains particles that have spent different times inside
he bed and, thus, have a wide distribution of conversion, pb(xc).
his latter is considered equal to the distribution of the outflow
tream, p1(xc), since perfect mixing of solid is assumed.

We assume that a solid particle S, is made up of active
olid reactant material C and non-reactive solid material A,
sh or similar. In addition, there could be inert material, fed
o the system for various reasons (for instance, sand to keep
he bed constant). The conversion of the solid reactant C con-
ained in S at any instant, xc, is defined as the relative difference
etween the initial amount of C and the instantaneous one,
c = (Yc0(t0) − Yc(t))/Yc0(t0). Yc is the mass fraction of solid reac-
ant C in a given mass of material: Yc0 (kg C/kg S at xc0), and
c(xc) (kg C/kg S at xc). Following these definitions (1 − Yc0xc)

s the mass fraction of S in a stream of conversion xc and
c0/(1 − Yc0xc) is kg C at xc0/kg S at xc. Note the difference
etween Yc and xc: Yc is an integral measure of the amount of C
ontained in a stream of material (or in the bed) containing vari-

us compounds (C + A + inert), whereas xc is a mark of the state
f conversion of an individual particle refereed to their initial
tate of conversion, when it was fed to the reactor, xc0. Specifi-
ation of xc for a stream (or for the bed) has no meaning because,

w
d

) is a zoom of the processes occurring in a reacting particle (with flat geometry
ernal mass resistance) and within the solid particle (reaction and intraparticle
balance definitions.

n the general case, in a given stream there will be particles with
ifferent degrees of conversion. However, the average of xc in a
tream (or in the bed) is uniquely related with Yc (see Eq. (9)).

The rate of conversion of a single particle due to chemical
eaction, under chemical reaction control, may be expressed as
18,19]:

dxc

dt
= Kr,eFi(xc) (1)

r,e is the kinetic coefficient, accounting for the concentration of
he gaseous reactant and temperature in the emulsion, where the
eaction takes place. The function Fi(xc) expresses the depen-
ence of the conversion rate on xc. Kr,e is evaluated for the
onditions in the emulsion, where the reaction takes place. The
ate of reaction can also be formulated as [20,21]:

dxc

dt
= Mc

ρc0

k(xc)cne
ν

(2)

is the kinetic coefficient based on particle volume, and relates
he rate of reaction per unit of volume with the gas reactant con-
entration, i.e. (−r) = kcne . This definition is typical in GSCR
here k is a constant for isothermal conditions. In contrast, for

sothermal NCGSR k depends on conversion. With the initial
ime as a reference, Fi(xc = xc0) = 1 and k(xc) = k0Fi(xc), so for
c > xc0 one obtains from Eqs. (1) and (2):

r,e = Mc

ρc0

k0c
n
e

ν
(3)

When diffusion plays a role the conversion rate of a particle
s written as
dxc

dt
= ηp(xc)Fi(xc)Kr,e (4)

here the particle’s effectiveness factor ηp(xc) accounts for the
iffusion resistance at particle scale (the external gas film and
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he intraparticle resistance). Some authors have used expressions
ike Eq. (4) to estimate the role of internal diffusion [20,21].
p(xc) is defined as the ratio of the actual conversion rate of a
article to the rate free of diffusion effects (FDE):

p(xc) = dxc/dt

dxc/dt|FDE
= dxc/dt

Fi(xc)Kr,e
(5)

ormally, the Fi(xc) function should be free of diffusion limita-
ions, i.e. it should be determined in the kinetically controlled
egime. In this work Fi(xc) is the ratio of available solid surface
t a certain conversion xc to that of a reference case, xc0. Table 1
rovides some accepted models of Fi(xc) used for NCGSR reac-
ions.

From Eq. (4) a function can be defined: F(xc) = Fi(xc)ηp(xc),
ielding

dxc

dt
= Kr,eF (xc) (6)

The overall mass rate of reaction rc,b in the entire bed is
omputed by

c,b =
∫ 1

xc0

wbR(s)pb(s) ds (7)

here wb is the mass of S (A + C) in the bed and pb(xc) is the
istribution of conversion in the bed (mass basis). The integrand
bR(xc)pb(xc) is the rate of reaction of solid particles in the
ed having a conversion between xc and xc + dxc. R(xc) is the
eactivity expressed as kg C reacted/kg S at xc and time:

(xc) = Yc0

1 − Yc0xc

dxc

dt
= Yc0Kr,e

1 − Yc0xc
F (xc) (8)

The solids can accumulate in the bed, depending on the net
alance between the rates of feed, conversion, and removal of
olids. A solid particle is fed into the reactor with an initial
onversion xc0 and it is removed from the bed with a conversion,
c,b (average conversion of perfectly mixed particles in the bed).
he fraction of C in the bed, Yc,b (kg C/kg S in the bed) is [9]:

c,b = Yc0(1 − xc,b)

1 − Yc0xc,b
(9)

Solving for xc,b gives

c,b = Yc0 − Yc,b

Yc0(1 − Yc,b)
(10)

The bed material consists of the solid reactant C and the
aterial remaining after completing the reaction A, ash or any

ther type of inert component originating from the feed stream.
he mass of solid reactant C in the bed is the product of wb and
c,b obtained from Eq. (9):

c = wbYc,b (11)

If inert material is fed to the bed, or if a batch of such material

s used to fill the bed initially (for instance sand as initial buffer
n biomass thermochemical conversion processes), an additional

ass balance for this material has to be formulated. The compo-
ition of the bed at a given time depends on the way of operation.

w
(

X

detailed case by case analysis is out of the scope of the present
reatment. In this work, at any instant, there are three amounts
f materials in the bed: wc, wA, and winert. wb is the sum of wc
nd wA (wb = wc + wA), whereas wTb includes also the inert
wTb = wc + wA + winert), which is known by, for instance,
ressure measurements (wTb = �Pb(AT/g)). winert, if it exists,
as to be calculated from an additional mass balance. The way
o include this additional balance in parallel to the main problem
s outlined in Section 4.3.

. Development of the model

.1. Modelling approach

A realistic representation of the bed should account for the
ariation in size and density of the reacting material, as in the
reatments by Chen and Saxena [14] and Overturf [15]. The
odel proposed aims at simplifying this general treatment. The
ethod is based on two main steps:

Step 1: Application of a fluid-dynamic model to a cat-
alytic system. This model is derived without considering the
non-catalytic nature of the reaction and the actual burn-off
distribution in the bed.
Step 2: Allowance is made for the deviation from the catalytic
case, considering the extent of conversion in the FB by a solids
population balance, which is solved by a kinetic model for a
single particle.

.2. FB reactor modelling for CGSR

With the assumptions discussed in Fig. 1a molar balances for
he gas in the bubble and emulsion phases lead to

u0 dcb = kbεb(ce − cb) dz (12)

1 − β)u0(cin − ce) =
∫ Lf

0
kbεb(ce − cb) dz+ νrc,b

McAT
(13)

The boundary conditions are

b(z = 0) = cb,in = cin (14)

out = βcb(z = Lf) + (1 − β)ce (15)

The gas conversion Xg and the interphase effectiveness factor
ph are defined by

ph =
(
ce

cin

)n
and Xg = 1 − cout

cin
, (16)

Integrating Eqs. (12) and (13), taking Eq. (16) into account,
ives [33]:

(1 −Xg/Na)n

Xg/Na
= Na

DaR
(17)
here the parameters DaR and Na are defined in Eqs. (22) and
23). Combining Eqs. (16) and (17):

g = (1 − η1/n
ph )Na (18)
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aR = Xg

ηph
(19)

These expressions can be combined to give

DaR

Na
= Xg/Na

(1 −Xg/Na)n
(20)

(1 − η
1/n
ph )

ηph
= DaR

Na
(21)

qs. (18)–(21) provide two independent relationships for four
uantities: DaR, Na, Xg andηph. DaR is the Damköhler number at
eactor scale, expressing the relative importance of gas residence
ime and reaction time:

aR = ηpDaR,in with DaR,in = kcn−1
in

u0/Lf
(22)

aR is known for a CGSR if diffusion effects are absent, i.e.
p = 1 (kinetic regime) because DaR,in is known. Here, we
ssume that the bed height Lf is known or can be determined
y the pressure drop across the bed. In contrast, DaR,in is not
nown for a NCGSR even when the particles are in the kinetic
egime, because the concentration of the reacting particles in the
ed is unknown. We shall deal with this matter below. Na is the
oncentration efficiency in the one-dimensional bed, defined by

a = cin − cout

cin − ce
= 1 − β exp

(−NTU

β

)
(23)

TU is the number of transfer units and β is the dimensionless
xcess gas flow:

TU = kbεb

u0/Lf
(24)

= u0 − umf

u0
(25)

he expression for β assumes that all gas in excess of min-
mum fluidisation velocity flows through the bed in the form
f bubbles. This rests on the “two-phase theory” of fluidisa-
ion [12]. There is evidence, however, that there is a short-cut
ow through the bubbles, especially in larger particle systems.
his has been quantified in several models and correlations and
epends on the groups of ub/umf, u0/umf and εb. Analyses of the
hroughflow in various two-phase models have been reviewed in
4,5,12,34]. The impact of throughflow on the prediction of gas
onversion in simple and dynamic two-phase flow models was
ssessed by Mostoufi et al. [11]. A correction for throughflow
ould be needed when using β in Eq. (23), especially for larger
article systems. Sensitivity studies employing the final reactor
odel are helpful in identifying the need for further refinement.

n the cases outlined in this work, the results have been found
nsensitive to this parameter.

We conclude that the interphase effectiveness factor ηph is

nly a function of the group Na/DaR, and Xg is a function of
he two groups Na and Na/DaR. The relationships needed to
alculate NTU and β and related parameters depend on the flow
attern and the particle system under consideration. Examples of

a

η

ormulae useful for bubbling fluidisation in lab-scale FB can be
ound in Table 1 [33]. Further information for other fluidisation
ystems and scales is found in [12,34].

For reaction orders of 1, 1/2 and 2 explicit solutions for ηph
re found in the literature [2,35]. In a general case, for nth-
rder kinetics, explicit solutions for ηph as a function of DaR
nd Na, can be obtained by Frank-Kamenetskii’s approximation
see Appendix A) applied to Eq. (21):

ph =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

([{(1 − n)(DaR/Na)}1/n + 1]
n + n(DaR/Na))

−1

with 0 < n ≤ 1

2n[(2n)1/n − 1 + (1 + 2n(DaR/Na))1/n]
−n

with 1 < n ≤ 2.7

(26)

Once ηph is known, the gas conversion is determined by Eq.
18) or (19).

.3. Modelling of particle kinetics in CGSR

To calculate the particle effectiveness factorηp in the catalytic
ase, we assume that ηp does not depend on xc or, more useful
or the later expansion to NCGSR, we consider that xc = xc0. The
stimation of ηp is achieved through an internal and an external
ffectiveness factor, ηi and ηe, so that ηp = ηiηe. The detailed
erivation of the equations needed and the way to obtain the
ecessary information from experiments have been published in
33]. The effectiveness factors for isothermal CGSR are written
s

e =
(
cs

ce

)n
(27)

i = (−R)

kcns
= 1

Vpkcns

∫
Vp

kcn dVp (28)

Under pseudo-steady-state conditions, the isothermal mass-
ransfer problem for nth-order kinetics can be expressed as

e = (1 −Dapeηp)n = (1 −Dapeηiηe)n (29)

here a second Damköhler number, Dape, represents the ratio
f the maximum diffusion rate (when cs = ce) to the reaction rate
ontrolled by external diffusion (when cs ∼ 0):

ape = kLequc
n
e

kGce
(30)

Taking into account Eqs. (A.1), Eq. (29) can be approximately
olved for ηe:

e =
{

[({(1 − n)Dapeηi}1/n + 1)
−n + nDapeηi]

−1
, 0 < n < 1

2n[(2n)1/n − 1 + (1 + 2nDapeηi)1/n + 1]
−n
, 1 < n < 2.7

(31)

y solving the reaction-diffusion problem for a reactant particle,

n approximate solution for ηi is often used:

i = tanh(Ms)

Ms
(32)
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Ms being a conversion-dependent Thiele module:

s = Lequ

[
n+ 1

2

kcn−1
s

De

]1/2

(33)

It is well know that Eq. (32) is strictly valid for first-order
inetics in a slab, but nevertheless, the generalised Thiele mod-
le defined in Eq. (33) makes the use of Eq. (32) a reasonable
pproximation for any geometry (characterised by Lequ) and
eaction order, n [20,24,31,33,34].

In Eqs. (31) and (33) Ms and Dape are evaluated for surface
index ‘s’) and emulsion (index ‘e’) conditions, respectively. The
as concentrations in the emulsion and at the surface differ from
he inlet concentration, so they are not a priori known. Therefore

s and Dape should be related to known quantities, that is, they
hould be expressed as functions of quantities evaluated for gas
nlet conditions (index ‘in’). This is done by taking into account
qs. (16) and (28), yielding

ape = Dapin(ηph)(n−1)/n (34)

s = Min(ηphηe)(n−1)/2n (35)

ere ηph is calculated by Eq. (26), and ηe and ηi by Eqs. (31) and
32) where Ms and Dape are calculated by Eqs. (34) and (35).
here is a loop for ηph and the scheme of solution is iterative.
rom this treatment it is clear that the dependence of ηp is in the
orm:

p = f (ηph,Min,Dapin, n) (36)

The algorithm of solution and the graphical solution of this
ystem is presented below in Section 4. The extension to account
or the effect of solid conversion state is developed in Section
.5.

.4. FB reactor modelling for NCGSR

In the model developed above for CGSR DaR,in was assumed
o be known, given by the batch of catalyst in the bed and the
roperties of the catalyst. In NCGSR, on the other hand, DaR
s unknown, because neither the amount of solid reactant nor its
istribution of conversion pb(xc) in the bed are known. Conse-
uently, a solids population balance should be formulated and
olved. The definition of DaR for NCGSR is better given in the
ollowing terms:

aR =
∫
∀ xc ∈Vb

wbR(xc)pb(xc) dxc

u0ATcinMc/ν
= rc,b

u0ATcinMc/ν
(37)

Fig. 1b shows the main aspects and the nomenclature used.
he main conditions were already discussed in Section 3.2. An
dditional assumption is that all the fines are returned to the
eactor: there is no carryover, and all particles leave with the
xit ash discharge. Also, all particles are assumed to enter with

he same conversion xc0. The treatment follows the procedure
eveloped by [36]. The present approach, however, expresses
he equations in extent of conversion instead of time or particle
ize [37,10]. Following the nomenclature of Fig. 1a, a population

(

alance over the reactor yields the distribution of the conversion
f the solids (see Appendix B):

b(xc) = 1

Das

1

F (xc)

1 − Yc0xc

1 − Yc0xc0
exp

[−Θ(xc)

λ

]
(38)

Θ(xc) being a function

(xc) =
∫ xc

xc0

ds

F (s)
(39)

xpressions forΘ(xc), associated with well-known kinetic mod-
ls are included in Table 1. The two dimensionless parameters
as and λ in Eq. (38) are defined as

as = Kr,ewb

F0
= Kr,eτR (40)

= Kr,ewb

F1
= Kr,ewb

F0 − rc,b
(41)

as is the Damköhler number of the solid reactant, expressing
he ratio of residence time of solids τR = wb/F0 and reaction
ime 1/Kr,e. Note that Das ranges from 0 to 1 (the Das = 1 case is
hen the particles are made up of C entirely remaining in the bed

ust the time they need to react completely). The relation between
as and λ is obtained through the normalisation equation [36]:

1

xc0

pb(s) ds = 1 (42)

q. (42) is not satisfied, however, with the distribution calculated
y Eq. (38) because pb(xc) should include both particles hav-
ng solid reactant left (C + A) and particles completely reacted
hat still remain in the bed (only consisting of A). In Eq.
42) this second class of solids is not accounted for. Caram
nd Amundson [9,10] showed that for an FB coal gasifier
C ≡ carbon + A ≡ ash) an ash balance could solve this apparent
ifficulty (equivalent to and replacing Eq. (42)). The following
reatment uses the same approach as that in [10]. An ash (A)
alance over the system yields

1 − Yc0xc0

1 − Yc0xc,b
= F0

F1
=
(
Das

λ

)−1

(43)

The C-concentration in the bed can be obtained by taking into
ccount all particles having a C-concentration in the bed, Yc(s)
iven by Eq. (9). Integration over the bed using the distribution
n Eq. (38) gives

c,b =
∫ 1

xc0

Yc(s)pb(s) ds = f1(xc0, λ)

1/Yc0 − xc0

1

Das
(44)

here

1(xc0, λ) =
∫ 1

xc0

1 − s

F (s)
exp

[−Θ(s)

λ

]
ds (45)
Elimination of xc,b between Eqs. (43) and (44) yields

Das

λ

)
= f1(xc0, λ)/λ+ (1/Yc0 − 1)

1/Yc0 − xc0
(46)
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hich is the equivalent to Eq. (42) and replaces that equation by
ccounting for the particles that have reached complete conver-
ion and are still in the bed.

An alternative equation (equivalent to Eq. (46)) is found by
ombination of Eqs. (38) and (7) and taking into account Eqs.
8), (39) and (41) to give

Das

λ
= 1

λ
− f2(xc0, λ)

Yc0

1 − Yc0xc0
(47)

here

2(xc0, λ) =
∫ 1

xc0

exp

[−Θ(s)

λ

]
ds (48)

nce Das, xc0 and Yc0 are given, Eq. (46) or (47) provide one
quation for λ (or Das/λ). The distribution pb(xc) can be then
alculated by Eq. (38), and the average conversion in the bed,
q. (10), is computed by

c,b = 1 − f1(xc0, λ)

λ
(49)

From Eqs. (40) and (41) rc,b becomes

c,b =
(

1 − Das

λ

)
F0 (50)

The overall mass balance on the solids and gas reactant
nd the stoichiometry of the reaction link the conversions of
olids and gas. By equalling the rate of disappearance of solids,
c,b/Mc with the rate of consumption of the gaseous reactant,
cin − cout)u0AT/ν one obtains

g = 1

α

(
1 − Das

λ

)
(51)

here α is a dimensionless parameter defined by the stoichio-
etric ratio of the feed rates of the reactant gas and the solids:

= u0ATcinMc

νF0
(52)

limination of f1(xc0, λ) by combination of Eqs. (46) and (49)
nables to relate xc,b and Das/λ:

c,b = xc0 +
(

1

Yc0
− xc0

)(
1 − Das

λ

)
(53)

q. (53) establishes clearly the boundary limits of Das/λ which
re obtained for the limiting cases xc,b = 0 and 1:

Das

λ

)
∈
(

1 − Yc0

1 − Yc0xc0
,

1

1 − Yc0xc0

)
(54)

as/λ near zero means complete conversion of solids, whereas
as/λ close to unity stands for the case of null solid conversion.

n the particular case when all particles enter the bed with xc0 = 0

nd Yc0 = 1, Das/λ is equal to one minus the solid conversion
hat is attained in the bed, that is 1 − xc,b. Thus, with xc0 = 0
nd Yc0 = 1, Das/λ ranges from 0 to 1. Elimination of Das/λ by
ombination of Eqs. (51) and (53) gives a relation between Xg

u
i
u
(

nd xc,b:

g = xc,b − xc0

α(1/Yc0 − xc0)
(55)

he parameter Das should be evaluated for emulsion conditions,
.e. Das = Das,e, but the ratio Das/λ does not depend on the ref-
rence situation for which the gas conversion is evaluated (see
qs. (40) and (41)). The known parameter is actually Das,in

evaluated for the inlet conditions), but according to Eq. (16)
as (=Das,e) can be derived from Das,in:

as = Das,inηph (56)

ence, ηph has to be known to calculate Das for emulsion con-
itions. An expression for ηph results from Eqs. (18) and (51):

ph =
[

1 − 1

Naα

(
1 − Das

λ

)]n
(57)

qs. (51) and (53) allow the calculation of Xg = f(Das/λ, α,
ph) and xc,b = f(Das/λ). Taking into account Eq. (57) gives
g = f(Das/λ,α, Na) so the reactor behaviour is governed by three
arameters: Das/λ, α, and Na. Na comes from the fluid dynamics
Eq. (23)), whereas α is obtained from available inputs (see Eq.
52)). The inventory of the bed, wb is known, for instance, from
easurements of pressure drop across the bed (see Section 4.3).
he group Das/λ is obtained from Eq. (46) or (47). To apply

hese equations, the functions f1 (or f2) defined in Eqs. (45) and
48) require the value of Θ(xc), defined in Eq. (39). Therefore
(xc) has to be integrated for all the degrees of conversion in the
B reactor. To undertake this estimation, a kinetic model should
e established in order to have available the expressions Fi(xc)
nd ηp(xc). To sum up: for the estimation of Das/λ by Eq. (46) or
47), a kinetic model should be formulated first and then solved
or the conditions in the reactor.

.5. Modelling of particle kinetics in NCGSR

For the non-catalytic case the reaction rate of a particle devel-
ped in Section 3.3 has to be expanded to include the effect
f conversion. This leads to the solution of a time-dependent
roblem with a moving interface within a particle. The rate of
hrinkage/expansion of a particle’s external surface is difficult
o generalise because it depends on the nature of the NCGSR.
or instance, for gasification reactions, a threshold for the local
onversion has been fixed at the instant when the ash layer of
article peels off [38,39]. This threshold condition allows theo-
etical computation of the particle’s boundary at any time. The
hreshold depends on type of reactor, resistance of ash, and oper-
ting conditions. In a FB, for example, the removal of an ash
ayer may be caused by attrition. In contrast, for reactions where
solid product is formed, the relation between the molar vol-

mes of reactant and product is usually employed, together with
ome empirical parameter, to determine the rate of change in vol-

me (shrinkage or expansion) [17]. In general, empirical input
s needed at some level. Exceptions to this are the well-known
niform conversion model (UCM) and the sharp interface model
SIM) as we shall see later on, representing limiting cases. In sit-
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limitations at the particle scale and for expanding this scheme
to NCGSR. The simplest case (n = 1) allows a straightfor-
ward physical interpretation of the solution. In this case the
ations where these extreme cases are not valid, general, but still
imple, models could be applied. In the following such a model
ill be formulated using Eq. (4) together with an estimate of the

ffectiveness factor of the particle ηp(xc).
As in the catalytic case, ηp(xc) is composed of an internal

nd an external effectiveness factor, ηi(xc) and ηe(xc). These are
efined for NCGSR in the following way:

e =
(
cs

ce

)n
= Kr,s

Kr,e
, ηi = dxc/dt

Fi(xc0)Kr,s
(58)

As seen they depend on conversion. Eqs. (32) and (33) still
pply. However, Ms and Dape given by Eqs. (34) and (35) have
o consider the effect of conversion, because k, Lequ, kG and De
epend on it. The change with conversion can be followed by the
ariation in reaction rate, Eq. (4), and the change in diffusivity of
he particle by g(xc), a function of the local porosity ε, and De0,
he initial effective diffusivity. An empirical equation for g(xc)
s usually accepted for gas–solid reacting systems [33,40,41]:

(xc) = De(xc)

De0
=
(
ε(xc)

ε0

)κ
=
[

1 +
(

1 − ε0

ε0

)
xc

]κ
(59)

To estimate the change of particle size with xc, an additional
elation is required. The shrinkage of a particle during consump-
ion is not included in Fi(xc) that only measures the change of
he internal surface. If a detailed model (integration inside the
article) is used, it is possible to establish the rate of shrinkage as
hown by Srinivas and Amundson [38] and Morell et al. [39] for
he case of gasification of coal particles. However, here we have
ormulated the model in terms of the global particle conversion
c, and the change in size with particle conversion cannot be
alculated. Nevertheless, this information can be provided by a
imple empirical equation:

equ(xc) = Lequ,0(1 − xc)δ (60)

here a judicious choice of the parameter δ gives Lequ for any xc.
nly in the limiting kinetic models, such as UCM and SIM, the

ssumption of an arbitrary value for δ is not necessary: UCM
mplies a constant particle size (δ= 0) and in SIM, δ= 1/3. In
etween these two limiting situations, the more general pro-
ressive conversion model with changes in size and density can
e applied by properly choosing a value of δ in the range of
–1/3.

Now, with the definitions given in Eqs. (30) and (33), and with
qs. (4), (59) and (60), the initial value Dapin,0 can be related to
apin(xc) and Min,0 to Min(xc) as

apin(xc) = Dapin,0[Fi(xc)(1 − xc)(3/2)δ] (61)

in(xc) = Min,0

[(
Fi(xc)

g(xc)

)1/2

(1 − xc)δ
]

(62)
here a correlation for the external diffusion coefficient kG of
he type of Sh ∝ Re1/2

p was used to derive Eq. (61) [43]. By Eqs.
31), (33), (61) and (62) the desired relationships are determined:

ape(xc) = Dapin,0[(ηph)(n−1)/n(Fi(xc)(1 − xc)(3/2)δ)] (63)

F
p
o
p
T
p

s(xc) = Min,0

[
(ηphηe)(n−1)/2n

((
Fi(xc)

g(xc)

)1/2

(1 − xc)δ
)]

(64)

In conclusion, Eqs. (31) and (33) allow calculation of ηe
nd ηi and so ηp. The quantities Ms and Dape, appearing in
hese equations, are calculated by Eqs. (63) and (64). From
his treatment it is clear that the dependence of ηp is in the
orm

p = f (ηph,Min,0,Dapin,0, Fi(xc), g(xc), δ) (65)

eing the NCGSR version of Eq. (36).

. Discussion

.1. Solution for CGSR

The explicit solution for ηph found in Eq. (26), i.e.
ph = f(DaR/Na, ηp, n), is displayed in Fig. 2 by solid lines.
t can be demonstrated that this solution includes as particu-
ar cases published analytical expressions, such as reported by
2] for the modified Orcutt model of irreversible reactions with
= 1/2, 1 and 2 (symbols in Fig. 2). The difference between

he solid lines and the symbols is very small and entirely asso-
iated with Frank-Kamenetskii’s approximation used to derive
q. (26) from Eq. (21). In fact, Eq. (20) is equivalent to the
olutions of Orcutt’s model, but the present formulation pro-
ides an additional scheme for simple estimation of diffusion
ig. 2. Solution for gas–solid catalytic reactions in an FB drawn for the inter-
hasic effectiveness factor, ηph as a function of DaR,inηp/Na for various reaction
rders, n (between 0.25 and 2), according to Eq. (26). (Solid lines represent the
resent model, whereas symbol lines are results obtained from Orcutt’s model.)
he particle effectiveness factor ηp is unknown, so this figure must be used in
arallel with Fig. 3 to determine iteratively ηp and ηph.

9



s

η

T
b
s
a
f
fl
b
a
fl
N
r
g
a
w
g
t
w

η

w
a
o
I
t

X

o

F
t
a
d
s
t
η

a
f
η

c
i
t
M
a
n
f
D
r
g
m
N
b

4

T
a
yield the governing parameters Na, α, Das,in, Dapin,0 and Min,0.
Na is obtained from the fluid-dynamic parameters NTU and β.
NTU and β are calculated by various correlations from a bib-
liography selected according to the design of an FB and the
olution is

ph = Na/DaR

1 +Na/DaR
, Xg = Na

1 +Na/DaR
(66)

he group Na/DaR expresses the drop in gas concentration
etween the entrance and the emulsion. Two factors are respon-
ible for that drop: the consumption of the reactant along the bed
nd the resistance between the bubble and emulsion to the trans-
er of the reactant (bypassing of bubbles). This is the so-called
uid-dynamic resistance, caused by the multiphase nature of the
ed. Thus, Na shows if the fluid dynamics at reactor scale inter-
ct with kinetics. Limiting values of Na are 0 and 1: full and no
uid-dynamic interference. If the conditions in the bed lead to
a � 1 (ηph ∼ 0), the fluid-dynamic effects at reactor scale are

ate limiting, no matter how fast the kinetics are. Obviously, the
as conversion would be zero in this case. Conversely, if Na ∼ 1
nd Na/DaR ∼ 1/DaR, the heterogeneous flow pattern associated
ith the phases in the bed (the global heterogeneity or hetero-
eneity at reactor scale) loses importance for the reaction (but
he heterogeneity at particle scale, remains to be analysed, as
ill be shown below). Substitution of Na = 1 in Eq. (66) yields

ph = 1

1 +DaR
, Xg = DaR

1 +DaR
(67)

hich clearly shows that the gas conversion could be calculated
s a well-mixed reactor. This is a consequence of the assumption
f a well-mixed gas in the emulsion (where the reactions occur).
f we assume, in contrast, plug-flow for the gas in the emulsion,
he solution for the gas conversion would be
g = 1 − exp(−DaR) (68)

Fig. 3 shows the graphic solution, including the particle scale,
f ηp = f(ηph, Min,0, Dapin,0, n) given in Eq. (36). The solution

ig. 3. Solution for gas–solid catalytic reactions in an FB (Eq. (36)) showing
he particle effectiveness factor, ηp as a function of the parameters: Dapin, Min

nd n, as well as the interphasic effectiveness factor ηph, grouped into two main
imensionless parameters: Minηph

(n−1)/2n and Dapinηph
(n−1)/n. The lines are con-

tant Dapinηph
(n−1)/n. The interphasic effectiveness factor, ηph is unknown, so

his figure must be used in parallel with Fig. 2 to determine iteratively ηp and

ph.

F
m
s
d
i
c
i

llows determination of the external and internal effectiveness
actors ηe and ηi separately and so to obtain ηp. ηph is coupled to
p, and the general case, when diffusion in the particle is of con-
ern, has to be solved iteratively. This is the reason why ηph is
ncluded in Fig. 3. In the case of first-order kinetics with respect
o the gaseous reactant, the simple relations Dape = Dapin, and

e = Min hold, no matter the concentration drop between inlet
nd emulsion, i.e. independent ofηph. In the case of CGSR where
is not equal to unity, it is best to start by solving ηph, assuming,

or instance, ηp ∼ 1 in Eq. (26) (ηp has to be known to calculate
aR). If the calculated value of ηp is not unity, the procedure is

epeated until convergence. In summary, Figs. 2 and 3 are the
raphical solution of Eqs. (26), (31) and (32), allowing deter-
ination of gas conversion for CGSR in FB. For the case of
CGSR in FB, the procedure is more complex, as discussed
elow.

.2. Solution for NCGSR

The strategy for a solution procedure is presented in Fig. 4.
he figure first lists typical inputs required (bed geometry, oper-
ting conditions, etc.). After the direct inputs, some calculations
ig. 4. Method of solution for NCGSR showing inputs, solution procedure and
ain outputs (gas and solid conversion). References of the equations neces-

ary for the evaluation. Three kinds of input are defined: those that can be
etermined directly from data (kinetics, FB hardware and operating conditions),
nputs necessary for the model that can be calculated from proper fluid-dynamic
orrelations (these need to be selected from literature), and the inputs for direct
ntroduction into the model: Na, α, Dasin, Dapin,0, and Min,0.
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ode of operation. Input data needed for fluid-dynamic spec-
fication are based on the geometry of the bed and distributor
ogether with the properties of the gas and the solids in the bed.
he solution procedure has one loop because the concentra-

ion in the emulsion should be estimated in order to calculate
p(xc). Thus, ηph is determined by iteration. First, ηph is assumed
nd ηp(xc) is determined through the kinetic particle model for
ny xc. Then the population balance for the solid reactant is
olved to estimate Das/λ (Eq. (46) or (47)), i.e. the solution
f Das/λ= f(ηph, Min,0, Dapin,0; Fi(xc), g(xc), δ). Once Das/λ
as been found, Eq. (57) yields a new estimation of ηph. The
rocedure is repeated until ηph converges. Once ηph and Das/λ
ave been established, Xg and xc,b are calculated through Eqs.
18) and (53). In summary, Xg, and xc,b = f(Das/λ, α, Na) and
as/λ= f(ηph, Min,0, Dapin,0; Fi(xc), g(xc), δ), so that, in general,
g, and xc,b = f(α, Na, Min,0, Dapin,0; Fi(xc), g(xc), δ). Obviously,

he scheme of solution described above is not the only one pos-
ible when facing a NCGSR in an FB. In fact, it represents just a
ypical problem of analysis where the gas and solid conversion
re the main required outputs. Other situations with different
nput data may exist, for example: the gas conversion is known,
or instance, through measurement of the O2 concentration in
he flue gas from a FB combustor; then, the scheme of solution
iven above needs to be reconsidered conveniently according to

his input.

Fig. 5 illustrates the diffusion effects within single particles,
nd their variation with conversion for the traditional kinetic
odel (TM, Table 1) Fi(xc) = (1 − xc)ξ . In particular, the figure

ig. 5. Particle effectiveness factor, ηp, vs. conversion, xc for various values of
he two main governing parameters at particle scale: Min,0 and Dapin,0, and the
arameters δ (shrinking parameter) and ξ (exponent of the traditional model).
he brackets includes Min,0, Dapin,0, δ, and ξ used for the evaluation of the
orresponding curve. All curves have been drawn for n = 1 and ηph = 1, using the
raditional model (TM), i.e. Fi(xc) = (1 − xc)ξ . The g(xc) function (expressing the
hanges in effective diffusivity with conversion) used in all cases is given by Eq.
59) with κ = 2. Two extreme cases of mass transport limitations are identified:
xtremely high limitations represented by the sharp interface model (SIM) and
ull limitations represented by uniform conversion model (UCM). These cases
orrespond to SIM = (Min,0 � 1, Dapin,0 = any, as long as Min,0 � (Dapin,0)1/2,
= 1/3, ξ = 2/3) and UCM = (Min,0 � 1, Dapin,0 � 1, δ= 0, ξ = 1).

O
N
η

l

•

F
v
r

isplays the solution of ηp = f(xc) for various values of Min,0,
apin,0, δ and ξ, for n = 1, ηph = 1, and g(xc) given by Eq. (59)
ithκ = 2. Two extreme cases of diffusion effects are represented
y the sharp interface model (SIM) (also called shrinking par-
icle model or shrinking core exposed model) and the uniform
onversion model. SIM is valid when the intraparticle resistance
ontrols the overall reaction rate, so that for Min,0 � 1 and for
apin,0 taking any value (as long as:M2

in,0 � (Dapin,0)1/2). This
atter comes from the condition Biin,0 � 1 where Biin,0 is the

ass Biot number,Biin,0 = M2
in,0/Dapin,0. The UCM is valid for

inetic control cases, for Min,0 � 1 and Dapin,0 � 1. As shown,
hen a particle is described by the UCM, ηp is close to 1 for

he whole range of xc. In contrast, under SIM most of the time
p is close to zero and the overall rate of reaction is limited by
ntraparticle diffusion. The solution for ηp is simpler in these
wo limiting cases: diffusion does not play any role for UCM
ηp → 1), whereas ηp → 0 for SIM being roughly independent
f xc. Intermediate cases are drawn in Fig. 5 by varying Min,0,
apin,0 as well as the shrinkage parameter (δ) and the kinetic
arameters characterising Fi(xc) (in this case values of ξ, in the
M). For SIM δ= 1/3, whereas for UCM δ= 0. In general, the
igher the values of Min,0 and Dapin,0, the higher the mass trans-
ort effects and, consequently, sharper profiles of ηp versus xc
re produced.

The solution for ηph by Eq. (57) is displayed in Fig. 6.
nce Das/λ and Naα are established, ηph is known. The curve
aα= 1 corresponds to the conversion Xg = (1 − Das/λ)/α and
ph = (Das/λ)n. Fig. 6 allows visualization of two interesting
imiting cases:

Limiting case (a): In the region Naα< 1 the curves
Naα= constant reach the horizontal axis (ηph = 0) at a
(Das/λ)crit with a value equal to 1 − Naα, which cor-

responds also to a minimum threshold for λ given by
λmin = Das/(1 − Naα). An FB running with a given Naα and
a Das/λ smaller than 1 − Naα is characterised by ηph → 0
and so by a solution given by Xg = Na and xc,b = xc0 + Naα

ig. 6. Plot of interphasic effectiveness factor ηph, as a function of Das/λ taking
arious values of Naα (Eq. (57)). Observe that the dependence of the order of
eaction, n is included in the variable at the ordinate: η1/n

ph .
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ig. 7. Das/λ as a function of Dasinηph for various values of Dapin,0ηph
(n−1)/n an

he interphasic effectiveness factor, ηph is unknown so this figure must be used

(1/Yc0 − xc0) (for instance, for the case Yc0 = 1 and xc0 = 0
this gives xc,b = Naα). In this region the feasibility of solution
for Das/� ranges from 0 to 1 − Na, however, the actual gas
and solid conversion does not depend upon the actual value
of Das/λ. This case is, thus, dominated by the fluid-dynamic
behaviour of the bed, Na, and the supply of gas relative to the
solid, α. This scenario only exists in the region Naα< 1 and,
thus, for values of α< 1 (recall Na ≤ 1). This case is said to be
limited by the supply of gaseous reactant to the reacting par-
ticles. The conversion of solid is dictated by relative amount
of gas entering the reactor (α), available for the particles in
the emulsion (Na), but not by kinetics of the gas–solid reac-
tion or the solid reactant distribution in the bed (Das/λ). A
population balance does not have to be solved in this case.
Limiting case (b): The other limiting situation in the
region Naα> 1 in Fig. 6 is in the points where
the lines of Naα= constant reach the ordinate. Here,
Das/λ= 1/(1 − Yc0xc0) (for the simplest case Yc0 = 1 and
xc0 = 0) the solid conversion is complete, xc,b = 1, Xg = 1/α,
and ηph = (1 − 1/(Naα))n. This is even a simpler case than (a)
because no matter what the conditions in the bed are, the solid
is completely converted. Gas conversion is always smaller
than unity, because Xg = 1/α, and α> 1 (recall Naα> 1 and
Na ≤ 1).

It is interesting to further analyse the limiting behaviour of
he reactor with respect to α. As α� 1 the solids are in large
xcess and the system approaches the behaviour of a catalytic
eactor. When this occurs, the two limiting cases identified
bove for CGSR (Section 4.1) apply. The parameters at reac-

or scale Na, and DaR dominate the reactor behaviour. If the
as, in contrast, is in large excess (α� 1) Xg → 0 and ηph → 1
s ηph = (1 − 1/Naα)n. This is the case where the differences in
as concentration between the emulsion and inlet stream can be

t
g
a

,0(ηeηph)(n−1)/2n (all simulations have been run for TM with δ= 1/6 and ξ = 1/2).
Fig. 6 to determine iteratively ηp and ηph.

eglected, and the kinetics at particle level determines the solid
onversion. The cases discussed above for single particles hold
Section 3.5).

The computational scheme in Fig. 4, illustrates how Das/λ
epends on Min,0, Dapin,0, and n, and in addition, on the form
f Fi(xc) and g(xc). Fig. 7 shows this dependence of Das/λ on
in,0, Dapin,0, and n for δ= 1/6 and ξ = 1/2. The figure allows

alculation of Das/λ from input data, provided that ηph has been
reviously assumed. Therefore, this figure represents the internal
terative loop forηph described in Fig. 4. To enter at the horizontal
xis in Fig. 7, ηph has to be assumed. Once Das/λ is obtained
rom Fig. 7,ηph is calculated using Fig. 6. The iterative procedure
s continued using Figs. 6 and 7 until convergence of ηph. The
olution procedure for the general problem is then reduced to the
se of Figs. 6 and 7, provided that the figures have been based
n the proper kinetic model.

Figs. 6 and 7 are the NCGSR equivalents to Figs. 2 and 3. The
ain difference is that for CGSR,ηp does not depend on xc, and if

nly one representative ηp is to be calculated, an average particle
ize is taken as a reference. In the NCGSR case, the change of
roperties and reaction rates with xc makes it necessary to follow
he properties at different xc and to integrate the contribution of
ll particles. This information is contained in one parameter:
as/λ. In NCGSR the solution is not useful as a function of
aR, since, as shown in Eq. (22), this parameter depends on other
arameters, which makes the solution difficult. Fig. 8 shows the
olution of DaR as a function of α, Das/λ, Na, and n.

.3. Simple approximate solution for NCGSR
The procedure above considers a general distribution of par-
icle conversion in the bed. Therefore the general solution is
iven in terms of Das/λ in Eq. (46) (or Eq. (47)). In some cases
simpler, approximate, solution can be derived, neglecting the

12
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ig. 8. Damköhler number for reactor scale, DaR as a function of α for various
raph has been evaluated at different Na: 1, 0.75 and 0.5.

ole of the distribution of conversion in the bed. To assess this
pproximation, a factor ψ is formulated, defined as the ratio of
he average reactivity in the bed to the reactivity evaluated at the
verage conversion:

=
∫
∀ xc ∈Vb

wbR(xc)pb(xc) dxc

wbR(xc,b)
= rc,b

wbR(xc,b)
(69)

aking into account Eqs. (40), (41) and (46), Eq. (69) can be
xpressed as

= xc,b − xc0

λF (xc,b)
(70)

hen ψ∼ 1, the distribution of conversion of the particles has
small impact on the bed reactivity, and the tedious population
alance is not necessary: the solution is considerably simplified.
pplication of the approximation ψ = 1 to Eq. (70) yields

= xc,b − xc0

F (xc,b)
(71)

q. (71) allows direct calculation of the unknown λ. Substitution
f Eq. (71) into Eq. (53) yields an equation for evaluation of xc,b
no prior calculation of Das/λ is needed):

(1/Yc0 − xc,b)(xc,b − xc0)

F (xc,b)
= Das

(
1

Yc0 − xc0

)
(72)

as conversion is then calculated by Eq. (55). The simplest sit-

ation is represented by UCM without diffusional effects, i.e.
(xc,b) = (1 − xc,b), giving the solution xc,b = Das for the case
c0 = 1 and xc0 = 0. The assessment of the simplification ψ = 1
as been investigated for a general NCGSR by Heesink et al.

g
s
s
w

and n (n is displayed by the symbols: n = 0.5 (©); n = 1 (+); n = 1.5 (*)). Each

18] and Caram and Amundson [10]. Heesink et al. elaborated a
actor equivalent to ψ and applied it to FB reactor modelling of
ulphur capture by precalcined limestone. Caram and Amundson
tudied the effect of ψ for SCM with and without deactiva-
ion (according to Johnson’s model [27] for char gasification).
n general, ψ depends on F(xc), but as a rule of thumb, the
loser xc,b is to unity, the more ψ deviates from unity. How-
ver, for UCM, i.e. F(xc) = (1 − xc), ψ = 1 holds, no matter the
alue of xc,b. To see how much xc,b has to be below unity, Fig. 9
resents the solution of ψ versus xc,b curves for various Fi(xc)
see Table 1) in the case of gasification reactions. As seen, dif-
erent kinetic models behave differently, but, broadly speaking,
o model FB reactors working with an overall conversion higher
han, say, 0.3–0.4 above the entrance value xc0, a population
alance should be included in the case of one stage bed. For
ultistage bed cases, the last stage(s) xc,b–xc0 can take values

elow 0.3 and this simple case can be assumed. In a general case
here there are diffusion effects within the reacting particles,

p(xc) has to be accounted for, and the curves should be corrected
ccordingly. This procedure still provides great computational
ime saving, because it avoids the solution of Eq. (46) (or Eq.
47)).

.3.1. Examples of application for NCGSR

.3.1.1. Example 1: gasification of char with CO2 in a lab-scale
B. A lab-scale FB gasifier is fed with char using N2–CO2

as mixtures as gasification agent. This example is chosen to
how how to use the method to estimate gas and solid conver-
ion and how to scale-up the kinetics from lab-scale, consistent
ith the approach derived for single particle behaviour. When

13



Fig. 9. ψ vs. xc,b for various kinetic models of Table 1. Graph (a) and (b) traditional model (TM) and Johnson model (JM) for various model parame-
ters ξ at two initial conversions (xc0 = 0 (solid line) and xc0 = 0.5 (dotted lines)). Graph (c) Gardner model (GM) (solid line) and Dutta model (DM) (dotted
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ine), for xc0 = 0 at various values of parameters ξ. Graph (d) presents ran

c0 = 0.

reating char reactivity to simulate conversion in an FB, it is
onvenient to generate the char under conditions that are similar
o those of the full-scale equipment. This is because the char
eactivity could depend on the conditions under which the fuel
articles were prepared, especially heating rate and tempera-
ure. Gómez-Barea et al. [42] determined the reactivity of an
rujillo char with CO2 in a batchwise fed lab-scale FB reactor.
recautions were taken to avoid fluid-dynamics effects, such as
ypassing of gas through large bubbles, and to maintain the
onversion in the reactor low enough. Difficulties related to
ntrainment of solids when feeding powdery char at the top
f the reactor made the authors use a char particle size of sev-
ral mm. Therefore, they first determined mass transport effects
43]. The rate of consumption of a char particle was measured
or various sizes, CO2 concentration, temperature, and initial
har batch. From the measurements, they calculated the evo-
ution of Xg, dxc/dt and xc with time. To determine ηp(xc), Kr

nd Fi(xc), an empirical equation (Eq. (60)) was assumed to
escribe the evolution of particle size with conversion during
he tests.
The first column of Table 2 provides data for the simulation
f the lab-scale BFB. The objective of this simulation is to anal-
se the behaviour of the FB reactor in a continuous mode to
etrofit the facility for steady-state tests. UCM (Fi(xc) = (1 − xc)

t
I
f
l

pore model (RPM) (solid line) and Simons model (SM) (dotted line), for

nd δ= 0) was chosen as kinetic model to represent the single
article behaviour. The governing parameters at reactor scale,
, Na, and Das,in, can be directly calculated. At char parti-
le scale, the Thiele module Min,0, and the Damköhler number
apin,0 can be evaluated for inlet conditions. These five groups

re listed in Table 2. From these parameters Das/λ can eas-
ly be calculated or read from Figs. 6 and 7 by iteration with
ph. Once these values have converged, Xg and xc,b are calcu-
ated through Eqs. (51) and (53). These values are presented at
he bottom part of the left-hand column of Table 2. The struc-
ure of the calculation given in Table 2 is shown in Fig. 4.
ny other example can be solved in a similar way. It is worth
oting that the solution obtained is one of the limiting cases
iscussed in Fig. 6 (case (a)). In fact, the value of (Das/λ) is
early (Das/λ)crit and ηph → 0, Xg → 1. Finally, Fi(xc) and Kr

nd δ, determined in [43] make the approach consistent, because
he same δ was used as in that work to determine the kinetics
in fact, for estimation of ηp(xc) to account for the mass trans-
ort effects). δ mainly depends on the type of contactor and the
emperature, and it can be used under various physical condi-

ions (particle size, continuous feeding, initial bed batch, etc.).
n other words, this approach makes the particle model useful
or reactor simulations, consistent with the kinetics obtained at
ab-scale.
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Table 2
Examples of application: char gasification with CO2 in a bench-scale bubbling FB gasifiers [42] and zinc sulphide roasting in a large-scale bubbling FB [2]

Units CO2-char gasification (C + CO2 → 2CO)
(lab-scale BFB) [42]

Zinc roaster (ZnS + (3/2)O2 → ZnO + SO2)
(full-scale BFB) [2]

Inputs
Direct inputs

Dt m 2.66 × 10−2 6.38
H m 0.165 n.a.
Tb K 1173 1273
umf m s−1 0.19 0.048
u0 m s−1 0.8 0.78
cin kmol m−3 2.07 × 10−3 2.075 × 10−3

F0 kg s−1 1.4 × 10−5 2.48
xc0 – 0 0
Yc0 – 0.85 1
wb kg 2.5 × 10−2 30,000 (≈ wTb)
ν – 1 3/2
Kr s−1 2.3 × 10−3 7.35 × 10−3

n – 0.4 1
Fi(xc) – (1 − xc) (1 − xc)2/3

δ – 0 1/3
dc0 m 2.1 × 10−3 6 × 10−5

ρc0 kg m−3 800 4100
dsi kg m−3 4.71 × 10−4 6 × 10−5

ρsi m 2650 3420
De m2 s−1 7.0 × 10−6 9.0 × 10−6

g(xc) – (1 − xc)2.5 1

Fluid-dynamic parameters
NTU – 7 1.40
β – 0.76 0.99

Governing parameters
Na – 0.99 0.76
α – 0.2 1.35
Dasin – 3.78 88.91
Min,0 – 2.0 × 10−2 �1
Dapin,0 – <1.0 × 10−3 �1

Solution
ηph – [→0] 0.025
Das/� – 0.79 [<0.80 ≈ (Das/λ)crit] 4.05 × 10−5 [→0]
DaR – �1 29.08
X – 0.99 [→N ] 0.74 [→(1/α)]
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xc,b – 0.23 [→αNa/Yc]

.3.1.2. Example 2: conversion in an industrial scale FB zinc
oaster. The second working example is the simulation of a
inc roaster. Details of operating conditions, stoichiometry,
nd geometrical parameters relevant to the fluid dynamics are
resented in the last column of Table 2. The input data are
irectly taken from [2]. As shown in the table, the applica-
ion of the method developed here is in good agreement with
he classical method presented by Grace [2]. Moreover, the
nalysis shows that the solution is one of the limiting cases
stablished in Fig. 6 (case (b)): solutions where Xg → 1/α for
he region of Naα> 1. This example is a rather “simple” one,
here n = 1 and the shrinking particle model describes the parti-

le behaviour. In fact, an analytical solution for Θ(xc) can be

erived for this case. The procedure developed here, can be
pplied, however, with any nth-order kinetics with respect to
he gas reactant and any empirical law for the conversion of the
olids.

a
l
o
a

0.99

.4. Extension of the model

The assumption of isothermicity may be valid for some sys-
ems but violated by others. Thermal gradients between phases
re not expected to arise because of the good mixing generated
y bubbles and the buffer role of the bed. In contrast, thermal
imitations at the particle scale can be important in some cases.
n the one hand, FB operations with coarse solid reactants hav-

ng high reactivity and large heat of reaction are inclined to be
hermally limited. In processes, such as FB combustion, tem-
erature gradients within biomass/coal particles and/or in the
oundary layer have been observed. Similarly, flash-pyrolysis
f biomass and thermal decomposition of mineral rocks in FB

re often thermally controlled. On the other hand, in processes
ike gasification of char, zinc roasting, sulphide hydrogenation
f heavy metals and other NGGSR [17,23], thermal gradients
re usually insignificant at both scales, so an isothermal assump-
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ion is often made. If thermal effects should be considered or not
epends largely on the type of reaction, but also, on the oper-
tion conditions, the latter making it very difficult to establish
eneral guidelines for the applicability of the model. Assess-
ent of the presence of these potential thermal gradients prior

o application of the model is, therefore, recommended. This
an be made by estimation of the thermal Biot number and the
aximum thermal gradient between the emulsion and particle

rom a heat balance over a reacting particle.
Non-isothermal analysis at a particle scale, in general,

equires two further parameters to account for the thermal sen-
itivity of the chemical reactions (the Arrhenius parameter) and
o quantify the thermal effects relative to the heat conduction
the Prater number). If, in addition, the difference between the
hases is important, further parameters have to be considered
y formulating an energy balance over the reactor. To account
or all these phenomena in a generalised formulation such as
he one presented, complicates the presentation and makes less

eaningful a comprehensive analysis of governing parameters.
When more than one reaction occurs, or when the gas reac-

ant and the product gas species further combine homogeneously
r/and react with other compounds in the gas mixture, some
xtensions have to be made. An example is given to illus-
rate how reasonable simplifications can lead to application of
he method. Let us consider, for instance, simultaneous CO2
nd H2O gasification of char generated after devolatilisation of
iomass. The relative amount of H2O and CO2 depends on pre-
ious drying, devolatilisation, and combustion processes. These
rocesses occur at much higher rate than the gasification of the
har, and so they can be calculated uncoupled to char gasifica-
ion. Char reduction processes can be simplified by considering
hat H2O and CO2 and H2 and CO are lumped into the same
seudo-components, R and P, respectively. As a result, the only
eterogeneous reaction to be considered is char + R → P. This
eaction is assumed to occur in the emulsion phase where most
har particles are found. This scheme is justified by the similar
toichiometry of char-CO2 and char-H2O and by the commonly
ssumed equilibrium of the WGSR (water–gas shift reaction).
he relative concentrations of H2O and CO2 are adjusted to

he local thermal environment around the particles, because the
GSR is more rapid. The method of this work has been applied

o such a case [44], giving close agreement with results from
dvanced models, shortening considerable the computations,
nd most importantly, reducing the input data needed for the
alculations.

In the method wb(= wc + wA) has been considered known.
owever, when there is inert material in the bed, winert, this can
e calculated because a pressure measurement provides the total
mount of bed,wTb and hence, also the amount of inert material
wTb = wb + winert). winert, can be calculated once the manner
f operation of the FB system is specified. As an example, let
s consider an FB operating with a constant solids inventory: a
ontinuous drainage of bed material from the system is made,

nd so, to keep the bed material constant, a continuous make-
p of inert material is needed. At steady state, a simple mass
alance over the inert material yields an additional equation for
inert. In general, the composition of the bed has to be known for

C
d
a
a

he calculation of winert, so this equation is coupled to the main
roblem, because to solve the new equation, the composition of
he bed has to be known, i.e. Yc,b. Therefore, Yc,b is assumed,

inert is calculated, and then, alsowb. If the new Yc,b differs from
he assumed value, a new winert is estimated and the calculation
s repeated until convergence. To sum up, the consideration of
nert material introduces a second loop, which has to be solved
n parallel with the main problem. In practise, two iterations are
ften enough to attain the solution because the main problem is
ot sensitive to this loop.

. Summary and conclusions

A methodology is proposed for evaluation of general
as–solid reactions in isothermal FB. A model is developed in
wo stages. First, a method for evaluation of gas conversion is for-

ulated by applying the two-phase theory of fluidisation on FB
atalytic reactors, in which only gas conversion is considered.

condensed formulation is given to calculate gas conversion
s a function of the governing parameters. In a second stage,
he model is extended to account for non-catalytic reactions by
ncorporating variation of particle properties and reaction rate
ith conversion, as well as the distribution of the conversion of

eacting particles in the bed. Three groups govern the solid and
as conversion in the reactor: (1) the ratio of reactant gas and
olid feed flowrates, α; (2) the concentration efficiency in the
ntire bed, Na; and (3) Das/λ, being an indication of the solid
onversion. The group Das/λ is obtained from a population bal-
nce taking into account the overall contribution of all reacting
articles in the bed. A simplified kinetic model for a single parti-
le is developed to characterise the governing parameters at the
article scale. Besides the intrinsic kinetics, two parameters are
dentified, quantifying the diffusion effects at the particle scale:
generalised Thiele module Min,0, and a Damköhler number at
particle scale Dapin,0, both taking zero conversion and gas inlet
onversion as reference states making these parameters known
uantities. Simplification is possible for limiting values of the
hree principal reactor parameters (α, Na, and Das/λ). The sim-
lest case for NCGSR neglects the role of the distribution of
onversion in the bed and allows obtaining a rapid solution for
ny kinetics. Examples confirmed the good results of the method.
oreover, the selection of examples allowed identification of

he limiting solution derived. Discussion is also included on the
pplication of the model to industrial FB processes, focussing
n the understanding of the model limitations in order to pro-
ide guidelines for extensions. This work complements existing
eneralised FB reactor models for catalytic gas–solid reactions,
herefore, allowing similar generalised analysis for non-catalytic
as–solid reactions.
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ppendix A. Frank-Kamenetskii’s approximation

Frank-Kamenetskii [45] proposed an explicit solution for the
ariable y in a general equation of the form

− (1 − μy)n = 0 with 0 < n < 1 (A.1)

here μ is a constant of any value in the interval (0–2.7). This
olution is

=

⎧⎪⎪⎨
⎪⎪⎩

min
(

1,
1

μ

)
with n = 0

[({(1 − n)μ}1/n + 1)
n + nμ]

−1
with 0 < n < 1

2n[(2n)1/n − 1 + (1 + 2nμ)1/n + 1]
−n

with 1 < n < 2.7

(A.2)

Eqs. (21) and (29) can be expressed in the form of Eq. (A.1)
here y is ηph or ηe, and the corresponding values of μ are
aR/Na and DaRηi. This leads to explicit solutions given by
qs. (26) and (31) for ηph and ηe, respectively.

ppendix B. Formulation of the population balance:
erivation of Eq. (38)

For bed mass and flowrate of solids, as shown in Fig. 1b, an
verall steady-state mass balance in the bed gives

0 = rc,b + F1 (B.1)

c,b is defined in Eq. (7). Now, by making a balance on conversion
f the particles between xc and xc + dxc we have

bKr
d(F (xc)pb(xc))

dxc
= F0p0(xc) − F1p1(xc)

−wbR(xc)pb(xc) (B.2)

In a well mixed bed pb(xc) = p1(xc). Solving for the distribu-
ion of conversion in the bed pb(xc) yields [10]:

dpb(xc)

dxc
+
[

d lnF (xc)

dxc
+ 1

λF (xc)
+ 1

1/Yc0 − xc

]
pb(xc)

= 1

Das

p0(xc)

F (xc)
(B.3)

where Das and λ are dimensionless parameters defined in Eqs.
40) and (41). Eq. (B.3) is integrated using the condition pb(0) = 0
o obtain

b(xc) = 1

Das

1/Yc0 − xc

F (xc)

∫ xc

0

(
exp

[−Θ(s)

λ

]
p0(s)

1/Yc0 − s

)
ds

(B.4)
Assuming that all the particles enter with the same conversion
c0, the feed distribution is p0(xc) = δ(xc − xc0) and Eq. (B.4) is
implified to give Eq. (38).
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43] A. Gómez-Barea, Modelling of diffusional effects during gasification of
biomass char particles in fluidised-bed, Ph.D. Dissertation, University of
Seville, Spain, 2006.
fiers, in: E.-U. Hartge (Ed.), Proceedings of 9th International Conference
on Circulating Fluidized Beds, Hamburg, Germany, 2008.

45] D.A. Frank-Kamenetskii, Diffusion and Heat Exchange in Chemical Kinet-
ics, Princeton University Press, Princeton, 1955.

18




