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Characterization of rough interfaces obtained by boriding

I. Campos-Silva a,*, A.S. Balankin a, A.H. Sierra b, N. López-Perrusquia a,
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A B S T R A C T

This study evaluates the morphology of borided interfaces by means of the fractal theory. The boride

layers were formed in the AISI M2 steel by applying the paste boriding treatment at temperatures of 1253

and 1273 K and treatment times of 2 and 6 h, while a boron carbide paste thickness of 4 or 5 mm covered

the samples surface in order to produce the boron diffusion. The morphology of interfaces formed

between FeB and Fe2B layers and between Fe2B layer and steel substrate was analyzed by the rescaled-

range (R/S), root-mean-square (RMS), and Fourier power spectrum (FPS) methods. Moreover, the multi-

affine spectra of roughness exponent were obtained by calculating the q-order height–height correlation

functions. We found that both interfaces are multi-affine, rather than self-affine. The multi-affine spectra

of roughness exponents are found to be different for FeB/Fe2B and Fe2B/substrate interfaces, but

independent on the treatment parameters (boron carbide paste thickness, temperature, and boriding

time). Furthermore, we found that the multi-affine spectra of both interfaces behave as it is expected for

‘‘universal multi-fractals’’ with the Lévy index g = 1, associated with the multiplicative cascades with a

log-Cauchy distribution. Furthermore, our data suggest a great homogeneity of the boron diffusion field,

characterized by universal fractal dimension Ddiff = 2.90 � 0.01. These findings provide a novel insight into

the nature of phase formation during the boriding treatment.

� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Boriding is the surface boron saturation of metals and alloys
with the purpose of increasing their hardness, wear and corrosion
resistance in engineering components where their industrial
applications require those properties [1,2]. One of the most
interesting topics in the field of boriding process during the last 20
years is concerned with the growth kinetics of boride layers [3–10].
The growth of rough surfaces and interfaces plays a major role in
many phenomena of scientific interest and practical importance
[11–15]. Early, it was found that the interfaces FeB/Fe2B and Fe2B/
substrate, which are present at the surface of different ferrous
and non-ferrous alloys in boriding processes, have a rough or saw-
toothed morphology [1–4]. However, when the alloying elements
increase on the substrate, the formation and morphology of
the growth interface at the surface of the sample tends to be flat
* Corresponding author. Tel.: +52 55 57296000x54768;
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[16–18]. Recently, significant progress in understanding layers’
microstructure is derived by applying the methods of statistical
mechanics, especially the modern concept of scaling, to the space
and the time evolution of surface morphology (see [11–15] and
references therein). The dynamics of interfaces ranging from vapor
deposition to fluid invasion in porous media can often be described
by relatively simple evolution equations [13–17]. Typically the
evolution equations are given in terms of partial differential
equations with a stochastic noise component, such as the seminal
Kardar–Parisi–Zhang (KPZ) equation [19], which describes kinetic
roughening of randomly driven interfaces such as molecular-beam
epitaxy or anomalous diffusion in disordered media and wetting
phenomena [12]. The dynamical scaling associated with the
height fluctuations on growing surfaces implies generic scaling
invariance, both spatially and temporally [11–15]. Such scale
invariance is quantified by critical exponents that characterize
these fluctuations. Often, the interfaces reveal self-similar or self-
affine geometry [11–15]. The roughness of a self-similar surface is
isotropically scaleable, that is the roughness is invariant under
similarity transformation x! bx, y! by, and z! bz, where b is
the positive scaling factor [20]. In contrast to this, the roughness
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of a self-affine surface displays intrinsically anisotropic scaling,
such that to keep scaling invariance the changes along the surface,
x! bx, y! by, should be accompanied by the rescaling z! bHz in
the normal direction. So, z(bx,by) = bHz(x,y),1 where the exponent H

is called the Hurst exponent [20].
For self-similar surfaces H = 1, whereas for self-affine surfaces

the value of Hurst exponent is in the range 0 � H < 1 [20]. In the
last case, the Hurst exponent gives an indication of whether the
system behavior is random or possesses long-range power law
correlations [20–23]. A Hurst exponent of H = 0.5 corresponds to
ordinary uncorrelated Brown motion. If 0.5 < H < 1, the surface
displays persistence and characterized by positive long-range
correlation, i.e., a trend (for example, a high or low value) at r = (x,y)
is likely to be followed by a similar trend at r + Dr, whereas if
H > 0.5, the surface is antipersistent, i.e., a trend at r is not likely to
be followed by a similar trend at r + Dr [20–23]. Furthermore, it
was shown that for non-intersecting self-affine surfaces the Hurst
exponent is related to the box-counting fractal dimension of
surface DB as H = (d + 1) � DB, where d is the topological dimension
of surface [20–23]. So, the lower is the Hurst exponent, the more
space invasive is the surface [20–23].

Rough interfaces occurring in nature are usually one-dimen-
sional profiles (d = 1) or surfaces (d = 2). In practice, the roughness
of two-dimensional surfaces is commonly studied through the
analysis of their one-dimensional profiles h(x,t) obtained by the
intersection of the surface with a normal plane.2 Once we have
scaled down the analysis to (1 + 1) dimensions, the surface
roughness can be characterized by the fluctuations of the surface
height around its mean value. In this way, at the time moment t the
global roughness of surface is quantified by the root-mean-square
(RMS) fluctuation of the surface height, W(L,t) = h[h(x,t) �
hh(x,t)iL]2iL, which is the standard deviation of h(x,t) from its
mean value hh(x,t)iL in the system of size L; the brackets denote
average over all 0 � x � L [11–15]. Additionally, the local
morphology of surface can be characterized by the local width
of fluctuations within a sampling interval (windows) along the
horizontal direction of size Dx, defined as

sðDx; tÞ ¼ hh½hðx; tÞ � hhðx; tÞiDx�
2iDxiR; (1)

where h� � �iDx denotes an average over x in sampling interval of size
Dx and h� � �iR denotes an average over different realizations along
the profile of length L [12]. One can see that per definition
W(L,t) = s(Dx = L,t).

It was found that the kinetic roughening of growing interfaces
frequently obeys the celebrated Family–Vicsek dynamic scaling
ansatz [44]:

WðL; tÞ ¼ ta=z f
L

jðtÞ

� �
; (2)

where the asymptotic behavior of the scaling function f(y) is
constant for y� 1 and scales as y

a
for y < 1 with the so-called

global roughness exponent a, while the horizontal correlation
1 Real surfaces can be self-affine only in a statistical sense and so, the relation

should be replaced by z(bx,by) ffi bHz(x,y), where symbol ffi means the statistical

equality [20]. Furthermore, in most of the physical self-affine surfaces, the scale

invariance does not extend to all length scales but there are a lower l0 and an upper j
cutoffs below and above of which the surface is no longer correlated [20,21]. The

lower cutoff is determined by the material microstructure [21,22]. The length at

which the upper cutoff appears is defined as the correlation length [20–22].
2 Most of the methods used for determination of self-affine invariance are

devoted to uni-valued (1 + 1) dimensional profiles [20–41]. So, the overhangs

observed for many rough surfaces are commonly neglected or treated in some

manner to obtain the uni-valued representations of multi-valued profiles (see [42]).

The particular case of in-plane anisotropy results in a dependence of H on the

orientation of the plane with respect to the surface [22,43].
length j(t) behaves as j / t1/z, where z is called the dynamic
exponent [11–15]. So, at the initial stage, j(t)� L and the global
width of interface increases with time as W(L,t) / t

b
, where b = a/z

is termed as the growth exponent [11–15], whereas in the
(quasi)stationary regime, j(t) 	 L and the global width of interface
grows with the system size as W(L,t) / L

a
[11–15].

It is easy to understand that for self-affine surfaces a = H,
whereas for a self-similar surface a = 1 [15,45]. Moreover, for self-
similar and self-affine surfaces it is expected that the local width,
s(Dx,t), also satisfies the Family–Vicsek dynamic scaling ansatz
with the same scaling exponents [11–15]. So, the dynamic of self-
affine and self-similar surfaces is characterized by only two
independent scaling exponents: H and z, in the case of self-affine
surfaces, and the fractal dimension DB and the dynamic scaling
exponent z = 1/b, in the case of self-similar surfaces [11–15]. These
exponents determine the universality class of kinetic roughening
process under consideration.3

While the self-affine and self-similar roughness of growing
interfaces was observed in many physical systems (see [11–15]),
more generally, the scaling behavior of local surface width,
sðDxÞ/ ðDxÞz2 , is characterized by the local roughness exponent
z2, which is less or equal to the global roughness exponent, i.e.,
z2 � a [47–54]. The case of z2 = a = H corresponds to self-affine
(or self-similar, if z2 = a = H = 1 [45]) surfaces, whereas surface
roughness characterized by z2 < a is termed as an ‘‘anomalous’’
roughness [47] and it is characterized by three or more
independent scaling exponents, e.g., z2, a, and z, etc. [24–28].
The generic dynamic scaling ansatz for ‘‘anomalous’’ kinetic
roughening and the classification of its regimes were suggested
in [24] (see also [25–30]). The set of independent scaling exponents
determines the universality class of the corresponding anomalous
roughening process [11–15,46].

The Family–Vicsek and generic scaling dynamics are observed
in a grain variety of physical systems [11–30]. However, in many
cases the local geometry of the interface is not pure self-similar or
self-affine, rather than multi-fractal [20,22,23,55–58] or multi-
affine [59–65]. The multiscaling properties of such interfaces can
be investigated by calculating the q-order height–height correla-
tion function defined as

GqðDxÞ ¼ 1

N

XN

i¼1

jhðxiÞ � hðxi þDxÞjq; (3)

where N� 1 is the number of points along interface over which
the average is taken [59,60]. For surfaces with the long-range
correlations in height fluctuations the q-order height–height
correlation functions generally obey the scaling behavior

GqðDxÞ/ ðDxÞqzq ; (4)

with zq changing continuously with q at least for some regions of
the q values [59–65], such that per definition z1 = H [20] and so, for
a self-affine surface zq = H for any q [59].

It should be pointed out that the multi-affine scaling can be
caused by the removal of overhangs in the representation of real
interface by single-valued profile [66] or can has an intrinsic
nature, associated with the physical nature of roughening kinetic
[62–65,67–70] To distinguish between these reasons for multi-
3 The important result of the kinetic roughening studies is that a large variety of

different growth models can be divided into only a few universality classes (see

Refs. [11–15,46] and references therein). The dynamical universality classes are

determined by the system dimensionality, the conservation laws, the symmetry of

the order parameter, the range of the interactions, and the coupling of the order

parameter to conserved quantities [46]. It was found that many interfaces observed

in different physical experiment belong to one of the universality classes predicted

in the theory of kinetic roughening (see [11–15] and references therein).



Table 1
Global width and roughness exponents (error bars correspond to the standard

deviation among five values) of interfaces between the FeB and Fe2B phases and

between the Fe2B phase and steel substrate for specimens subjected to different

boriding treatments

Treatmenta W, mm H z2 aS

FeB/Fe2B 1 3.8 0.75 � 0.03 0.69 � 0.04 0.67 � 0.05

2 5.1 0.75 � 0.02 0.70 � 0.03 0.68 � 0.05

3 5.7 0.75 � 0.02 0.70 � 0.02 0.69 � 0.05

4 5.7 0.75 � 0.02 0.70 � 0.03 0.70 � 0.05

5 8.2 0.75 � 0.01 0.70 � 0.02 0.70 � 0.05

Fe2B/steel 1 7.3 0.94 � 0.03 0.86 � 0.02 0.81 � 0.06

2 10.7 0.94 � 0.03 0.87 � 0.02 0.85 � 0.06

3 11.2 0.94 � 0.02 0.85 � 0.02 0.85 � 0.06

4 11.3 0.94 � 0.02 0.86 � 0.02 0.85 � 0.06

5 17.6 0.94 � 0.02 0.86 � 0.02 0.85 � 0.06

a Boriding treatments: (1) 2 h with 5 mm paste at 1253 K, (2) 6 h with 5 mm

paste at 1253 K, (3) 2 h with 5 mm paste at 1273 K, (4) 4 h with 4 mm paste at

1273 K, and (5) 6 h with 5 mm paste at 1273 K.

4 The boron carbide paste (B4C + Na3AlF6) was mixed with distilled water with a

0.2 ratio (boron carbide paste/water).
5 The metallographic preparation employed a sequence of abrasion, until 1000-

grit silicon carbide paper, followed by polishing with a diamond paste and ethylene

glycol.
6 In each sample, a minimum of 25 measurements were done at different points;

the reported values are the thickness layers average (see also [4]).
7 To determine the global widths of interfaces, the full images of each cross-

section were reconstructed from corresponding image series.
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affinity, we need to study the functional behavior of zq-spectrum.
In the case of vertical discontinuities produced by the neglection of
overhangs, it is expected (see [66]) that for sufficiently larger q the
spectrum behaves as zq / 1/q, whereas in the more interesting
case of physical multi-affinity associated with the multiplicative
cascades in the process of interface formation, the spectrum of
scaling exponents is expected to obey a universal scaling behavior
[67–70]:

zq ¼
H � c

a� 1
ðqg�1 � 1Þ when 1<g 6¼1 � 2

H � clnðqÞ when g ¼ 1
;

(
(5)

termed as the ‘‘universal multi-fractal’’, where c is an intermittency
parameter called the mean fractal inhomogeneity measure and g is
the Lévy index which characterizes the degree of multi-fractality
[67–70]. The Lévy index g determines the type of probability
distribution for the extreme statistics. Theoretically, it varies bet-
ween 0 and 2 and indicates how far the kinetic roughening is from a
self-affine process. The case of g = 0 corresponds to self-affine
surfaces, g = 1 is related to a log-Cauchy distribution of multiplica-
tive cascade, while g = 2 is associated with lognormal multi-affinity
[67–70]. It is essential to note that the intermittency parameter
measures intrinsically the fraction of space occupied by active
elements, i.e., its relative sparseness [67]. It was shown that c is equal
to the co-dimension of mean singularity of multi-fractal field, i.e.,

c ¼ dE � Df (6)

where Df is the fractal dimension of field and d is the topological
dimension of emending space [67–70]. So, for homogeneous
processes c = 0, whereas c = dE for a process so heterogeneous that
the fractal dimension of the set to the mean is zero [67–70]. Some
other physical mechanisms leading to intrinsic multi-affinity of
growing surfaces were studied in references [71–73,70].

Unfortunately, theoretical understanding of interface dynamics
in real experimental situations remains problematic. The existing
theoretical models of surface growth apply to a very limited set of
experiments. So, the kinetic roughening model to be applied, we
need to analyze the scaling properties of interfaces under the
study, because an accurate knowledge of roughness exponents is
required to take a deep insight on the underlying formation
processes (see [11–15]).

In this work we study the roughness of interfaces formed in the
boriding processes. The purpose of this study is to characterize the
morphology of the borided layers created at the surface of AISI M2
steels using the fractal techniques of kinetic roughening theory.

2. Experimental procedures

The growth of monophase or polyphase boride layers depends
essentially on the substrate chemical composition, the boron
potential that surrounds the material, the temperature, and the
treatment time [5–7]. In this work, the paste boriding treatment was
carried out on AISI M2 steel. Early, it was found that in this steel, two
phases can form depending on the boron potential, the substrate
temperature and treatment time: the outer phase FeB, with a boron
content of�16 wt.%, and an inner phase Fe2B, with a boron content
of �9 wt.% (see [3,4]). The morphology displayed by both layers is
saw-toothed, with a columnarity extent of the layer–substrate
interface which mainly depends on the nature and amount of
alloying elements in the steel [3,4]. Notice that, generally, the
boride–steel interface tends to be columnar for low or medium
carbon steels and flat for high alloy steels [4,74]. In this work, the
roughness of FeB/Fe2B and Fe2B/substrate interfaces formed in the
AISI M2 steel were studied using the photo images of vertical cross-
sections of samples after boriding treatment (see [4]).
2.1. Boriding process

For boriding treatment we used the rectangular AISI M2 steel
samples with size of 20 mm � 20 mm � 0.5 mm , which were
introduced into a conventional furnace under pure argon atmos-
phere at the temperatures of 1253 and 1273 K. The exposure times
were 2 and 6 h, while a boron carbide paste4 of thickness 4 and
5 mm was used to cover one side of the material surface (see, for
details [3,4]). Considering that the used boron potentials were
similar to those in the work [4], the influence of alloying elements
in the AISI M2 steel, causes the formation of two phases: FeB and
Fe2B (see [4]). Both phases show a preferential growth over plane
(0 0 2) [4]. The dependence of the process on time and
temperature, results in an increase of the layer thickness with
temperature and treatment time [3]. The growth kinetics of the
borided phases, FeB and Fe2B, is also dependent of the paste boron
carbide thickness over the substrate surface [4]. It was also noted
that as the boron potential increases, the layers become more
compact and continuous [4].

In this work, at the end of the boriding treatment, each sample
was quenched in oil, cross-sectioned by electrical discharge
machining, and than prepared metallographically5 for its char-
acterization using an Olympus GX51 optical microscope with the
400�magnification. The thickness of the boride layers (see Table 1)
was measured by means of optical microscopy in clear field.6

2.2. Images processing

The cross-sections of all samples were optically sectioned, and
the photo images of all sections of width 161 mm were acquired
with the resolution of 13 pixel/mm, such that each image has the
width of 2048 pixels7 (see Fig. 1(a)). The chemical composition of
the upper (FeB) and lower (Fe2B) layers were determined in the
early works [3,4] by the XRD analysis using Co Ka radiation with
l = 1.54 Å. In this work, to evaluate the local morphology of the
growing interfaces, five photo images of width of 2048 pixels each
were selected randomly from the cross-section of each sample.
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These images were binarized using a conventional software for this
purpose (see Fig. 1(b)), and then digitized with the help of the Scion
Image Beta 4b software [75] to obtain the single-valued slice series
h(xi)

8 of the FeB/Fe2B and Fe2B/substrate interfaces (see Fig. 1(c)),
which were further used for the roughness analysis.

3. Roughness analysis methods

An accurate estimation of scaling exponents characterizing a
rough surface has deep physical implications and is of crucial
importance for the identification of the universality class of the
kinetic roughening phenomena [11–15,46]. There are many
methods to measure the scaling exponents of rough profiles, such
as the rescaled-range (R/S), roughness length (the RMS-roughness),
variogram (the height–height correlation function scaling), detren-
ded fluctuation analysis (DFA), return probability scaling (RPS),
diffusion entropy analysis (DEA), Fourier power spectrum (FPS), and
wavelet methods, among others (see [22–42] and references
therein). Each method has its advantages and disadvantages. The
reliability of different methods of roughness analysis was discussed
in the works [24–34]. In this work, we used the rescaled-range
analysis, roughness length scaling, Fourier power spectrum method,
and multi-affine analysis based on the scaling behavior of q-order
height–height correlation functions Gq(Dx,t).

3.1. Rescaled-range analysis

We begun our investigation with oldest classic method called the
rescaled-range analysis. This method, proposed by Mandelbrot and
Wallis [36] and based on previous hydrological analysis of Hurst
[35], allows the calculation of the Hurst exponent H. The basis of the
method is that, because of self-affinity, one expects the range taken
by the values of h(x) in a window of length Dx to be proportional to
the window length to a power equal to the Hurst exponent. A reliable
measurement of R/S requires data with a constant sampling interval
Dx. In this work, a rough interface is represented by discrete
univalued profile h(xi), where 1 � i � N = 2048, such that x1 = 0 and
x2048 = 161 mm. So, the rescaled-range R/S = f(n) for 2 � n � 2048 is
calculated as

R=S ¼ 1

sðnÞ

� max1�k�n

Xk

j¼1

ðhðx jÞ � hhinÞ

2
4

3
5�min1�k�n

Xk

j¼1

ðhðx jÞ � hh inÞ

2
4

3
5

8<
:

9=
;;
(7)

where

hhin ¼
1

n

Xn

i¼1

hðxiÞ andsðnÞ ¼ 1

n

Xn

j¼1

ðhðx jÞ � hh inÞ
2

2
4

3
5

1=2

(8)

are the sample mean and standard deviation, respectively. For
surfaces with the long-range correlations the rescaled-range is
expected to scale with the window size n9 as

R

S
/nH: (9)
8 While analyzing a profile h(x), we represent it as a discrete series of points h(xi),

where xi + 1 � xi = 1 pixel and 1 � i � N = 2048.
9 The original specification of the classical rescaled range provided by Hurst [35]

was such that the roughness exponent was estimated for the whole sample length

N. The procedure was later modified by Mandelbrot and Wallis [36] to incorporate

ordinary least squares (OLS) regression techniques where the exponent (denoted H

by Mandelbrot and Wallis) was estimated over several sub-series n < N.
Accordingly, the Hurst exponent can be obtained from the linear
part of the log–log plot of R/S versus n. The relative power of
rescaled-range analysis versus alternative methods of estimat-
ing the Hurst exponent for fractional Gaussian processes
has been recently studied in works [76–78]. The sampling
properties of R/S estimates of the Hurst exponent were studied
by Ellis [34], who has determined the confidence intervals for
the statistical significance of the Hurst exponent obtained by R/S
method.

3.2. The roughness length method

The roughness length method explores the scaling behavior of
the RMS roughness, which represent the local interface width (1) of
interface, defined as the standard deviation of h(xi) in the window
Fig. 1. Image processing: (a) cross-sectional view with 400� magnification of AISI

M2 steel after the boriding treatment with a boron carbide paste thickness of 5 mm

at 1253 K during 6 h; (b) binarized image of interfaces, and (e) digitized graphs h(x)

of interfaces between the FeB and Fe2B phases (1) and between the Fe2B layer and

AISI M2 steel (2).



Fig. 2. Log–log plots of the rescaled-range (R/S in arbitrary units) versus the window

size (n in pixels) for interfaces between: (a) FeB and Fe2B phases and (b) Fe2B layer

and AISI M2 steel in specimens treated: 2 h with 5 mm paste at 1253 K (circles); 6 h

with 5 mm paste at 1253 K (triangles); 2 h with 5 mm paste at 1273 K (rhombus);

6 h with 4 mm paste at 1273 K (squares); and 6 h with 5 mm paste at 1273 K

(crosses). Symbols, experimental data averaged over five images from each sample;

straight lines, the minimum root square fittings according to the scaling behavior

(9); the grey symbols are excluded from fitting. Notice that the graphs are shifted

along the X-axis to clarity.

Fig. 3. Log–log plots of the RMS-roughness (s(n) in arbitrary units) versus the

window size (n in pixels) for interfaces: (a) between the FeB and Fe2B phases and (b)

between the Fe2B layer and AISI M2 steel in specimens treated: 2 h with 5 mm paste

at 1253 K (circles); 6 h with 5 mm paste at 1253 K (triangles); 2 h with 5 mm paste

at 1273 K (rhombus); 6 h with 4 mm paste at 1273 K (squares); and 6 h with 5 mm

paste at 1273 K (crosses). Symbols, experimental data; straight lines, the minimum

root square fittings according to the scaling behavior sðDx ¼ nÞ/nz2 . Notice that

grey symbols are excluded from fitting.
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of size Dx = n (second equation in (7)). In this work, for a given
window length, the input series is subdivided in a number (N � n)
of intervals of length 2 � n < 2048 and the standard deviation is
calculated in each window after subtracting a local linear trend.
The final estimate is taken to be the average (1) of RMS roughness
for the windows of the same size n. Accordingly, the local
roughness exponent z2 is defined as the slope of the linear part of
the log–log plot of s(Dx = n) versus n. Notice that z2 = H only
for self-affine (or self-similar z2 = H = 1) surfaces [20]. So, the
inequality z2 6¼ H indicates the lack of self-affinity. In such a case,
the multi-affine analysis should be performed.

3.3. Height–height correlations analysis

The multi-scaling properties of interfaces in this work were
studied by calculating the q-order height–height correlation
function, Gq(Dx = n), defined by the Eq. (3). The spectrum of
scaling exponents zq was determined for each interface by linear
fitting of log–log plots of Gq versus n (see Eq. (4)) for 1 � q � 10 For
a self-similar or self-affine surface zq is independent of q whereas
for a multi-affine surface it depends on q. In the last case, to
determine the reason of multi-affine behavior we studied the
functional behavior of zq on q using the mean square best fit of the
experimental values.

3.4. Fourier power spectrum analysis

In this work, the interface roughness was also characterized
by calculating the structure factor or power spectrum, S(k) =
hZ(k)Z(�k)iR, where Z(k) is the Fourier transform of the height of
the surface h(xi) in a section of size N = 2048, which is given by the
equation

ZðkÞ ¼ N�1=2
XN

i¼1

½hðxiÞ � hhðxiÞiL� expðikxiÞ (10)

where the spatial average of the height has been subtracted; k is
the wave number. Generally, the power spectrum of a rough
interface is expected to scale as

SðkÞ/ k�ð2aSþ1Þ (11)

where for multi-affine surfaces, the spectral roughness exponent
aS is equal to z2 [2]. So, for a self-affine interface, whereas for
multi-affine interfaces aS = zq 6¼ H. However, for interfaces with
‘‘anomalous’’ roughness (see [47,48]) the spectral roughness
exponent may be an independent characteristic of surface rough-
ness, i.e., aS 6¼ z2 [47]. In this work, the power spectrum analysis was
performed with the help of commercial BENOIT 1.3 software [79].

4. Results and discussion

Fig. 2(a) and (b) shows the log–log plots of R/S versus n for the
FeB/Fe2B and Fe2B/substrate interfaces, respectively. One can see
that the Hurst exponents of these interfaces are independent on
the treatment parameters (boron carbide paste thickness, tem-
perature and time of treatment), while the FeB/Fe2B and Fe2B/
substrate interfaces are characterized by the different Hurst
exponents (see Table 1). This indicates that the kinetics of FeB and
Fe2B phase formations belong to different universality classes (see
[11–15]).

The local roughness exponent is also found to be different for
the FeB/Fe2B and Fe2B/substrate interfaces, while in both cases
the local roughness exponent is independent on the treatment
parameters and less than the corresponding Hurst exponent (see
Fig. 3 and Table 1). The inequality z2 < H indicates than the
roughness of interfaces is multi-affine, rather than self-affine.



Fig. 4. Log–log plots of G1=q
q ðnÞ versus n for q = 1 (circles), 2 (triangles), 5 (squares),

and 10 (rhombus) for the interface between: (a) FeB and Fe2B phases and (b) Fe2B

layer and AISI M2 steel in the sample treated with a boron carbide paste thickness of

5 mm at 1273 K during 6 h. Symbols, experimental data; straight lines, the

minimum root square fittings according to the relation (4). Notice that grey symbols

are excluded from fitting.
Fig. 6. Log–log plots of the Fourier power spectra (S in arbitrary units) versus the

wavenumber (k in 1/pixel) of interfaces between (a) FeB and Fe2B phases and (b)

Fe2B layer and AISI M2 steel in the sample treated with a boron carbide paste

thickness of 5 mm at 1253 K during 6 h. Circles, experimental data; straight lines,

the minimum root square fittings according to the scaling behavior (11).
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Accordingly, the multi-affine spectrum zq of each interface was
calculated according to the scaling behavior (4) (see Fig. 4). As it is
expected for multi-affine interfaces, we found that for each
interface z1 = H < z2. Furthermore, all scaling exponents zq are
found to be independent on the treatment parameters and for both
interfaces obey a universal behavior

zq ¼ H � c lnðqÞ (12)

with the same intermittency parameter

c ¼ 0:093� 0:007 (13)

for the FeB/Fe2B and Fe2B/substrate interfaces (see Fig. 5).
We noted that this behavior coincides with those expected
for universal multi-fractals (5) with the Lévy index g = 1,
corresponding to a log-Cauchy distribution of multiplicative
cascades (see [67–70]).

Finally, we studied the Fourier power spectra of interfaces (see
Fig. 6). We found that in all cases the spectral roughness exponent
aS is equal to the corresponding local roughness exponent, z2, as it
is expected for multi-affine surfaces (see Table 1).
Fig. 5. The graphs of multi-affine spectra (jq versus log q) for interfaces between the

FeB and Fe2B phases (1) and between the Fe2B layer and AISI M2 steel (2). Symbols,

experimental data averaged over all samples (25 values); straight lines, the

minimum root square fittings according to the relation (12).
5. Conclusions

We studied the roughness of interfaces between the FeB and
Fe2B layers and between the Fe2B layer and the substrate (steel)
formed during the boriding treatment of AISI M2 steel. Our findings
suggest that both interfaces are multi-affine, rather than self-
affine. While the width of FeB and Fe2B layers, as well as the width
of interfaces, are strongly dependent on the treatment parameters,
such as the boron carbide paste thickness, temperature, and time
(see Table 1), both interfaces display the universal10 scaling
properties obeying the universal multi-fractal scaling behavior
(11). However, the interface between FeB and Fe2B layers is more
space invasive than the interface between Fe2B and substrate,
nevertheless the last has the larger width. These findings provide a
novel insight into the nature of phase formation during the
boriding treatment. Specifically, universal behavior of multi-affine
spectra suggests that the interfaces arise as outcomes of a
multiplicative stochastic boron diffusion process governed by
the Lévy stable log-Cauchy probability distribution. At the same
time, a small value of intermittency parameter (13) indicates a
great homogeneity of the boron diffusion field, characterized by
the fractal dimension Ddiff = 3 � c = 2.9 � 0.01 (see Eqs. (6) and
(13)).
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