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Capacitor electrical discharge consolidation (CEDC) is a technique that uses the heat of the Joule effect of
a high intensity electric current to consolidate powders. In this study, the effect of the precompaction
pressure and the number of discharges on the porosity, microstructure and hardness of the compacts
is analysed. Furthermore, the sintering results of iron powders obtained through the conventional route
(cold pressing and furnace sintering) and by CEDC are compared. Experiments show that at low initial
pressures the powder column has the necessary resistance to produce the joule heat necessary for pow-
der consolidation. At an initial pressure of 200 MPa the porosity of the specimens decreases from 0.32 to
0.24, and the Vickers microhardness increases from HV10 29 to HV10 51 after 50 discharges.
Copyright � 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

The production of parts from different materials can be done in
differentways. Traditionally, themost usedway is to press the pow-
der to obtain green (mechanically joined) parts and then sinter them
in a furnace at a temperature below the melting temperature of the
material, using a protective atmosphere to prevent oxidation of the
material. This process is known as powder metallurgy (PM) [1].

Alternative to conventional powder metallurgical techniques
have been developed based on the application of pressure and
the passage of an electric current. These are relatively fast
processes that can even be carried out without a protective atmo-
sphere [2], such as electrical resistance sintering (ERS), or CEDC [3].

The sintering of the material is caused by the heat generated by
the Joule effect when the electric current passes through the pow-
der column, which is why it is necessary to use an insulating die,
usually of a ceramic nature, to avoid current drifts.

The more extended technique is the ERS [4,5]. In this technique,
the process is mainly controlled by selecting the high intensity and
low voltage of the current, as well as the current passing time. The
applied pressure is usually limited because of the use of highly
conductive and ductile Cu-based electrodes and the resistance of
the ceramic die. A practical way to implement this technique is
through the use a spot-welding machine [6], which conveniently
adapted can fit the process requirements. One of the drawbacks
of this technique can be the limited amount of energy to be applied
in a reasonable time (in the order of the second in ERS), because of
the maximum intensity and voltage of the current proportioned by
the equipment.

Nevertheless, for powders that are difficult to sinter, for
instance because of the presence of oxide layers, or when the high
temperature time must be minimized, it is necessary to use higher
power techniques. An option to consider in this case is to store
energy in a capacitor that can be quickly discharged (in the order
of the millisecond), at the time that the powders are pressed at rel-
atively low pressures. This is the known as Capacitor Electrical Dis-
charge Consolidation (CEDC), developed during the end of the
1970 s and begin of the 1980 s [7,8]. The required energy is con-
trolled by the capacity and the charge voltage, with a linear and
a square dependence on these parameters respectively. In practice,
custom high voltage equipment is used. For this, high voltage
equipment (2–20 kV) capable of providing energies of 8–75 kJ
are generally used [9–13]. This causes heating of the contact points
between particles, without excessive effect on the rest of the par-
ticle. The equipment used for this study is however a stud welding
equipment adapted to perform the discharge on Fe powders. Due
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Fig. 1. Stud welding equipment and pneumatic press used in the experiments.

Fig. 3. The compressibility curve of the iron powder.

Fig. 4. Final porosity (H) versus specific thermal energy (STE).
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to the limited voltage of this equipment, of the order of 200 V, suc-
cessive discharges are carried out to study the effect on the
powders.

2. Material and experimental procedure

2.1. Capacitor discharge consolidation equipment (CEDC)

A stud welding equipment of capacitance C = 132 000 lF and
charging voltage V = 200 V is conditioned with Cu electrodes that
actuate in a sialon die of 8 mm inner diameter (Fig. 1).

2.2. Material

A commercially pure iron, Atomet 1001HP from Rio Tinto Metal
Powders, is used as starting powder (Fig. 2). The main impurities
are 0.004 wt% C, 0.091 wt% Mn, 0.0053 wt% S and 0.06 wt% O. This
99.8 % purity atomised powder with mean particle size of 162 lm
(Fig. 2) were measured, the latter by laser diffraction (Mastersizer
2000, Malvern Panalytical ltd., Malvern, UK), was then vibrated
until the powder particles reached their tap density [14] of 3.6 g/
cm3 (porosity of 0.63 ± 0.05). The absolute density is 7,9 g/cm3

and apparent density 2.9 g/cm3.
Fig. 3 shows the compressibility curve of the iron powder used

in this study (applied pressure (MPa) versus porosity (H)).

2.3. Experimental procedure

1 g of Fe powder is introduced inside the sialon die. A pneu-
matic press applying 200 MPa ensures good contact between the
electrodes and the powder. Between 0 and 50 discharges are
Fig. 2. (a) SEM micrograph of the Fe Atomet 1001HP powder; (b) Granu
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performed at 5 s intervals. The variation of the porosity (deter-
mined by weighing and measuring the specimen), microstructure
and HV10 Vickers microhardness (DuraScan 50G5, Emcotest,
Kuchl, Austria) of the compacts has been analysed as a function
of the number of discharges and green compaction pressure (200,
400, 700 and 1000 MPa). For comparison purposes, a sample of
the same Fe powder was prepared by cold pressing and furnace
sintering (500 MPa and 1175 �C for 30 min in Ar).

3. Results and discussion

3.1. Porosity evolution

The final porosity of the compacts H as a function of the green
compaction pressure (P) and the specific thermal energy (STE = 1/
lometric curve of the powder, showing a monomodal distribution.
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M�n�1/2�CV2, being M the powder mass and n the number of dis-
charges) used to consolidate the powders is shown in Fig. 3.

As shown in Fig. 3, the final porosity is affected by the green
compaction pressure and the number of discharges, varying from
0.28 for 200 MPa and five discharges (13.52 kJ/g) to about 0.095
for 1000 MPa (independently of the number of discharges). It could
be expected not to find a high dependence of the porosity on the
number of discharges, because CEDC is a so quick process that,
although acting to form bridges between the powder particles, it
usually has little influence on the porosity of the specimens. It is
known that a high temperature of 103-104 �C can be attained in
the contacts between powder particles, but the particles core does
not suffer this temperature increase [15]. Only the pinch effect
caused by the current passing acts to shrinkage the powder column
when external pressure is not applied [16,17].

Only for the specimens pressed at 200 MPa densification is
observed, with the porosity decreasing by 30 % up to 0.235 after
50 discharges.

Fig. 5 shows the porosity distribution in the green compacts and
after 50 discharges for the different green compaction pressures.

As can be seen in Fig. 5, the porosity of the specimen with initial
pressure of 200 MPa decreases after 50 discharges, while for the
other initial pressures no change in porosity is observed. Fig. 4
shows that there is little difference between the centre and the
periphery of the specimen, i.e., the porosity inside the specimen
is homogeneously distributed, since the fast CEDC process does
not overheat the powder particles, but only their contacts, obtain-
ing a porosity distribution similar to that obtained after the pre-
compaction process.
Fig. 5. Optical macrographs showing the porosity distrib
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3.2. Microstructural evolution

Fig. 6 shows the microstructural evolution of the specimens and
the porosity distribution of the conventionally sintered specimen.
It can be seen that only the specimens with green compaction
pressure of 200 MPa shows a certain densification, while the con-
solidation process is not effective for higher green compaction
pressures. The reason for this latter is that the powder mass
behaves as a good electrical conductor, hence the absence of heat
generated by Joule effect. Interparticle boundaries can be easily
appreciated in this situation even after 50 discharges.

3.3. Microhardness evolution

Fig. 7 shows the evolution of the microhardness (HV10) for
samples with green compaction pressures of 200 and 400 MPa,
after different number of discharges.

The microhardness increases with increasing the green pres-
sure, and in the case of the specimens pressed at 200 MPa and
400 MPa, also with the number of discharges. There are no relevant
changes in the microhardness of the samples with higher green
compaction pressures. These results confirm the analysis of the
porosity and microstructure evolution, with the hardness increase
being due to the bonds between particles created by the dis-
charges. For green compaction pressures of 700 and 1000 MPa,
all microhardness values for different number of discharges are
within the experimental uncertainty, with no inter-particle bonds
produced because of the low heat generated at the particles
contacts.
ution of the CEDC specimens after 0 and 50 discha.



Fig. 6. Micrographs showing the porosity distribution for (a) different number of discharges with green compaction pressures of 200, 400, 700 and 1000 MPa; (b) the
conventionally sintered compact. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Hardness for a compact initially pressed at (a) 200 MPa after 0–50 discharges; (b) 400 MPa after 0–50 discharges.
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The conventionally processed specimen, pressed at 500 MPa,
resulted in a value of 67 HV10, slightly lower than that of the elec-
trically consolidated specimens compacted at a lower pressure of
400 MPa, even though the high temperature reached during fur-
nace sintering and the much shorter processing time for the CEDC
specimens.
4. Conclusions

Specimens obtained by CEDC show a homogeneous porosity
distribution. This porosity is strongly dependent on the green pres-
sure (as demonstrated by the compressibility curve of iron powder,
Fig. 3), with higher values for low compaction pressures. Samples
with green pressures of 200 MPa present a porosity range from
0.32 for green specimens to 0.24 for 50 discharges, showing a den-
sification of 25 % of the powder mass during the consolidation pro-
cess. For green pressures of 700 and 1000 MPa, no change in
porosity is observed after the electrical discharges.

The compacts microhardness increases with increasing the
green pressure. For 200 MPa, the microhardness increases from
29 HV10 for the green specimen to 51 after 50 discharges, while
for 400 MPa the values range from 41 for the green specimens to
70 after 50 discharges. For the specimens with initial pressures
of 700 and 1000 MPa, the efficiency of the consolidation process
decreases as the powder mass behaves as a conductor, no heat is
generated by the Joule effect, and no bonds are formed between
particles. The specimens have the same hardness in green state
and after the discharges.

If we compare the CEDC process with the SRE process [18], the
compacts obtained have the same porosity value, e.g. for a porosity
of 0.24 a slightly higher microhardness of 58 HV1, however, when
comparing the CEDC process with the conventional sintering pro-
cess (67 HV10), it is concluded that the discharge consolidation
technique achieves a slightly higher hardness (70 HV10) with a
lower starting pressure and with the advantage of being a quick
and cheaper process.
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